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Function spaces and variational problems
We consider the vector-valued function spaces
H(curl) = {u € [L(Q)]® : curlu € [L(Q)]°}

H(div) = {q € [L2(Q)]’ : divg € L(Q)}

Moreover, we focus on the parameter-dependent variational problems

Find ue V: /curlu-curlvdx+/
Q

H,U-VdX:/f~VdX VveVv
Q

Find pe Q: /divpdivq+/mp~qu:/f~qu Vg e Q
Q Q

with V = {v € H(curl) : v, =0onTp} and Q@ = {g € H(div) : g, =0on Ip}.

Goals:

» Conforming hp-FE spaces for H(div) and H(curl) on unstructured hybrid
meshes

> Parameter-robust preconditioners in H(curl) and H(div) for 0 < k < 1.
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The de Rham Complex - exact sequences

H! ~,  H(curl) Lo, H(div) v,
U U U
W, S v, el g o

The exact sequence property
range(V) = ker(curl)
range(curl) = ker(div)

holds on the continuous and on the discrete level (contractable domains).

[Bossavit],[Hiptmair]

L2

Important for stability, convergence analysis, error estimates, ...



On the construction of high order finite elements for H(curl) and H(div)

» [Webb] H(curl)-conforming shape functions with explicite gradients,
convenient to implement up to order 3

» [Dubiner, Karniadakis+Sherwin] H*-conforming shape functions in tensor
product structure (— allows fast summation techniques)

» [Demkowicz, Rachowicz] Study of the de Rham diagram for hp-FE-spaces
(global exact sequence property, minimal order condition), hp-adaptive
code based on hexahedral meshes

» [Ainsworth, Coyle] Systematic construction of H(curl)- and
H(div)-conforming elements of arbitrarily high order for tetrahedra

» [Nigan, Phillips] Pyramidal elements by transformation

» [JS, Zaglmayr] Based on local exact sequence property and using
tensor-product structure we achieve a systematic strategy for the
construction of H(curl)- and H(div)-conforming shape functions of
arbitrary and variable order for all types of element topologies (hex,
tet, prism, pyramid) [COMPEL 05, Thesis Zaglmayr 06]
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Hybrid meshes with various element topologies (1)

We assume unstructured, hybrid, conforming meshes in order to allow for

» anisotropic 3D geometric h-refinement in order to efficiently resolve
singularities due to corners and edges

L r—
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Hybrid meshes with various element topologies (1)

We assume unstructured, hybrid, conforming meshes in order to allow for

> anisotropic 3D geometric h-refinement in order to efficiently resolve
singularities due to corners and edges

0.0008+00 2.5000-01 5.0008-01 7.5000-01 £,0008+00

Hetgen 4.5

Smallest eigen-vector of Maxwell problem geometric h-refinement

(anisotropic order distribution p = 3, ..., 6) — hexes (yellow), prisms (blue), tets (red).



Hybrid meshes with various element topologies (2)

We are interested in unstructured, hybrid, conforming meshes in order to allow
for

» Resolve boundary layers or local tensor-product meshes (e.g. for thin
shields)

Netgen 4,5
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Hybrid meshes with various element topologies (2)

We are interested in unstructured, hybrid, conforming meshes in order to allow
for

» Resolve boundary layers or local tensor-product meshes (e.g. for thin
shields)

Coil(tets), Shield (prism-layer),

Geometry - Coil and Thin Shield Air (pyramids and tets)



Hierarchical V-E-F-C basis for H'-conforming Finite Elements

We use a hierarchical Vertex-Edge-Face-Cell basis for the high-order
continuous FE-space W, , C H*(Q).

Vertex basis function Edge basis function p=3 Cell basis function p=3

> allows variable polynomial order on each edge, face(3D) and cell.
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A new strategy for high-order H(curl)-conforming elements

The deRham Complex states VH' C H(curl) and VW pi1 C Vi p.
» Take the lowest-order Nédélec element.

» Explicitely use the gradients of a H'-conforming high-order basis functions.

Edge-basis functions:
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high-order H'-conforming shape functions in tensor product structure

Exploit the tensor product structure of quadrilateral elements to build edge and
face shapes

0.0 an ~ Family of orthogonal polynomials
' 3 (PP[—1,1] )a<k<p vanishing in +1.
| E B o v 1
\I ':. ¢i1(X7y) - Pi (X)Tya
MR ohi(xy) = Px)P(y).
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high-order H'-conforming shape functions in tensor product structure

Exploit the tensor product structure of quadrilateral elements to build edge and
face shapes

a-n an ~ Family of orthogonal polynomials
' 3 (PP[—1,1] )a<k<p vanishing in +1.

