hp-Finite Elements with Local Exact Sequence Properties

Joachim Schöberl¹ and Sabine Zaglmayr²

Center for Computational Engineering Science CCES RWTH Aachen University, Germany

FWF Start-Project Y-192 "3D hp-Finite Elements" RICAM Linz, Austrian Academy of Sciences

USNCCM9, San Francisco, July 23, 2007

Outline

- Vector-valued function spaces and the de Rham Complex
- ▶ High-order finite elements with the local exact sequence property
- Robust preconditioning for problems with small parameters
- Applications and numerical results
- ► Next step: Tensor elements for elasticity

Function spaces and variational problems

We consider the vector-valued function spaces

$$H(\operatorname{curl}) = \{u \in [L_2(\Omega)]^3 : \operatorname{curl} u \in [L_2(\Omega)]^3\}$$

 $H(\operatorname{div}) = \{q \in [L_2(\Omega)]^3 : \operatorname{div} q \in L_2(\Omega)\}$

Moreover, we focus on the parameter-dependent variational problems

Find
$$u \in V$$
:
$$\int_{\Omega} \operatorname{curl} u \cdot \operatorname{curl} v \, dx + \int_{\Omega} \kappa \, u \cdot v \, dx = \int f \cdot v \, dx \quad \forall v \in V$$
Find $p \in Q$:
$$\int_{\Omega} \operatorname{div} p \, \operatorname{div} q + \int_{\Omega} \kappa \, p \cdot q \, dx = \int f \cdot q \, dx \quad \forall q \in Q$$
with $V = \{v \in H(\operatorname{curl}) : v_{\tau} = 0 \text{ on } \Gamma_{D}\}$ and $Q = \{q \in H(\operatorname{div}) : q_{n} = 0 \text{ on } \Gamma_{D}\}$.

Goals:

- Conforming hp-FE spaces for H(div) and H(curl) on unstructured hybrid meshes
- ▶ Parameter-robust preconditioners in H(curl) and H(div) for $0 < \kappa \ll 1$.

The de Rham Complex - exact sequences

The exact sequence property

$$range(\nabla) = ker(curl)$$

 $range(curl) = ker(div)$

holds on the continuous and on the discrete level (contractable domains). [Bossavit],[Hiptmair]

Important for stability, convergence analysis, error estimates, ...

On the construction of high order finite elements for H(curl) and H(div)

- ► [Webb] *H*(curl)-conforming shape functions with explicite gradients, convenient to implement up to order 3
- Dubiner, Karniadakis+Sherwin] H¹-conforming shape functions in tensor product structure (→ allows fast summation techniques)
- [Demkowicz, Rachowicz] Study of the de Rham diagram for hp-FE-spaces (global exact sequence property, minimal order condition), hp-adaptive code based on hexahedral meshes
- ► [Ainsworth, Coyle] Systematic construction of *H*(curl)- and *H*(div)-conforming elements of arbitrarily high order for tetrahedra
- ▶ [Nigan, Phillips] Pyramidal elements by transformation
- ► [JS, Zaglmayr] Based on <u>local exact sequence property</u> and using tensor-product structure we achieve a **systematic strategy** for the construction of *H*(curl)- and *H*(div)-conforming shape functions of **arbitrary** and **variable order for all types of element topologies** (hex, tet, prism, pyramid) [COMPEL 05, Thesis Zaglmayr 06]

Hybrid meshes with various element topologies (1)

We assume unstructured, hybrid, conforming meshes in order to allow for

 anisotropic 3D geometric h-refinement in order to efficiently resolve singularities due to corners and edges

Smallest eigen-vector of Maxwell problem (anisotropic order distribution p = 3, ..., 6)

Initial coarse tetrahedral mesh

Hybrid meshes with various element topologies (1)

We assume unstructured, hybrid, conforming meshes in order to allow for

 anisotropic 3D geometric h-refinement in order to efficiently resolve singularities due to corners and edges

Smallest eigen-vector of Maxwell problem (anisotropic order distribution p = 3, ..., 6)

 $\begin{array}{l} {\sf geometric\ h\text{-}refinement} \\ {\to} {\sf\ hexes\ (yellow),\ prisms\ (blue),\ tets\ (red)}. \end{array}$

