hp-Finite Elements with Local Exact Sequence Properties

Joachim Schöberl ${ }^{1}$ and Sabine Zaglmayr ${ }^{2}$

${ }^{1}$ Center for Computational Engineering
Science CCES
RWTH Aachen University, Germany

2 FWF Start-Project Y-192 "3D hp-Finite Elements"
RICAM Linz, Austrian Academy of Sciences

USNCCM9, San Francisco, July 23, 2007

Outline

- Vector-valued function spaces and the de Rham Complex
- High-order finite elements with the local exact sequence property
- Robust preconditioning for problems with small parameters
- Applications and numerical results
- Next step: Tensor elements for elasticity

Function spaces and variational problems

We consider the vector-valued function spaces

$$
\begin{aligned}
H(\text { curl }) & =\left\{u \in\left[L_{2}(\Omega)\right]^{3}: \text { curl } u \in\left[L_{2}(\Omega)\right]^{3}\right\} \\
H(\text { div }) & =\left\{q \in\left[L_{2}(\Omega)\right]^{3}: \operatorname{div} q \in L_{2}(\Omega)\right\}
\end{aligned}
$$

Moreover, we focus on the parameter-dependent variational problems
Find $u \in V: \quad \int_{\Omega} \operatorname{curl} u \cdot \operatorname{curl} v d x+\int_{\Omega} \kappa u \cdot v d x=\int f \cdot v d x \quad \forall v \in V$
Find $p \in Q: \quad \int_{\Omega} \operatorname{div} p \operatorname{div} q+\int_{\Omega} \kappa p \cdot q d x=\int f \cdot q d x \quad \forall q \in Q$
with $V=\left\{v \in H\right.$ (curl) : $v_{\tau}=0$ on $\left.\Gamma_{D}\right\}$ and $Q=\left\{q \in H(\right.$ div $): q_{n}=0$ on $\left.\Gamma_{D}\right\}$.

Goals:

- Conforming hp-FE spaces for H (div) and H (curl) on unstructured hybrid meshes
- Parameter-robust preconditioners in H (curl) and H (div) for $0<\kappa \ll 1$.

The de Rham Complex - exact sequences

The exact sequence property

$$
\begin{aligned}
\operatorname{range}(\nabla) & =\operatorname{ker}(\text { curl }) \\
\text { range }(\text { curl }) & =\operatorname{ker}(\operatorname{div})
\end{aligned}
$$

holds on the continuous and on the discrete level (contractable domains). [Bossavit],[Hiptmair]

Important for stability, convergence analysis, error estimates, ...

On the construction of high order finite elements for H (curl) and H (div)

- [Webb] H (curl)-conforming shape functions with explicite gradients, convenient to implement up to order 3
- [Dubiner, Karniadakis+Sherwin] H^{1}-conforming shape functions in tensor product structure (\rightarrow allows fast summation techniques)
- [Demkowicz, Rachowicz] Study of the de Rham diagram for hp-FE-spaces (global exact sequence property, minimal order condition), hp-adaptive code based on hexahedral meshes
- [Ainsworth, Coyle] Systematic construction of H (curl)- and H (div)-conforming elements of arbitrarily high order for tetrahedra
- [Nigan, Phillips] Pyramidal elements by transformation
- [JS, Zaglmayr] Based on local exact sequence property and using tensor-product structure we achieve a systematic strategy for the construction of H (curl)- and $H($ div $)$-conforming shape functions of arbitrary and variable order for all types of element topologies (hex, tet, prism, pyramid) [COMPEL 05, Thesis Zaglmayr 06]

Hybrid meshes with various element topologies (1)

We assume unstructured, hybrid, conforming meshes in order to allow for

- anisotropic 3D geometric h-refinement in order to efficiently resolve singularities due to corners and edges

Smallest eigen-vector of Maxwell problem
(anisotropic order distribution $p=3, \ldots, 6$)

Initial coarse tetrahedral mesh

Hybrid meshes with various element topologies (1)

We assume unstructured, hybrid, conforming meshes in order to allow for

- anisotropic 3D geometric h-refinement in order to efficiently resolve singularities due to corners and edges

Smallest eigen-vector of Maxwell problem (anisotropic order distribution $p=3, \ldots, 6$)

geometric h-refinement
\rightarrow hexes (yellow), prisms (blue), tets (red).

Hybrid meshes with various element topologies (2)

We are interested in unstructured, hybrid, conforming meshes in order to allow for

- Resolve boundary layers or local tensor-product meshes (e.g. for thin shields)

Hybrid meshes with various element topologies (2)

We are interested in unstructured, hybrid, conforming meshes in order to allow for

- Resolve boundary layers or local tensor-product meshes (e.g. for thin shields)

Hierarchical $V-E-F-C$ basis for H^{1}-conforming Finite Elements

We use a hierarchical Vertex-Edge-Face-Cell basis for the high-order continuous FE-space $W_{h, p} \subset H^{1}(\Omega)$.

