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Function spaces and variational problems

We consider the vector-valued function spaces

H(curl) =
˘
u ∈

ˆ
L2(Ω)

˜3
: curl u ∈

ˆ
L2(Ω)

˜3¯
H(div) =

˘
q ∈

ˆ
L2(Ω)

˜3
: div q ∈ L2(Ω)

¯
Moreover, we focus on the parameter-dependent variational problems

Find u ∈ V :

Z
Ω

curl u · curl v dx +

Z
Ω

κ u · v dx =

Z
f · v dx ∀v ∈ V

Find p ∈ Q :

Z
Ω

div p div q +

Z
Ω

κ p · q dx =

Z
f · q dx ∀q ∈ Q

with V = {v ∈ H(curl) : vτ = 0 on ΓD} and Q = {q ∈ H(div) : qn = 0 on ΓD}.

Goals:

I Conforming hp-FE spaces for H(div) and H(curl) on unstructured hybrid
meshes

I Parameter-robust preconditioners in H(curl) and H(div) for 0 < κ� 1.
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The de Rham Complex - exact sequences

H1 ∇−→ H(curl)
curl−→ H(div)

div−→ L2S S S S
Wh

∇−→ Vh
curl−→ Qh

div−→ Sh

The exact sequence property

range(∇) = ker(curl)

range(curl) = ker(div)

holds on the continuous and on the discrete level (contractable domains).
[Bossavit],[Hiptmair]

Important for stability, convergence analysis, error estimates, ...
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On the construction of high order finite elements for H(curl) and H(div)

I [Webb] H(curl)-conforming shape functions with explicite gradients,
convenient to implement up to order 3

I [Dubiner, Karniadakis+Sherwin] H1-conforming shape functions in tensor
product structure (→ allows fast summation techniques)

I [Demkowicz, Rachowicz] Study of the de Rham diagram for hp-FE-spaces
(global exact sequence property, minimal order condition), hp-adaptive
code based on hexahedral meshes

I [Ainsworth, Coyle] Systematic construction of H(curl)- and
H(div)-conforming elements of arbitrarily high order for tetrahedra

I [Nigan, Phillips] Pyramidal elements by transformation

I [JS, Zaglmayr] Based on local exact sequence property and using
tensor-product structure we achieve a systematic strategy for the
construction of H(curl)- and H(div)-conforming shape functions of
arbitrary and variable order for all types of element topologies (hex,
tet, prism, pyramid) [COMPEL 05, Thesis Zaglmayr 06]
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Hybrid meshes with various element topologies (1)

We assume unstructured, hybrid, conforming meshes in order to allow for

I anisotropic 3D geometric h-refinement in order to efficiently resolve
singularities due to corners and edges

Smallest eigen-vector of Maxwell problem
(anisotropic order distribution p = 3, ..., 6)

Initial coarse tetrahedral mesh

6 / 36



Hybrid meshes with various element topologies (1)

We assume unstructured, hybrid, conforming meshes in order to allow for

I anisotropic 3D geometric h-refinement in order to efficiently resolve
singularities due to corners and edges

Smallest eigen-vector of Maxwell problem
(anisotropic order distribution p = 3, ..., 6)

geometric h-refinement
→ hexes (yellow), prisms (blue), tets (red).
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Hybrid meshes with various element topologies (2)

We are interested in unstructured, hybrid, conforming meshes in order to allow
for

I Resolve boundary layers or local tensor-product meshes (e.g. for thin
shields)

Geometry - Coil and Thin Shield
Coil(tets), Shield (prism-layer),
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Hybrid meshes with various element topologies (2)

We are interested in unstructured, hybrid, conforming meshes in order to allow
for

I Resolve boundary layers or local tensor-product meshes (e.g. for thin
shields)

Geometry - Coil and Thin Shield
Coil(tets), Shield (prism-layer),
Air (pyramids and tets)
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Hierarchical V -E -F -C basis for H1-conforming Finite Elements

We use a hierarchical Vertex-Edge-Face-Cell basis for the high-order
continuous FE-space Wh,p ⊂ H1(Ω).

Vertex basis function Edge basis function p=3 Cell basis function p=3

I allows variable polynomial order on each edge, face(3D) and cell.
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A new strategy for high-order H(curl)-conforming elements

The deRham Complex states ∇H1 ⊂ H(curl) and ∇Wh,p+1 ⊂ Vh,p.

I Take the lowest-order Nédélec element.