Hybrid meshes with various element topologies (2)

We are interested in unstructured, hybrid, conforming meshes in order to allow for

 Resolve boundary layers or local tensor-product meshes (e.g. for thin shields)

Geometry - Coil and Thin Shield

Coil(tets), Shield (prism-layer),

Hybrid meshes with various element topologies (2)

We are interested in unstructured, hybrid, conforming meshes in order to allow for

 Resolve boundary layers or local tensor-product meshes (e.g. for thin shields)

Geometry - Coil and Thin Shield

Coil(tets), Shield (prism-layer), Air (pyramids and tets)

Hierarchical V-E-F-C basis for H^1 -conforming Finite Elements

We use a **hierarchical Vertex-Edge-Face-Cell** basis for the high-order continuous FE-space $W_{h,p} \subset H^1(\Omega)$.

allows variable polynomial order on each edge, face(3D) and cell.

A new strategy for high-order H(curl)-conforming elements

The deRham Complex states $\nabla H^1 \subset H(\text{curl})$ and $\nabla W_{h,p+1} \subset V_{h,p}$.

- ► Take the lowest-order Nédélec element.
- ► Explicitely use the gradients of a H¹-conforming high-order basis functions. Edge-basis functions:

Extend face/cell shape functions to a complete polynomial basis of $V_{h,p}$.

high-order H^1 -conforming shape functions in tensor product structure

Exploit the tensor product structure of quadrilateral elements to build edge and face shapes

Family of orthogonal pole $(P_k^0[-1,1])_{2 \le k \le p}$ vanishing in ± 1 . $\phi_i^{E_1}(x,y) = P_i^0(x) \frac{1-y}{2},$ $\phi_{ij}^F(x,y) = P_i^0(x) P_j^0(y).$ polynomials

$$\phi_i^{E_1}(x,y) = P_i^0(x) \frac{1-y}{2},$$

$$\phi_{ij}^F(x,y) = P_i^0(x) P_j^0(y).$$

high-order H^1 -conforming shape functions in tensor product structure

Exploit the tensor product structure of quadrilateral elements to build edge and face shapes

polynomials

Family of orthogonal po
$$(P_k^0[-1,1])_{2 \le k \le p} \text{ vanishing in } \pm 1.$$

$$\phi_i^{E_1}(x,y) = P_i^0(x) \frac{1-y}{2},$$

$$\phi_{ij}^F(x,y) = P_i^0(x) P_j^0(y).$$

Degenerated tensor-product structure for triangle [Dubiner],[Karniadakis,Sherwin]:

(0.1)(-1,0)(1,0)

Triangle as degenerated quadrilateral by Duffy transformation $x \to \frac{x}{1-y}$

$$\phi_{ij}^{E_{1}}(x,y) = P_{i}^{0}(\frac{x}{1-y})(1-y)^{i}$$

$$\phi_{ij}^{F}(x,y) = \underbrace{P_{i}^{0}(\frac{x}{1-y})(1-y)^{i}}_{y_{i}(x,y)} \underbrace{P_{j}(2y-1)y}_{y_{j}(y)}$$

Remark: Implementation can be done division-free!

Tensor-product based high-order H(curl)-conforming elements with explicite high-order gradients:

- ▶ Lowest-order Nédélec (1st kind): $\varphi^{\mathcal{N}_0} = \lambda_i \nabla \lambda_j \nabla \lambda_i \lambda_j$
- Edge-based shape functions (gradient fields):

$$\varphi_i^E = \nabla \phi_i^{E, H^1} \qquad 2 \le i \le p_E + 1,$$

► Face-based shape functions (gradient fields and irrotationals)

$$\varphi_{ij}^{F,1}(x,y) = \nabla \phi_{ij}^{F,H^{1}}(x,y) = \nabla u_{i} v_{j} + v_{j} \nabla u_{i} \qquad 3 \leq i+j \leq p_{F}$$

$$\varphi_{ij}^{F,2a} = \nabla u_{i} v_{j} - u_{i} \nabla v_{j}$$

$$\varphi_{ij}^{F,2b} = \varphi^{N_{0}} v_{j}$$

- → Analogue principle for cell-based shape functions in 3D.
- \rightarrow Thanks to tensor-product based construction this strategy extends systematically for all types of element topologies (quads, trigs, hexes, prisms, tets and pyramids).