Edge basis function $\mathrm{p}=3$

Cell basis function $\mathrm{p}=3$

- allows variable polynomial order on each edge, face(3D) and cell.

A new strategy for high-order H (curl)-conforming elements

The deRham Complex states $\nabla H^{1} \subset H($ curl $)$ and $\nabla W_{h, p+1} \subset V_{h, p}$.

- Take the lowest-order Nédélec element.
- Explicitely use the gradients of a H^{1}-conforming high-order basis functions. Edge-basis functions:

$$
\nabla W_{P_{E}+1}^{E}=V_{P_{E}}^{E}
$$

Face basis functions

- Extend face/cell shape functions to a complete polynomial basis of $V_{h, p}$.
high-order H^{1}-conforming shape functions in tensor product structure
Exploit the tensor product structure of quadrilateral elements to build edge and face shapes

Family of orthogonal polynomials
$\left(P_{k}^{0}[-1,1]\right)_{2 \leq k \leq p}$ vanishing in ± 1.

$$
\begin{aligned}
& \phi_{i}^{E_{1}}(x, y)=P_{i}^{0}(x) \frac{1-y}{2} \\
& \phi_{i j}^{F}(x, y)=P_{i}^{0}(x) P_{j}^{0}(y)
\end{aligned}
$$

high-order H^{1}-conforming shape functions in tensor product structure
Exploit the tensor product structure of quadrilateral elements to build edge and face shapes

Family of orthogonal polynomials
$\left(P_{k}^{0}[-1,1]\right)_{2 \leq k \leq p}$ vanishing in ± 1.

$$
\begin{aligned}
\phi_{i}^{E_{1}}(x, y) & =P_{i}^{0}(x) \frac{1-y}{2} \\
\phi_{i j}^{F}(x, y) & =P_{i}^{0}(x) P_{j}^{0}(y)
\end{aligned}
$$

Degenerated tensor-product structure for triangle [Dubiner],[Karniadakis,Sherwin]:

Triangle as degenerated quadrilateral
 by Duffy transformation $x \rightarrow \frac{x}{1-y}$

$$
\begin{aligned}
\phi_{i}^{E_{1}}(x, y) & =P_{i}^{0}\left(\frac{x}{1-y}\right)(1-y)^{i} \\
\phi_{i j}^{F}(x, y) & =\underbrace{P_{i}^{0}\left(\frac{x}{1-y}\right)(1-y)^{i}}_{u_{i}(x, y)} \underbrace{P_{j}(2 y-1) y}_{v_{j}(y)}
\end{aligned}
$$

Remark: Implementation can be done division-free!

Tensor-product based high-order $H(c u r l)$-conforming elements with explicite high-order gradients:

- Lowest-order Nédélec (1st kind): $\quad \varphi^{\mathcal{N}_{0}}=\lambda_{i} \nabla \lambda_{j}-\nabla \lambda_{i} \lambda_{j}$
- Edge-based shape functions (gradient fields):

$$
\varphi_{i}^{E}=\nabla \phi_{i}^{E, H^{1}} \quad 2 \leq i \leq p_{E}+1
$$

- Face-based shape functions (gradient fields and irrotationals)

$$
\begin{aligned}
\varphi_{i j}^{F, 1}(x, y) & =\nabla \phi_{i j}^{F, H^{1}}(x, y)=\nabla u_{i} v_{j}+v_{j} \nabla u_{i} \quad 3 \leq i+j \leq p_{F} \\
\varphi_{i j}^{F, 2 a} & =\nabla u_{i} v_{j}-u_{i} \nabla v_{j} \\
\varphi_{i j}^{F, 2 b} & =\varphi^{\mathcal{N}_{0}} v_{j}
\end{aligned}
$$

\rightarrow Analogue principle for cell-based shape functions in 3D.
\rightarrow Thanks to tensor-product based construction this strategy extends systematically for all types of element topologies (quads, trigs, hexes, prisms, tets and pyramids).