I Explicitely use the gradients of a H1-conforming high-order basis functions.
Edge-basis functions:

∇−→ ∇W E
pE +1 = V E

pE

Face basis functions

∇−→ ∇W F
pF +1 ⊂ V F

pF

I Extend face/cell shape functions to a complete polynomial basis of Vh,p.
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high-order H1-conforming shape functions in tensor product structure

Exploit the tensor product structure of quadrilateral elements to build edge and
face shapes

Family of orthogonal polynomials
(P0

k [−1, 1] )2≤k≤p vanishing in ±1.

φE1
i (x , y) = P0

i (x) 1−y
2
,

φF
i j(x , y) = P0

i (x) P0
j (y).

.

Degenerated tensor-product structure for triangle
[Dubiner],[Karniadakis,Sherwin]:

Triangle as degenerated quadrilateral
by Duffy transformation x → x

1−y

φE1
i (x , y) = P0

i ( x
1−y

) (1− y)i

φF
i j(x , y) = P0

i (
x

1− y
)(1− y)i| {z }

ui (x,y)

Pj(2y − 1)y| {z }
vj (y)

Remark: Implementation can be done division-free!
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Tensor-product based high-order H(curl)-conforming elements with explicite
high-order gradients:

I Lowest-order Nédélec (1st kind): ϕN0 = λi∇λj −∇λiλj

I Edge-based shape functions (gradient fields):

ϕE
i = ∇φE ,H1

i 2 ≤ i ≤ pE + 1,

I Face-based shape functions (gradient fields and irrotationals)

ϕF ,1
ij (x , y) = ∇φF ,H1

ij (x , y) = ∇ui vj + vj ∇ui 3 ≤ i + j ≤ pF

ϕF ,2a
ij = ∇uivj − ui∇vj

ϕF ,2b
ij = ϕN0 vj

→ Analogue principle for cell-based shape functions in 3D.

→ Thanks to tensor-product based construction this strategy extends
systematically for all types of element topologies (quads, trigs, hexes, prisms,
tets and pyramids).
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Tensor product-based high-order H(div)-conforming tetrahedral elements
using explicite high-order curl fields

I Lowest-order Raviart-Thomas functions
ϕRT 0 = λ1∇λ2 ×∇λ3 + λ2∇λ3 ×∇λ1 + λ3∇λ1 ×∇λ2

I Face-based shape functions (curl fields, solenoidal)
ψF ,k

ij = ∇× ϕcurl,F ,k
ij 3 ≤ i + j ≤ pF + 1, 1 ≤ k ≤ 3

I Cell-based shape functions (solenoidal and non-solenoidal fields)

ψC ,1a
i,j,k = ∇× ϕcurl,C ,2a

ijk = wk ∇ui ×∇vj

ψC ,1a
j,k = ∇× ϕcurl,C ,2a

jk = ∇×
`
ϕN0 vj wk

´
+ set of lin.indep. non-solenoidal functions using factors ui , vj ,wk

(corr. to H1-conforming cell-based functions φH1,C
ijk = ui vj wk .)

→ Systemtatic strategy extends to all types of element topologies!
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The local exact sequence property

Using explicite kernel functions leads to exact sequences in a local sense:

Wh,p+1(Th) = W V
h,1(Th) +

X
E

W E
pE +1 +

X
F

W F
pF +1 +

X
C

W C
pC +1 ⊂ H1(Ω)?y∇ ?y∇ ?y∇ ?y∇

Vh,p(Th) = VN0
h (Th) +

X
E

∇W E
pE +1 +

X
F

V F
pF

+
X
C

V C
pC

⊂ H(curl, Ω)?y∇× ?y∇× ?y∇×
Qh,p−1(Th) = QRT0

h (Th) +
X
F

∇× V F
pF

+
X
C

QC
pC−1 ⊂ H(div, Ω)?y∇· ?y∇·

Sh,p−2(Th) = S0
h (Th) +

X
C

∇ · QC
pC−1⊂ L2(Ω)

I Local exact sequence property: Each sequence of local high-order spaces
associated to a single edge, single face, or single cell is exact.

I This implies the global exact sequence property for arbitrary and variable
polynomial order on each single edge, face, and cell!

I Key to cheap, parameter-robust ASM-preconditioning.
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Local preconditioners for H(curl)

In various formulations time-harmonic, quasi-static, but also in non-linear,
time-stepping, eigenvalue iterations for Maxwell we face the
parameter-dependent system

Aκ(u, v) =

Z
curl u · curl v + κ u · v dx

with non-trivial kernel ker(curl) = ∇H1(Ω).

I Problem: Classical preconditioners (Jacobi, symmetric GS, standard
multigrid) fail on above parameter-dependent problems for 0 ≤ κ� 1..