Tensor product-based high-order H(div)-conforming tetrahedral elements using explicite high-order curl fields

► Lowest-order Raviart-Thomas functions

$$\varphi^{\mathcal{RT}_0} = \lambda_1 \, \nabla \lambda_2 \times \nabla \lambda_3 + \lambda_2 \, \nabla \lambda_3 \times \nabla \lambda_1 + \lambda_3 \, \nabla \lambda_1 \times \nabla \lambda_2$$

Face-based shape functions (curl fields, solenoidal) $\psi_{ij}^{F,k} = \nabla \times \varphi_{ij}^{\text{curl},F,k} \quad 3 \leq i+j \leq p_F+1, 1 \leq k \leq 3$

► Cell-based shape functions (solenoidal and non-solenoidal fields)

$$\begin{array}{ll} \psi_{i,j,k}^{C,1a} &= \nabla \times \varphi_{ijk}^{\text{curl},C,2a} = w_k \, \nabla u_i \times \nabla v_j \\ \psi_{i,k}^{C,1a} &= \nabla \times \varphi_{ik}^{\text{curl},C,2a} = \nabla \times \left(\varphi^{\mathcal{N}_0} \, v_j \, w_k \right) \end{array}$$

+ set of lin.indep. non-solenoidal functions using factors u_i, v_j, w_k (corr. to H^1 -conforming cell-based functions $\phi_{ijk}^{H^1,C} = u_i \ v_j \ w_k$.)

→ Systemtatic strategy extends to all types of element topologies!

The local exact sequence property

Using explicite kernel functions leads to exact sequences in a local sense:

$$W_{h,\mathbf{p}+1}(T_h) = W_{h,1}^V(T_h) + \sum_E W_{p_E+1}^E + \sum_F W_{p_F+1}^F + \sum_C W_{p_C+1}^C \subset H^1(\Omega)$$

$$\downarrow \nabla \qquad \qquad \downarrow \nabla \qquad \qquad \downarrow \nabla \qquad \qquad \downarrow \nabla$$

$$V_{h,\mathbf{p}}(T_h) = V_h^{\mathcal{N}_0}(T_h) + \sum_E \nabla W_{p_E+1}^E + \sum_F V_{p_F}^F \qquad + \sum_C V_{p_C}^C \qquad \subset H(\operatorname{curl},\Omega)$$

$$\downarrow \nabla \times \qquad \qquad \downarrow \nabla \times \qquad \qquad \downarrow \nabla \times$$

$$Q_{h,\mathbf{p}-1}(T_h) = Q_h^{RT_0}(T_h) \qquad \qquad + \sum_F \nabla \times V_{p_F}^F + \sum_C Q_{p_C-1}^C \qquad \subset H(\operatorname{div},\Omega)$$

$$\downarrow \nabla \cdot \qquad \qquad \downarrow \nabla \cdot$$

$$\downarrow \nabla \cdot \qquad \qquad \downarrow \nabla \cdot$$

$$S_{h,\mathbf{p}-2}(T_h) = S_h^0(T_h) \qquad \qquad + \sum_C \nabla \cdot Q_{p_C-1}^C \subset L_2(\Omega)$$

Local exact sequence property: Each sequence of local high-order spaces associated to a single edge, single face, or single cell is exact.

The local exact sequence property

Using explicite kernel functions leads to exact sequences in a local sense:

$$\begin{aligned} W_{h,\mathbf{p}+1}(T_h) &= W_{h,1}^V(T_h) &+ \sum_E W_{p_E+1}^E &+ \sum_F W_{p_F+1}^F &+ \sum_C W_{p_C+1}^C &\subset H^1(\Omega) \\ & \downarrow \nabla & \downarrow \nabla & \downarrow \nabla & \downarrow \nabla \\ V_{h,\mathbf{p}}(T_h) &= V_h^{\mathcal{N}_0}(T_h) &+ \sum_E \nabla W_{p_E+1}^E &+ \sum_F V_{p_F}^F &+ \sum_C V_{p_C}^C &\subset H(\operatorname{curl},\Omega) \\ & \downarrow \nabla \times & \downarrow \nabla \times & \downarrow \nabla \times \\ Q_{h,\mathbf{p}-1}(T_h) &= Q_h^{RT_0}(T_h) &+ \sum_F \nabla \times V_{p_F}^F &+ \sum_C Q_{p_C-1}^C &\subset H(\operatorname{div},\Omega) \\ & \downarrow \nabla \cdot & \downarrow \nabla \cdot \\ S_{h,\mathbf{p}-2}(T_h) &= S_h^0(T_h) &+ \sum_C \nabla \cdot Q_{p_C-1}^C \subset L_2(\Omega) \end{aligned}$$