Tensor product-based high-order $H($ div $)$-conforming tetrahedral elements using explicite high-order curl fields

- Lowest-order Raviart-Thomas functions

$$
\varphi^{\mathcal{R} \mathcal{T}_{0}}=\lambda_{1} \nabla \lambda_{2} \times \nabla \lambda_{3}+\lambda_{2} \nabla \lambda_{3} \times \nabla \lambda_{1}+\lambda_{3} \nabla \lambda_{1} \times \nabla \lambda_{2}
$$

- Face-based shape functions (curl fields, solenoidal)

$$
\psi_{i j}^{F, k}=\nabla \times \varphi_{i j}^{\text {curl, },, k} \quad 3 \leq i+j \leq p_{F}+1,1 \leq k \leq 3
$$

- Cell-based shape functions (solenoidal and non-solenoidal fields)

$$
\begin{aligned}
\psi_{i, j, k}^{C, 1 a} & =\nabla \times \varphi_{i j k}^{\mathrm{curl}, C, 2 a}=w_{k} \nabla u_{i} \times \nabla v_{j} \\
\psi_{j, k}^{C, 1 a} & =\nabla \times \varphi_{j k}^{\mathrm{curl}, C, 2 a}=\nabla \times\left(\varphi^{\mathcal{N}_{0}} v_{j} w_{k}\right)
\end{aligned}
$$

+ set of lin.indep. non-solenoidal functions using factors u_{i}, v_{j}, w_{k} (corr. to H^{1}-conforming cell-based functions $\phi_{i j k}^{H^{1}, C}=u_{i} v_{j} w_{k}$.)
\rightarrow Systemtatic strategy extends to all types of element topologies!

The local exact sequence property

Using explicite kernel functions leads to exact sequences in a local sense:

$$
\begin{aligned}
& W_{h, \mathbf{p}+1}\left(\mathcal{T}_{h}\right)=W_{h, 1}^{V}\left(\mathcal{T}_{h}\right)+\sum_{E} W_{P E}^{E}+1+\sum_{F} W_{P F+1}^{F}+\sum_{C} W_{P C+1}^{C} \\
& \downarrow \nabla \quad \downarrow \nabla \quad \downarrow \nabla \quad \downarrow \nabla \\
& V_{h, \mathbf{p}}\left(\mathcal{T}_{h}\right)=V_{h}^{N_{0}}\left(\mathcal{T}_{h}\right)+\sum_{E} \nabla W_{P_{E}+1}^{E}+\sum_{F} V_{P_{F}}^{F}+\sum_{C} V_{P_{C}}^{C} \\
& \downarrow \nabla \times \quad \downarrow \nabla \times \quad \downarrow \nabla \times \\
& Q_{h, \mathbf{p}-1}\left(\mathcal{T}_{h}\right)=Q_{h}^{R T_{0}}\left(\mathcal{T}_{h}\right) \quad+\sum_{F} \nabla \times V_{P_{F}}^{F}+\sum_{C} Q_{P_{C}-1}^{C} \\
& \downarrow \nabla \text {. } \\
& S_{h, \mathfrak{p}-2}\left(\mathcal{T}_{h}\right)=S_{h}^{0}\left(\mathcal{T}_{h}\right) \\
& \downarrow \nabla \text {. } \\
& +\sum_{c} \nabla \cdot Q_{p_{C}-1}^{C} \subset L_{2}(\Omega)
\end{aligned}
$$

- Local exact sequence property: Each sequence of local high-order spaces associated to a single edge, single face, or single cell is exact.

The local exact sequence property

Using explicite kernel functions leads to exact sequences in a local sense:

$$
\begin{aligned}
& W_{h, \mathbf{p}+1}\left(\mathcal{T}_{h}\right)=W_{h, 1}^{V}\left(\mathcal{T}_{h}\right)+\sum_{E} W_{P E}^{E}+1+\sum_{F} W_{P F+1}^{F}+\sum_{C} W_{P C+1}^{C} \\
& \downarrow \nabla \quad \downarrow \nabla \quad \downarrow \nabla \quad \downarrow \nabla \\
& V_{h, \mathbf{p}}\left(\mathcal{T}_{h}\right)=V_{h}^{N_{0}}\left(\mathcal{T}_{h}\right)+\sum_{E} \nabla W_{P E}^{E}+1+\sum_{F} V_{P_{F}}^{F}+\sum_{C} V_{P C}^{C} \\
& \downarrow \nabla \times \quad \downarrow \nabla \times \quad \downarrow \nabla \times \\
& Q_{h, \mathbf{p}-1}\left(\mathcal{T}_{h}\right)=Q_{h}^{R T_{0}}\left(\mathcal{T}_{h}\right) \quad+\sum_{F} \nabla \times V_{P_{F}}^{F}+\sum_{C} Q_{P C-1}^{C} \\
& \downarrow \nabla \text {. } \\
& S_{h, \mathrm{p}-2}\left(\mathcal{T}_{h}\right)=S_{h}^{0}\left(\mathcal{T}_{h}\right) \\
& \downarrow \nabla \text {. } \\
& +\sum_{c} \nabla \cdot Q_{p_{C}-1}^{C} \subset L_{2}(\Omega)
\end{aligned}
$$

- Local exact sequence property: Each sequence of local high-order spaces associated to a single edge, single face, or single cell is exact.
- This implies the global exact sequence property for arbitrary and variable polynomial order on each single edge, face, and cell!
- Key to cheap, parameter-robust ASM-preconditioning.