I A two scale-problem of solenoidal and gradient fields

A additive Schwarz preconditioner is defined by the splitting Vh =
P

i Vi .
For kernel functions v =

P
i vi ∈ ∇Wh we obtain

A(∇w ,∇w) = κ‖∇w‖2
0,

C(∇w ,∇w) = inf
vi s.t.

P
vi =∇w

X
‖ curl vi‖2

0 + κ‖vi‖2
0.

→ For general splittings : cond(C−1A) = O(κ−1).
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Robust additive Schwarz methods for parameter-dependent problems

The general situation:

Aκ(u, v) = (Λu,Λv) + κ(u, v) u, v ∈ V

with an operator Λ with non-trivial kernel V0 := ker(Λ)

Theorem:

If the splitting is kernel-preserving

Vh,p =
X

Vi and V0 =
X

(Vi ∩ V0),

then the AS-preconditioner C with

C(v , v) = inf
vi s.t. v=

P
vi

X
A(vi , vi )

is robust in the sense of

cond(C−1A) is bounded uniformelty for κ→ 0

JS 96,98,99: Nearly incompressible elasticity, Reissner Mindlin Plates
Arnold-Falk-Winther, Hiptmair: 98,2000: H(curl) and H(div), Xu: 06
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Two classical realizations of sub-spaces: h-version

Lowest-order case for H(curl)

V0 =
X

∇Wi ⊂ Vh,p with Wh = span{φi : i ∈ V} ⊂ H1

can be realized by the subspace splittings

Arnold-Falk-
Winther:
Large kernel-
preserving blocks:

Hiptmair blocks:
single-edge blocks
plus kernel func-
tions

1
1

1

11

V =
X
i∈V

Vi with ∇φi ∈ Vi ,or V =
X
j∈E

Vj +
X
i∈V

span(∇φi )

Requirements in general (h.o.): for H(curl) or H(div)

I AFW-smoother: overlapping block-Jacobi preconditioner (according to
vertex patches or edge patches(3d))

I Hiptmair-smoother: discrete differential operators (B∇,B∇×) and
Jacobi-preconditioner for Poisson or curl-curl matrix.
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Robust preconditioning in the case of local exact sequences

I A κ-robust additive Schwarz preconditioner has to fulfill

Vh,p =
mX

i=1

Vi and ∇Wh =
mX

i=1

`
Vi ∩∇Wh

´
for H(curl),

Qh,p =
mX

i=1

Qi and curl Vh =
mX

i=1

`
Qi ∩ curl Vh

´
for H(div).

I Due to the local exact sequence property

Wh,p+1(Th) = W V
h,1(Th) +

X
E

W E
pE +1 +

X
F

W F
pF +1 +

X
C

W C
pC +1?y∇ ?y∇ ?y∇ ?y∇

Vh,p(Th) = N0(Th) +
X

E

V E
pE

+
X

F

V F
pF

+
X

C

V C
pC?y∇× ?y∇× ?y∇×

Qh,p(Th) = RT 0(Th) +
X

F

∇× V F
pF

+
X

C

QC
pC

paramter-robustness is guaranteed for simple N0-E -F -C as well as

RT 0-F -C splitting.

In practise, this means ....
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Simple Block-Preconditioning in H(curl)

The global stiffness matrix is split into the according unknowns:

Ah =

0BB@
AN0 N0

AN0E AN0F AN0C

AEN0
AEE AEF AEC

AFN0
AFE AFF AFC

ACN0
ACE ACF ACC

1CCA .

The cheap preconditioner is the N0-E-F-C block Jacobi-preconditioner

Ch =

0B@ AN0 N0
0 0 0

0 diag(AEE ) 0 0
0 0 diag(AFF ) 0
0 0 0 ACC

1CA .

yields a parameter-robust method !

In fact, we apply a two-level concept:

I The lowest-order space (coarse level) is solved exactly, or by Hiptmair or
AFW multigrid, or Reitzinger-Schöberl AMG.

I Local smoothing for the high-order unknowns
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Application: Reduced Basis Gauging for magnetostatic problems

We consider the magnetostatic problem:
Find the vector potential A ∈ H(curl) s.t.Z

Ω

curl A curl v dx =

Z
Ω

jv dx , ∀ v ∈ V .

The solution A is determined up to gradients.

→ Gauging by adding a small regularization term with 0 < κ� 1.
→ Suitable, since numerical methods are robust in κ.

Furthermore, we introduce the reduced basis gauging where

I the explicite high-order gradient basis functions are locally skipped,

I gauging is only needed for the lowest-order subspace.