- ► Local exact sequence property: Each sequence of local high-order spaces associated to a single edge, single face, or single cell is exact.
- This implies the global exact sequence property for arbitrary and variable polynomial order on each single edge, face, and cell!
- ▶ Key to cheap, parameter-robust ASM-preconditioning.

Local preconditioners for H(curl)

In various formulations time-harmonic, quasi-static, but also in non-linear, time-stepping, eigenvalue iterations for Maxwell we face the parameter-dependent system

$$A_{\kappa}(u,v) = \int \operatorname{curl} u \cdot \operatorname{curl} v + \kappa u \cdot v \, dx$$

with non-trivial kernel $\ker(\operatorname{curl}) = \nabla H^1(\Omega)$.

▶ Problem: Classical preconditioners (Jacobi, symmetric GS, standard multigrid) fail on above parameter-dependent problems for $0 \le \kappa \ll 1$..

Local preconditioners for H(curl)

In various formulations time-harmonic, quasi-static, but also in non-linear, time-stepping, eigenvalue iterations for Maxwell we face the parameter-dependent system

$$A_{\kappa}(u, v) = \int \operatorname{curl} u \cdot \operatorname{curl} v + \kappa u \cdot v \, dx$$

with non-trivial kernel $\ker(\operatorname{curl}) = \nabla H^1(\Omega)$.

- ▶ Problem: Classical preconditioners (Jacobi, symmetric GS, standard multigrid) fail on above parameter-dependent problems for $0 \le \kappa \ll 1$..
- A two scale-problem of solenoidal and gradient fields

A additive Schwarz preconditioner is defined by the splitting $V_h = \sum_i V_i$. For kernel functions $v = \sum_i v_i \in \nabla W_h$ we obtain

$$\begin{split} A(\nabla w, \nabla w) &= \kappa \|\nabla w\|_0^2, \\ C(\nabla w, \nabla w) &= \inf_{v_i \text{ s.t. } \sum v_i = \nabla w} \sum \|\operatorname{curl} v_i\|_0^2 + \kappa \|v_i\|_0^2. \end{split}$$

ightarrow For general splittings : cond($\mathcal{C}^{-1}\mathcal{A}$) = $\mathcal{O}(\kappa^{-1})$.

Robust additive Schwarz methods for parameter-dependent problems

The general situation:

$$A^{\kappa}(u,v) = (\Lambda u, \Lambda v) + \kappa(u,v)$$
 $u, v \in V$

with an operator Λ with non-trivial kernel $V_0 := \ker(\Lambda)$

Theorem:

If the splitting is kernel-preserving

$$V_{h,p} = \sum V_i$$
 and $V_0 = \sum (V_i \cap V_0),$

then the AS-preconditioner C with

$$C(v,v) = \inf_{v_i \text{s.t. } v = \sum v_i} \sum A(v_i,v_i)$$

is robust in the sense of

$$\operatorname{cond}(C^{-1}A)$$
 is bounded uniformelty for $\kappa \to 0$

JS 96,98,99: Nearly incompressible elasticity, Reissner Mindlin Plates Arnold-Falk-Winther, Hiptmair: 98,2000: H(curl) and H(div), Xu: 06

Two classical realizations of sub-spaces: h-version

Lowest-order case for H(curl)

$$V_0 = \sum \nabla W_i \subset V_{h,p}$$
 with $W_h = \operatorname{span}\{\phi_i : i \in \mathcal{V}\} \subset H^1$

can be realized by the subspace splittings

Arnold-Falk-Winther:

Large kernelpreserving blocks:

Hiptmair blocks: single-edge blocks plus kernel functions

$$V = \sum_{i \in \mathcal{V}} V_i$$
 with $\nabla \phi_i \in V_i$,or

$$V = \sum_{j \in \mathcal{E}} V_j + \sum_{i \in \mathcal{V}} \operatorname{span}(\nabla \phi_i)$$

Two classical realizations of sub-spaces: h-version

Lowest-order case for H(curl)

$$V_0 = \sum
abla W_i \subset V_{h,p} \qquad ext{with } W_h = ext{span}\{\phi_i \, : i \in \mathcal{V}\} \subset H^1$$

can be realized by the subspace splittings

Arnold-Falk-Winther:

Large kernelpreserving blocks:

Hiptmair blocks: single-edge blocks plus kernel functions

$$V = \sum_{i \in \mathcal{V}} V_i$$
 with $\nabla \phi_i \in V_i$,or

$$V = \sum_{j \in \mathcal{E}} V_j + \sum_{i \in \mathcal{V}} \mathsf{span}(
abla \phi_i)$$

Requirements in general (h.o.): for H(curl) or H(div)

- ► AFW-smoother: overlapping block-Jacobi preconditioner (according to vertex patches or edge patches(3d))
- ▶ Hiptmair-smoother: discrete differential operators $(B_{\nabla}, B_{\nabla \times})$ and Jacobi-preconditioner for Poisson or curl-curl matrix.

Robust preconditioning in the case of local exact sequences

ightharpoonup A κ -robust additive Schwarz preconditioner has to fulfill

$$V_{h,p} = \sum_{i=1}^m V_i$$
 and $\nabla W_h = \sum_{i=1}^m \left(V_i \cap \nabla W_h \right)$ for $H(\operatorname{curl}),$ $Q_{h,p} = \sum_{i=1}^m Q_i$ and $\operatorname{curl} V_h = \sum_{i=1}^m \left(Q_i \cap \operatorname{curl} V_h \right)$ for $H(\operatorname{div}).$

▶ Due to the *local exact sequence property*

paramter-robustness is guaranteed for simple \mathcal{N}_0 -E-F-C as well as \mathcal{RT}_0 -F-C splitting.

In practise, this means

Simple Block-Preconditioning in H(curl)

The global stiffness matrix is split into the according unknowns:

$$A_h = \left(\begin{array}{cccc} A_{\mathcal{N}_0 \, \mathcal{N}_0} & A_{\mathcal{N}_0 E} & A_{\mathcal{N}_0 F} & A_{\mathcal{N}_0 C} \\ A_{E \, \mathcal{N}_0} & A_{EE} & A_{EF} & A_{EC} \\ A_{F \, \mathcal{N}_0} & A_{FE} & A_{FF} & A_{FC} \\ A_{C \, \mathcal{N}_0} & A_{CE} & A_{CF} & A_{CC} \end{array} \right).$$

The cheap preconditioner is the \mathcal{N}_0 -E-F-C block Jacobi-preconditioner

$$C_h = \left(\begin{array}{cccc} A_{\mathcal{N}_0 \ \mathcal{N}_0} & 0 & 0 & 0 \\ 0 & \text{diag}(A_{EE}) & 0 & 0 \\ 0 & 0 & \text{diag}(A_{FF}) & 0 \\ 0 & 0 & 0 & 0 \end{array} \right).$$

yields a parameter-robust method !

In fact, we apply a two-level concept:

- The lowest-order space (coarse level) is solved exactly, or by Hiptmair or AFW multigrid, or Reitzinger-Schöberl AMG.
- ► Local smoothing for the high-order unknowns

Application: Reduced Basis Gauging for magnetostatic problems

We consider the magnetostatic problem: Find the vector potential $A \in H(\text{curl})$ s.t.

$$\int_{\Omega} \operatorname{curl} A \operatorname{curl} v \, dx = \int_{\Omega} \operatorname{j} v \, dx, \quad \forall \, v \in V.$$

The solution A is determined up to gradients.

Application: Reduced Basis Gauging for magnetostatic problems

We consider the magnetostatic problem:

Find the vector potential $A \in H(\text{curl})$ s.t.

$$\int_{\Omega} \operatorname{curl} A \operatorname{curl} v \, dx + \kappa \int_{\Omega} u \, v \, dx = \int_{\Omega} j v \, dx, \quad \forall \, v \in V.$$

The solution A is determined up to gradients.