Local preconditioners for H (curl)

In various formulations time-harmonic, quasi-static, but also in non-linear, time-stepping, eigenvalue iterations for Maxwell we face the parameter-dependent system

$$
A_{\kappa}(u, v)=\int \operatorname{curl} u \cdot \operatorname{curl} v+\kappa u \cdot v d x
$$

with non-trivial kernel $\operatorname{ker}($ curl $)=\nabla H^{1}(\Omega)$.

- Problem: Classical preconditioners (Jacobi, symmetric GS, standard multigrid) fail on above parameter-dependent problems for $0 \leq \kappa \ll 1$..

Local preconditioners for H (curl)

In various formulations time-harmonic, quasi-static, but also in non-linear, time-stepping, eigenvalue iterations for Maxwell we face the parameter-dependent system

$$
A_{\kappa}(u, v)=\int \operatorname{curl} u \cdot \operatorname{curl} v+\kappa u \cdot v d x
$$

with non-trivial kernel $\operatorname{ker}($ curl $)=\nabla H^{1}(\Omega)$.

- Problem: Classical preconditioners (Jacobi, symmetric GS, standard multigrid) fail on above parameter-dependent problems for $0 \leq \kappa \ll 1$..
- A two scale-problem of solenoidal and gradient fields

A additive Schwarz preconditioner is defined by the splitting $V_{h}=\sum_{i} V_{i}$. For kernel functions $v=\sum_{i} v_{i} \in \nabla W_{h}$ we obtain

$$
\begin{aligned}
& A(\nabla w, \nabla w)=\kappa\|\nabla w\|_{0}^{2} \\
& C(\nabla w, \nabla w)=\inf _{v_{i} \text { s.t. }} \sum_{v_{i}=\nabla w} \sum \| \text { curl } v_{i}\left\|_{0}^{2}+\kappa\right\| v_{i} \|_{0}^{2} .
\end{aligned}
$$

\rightarrow For general splittings : $\operatorname{cond}\left(C^{-1} A\right)=\mathcal{O}\left(\kappa^{-1}\right)$.

Robust additive Schwarz methods for parameter-dependent problems

The general situation:

$$
A^{\kappa}(u, v)=(\Lambda u, \Lambda v)+\kappa(u, v) \quad u, v \in V
$$

with an operator Λ with non-trivial kernel $V_{0}:=\operatorname{ker}(\Lambda)$

Theorem:

If the splitting is kernel-preserving

$$
V_{h, p}=\sum V_{i} \quad \text { and } \quad V_{0}=\sum\left(V_{i} \cap V_{0}\right)
$$

then the AS-preconditioner C with

$$
C(v, v)=\inf _{v_{i} \text { s.t. }}=\sum v_{i} \sum A\left(v_{i}, v_{i}\right)
$$

is robust in the sense of

$$
\operatorname{cond}\left(C^{-1} A\right) \quad \text { is bounded uniformelty for } \kappa \rightarrow 0
$$

JS 96,98,99: Nearly incompressible elasticity, Reissner Mindlin Plates Arnold-Falk-Winther, Hiptmair: 98,2000: H (curl) and H (div), Xu: 06

Two classical realizations of sub-spaces: h-version
Lowest-order case for H (curl)

$$
V_{0}=\sum \nabla W_{i} \subset V_{h, p} \quad \text { with } W_{h}=\operatorname{span}\left\{\phi_{i}: i \in \mathcal{V}\right\} \subset H^{1}
$$

can be realized by the subspace splittings

Arnold-FalkWinther:
Large kernelpreserving blocks:
$V=\sum_{i \in \mathcal{V}} V_{i}$ with $\nabla \phi_{i} \in V_{i} \quad$,or

Hiptmair blocks: single-edge blocks plus kernel functions

$$
V=\sum_{j \in \mathcal{E}} V_{j}+\sum_{i \in \mathcal{V}} \operatorname{span}\left(\nabla \phi_{i}\right)
$$

Two classical realizations of sub-spaces: h-version

Lowest-order case for H (curl)

$$
V_{0}=\sum \nabla W_{i} \subset V_{h, p} \quad \text { with } W_{h}=\operatorname{span}\left\{\phi_{i}: i \in \mathcal{V}\right\} \subset H^{1}
$$

can be realized by the subspace splittings

Arnold-FalkWinther:

Large kernelpreserving blocks:

Hiptmair blocks: single-edge blocks plus kernel functions

$$
V=\sum_{j \in \mathcal{E}} V_{j}+\sum_{i \in \mathcal{V}} \operatorname{span}\left(\nabla \phi_{i}\right)
$$

Requirements in general (h.o.): for H (curl) or H (div)

- AFW-smoother: overlapping block-Jacobi preconditioner (according to vertex patches or edge patches(3d))
- Hiptmair-smoother: discrete differential operators $\left(B_{\nabla}, B_{\nabla \times}\right)$ and Jacobi-preconditioner for Poisson or curl-curl matrix.