P(x) 157,

2

PP(x) P} (y).

J

‘\ “:. (blEl (X7y)

5 oFi(x,y)

Degenerated tensor-product structure for triangle
[Dubiner],[Karniadakis,Sherwin]:

Triangle as degenerated quadrilateral

w1 by Duffy transformation x — ﬁ
SR ¢it(xy) = PU5)(L—y)
X i
oilay) = Py )1-y) P2y — 1)y
(-1,0) (1,0) -y ————

S—_—— .
() )

Remark: Implementation can be done division-free!



Tensor-product based high-order H(curl)-conforming elements with explicite
high-order gradients:

> Lowest-order Nédélec (1st kind): @™ = \;V\; — VA

> Edge-based shape functions (gradient fields):
oF = Vot 2<i<pe+l,

» Face-based shape functions (gradient fields and irrotationals)
1
eit(xy) =Ve (xy)=Vuvi+vVu  3<i+j<pr

F,2a _ . . i
i = Vuiv; — uiVy;
F,2b No o,

i =y

— Analogue principle for cell-based shape functions in 3D.

— Thanks to tensor-product based construction this strategy extends
systematically for all types of element topologies (quads, trigs, hexes, prisms,
tets and pyramids).
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Tensor product-based high-order H(div)-conforming tetrahedral elements
using explicite high-order curl fields

» Lowest-order Raviart-Thomas functions
WRTO = X\ VA2 x VAs 4+ X Vs X VAL + A3 VA x VA,

» Face-based shape functions (curl fields, solenoidal)
P =V x P 3 < j<pr4+1,1<k<3

)

» Cell-based shape functions (solenoidal and non-solenoidal fields)

C,la _ curl,C,2a __ . .
Ytk =V Xy = wx Vu; x Vy;

Cila __ curl,C,2a __ No .
Yik =V xy; —VX(W VJWk)
+ set of lin.indep. non-solenoidal functions using factors u;, v;, wi

. . H!
(corr. to H'-conforming cell-based functions ¢Uk’c = U Vi Wk.)

— Systemtatic strategy extends to all types of element topologies!



The local exact sequence property

Using explicite kernel functions leads to exact sequences in a local sense:
% E F c
Wip+1(7n) = Wh,l(lﬁ’) + Z Woet1 + Z Woesr ZWPCH
E F c

v v v v

Vip(Th) = V() + S vwE, + Y vE + > vE

E F C

1Vx 1V 1V

Qnp-1(Th) = QF(Tp) + D VXVE + > QR
F C

lV- lv.

Shp—2(Th) = SN(Th) + > V@5

C

> Local exact sequence property: Each sequence of local high-order spaces
associated to a single edge, single face, or single cell is exact.
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The local exact sequence property

Using explicite kernel functions leads to exact sequences in a local sense:
% E F c
Wip+1(7n) = Wh,l(ﬂ) + Z Woet1 + Z Woesr ZWPCH
E F c

v v v v

Vip(Th) = V() + S vwE, + Y vE + > vE

E F C

1Vx 1V 1V

Qnp-1(Th) = QF(Tp) + D VXVE + > QR
F C

lV- lv.

Shp—2(Th) = SN(Th) + > V@5

C

> Local exact sequence property: Each sequence of local high-order spaces
associated to a single edge, single face, or single cell is exact.

> This implies the global exact sequence property for arbitrary and variable
polynomial order on each single edge, face, and cell!

» Key to cheap, parameter-robust ASM-preconditioning.
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Local preconditioners for H(curl)
In various formulations time-harmonic, quasi-static, but also in non-linear,

time-stepping, eigenvalue iterations for Maxwell we face the
parameter-dependent system

An(u,v):/curlu-curlv + Kku-vdx

with non-trivial kernel ker(curl) = VH'(Q).

> Problem: Classical preconditioners (Jacobi, symmetric GS, standard

multigrid) fail on above parameter-dependent problems for 0 < k < 1..
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Local preconditioners for H(curl)

In various formulations time-harmonic, quasi-static, but also in non-linear,
time-stepping, eigenvalue iterations for Maxwell we face the
parameter-dependent system

An(u,v):/curlu-curlv + Kku-vdx

with non-trivial kernel ker(curl) = VH'(Q).