- \rightarrow Gauging by adding a small regularization term with $0 < \kappa \ll 1$.
- \rightarrow Suitable, since numerical methods are robust in κ .

Application: Reduced Basis Gauging for magnetostatic problems

We consider the magnetostatic problem:

Find the vector potential $A \in H(\text{curl})$ s.t.

$$\int_{\Omega} \operatorname{curl} A \operatorname{curl} v \, dx + \kappa \int_{\Omega} u \, v \, dx = \int_{\Omega} \operatorname{j} v \, dx, \quad \forall \, v \in V.$$

The solution A is determined up to gradients.

- \rightarrow Gauging by adding a small regularization term with $0 < \kappa \ll 1$.
- \rightarrow Suitable, since numerical methods are robust in κ .

Furthermore, we introduce the reduced basis gauging where

- ▶ the explicite high-order gradient basis functions are locally skipped,
- gauging is only needed for the lowest-order subspace.

Advantages:

- ▶ The reduced system has \approx 60 % of unknowns of the full system
- ▶ The reduced problem is better conditioned.

A simple model problem: Condition numbers in full vs. reduced basis

... compared on the unit cube covered with 6 tetrahedra with/without static condensation (for $\kappa=1e-6$):

$$A_{\kappa}(u,v) = \int \operatorname{curl} u \operatorname{curl} v \, dx + \kappa \int u \, v \, dx.$$

Polynomial order vs. Condition number $(\kappa(C^{-1}A))$

Magnetostatic boundary value problem - Numerical Results

Simulation of the magnetic field induced by a coil with prescribed currents:

Absolute value of $|B| = |\operatorname{curl} A|$.

Magnetic field induced by a coil, p=6.

Comparison of simulation with full and with reduced basis:

р	dofs	grads	$\kappa(C^{-1}A)$	iter	solvertime
4	104350	yes	79.86	62	20.2 s
4	61744	no	21.01	39	3.2 s
6	303009	yes	207.02	91	120.3 s
6	186052	no	33.33	48	13.5 s
8	664380	yes	398.03	114	430.1 s
8	416064	no	43.38	54	41.7 s

Note, the computed B = curl A is equal in both versions.

Magnetostatic BVP - The shielding problem

Simulation of the magnetic field induced by a coil with prescribed currents:

Absolute value of magnetic flux, p=5

Electromagnetic shielding problem: magnetic field, p=5

... prism layer in shield, unstructured mesh (tets, pyramids) in air/coil.

Comparision of simulation with full and with reduced basis

р	dofs	grads	$\kappa(C^{-1}A)$	iter	solvertime
4	96870	yes	34.31	37	24.9 s
4	57602	no	31.14	36	6.6 s
7	425976	yes	140.74	63	241.7 s
7	265221	no	72.63	51	87.6 s

Application: Simulation of eddy-currents in bus bars

... gradients can be skipped in non-conducting domains (air).

Full basis for p=3 in conductor, reduced basis for p=3 in air $n\approx 450k$, 20 min on P4 Centrino, 1600MHz

Elasticity Problem: A beam in a beam

Reenforcement with E = 50 in medium with E = 1.

New mixed FEM, p = 2

Primal FEM, p = 3

joint work with Astrid Sinwel, Start-project "hp-FEM", RICAM Linz [Tech Report 07]

Degrees of freedom for TD-NNS elements

Mixed elements for approximating displacements and stresses.

- tangential components of displacement vector
- normal-normal component of stress tensor

Triangular Finite Element:

Tetrahedral Finite Element:

Hellinger Reissner mixed methods for elasticity

Primal mixed method:

Find
$$\sigma \in L_2^{\mathit{sym}}$$
 and $u \in [H^1]^2$ such that

$$\begin{array}{cccc} \int A\sigma : \tau & - & \int \tau : \varepsilon(u) & = & 0 & & \forall \tau \\ -\int \sigma : \varepsilon(v) & & = & -\int f \cdot v & & \forall v \end{array}$$

Dual mixed method:

Find
$$\sigma \in H(\text{div})^{sym}$$
 and $u \in [L_2]^2$ such that

[Arnold+Falk+Winther]