Robust preconditioning in the case of local exact sequences

- A κ-robust additive Schwarz preconditioner has to fulfill

$$
\begin{aligned}
V_{h, p} & =\sum_{i=1}^{m} V_{i} \quad \text { and } \quad \nabla W_{h}=\sum_{i=1}^{m}\left(V_{i} \cap \nabla W_{h}\right) \quad \text { for } H(\mathrm{curl}) \\
Q_{h, p} & =\sum_{i=1}^{m} Q_{i} \quad \text { and } \quad \text { curl } V_{h}=\sum_{i=1}^{m}\left(Q_{i} \cap \operatorname{curl} V_{h}\right) \quad \text { for } H(\operatorname{div}) .
\end{aligned}
$$

- Due to the local exact sequence property

$$
\begin{aligned}
& W_{h, \mathbf{p}+1}\left(\mathcal{T}_{h}\right)=W_{h, 1}^{V}\left(\mathcal{T}_{h}\right)+\sum_{E} W_{P_{E}+1}^{E}+\sum_{F} W_{P_{F}+1}^{F}+\sum_{C} W_{P_{C}+1}^{C} \\
& \downarrow \nabla \quad \downarrow \nabla \quad \downarrow \nabla \quad \downarrow \nabla \\
& V_{h, \mathbf{p}}\left(\mathcal{T}_{h}\right)=\mathcal{N}_{0}\left(\mathcal{T}_{h}\right)+\sum_{E} V_{P_{E}}^{E}+\sum_{F} V_{P_{F}}^{F}+\sum_{C} V_{P_{C}}^{C} \\
& \downarrow \nabla \times \quad \downarrow \nabla \times \quad \downarrow \nabla \times \\
& Q_{h, \mathbf{p}}\left(\mathcal{T}_{h}\right)=\mathcal{R} \mathcal{T}_{0}\left(\mathcal{T}_{h}\right) \quad+\sum_{F} \nabla \times V_{P_{F}}^{F}+\sum_{C} Q_{P_{C}}^{C}
\end{aligned}
$$

paramter-robustness is guaranteed for simple $\mathcal{N}_{0}-E-F-C$ as well as $\mathcal{R} \mathcal{T}_{0}-F-C$ splitting.

In practise, this means

Simple Block-Preconditioning in $\mathrm{H}(\mathrm{curl})$

The global stiffness matrix is split into the according unknowns:

$$
A_{h}=\left(\begin{array}{cccc}
A_{\mathcal{N}_{0} \mathcal{N}_{0}} & A_{\mathcal{N}_{0} E} & A_{\mathcal{N}_{0} F} & A_{\mathcal{N}_{0} C} \\
A_{E \mathcal{N}_{0}} & A_{E E} & A_{E F} & A_{E C} \\
A_{F \mathcal{N}_{0}} & A_{F E} & A_{F F} & A_{F C} \\
A_{C \mathcal{N}_{0}} & A_{C E} & A_{C F} & A_{C C}
\end{array}\right) .
$$

The cheap preconditioner is the \mathcal{N}_{0}-E-F-C block Jacobi-preconditioner

$$
C_{h}=\left(\begin{array}{cccc}
A_{\mathcal{N}_{0}} \mathcal{N}_{0} & 0 & 0 & 0 \\
0 & \operatorname{diag}\left(A_{E E}\right) & 0 & 0 \\
0 & 0 & \operatorname{diag}\left(A_{F F}\right) & 0 \\
0 & 0 & A_{C C}
\end{array}\right) .
$$

yields a parameter-robust method!

In fact, we apply a two-level concept:

- The lowest-order space (coarse level) is solved exactly, or by Hiptmair or AFW multigrid, or Reitzinger-Schöberl AMG.
- Local smoothing for the high-order unknowns

Application: Reduced Basis Gauging for magnetostatic problems

We consider the magnetostatic problem:
Find the vector potential $A \in H$ (curl) s.t.

$$
\int_{\Omega} \operatorname{curl} A \operatorname{curl} v d x=\int_{\Omega} j v d x, \quad \forall v \in V .
$$

The solution A is determined up to gradients.