» Problem: Classical preconditioners (Jacobi, symmetric GS, standard
multigrid) fail on above parameter-dependent problems for 0 < k < 1..

» A two scale-problem of solenoidal and gradient fields

A additive Schwarz preconditioner is defined by the splitting V,, = Zi V.
For kernel functions v = >, v; € VW), we obtain

A(Vw, Vw) = k|| Vwll,

C(Vw,Vw) = an:f - Zchrl vills + | vill5-
Vi st vi=Vw

— For general splittings : cond(C™'A) = O(x™!).
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Robust additive Schwarz methods for parameter-dependent problems
The general situation:
A% (u,v) = (Au, Av) + k(u, v) u,veVv

with an operator A with non-trivial kernel Vg := ker(A)

Theorem:

If the splitting is kernel-preserving

Vip=>_ Vi and Vo=> (Vin W),

then the AS-preconditioner C with

f A(vi, v
C(v,v) v(stlpzwz Vi, Vi)

is robust in the sense of
cond(C'A) is bounded uniformelty for kK — 0

JS 96,98,99: Nearly incompressible elasticity, Reissner Mindlin Plates
Arnold-Falk-Winther, Hiptmair: 98,2000: H(curl) and H(div), Xu: 06
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Two classical realizations of sub-spaces: h-version

Lowest-order case for H(curl)

Vo= VW C Vip with W, = span{¢; : i € V} C H'

Hiptmair blocks: A’

can be realized by the subspace splittings

Arnold-Falk-

Winther: single-edge blocks ?
Large kernel- plus kernel func-

preserving blocks: tions

V=YV with Vg e Vi or V=>"Vi+> span(Ve))

% Jje& i€V
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Two classical realizations of sub-spaces: h-version

Lowest-order case for H(curl)

Vo= VW C Vip with W, = span{¢; : i € V} C H'

Hiptmair blocks: A’

can be realized by the subspace splittings

Arnold-Falk-

Winther: single-edge blocks V’

Large kernel- plus kernel func-

preserving blocks: tions

V=YV with V¢; € V; or V=>"Vi+> span(Ve)
iev j€E icv

Requirements in general (h.o.): for H(curl) or H(div)

» AFW-smoother: overlapping block-Jacobi preconditioner (according to
vertex patches or edge patches(3d))

» Hiptmair-smoother: discrete differential operators (By,Bv ) and
Jacobi-preconditioner for Poisson or curl-curl matrix.

16
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Robust preconditioning in the case of local exact sequences

> A k-robust additive Schwarz preconditioner has to fulfill
Vip=>_ Vi and VW,=> (V,nVW,)  for H(curl),
i=1 i=1

m

Qp=Y_Q and curlV,=> " (QnecurlV,) for H(div).

i=1 i=1

> Due to the local exact sequence property

v c
Whpii(Th) = Wi (Th) + D WpEE+1 + > W:Fﬂ + ZWPC+1
E F c

v v LV v

Vio(Th) = No(Th) Ve + >V, + > Ve
E F C

1V VX 1V

Qnp(Th) = RTo(Th) VXV o+ >
F C

paramter-robustness is guaranteed for simple Np-E-F-C as well as
RTo-F-C splitting.

In practise, this means ....
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Simple Block-Preconditioning in H(curl)

The global stiffness matrix is split into the according unknowns:

ANg Ny ANgE AN Angc

Ay = AEN, Aee Aer Agc
AFNg Are ArF Arc

Acng Ace Acr Acc

The cheap preconditioner is the No-E-F-C block Jacobi-preconditioner

ANO No 0 0 0

C = 0 diag(Aee) 0 0

h= 0 0 diag(Are) O
0 0 0 Acc

yields a parameter-robust method !

In fact, we apply a two-level concept:
> The lowest-order space (coarse level) is solved exactly, or by Hiptmair or
AFW multigrid, or Reitzinger-Schoberl AMG.

> Local smoothing for the high-order unknowns



Application: Reduced Basis Gauging for magnetostatic problems

We consider the magnetostatic problem:
Find the vector potential A € H(curl) s.t.

/curlAcurIvdx:/jvdx, YveVv.
Q Q

The solution A is determined up to gradients.
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Application: Reduced Basis Gauging for magnetostatic problems

We consider the magnetostatic problem:
Find the vector potential A € H(curl) s.t.

/curlAcurIvdx—|—n/uvdx:/jvdx, YveV.
Q Q Q

The solution A is determined up to gradients.