Reduced Symmetry mixed methods

Decompose

$$arepsilon(u) =
abla u + rac{1}{2} \left(egin{array}{cc} 0 & 1 \ -1 & 0 \end{array}
ight) \operatorname{curl} u =
abla u + \omega$$

Impose symmetry of the strain tensor by an additional Lagrange parameter:

Find
$$\sigma \in [H(\text{div})]^2$$
, $u \in [L_2]^2$, and $\omega \in L_2^{\text{skew}}$ such that

The solution satisfies $u \in L_2$ and $\omega = \text{curl } u \in L_2$, i.e.,

$$u \in H(\operatorname{curl})$$

Arnold+Brezzi, Stenberg,... 80s

Choices of spaces

$$\int \operatorname{div} \sigma \cdot u$$
 understood as

$$\langle \operatorname{div} \sigma, u \rangle_{H^{-1} \times H^1} = -(\varepsilon(u), \sigma)_{L_2} \qquad \langle \operatorname{div} \sigma, u \rangle_{H(\operatorname{curl})^*} \times H(\operatorname{curl}) \qquad (\operatorname{div} \sigma, u)_{L_2}$$

Displacement

$$u \in [H^1]^2$$
 $u \in H(\text{curl})$ $u \in [L_2]^2$ continuous f.e. $u \in [L_2]^2$ non-continuous f.e.

Stress

$$\sigma \in L_2^{sym}$$
 $\sigma \in L_2^{sym}$, div div $\sigma \in H^{-1}$ $\sigma \in H(\text{div})^{sym}$ non-continuous f.e. normal-normal cont (σ_{nn}) f.e. normal-cont (σ_n) f.e.

The mixed system is well posed for all of these pairs.

Continuity properties of the space H(div div)

Lemma: Let σ be a piece-wise smooth tensor field on the mesh $\mathcal{T}=\{T\}$ such that $\sigma_{nt}\in H^{1/2}(\partial T)$. Assume that $\sigma_{nn}=n^T\sigma n$ is continuous across element interfaces. Then there holds div $\sigma\in H(\operatorname{curl})^*$.

Proof: Let v be a smooth test function.

$$\begin{split} \langle \operatorname{div} \sigma, v \rangle & := & -\int \sigma : \nabla v = \sum_{T} \Big\{ \int_{T} \operatorname{div} \sigma \cdot v - \int_{\partial T} \sigma_{n} \cdot v \Big\} \\ & = & \sum_{T} \Big\{ \int_{T} \operatorname{div} \sigma \cdot v - \int_{\partial T} \sigma_{n\tau} v_{\tau} \Big\} + \sum_{E} \int_{E} \underbrace{[\sigma_{nn}]}_{=0} v_{n} \\ & \leq & \sum_{T} \| \operatorname{div} \sigma \|_{L_{2}(T)} \| v \|_{L_{2}(T)} + \| \sigma_{n\tau} \|_{H^{1/2}(\partial T)} \| v_{\tau} \|_{H^{-1/2}(\partial T)} \\ & \preceq & C(\sigma) \| v \|_{H(\operatorname{Curl})} \end{split}$$

By density, the continuous functional can be extended to the whole H(curl):

$$\langle \operatorname{div} \sigma, v \rangle = \sum_{T} \left\{ \int_{T} \operatorname{div} \sigma \cdot v - \int_{\partial T} \sigma_{n\tau} v_{\tau} \right\}$$

The TD-NNS-continuous mixed method

Assuming piece-wise smooth solutions, the elasticity problem is equivalent to the following mixed problem: Find $\sigma \in H(\text{div div})$ and $u \in H(\text{curl})$ such that

$$\int A\sigma : \tau + \sum_{T} \left\{ \int_{T} \operatorname{div} \tau \cdot u - \int_{\partial T} \tau_{n\tau} u_{\tau} \right\} = 0$$

$$\sum_{T} \left\{ \int_{T} \operatorname{div} \sigma \cdot v - \int_{\partial T} \sigma_{n\tau} v_{\tau} \right\} = -\int f \cdot v$$

Proof: The second line is equilibrium, plus tangential continuity of the normal stress vector:

$$\sum_{T} \int_{T} (\operatorname{div} \sigma + f) v + \sum_{E} \int_{E} [\sigma_{n\tau}] v_{\tau} = 0 \qquad \forall v$$

Since the space requires continuity of σ_{nn} , the normal stress vector is continuous.