Application: Reduced Basis Gauging for magnetostatic problems

We consider the magnetostatic problem:
Find the vector potential $A \in H$ (curl) s.t.

$$
\int_{\Omega} \operatorname{curl} A \operatorname{curl} v d x+\kappa \int_{\Omega} u v d x=\int_{\Omega} j v d x, \quad \forall v \in V .
$$

The solution A is determined up to gradients.
\rightarrow Gauging by adding a small regularization term with $0<\kappa \ll 1$.
\rightarrow Suitable, since numerical methods are robust in κ.

Application: Reduced Basis Gauging for magnetostatic problems

We consider the magnetostatic problem:
Find the vector potential $A \in H$ (curl) s.t.

$$
\int_{\Omega} \operatorname{curl} A \operatorname{curl} v d x+\kappa \int_{\Omega} u v d x=\int_{\Omega} j v d x, \quad \forall v \in V .
$$

The solution A is determined up to gradients.
\rightarrow Gauging by adding a small regularization term with $0<\kappa \ll 1$.
\rightarrow Suitable, since numerical methods are robust in κ.

Furthermore, we introduce the reduced basis gauging where

- the explicite high-order gradient basis functions are locally skipped,
- gauging is only needed for the lowest-order subspace.

Advantages:

- The reduced system has $\approx 60 \%$ of unknowns of the full system
- The reduced problem is better conditioned.

A simple model problem: Condition numbers in full vs. reduced basis
... compared on the unit cube covered with 6 tetrahedra with/without static condensation (for $\kappa=1 e-6$):

$$
A_{\kappa}(u, v)=\int \operatorname{curl} u \operatorname{curl} v d x+\kappa \int u v d x
$$

Polynomial order vs. Condition number $\left(\kappa\left(C^{-1} A\right)\right)$

Magnetostatic boundary value problem - Numerical Results

Simulation of the magnetic field induced by a coil with prescribed currents:

Absolute value of $|B|=|\operatorname{curl} A|$.

Magnetic field induced by a coil, $\mathrm{p}=6$.
Comparison of simulation with full and with reduced basis:

p	dofs	grads	$\kappa\left(C^{-1} A\right)$	iter	solvertime
4	104350	yes	79.86	62	20.2 s
4	61744	no	21.01	39	3.2 s
6	303009	yes	207.02	91	120.3 s
6	186052	no	33.33	48	13.5 s
8	664380	yes	398.03	114	430.1 s
8	416064	no	43.38	54	41.7 s

Note, the computed $B=$ curl A is equal in both versions.

Magnetostatic BVP - The shielding problem

Simulation of the magnetic field induced by a coil with prescribed currents:

Electromagnetic shielding problem: magnetic field, $\mathrm{p}=5$

Absolute value of magnetic flux,

$$
\mathrm{p}=5
$$

... prism layer in shield, unstructured mesh (tets, pyramids) in air/coil.

Comparision of simulation with full and with reduced basis

p	dofs	grads	$\kappa\left(C^{-1} A\right)$	iter	solvertime
4	96870	yes	34.31	37	24.9 s
4	57602	no	31.14	36	6.6 s
7	425976	yes	140.74	63	241.7 s
7	265221	no	72.63	51	87.6 s

Application: Simulation of eddy-currents in bus bars

... gradients can be skipped in non-conducting domains (air).

Poirts 4514 Elements: 26084 SurfElemants: 6130 Mam: 569.4
Full basis for $p=3$ in conductor, reduced basis for $p=3$ in air $n \approx 450 k, 20 \mathrm{~min}$ on P4 Centrino, 1600 MHz

Elasticity Problem: A beam in a beam

Reenforcement with $E=50$ in medium with $E=1$.

New mixed FEM, $p=2$

Primal FEM, $p=3$
joint work with Astrid Sinwel, Start-project "hp-FEM", RICAM Linz [Tech Report 07]

Degrees of freedom for TD-NNS elements

Mixed elements for approximating displacements and stresses.

- tangential components of displacement vector
- normal-normal component of stress tensor

Triangular Finite Element:

Tetrahedral Finite Element:

Hellinger Reissner mixed methods for elasticity

Primal mixed method:
Find $\sigma \in L_{2}^{\text {sym }}$ and $u \in\left[H^{1}\right]^{2}$ such that

$$
\begin{aligned}
\int A \sigma: \tau & -\int \tau: \varepsilon(u) & =0 & \forall \tau \\
-\int \sigma: \varepsilon(v) & & & -\int f \cdot v
\end{aligned}
$$

Dual mixed method:
Find $\sigma \in H(\mathrm{div})^{\text {sym }}$ and $u \in\left[L_{2}\right]^{2}$ such that

$$
\begin{array}{rlrl}
\int A \sigma: \tau+\int \operatorname{div} \tau \cdot u & =0 & \forall \tau \\
\int \operatorname{div} \sigma \cdot v & & & \forall \int f \cdot v
\end{array}
$$