Advantages:

I The reduced system has ≈ 60 % of unknowns of the full system

I The reduced problem is better conditioned.
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A simple model problem: Condition numbers in full vs. reduced basis

... compared on the unit cube covered with 6 tetrahedra with/without static
condensation (for κ = 1e − 6):

Aκ(u, v) =

Z
curl u curl v dx + κ

Z
u v dx .

 1

 10

 100

 1000

 0  2  4  6  8  10  12

co
nd

(A
-1

C
)

p

full basis
reduced basis

full basis, stat. cond.
reduced basis, stat. cond.

Polynomial order vs. Condition number (κ(C−1A))
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Magnetostatic boundary value problem - Numerical Results

Simulation of the magnetic field induced by a coil with prescribed currents:

Magnetic field induced by a coil, p=6.

Absolute value of

|B| = | curl A|.

Comparison of simulation with full and with reduced basis:

p dofs grads κ(C−1A) iter solvertime
4 104350 yes 79.86 62 20.2 s
4 61744 no 21.01 39 3.2 s
6 303009 yes 207.02 91 120.3 s
6 186052 no 33.33 48 13.5 s
8 664380 yes 398.03 114 430.1 s
8 416064 no 43.38 54 41.7 s

Note, the computed B = curl A is equal in both versions.
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Magnetostatic BVP - The shielding problem

Simulation of the magnetic field induced by a coil with prescribed currents:

Electromagnetic shielding problem: magnetic field, p=5

Absolute value of magnetic flux,

p=5

... prism layer in shield, unstructured mesh (tets, pyramids) in air/coil.

Comparision of simulation with full and with reduced basis

p dofs grads κ(C−1A) iter solvertime
4 96870 yes 34.31 37 24.9 s
4 57602 no 31.14 36 6.6 s
7 425976 yes 140.74 63 241.7 s
7 265221 no 72.63 51 87.6 s
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Application: Simulation of eddy-currents in bus bars

... gradients can be skipped in non-conducting domains (air).

Full basis for p = 3 in conductor, reduced basis for p = 3 in air
n ≈ 450k, 20 min on P4 Centrino, 1600MHz
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Elasticity Problem: A beam in a beam

Reenforcement with E = 50 in medium with E = 1.

New mixed FEM, p = 2 Primal FEM, p = 3

joint work with Astrid Sinwel, Start-project “hp-FEM”, RICAM Linz [Tech
Report 07]
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Degrees of freedom for TD-NNS elements

Mixed elements for approximating displacements and stresses.

I tangential components of displacement vector

I normal-normal component of stress tensor

Triangular Finite Element:

u

σ

τ

nn

Tetrahedral Finite Element:

u

σnn

τ
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Hellinger Reissner mixed methods for elasticity

Primal mixed method:

Find σ ∈ Lsym
2 and u ∈ [H1]2 such thatR
Aσ : τ −

R
τ : ε(u) = 0 ∀ τ

−
R
σ : ε(v) = −

R
f · v ∀ v

Dual mixed method:

Find σ ∈ H(div)sym and u ∈ [L2]
2 such thatR

Aσ : τ +
R

div τ · u = 0 ∀ τR
div σ · v = −

R
f · v ∀ v

[Arnold+Falk+Winther]
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Reduced Symmetry mixed methods

Decompose

ε(u) = ∇u +
1

2

„
0 1
−1 0

«
curl u = ∇u + ω

Impose symmetry of the strain tensor by an additional Lagrange parameter:

Find σ ∈ [H(div)]2, u ∈ [L2]
2, and ω ∈ Lskew

2 such thatR
Aσ : τ +

R
u div τ +

Z
τ : ω = 0 ∀ τR

v div σ = −
R

fv ∀ vR
σ : γ = 0 ∀ γ

The solution satisfies u ∈ L2 and ω = curl u ∈ L2, i.e.,

u ∈ H(curl)

Arnold+Brezzi, Stenberg,... 80s
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Choices of spaces

R
div σ · u understood as

〈div σ, u〉H−1×H1 = −(ε(u), σ)L2 〈div σ, u〉
H(curl)∗ × H(curl) (div σ, u)L2

Displacement

u ∈ [H1]2 u ∈ H(curl) u ∈ [L2]
2

continuous f.e. tangential-continuous f.e. non-continuous f.e.

Stress

σ ∈ Lsym
2 σ ∈ Lsym

2 , div div σ ∈ H−1 σ ∈ H(div)sym

non-continuous f.e. normal-normal cont (σnn) f.e. normal-cont (σn) f.e.