Element-wise integration by parts in the first line gives

$$\sum_{T} \int_{T} (A\sigma - \varepsilon(u)) : \tau + \sum_{E} \int_{E} \tau_{nn}[u_{n}] = 0 \qquad \forall \tau$$

This is the constitutive relation, plus normal-continuity of the displacement. Tangential continuity of the displacement is implied by the space H(curl).

The 3-step 'exact sequence'

$$H^1 \cap H^2(\mathcal{T}) \stackrel{\nabla}{\longrightarrow} H(\operatorname{curl}) \cap [H^1(\mathcal{T})]^2 \stackrel{\sigma_{\mathcal{T}}(\cdot)}{\longrightarrow} H(\operatorname{div}\operatorname{div}) \stackrel{\operatorname{div}}{\longrightarrow} H^{-1}(\operatorname{div}) \stackrel{\operatorname{div}}{\longrightarrow} H^{-1}$$
 with the stress operator

$$\sigma(v) = \begin{pmatrix} \frac{\partial v_y}{\partial y} & -\frac{1}{2} \left\{ \frac{\partial v_y}{\partial x} + \frac{\partial v_y}{\partial x} \right\} \\ sym & \frac{\partial v_x}{\partial x} \end{pmatrix}.$$

The composite operators are

$$\operatorname{airy}(w) = \sigma(\nabla w) = \begin{pmatrix} \frac{\partial^2 w}{\partial y^2} & -\frac{\partial w}{\partial x \partial y} \\ sym & \frac{\partial w}{\partial x^2} \end{pmatrix}$$
$$\operatorname{div} \sigma(v) = \frac{1}{2} \operatorname{Curl} \operatorname{curl} v$$

There holds

$$\operatorname{range}(\sigma(\nabla \cdot)) = \ker(\operatorname{div})$$

 $\operatorname{range}(\operatorname{div} \sigma(\cdot) = \ker(\operatorname{div})$

Finite elements for H(div div)

Start with C^0 -continuous finite elements for $\mathit{H}^1\cap \mathit{H}^2(\mathcal{T})$

Finite elements for $H(\operatorname{div}\operatorname{div})$ can be built with edge basis functions: $\sigma(\nabla \varphi^E)$

ad hoc internal basis functions: Sym $[\nabla \lambda_{\alpha}^{\perp} \otimes \nabla \lambda_{\beta}^{\perp}] \lambda_{\gamma} P^{k-1}$

Alternative: Take airy functions of internal C^0 -continuous f.e., plus some more. Potential to save dofs for subdomains with div $\sigma=0$.

Unit square, left side fixed, vertical load, adaptive refinement

Proven to be robust with respect to volume locking (u
ightarrow 0.5)

$\sigma \in {P^1}$		
$2 \operatorname{dof} \sigma_{nn}$	per	edge

	conforming	non-conforming
$u \in P^1$	2 dof u_{τ}	1 dof $u_ au$
$u \in P^2$	3 dof u_{τ}	2 dof u_{τ}

$$\nu = 0.3$$
:

$$\nu = 0.4999$$
:

Curved elements

fixed left top, pull right top Elements of order 5

Shell structure

Proven to be robust with respect to shear locking (flat anisotropic elements).

R = 0.5, t = 0.005

$$\sigma \in P^2$$
, $u \in P^3$

stress component σ_{yy}

Conclusions:

- A new systematic strategy for the construction of H(curl) and H(div)-conforming Finite Elements using explicitely high-order kernel functions. This introduces the local exact sequence property and its advantages
 - variable and arbitrary polynomial degree on each edge, face, and cell preserving the global exact sequence property,
 - simple block ASM-preconditioners for curl-curl and div-div systems are parameter-robust,
 - reduced basis gauging,
 - ▶ trivial discrete differential operators B_{∇} , B_{curl} , B_{div} .
- Application to Maxwell Source Problems and Eigenvalue Problems [Thesis S. Zaglmayr, 06]
- Tensor-valued elements for elasticity [with A. Sinwel]
- ► These elements are available in the open source package Netgen/NgSolve.