[Arnold + Falk + Winther]

Reduced Symmetry mixed methods

Decompose

$$
\varepsilon(u)=\nabla u+\frac{1}{2}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \operatorname{curl} u=\nabla u+\omega
$$

Impose symmetry of the strain tensor by an additional Lagrange parameter:
Find $\sigma \in[H(\operatorname{div})]^{2}, u \in\left[L_{2}\right]^{2}$, and $\omega \in L_{2}^{\text {skew }}$ such that

$$
\begin{array}{rlrl}
\int A \sigma: \tau+\int u \operatorname{div} \tau+\int \tau: \omega & =0 & \forall \tau \\
\int v \operatorname{div} \sigma & & =-\int f v & \forall v \\
\int \sigma: \gamma & & 0 & \forall \gamma
\end{array}
$$

The solution satisfies $u \in L_{2}$ and $\omega=\operatorname{curl} u \in L_{2}$, i.e.,

$$
u \in H(\text { curl })
$$

Arnold+Brezzi, Stenberg, ... 80s

Choices of spaces

$$
\int \operatorname{div} \sigma \cdot u \text { understood as }
$$

$\langle\operatorname{div} \sigma, u\rangle_{H^{-1} \times H^{1}}=-(\varepsilon(u), \sigma)_{L_{2}}$
$\langle\operatorname{div} \sigma, u\rangle_{H(\text { curl })}{ }^{*} \times H($ curl $)$ $(\operatorname{div} \sigma, u)_{L_{2}}$

Displacement

$$
\begin{gathered}
u \in\left[H^{1}\right]^{2} \\
\text { continuous f.e. }
\end{gathered}
$$

$$
\begin{array}{cc}
u \in H(\text { curl }) & u \in\left[L_{2}\right]^{2} \\
\text { tangential-continuous f.e. } & \text { non-continuous f.e. }
\end{array}
$$

Stress

$$
\begin{gathered}
\sigma \in L_{2}^{\text {sym }} \\
\text { non-continuous f.e. }
\end{gathered}
$$

$$
\sigma \in L_{2}^{\text {sym }}, \operatorname{div} \operatorname{div} \sigma \in H^{-1} \quad \sigma \in H(\operatorname{div})^{\text {sym }}
$$

$$
\text { normal-normal cont }\left(\sigma_{n n}\right) \text { f.e. normal-cont }\left(\sigma_{n}\right) \text { f.e. }
$$

The mixed system is well posed for all of these pairs.

Continuity properties of the space H (div div)

Lemma: Let σ be a piece-wise smooth tensor field on the mesh $\mathcal{T}=\{T\}$ such that $\sigma_{n t} \in H^{1 / 2}(\partial T)$. Assume that $\sigma_{n n}=n^{T} \sigma n$ is continuous across element interfaces. Then there holds $\operatorname{div} \sigma \in H$ (curl)*
Proof: Let v be a smooth test function.

$$
\begin{aligned}
\langle\operatorname{div} \sigma, v\rangle & :=-\int \sigma: \nabla v=\sum_{T}\left\{\int_{T} \operatorname{div} \sigma \cdot v-\int_{\partial T} \sigma_{n} \cdot v\right\} \\
& =\sum_{T}\left\{\int_{T} \operatorname{div} \sigma \cdot v-\int_{\partial T} \sigma_{n \tau} v_{\tau}\right\}+\sum_{E} \int_{E} \underbrace{\left[\sigma_{n n}\right]}_{=0} v_{n} \\
& \leq \sum_{T}\|\operatorname{div} \sigma\|_{L_{2}(T)}\|v\|_{L_{2}(T)}+\left\|\sigma_{n \tau}\right\|_{H^{1 / 2}(\partial T)}\left\|v_{\tau}\right\|_{H^{-1 / 2}(\partial T)} \\
& \preceq C(\sigma)\|v\|_{H(\text { curl })}
\end{aligned}
$$

By density, the continuous functional can be extended to the whole H (curl):

$$
\langle\operatorname{div} \sigma, v\rangle=\sum_{T}\left\{\int_{T} \operatorname{div} \sigma \cdot v-\int_{\partial T} \sigma_{n \tau} v_{\tau}\right\}
$$

The TD-NNS-continuous mixed method

Assuming piece-wise smooth solutions, the elasticity problem is equivalent to the following mixed problem: Find $\sigma \in H$ (div div) and $u \in H$ (curl) such that

$$
\begin{aligned}
\int A \sigma: \tau & +\sum_{T}\left\{\int_{T} \operatorname{div} \tau \cdot u-\int_{\partial T} \tau_{n \tau} u_{\tau}\right\} & =0 \\
\sum_{T}\left\{\int_{T} \operatorname{div} \sigma \cdot v-\int_{\partial T} \sigma_{n \tau} v_{\tau}\right\} & & =-\int f
\end{aligned}
$$