— Gauging by adding a small regularization term with 0 < k < 1.
— Suitable, since numerical methods are robust in k.
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Application: Reduced Basis Gauging for magnetostatic problems

We consider the magnetostatic problem:
Find the vector potential A € H(curl) s.t.

/curIAcurIvdx—|—f-i/uvdx:/jvdx, YveV.
Q Q Q

The solution A is determined up to gradients.

— Gauging by adding a small regularization term with 0 < k < 1.
— Suitable, since numerical methods are robust in k.

Furthermore, we introduce the reduced basis gauging where
> the explicite high-order gradient basis functions are locally skipped,

> gauging is only needed for the lowest-order subspace.

Advantages:

> The reduced system has &~ 60 % of unknowns of the full system

» The reduced problem is better conditioned.
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A simple model problem: Condition numbers in full vs. reduced basis

. compared on the unit cube covered with 6 tetrahedra with/without static
condensation (for k = 1e — 6):

Ar(u, v)z/curlucurlvdx—i—ﬁ/uvdx.

1000

T
full basis ——

reduced basis - x---

full basis, stat. cond. ---%---
reduced basis, stat,eond. ---@---

//

cond(A‘lc)

10

0 2 4 6 8 10 12

Polynomial order vs. Condition number (x(C~*A))
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Magnetostatic boundary value problem - Numerical Results

Simulation of the magnetic field induced by a coil with prescribed currents:

3

Absolute value of

|B| = | curl Al.
.
Magnetic field induced by a coil, p=6.
Comparison of simulation with full and with reduced basis:
p dofs | grads | w(C 'A) iter | solvertime
4 104350 yes 79.86 62 20.2s
4 61744 no 21.01 39 32s
6 303009 yes 207.02 91 1203 s
6 | 186052 no 33.33 48 135 s
8 664380 yes 398.03 114 430.1s
8 | 416064 no 43.38 54 41.7 s

Note, the computed B = curl A is equal in both versions.
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Magnetostatic BVP - The shielding problem

Simulation of the magnetic field induced by a coil with prescribed currents:

Absolute value of magnetic flux,

p=5
Electromagnetic shielding problem: magnetic field, p=>5

... prism layer in shield, unstructured mesh (tets, pyramids) in air/coil.

Comparision of simulation with full and with reduced basis

p dofs | grads | w(C 'A) [ iter | solvertime
4 96870 yes 34.31 37 249 s
4 57602 no 31.14 36 6.6 s
7 425976 yes 140.74 63 241.7 s
7 265221 no 72.63 51 87.6s




Application: Simulation of eddy-currents in bus bars

... gradients can be skipped in non-conducting domains (air).

e Geomers e iew Rt SpeiSote e

sove | Recent | Solsn | zoonal | _cemer |

Points: 4514 Elements: 2a084. Surl Eloments: 5130 Mem: 5631

Full basis for p = 3 in conductor, reduced basis for p = 3 in air
n =~ 450k, 20 min on P4 Centrino, 1600MHz
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Elasticity Problem: A beam in a beam

Reenforcement with E = 50 in medium with E = 1.

New mixed FEM, p =2 Primal FEM, p =3

joint work with Astrid Sinwel, Start-project “hp-FEM”, RICAM Linz [Tech
Report 07]
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Degrees of freedom for TD-NNS elements

Mixed elements for approximating displacements and stresses.
> tangential components of displacement vector

» normal-normal component of stress tensor

Triangular Finite Element: Tetrahedral Finite Element:
~/ X 0m
AN 7
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Hellinger Reissner mixed methods for elasticity

Primal mixed method:
Find o € L™ and u € [H']? such that

JAc:r — [r:e(u) = O
—[o:e(v) = —[f-v
Dual mixed method:
Find o € H(div)”" and u € [Ly]? such that
JAoc:7 + [divr-u = 0
Jdive v = —[f-v

[Arnold+Falk+Winther]

V1
Vv

YT
Vv

26
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Reduced Symmetry mixed methods

Decompose

1 0 1
s(u)—Vu—FE( 1 0 )curlu_Vu—i-w

Impose symmetry of the strain tensor by an additional Lagrange parameter:

Find o € [H(div)], u € [Lo]?, and w € L5 such that

JAc:T + fudiVT—i—/T:w = 0 VT
[vdive = —[fv Vv
fa':’y =0 Vy

The solution satisfies u € L, and w = curlu € Ly, i.e.,
u € H(curl)

Arnold+Brezzi, Stenberg,... 80s
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Choices of spaces

Jdivo - u understood as

(divo, U>H*1><H1 = —(e(v), o)1, (divo, U>H(cur|)* x H(curl)

Displacement

u € [HY? u € H(curl)
continuous f.e. tangential-continuous f.e.
Stress
oeLym o€ LY divdive e H™!
non-continuous f.e. normal-normal cont (o) f.e.