The mixed system is well posed for all of these pairs.
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Continuity properties of the space H(div div)

Lemma: Let σ be a piece-wise smooth tensor field on the mesh T = {T} such
that σnt ∈ H1/2(∂T ). Assume that σnn = nTσn is continuous across element
interfaces. Then there holds div σ ∈ H(curl)∗.
Proof: Let v be a smooth test function.

〈div σ, v〉 := −
Z
σ : ∇v =

X
T

nZ
T

div σ · v −
Z

∂T

σn · v
o

=
X
T

nZ
T

div σ · v −
Z

∂T

σnτvτ

o
+
X

E

Z
E

[σnn]|{z}
=0

vn

≤
X
T

‖ div σ‖L2(T )‖v‖L2(T ) + ‖σnτ‖H1/2(∂T )‖vτ‖H−1/2(∂T )

� C(σ) ‖v‖
H(curl)

By density, the continuous functional can be extended to the whole H(curl):

〈div σ, v〉 =
X
T

nZ
T

div σ · v −
Z

∂T

σnτvτ

o
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The TD-NNS-continuous mixed method

Assuming piece-wise smooth solutions, the elasticity problem is equivalent to
the following mixed problem: Find σ ∈ H(div div) and u ∈ H(curl) such thatR

Aσ : τ +
P

T

nR
T

div τ · u −
Z

∂T

τnτuτ

o
= 0 ∀ τP

T

nR
T

div σ · v −
Z

∂T

σnτvτ

o
= −

R
f · v ∀ v

Proof: The second line is equilibrium, plus tangential continuity of the normal
stress vector: X

T

Z
T

(div σ + f )v +
X

E

Z
E

[σnτ ]vτ = 0 ∀ v

Since the space requires continuity of σnn, the normal stress vector is
continuous.
Element-wise integration by parts in the first line givesX

T

Z
T

(Aσ − ε(u)) : τ +
X

E

Z
E

τnn[un] = 0 ∀ τ

This is the constitutive relation, plus normal-continuity of the displacement.
Tangential continuity of the displacement is implied by the space H(curl).
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The 3-step ’exact sequence’

H1 ∩ H2(T )
∇−→ H(curl) ∩ [H1(T )]2

σT (·)−→ H(div div)
div−→ H−1(div)

div−→ H−1

with the stress operator

σ(v) =

 
∂vy

∂y
− 1

2

˘ ∂vy

∂x
+

∂vy

∂x

¯
sym ∂vx

∂x

!
.

The composite operators are

airy(w) = σ(∇w) =

 
∂2w
∂y2 − ∂w

∂x∂y

sym ∂w
∂x2

!

div σ(v) =
1

2
Curl curl v

There holds

range(σ(∇·)) = ker(div)

range(div σ(·) = ker(div)
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Finite elements for H(div div)

Start with C 0-continuous finite elements for H1 ∩ H2(T )

Finite elements for H(div div) can be built with
edge basis functions: σ(∇ϕE )

ad hoc internal basis functions: Sym[∇λ⊥α ⊗∇λ⊥β ] λγPk−1

Alternative: Take airy functions of internal C 0-continuous f.e., plus some more.
Potential to save dofs for subdomains with div σ = 0.
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Unit square, left side fixed, vertical load, adaptive refinement

Proven to be robust with respect to volume locking (ν → 0.5)

σ ∈ P1

2 dof σnn per edge

conforming non-conforming

u ∈ P1 2 dof uτ 1 dof uτ

u ∈ P2 3 dof uτ 2 dof uτ

ν = 0.3:
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ν = 0.4999:
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33 / 36



Curved elements

fixed left top, pull right top
Elements of order 5

σxx

34 / 36



Shell structure

Proven to be robust with respect to shear locking (flat anisotropic elements).

R = 0.5, t = 0.005
σ ∈ P2, u ∈ P3

stress component σyy
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Conclusions:

I A new systematic strategy for the construction of H(curl) and
H(div)-conforming Finite Elements using explicitely high-order kernel
functions. This introduces the local exact sequence property and its
advantages

I variable and arbitrary polynomial degree on each edge, face, and cell
preserving the global exact sequence property,

I simple block ASM-preconditioners for curl-curl and div-div systems
are parameter-robust,

I reduced basis gauging,

I trivial discrete differential operators B∇, Bcurl, Bdiv.

I Application to Maxwell Source Problems and Eigenvalue Problems [Thesis
S. Zaglmayr, 06]

I Tensor-valued elements for elasticity [with A. Sinwel]

I These elements are available in the open source package Netgen/NgSolve.
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