Proof: The second line is equilibrium, plus tangential continuity of the normal stress vector:

$$
\sum_{T} \int_{T}(\operatorname{div} \sigma+f) v+\sum_{E} \int_{E}\left[\sigma_{n \tau}\right] v_{\tau}=0 \quad \forall v
$$

Since the space requires continuity of $\sigma_{n n}$, the normal stress vector is continuous.
Element-wise integration by parts in the first line gives

$$
\sum_{T} \int_{T}(A \sigma-\varepsilon(u)): \tau+\sum_{E} \int_{E} \tau_{n n}\left[u_{n}\right]=0 \quad \forall \tau
$$

This is the constitutive relation, plus normal-continuity of the displacement.
Tangential continuity of the displacement is implied by the space H (curl).

The 3-step 'exact sequence'
$H^{1} \cap H^{2}(\mathcal{T}) \quad \xrightarrow{\nabla} H($ curl $) \cap\left[H^{1}(\mathcal{T})\right]^{2} \xrightarrow{\sigma_{\mathcal{T}}(\cdot)} H($ div div $) \xrightarrow{\text { div }} H^{-1}($ div $) \xrightarrow{\text { div }} H^{-1}$
with the stress operator

$$
\sigma(v)=\left(\begin{array}{cc}
\frac{\partial v_{y}}{\partial y} & -\frac{1}{2}\left\{\frac{\partial v_{y}}{\partial x}+\frac{\partial v_{y}}{\partial x}\right\} \\
s y m & \frac{\partial v_{x}}{\partial x}
\end{array}\right) .
$$

The composite operators are

$$
\begin{aligned}
\operatorname{airy}(w)=\sigma(\nabla w) & =\left(\begin{array}{cc}
\frac{\partial^{2} w}{\partial y^{2}} & -\frac{\partial w}{\partial \partial \partial y} \\
s y m & \frac{\partial v}{\partial x^{2}}
\end{array}\right) \\
\operatorname{div} \sigma(v) & =\frac{1}{2} \text { Curl curl } v
\end{aligned}
$$

There holds

$$
\begin{aligned}
\operatorname{range}(\sigma(\nabla \cdot)) & =\operatorname{ker}(\operatorname{div}) \\
\operatorname{range}(\operatorname{div} \sigma(\cdot) & =\operatorname{ker}(\operatorname{div})
\end{aligned}
$$

Finite elements for H (div div)

Start with C^{0}-continuous finite elements for $H^{1} \cap H^{2}(\mathcal{T})$

Finite elements for H (div div) can be built with edge basis functions: $\sigma\left(\nabla \varphi^{E}\right)$
ad hoc internal basis functions: $\quad \operatorname{Sym}\left[\nabla \lambda_{\alpha}^{\perp} \otimes \nabla \lambda_{\beta}^{\perp}\right] \lambda_{\gamma} P^{k-1}$

Alternative: Take airy functions of internal C^{0}-continuous f.e., plus some more. Potential to save dofs for subdomains with $\operatorname{div} \sigma=0$.

Unit square, left side fixed, vertical load, adaptive refinement

Proven to be robust with respect to volume locking ($\nu \rightarrow 0.5$)

$$
\begin{aligned}
& \sigma \in P^{1} \\
& 2 \text { dof } \sigma_{n n} \text { per edge } \\
& \nu=0.4999:
\end{aligned}
$$

Curved elements

fixed left top, pull right top
Elements of order 5

Shell structure

Proven to be robust with respect to shear locking (flat anisotropic elements).

$$
\begin{aligned}
& \mathrm{R}=0.5, \mathrm{t}=0.005 \\
& \sigma \in P^{2}, u \in P^{3}
\end{aligned}
$$

stress component $\sigma_{y y}$

Conclusions:

- A new systematic strategy for the construction of H (curl) and H (div)-conforming Finite Elements using explicitely high-order kernel functions. This introduces the local exact sequence property and its advantages
- variable and arbitrary polynomial degree on each edge, face, and cell preserving the global exact sequence property,
- simple block ASM-preconditioners for curl-curl and div-div systems are parameter-robust,
- reduced basis gauging,
- trivial discrete differential operators $B_{\nabla}, B_{\text {curl }}, B_{\text {div }}$.
- Application to Maxwell Source Problems and Eigenvalue Problems [Thesis S. Zaglmayr, 06]
- Tensor-valued elements for elasticity [with A. Sinwel]
- These elements are available in the open source package Netgen/ NgSolve .