The mixed system is well posed for all of these pairs.

(divo, u)L,

ue [L2]2
non-continuous f.e.

o € H(div)*™
normal-cont (o) f.e.

36



Continuity properties of the space H(div div)

Lemma: Let o be a piece-wise smooth tensor field on the mesh 7 = {T} such
that o, € H/?(OT). Assume that 0,, = n’ on is continuous across element
interfaces. Then there holds dive € H(curl)*.

Proof: Let v be a smooth test function.

(divo,v)y = —/J:VVZZT:{/TdIVU-V—/aTUn-V}
= ;{/Tdiva-v—/BTJnva}—i—g/E@w

< Y ldivolliumlviinm + lowllmz@nIveli-1v2or
T

< CO) ¥l e

By density, the continuous functional can be extended to the whole H(curl):

(diva,v):;{/diva-v—/aTUnTvT}

T
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The TD-NNS-continuous mixed method

Assuming piece-wise smooth solutions, the elasticity problem is equivalent to
the following mixed problem: Find o € H(divdiv) and u € H(curl) such that

fAU:T + ZT{deiVT~u—/8T7‘nTuT} = 0
Zr{frdiVU'V—/TJnTVT} = —[f

)
Proof: The second line is equilibrium, plus tangential continuity of the normal

stress vector:
Z/(div0+f)v+2/[o'nf]v7_:0 VV
T JT E “E

Since the space requires continuity of o,,, the normal stress vector is

continuous.
Element-wise integration by parts in the first line gives

Z/T(Afffs(U)):T+Z/Em[un]:o Vr

This is the constitutive relation, plus normal-continuity of the displacement.
Tangential continuity of the displacement is implied by the space H(curl).
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The 3-step 'exact sequence’

HAHAT) o Hieud) A [H(T)P 29 H(divdiv) 9% A dv) 9% 5o

with the stress operator

Qv _1g0vw  Ovw
U(V)—( dy 2 6§+Bx}>'

GVx

sym Ox

The composite operators are

Pw  _ ow
airy(w) = o(Vw) = oy gx0y
sym 5%
. 1
dive(v) = > Curlcurl v
There holds
range(o(V-)) = ker(div)
range(divo(-) = ker(div)
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Finite elements for H(div div)

Start with C°-continuous finite elements for H* N H*(T)

Finite elements for H(div div) can be built with
edge basis functions:  o(VF)

ad hoc internal basis functions: ~ Sym[VAL ® VAZ] A, P*7!

Alternative: Take airy functions of internal C%-continuous f.e., plus some more.
Potential to save dofs for subdomains with divo = 0.



Unit square, left side fixed, vertical load, adaptive refinement

Proven to be robust with respect to volume locking (v — 0.5)
non-conforming

‘ conforming
o€ P! T
2 dof q ue P 2 dof u;, 1 dof u-
of on, per edge
n P g ue P? 3 dof u, 2 dof u,
v =0.3: v = 0.4999:
= =k =
o \'\m\\\ o S
o0 "%‘ \\ o1 “ \
By \\ .
g
q‘u
1008 5, 1004
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Curved elements

fixed left top, pull right top
Elements of order 5

O xx
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Shell structure

Proven to be robust with respect to shear locking (flat anisotropic elements).

R = 0.5, t = 0.005
ceP? ueP?

Netzen 4.5

stress component oy,
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Conclusions:

> A new systematic strategy for the construction of H(curl) and
H(div)-conforming Finite Elements using explicitely high-order kernel
functions. This introduces the local exact sequence property and its
advantages

> variable and arbitrary polynomial degree on each edge, face, and cell
preserving the global exact sequence property,

> simple block ASM-preconditioners for curl-curl and div-div systems
are parameter-robust,

> reduced basis gauging,

> trivial discrete differential operators By, Bcurl, Bdiv.

» Application to Maxwell Source Problems and Eigenvalue Problems [Thesis
S. Zaglmayr, 06]

» Tensor-valued elements for elasticity [with A. Sinwel]

> These elements are available in the open source package Netgen/NgSolve.
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