# Continuous - Hybrid Discontinuous Galerkin Methods for Vector-valued Applications 

Joachim Schöberl<br>Center for Computational Engineering Science (CCES)<br>RWTH Aachen University<br>contributions by<br>Sabine Zaglmayr, Astrid Sinwel, Veronika Pillwein, Christoph Lehrenfeld



ICOSAHOM 2009, Trondheim

## Linear Elasticity

$\Omega \subset \mathbb{R}^{d}$. Find displacement $u \in\left[H^{1}\right]^{d}$ such that $u=u_{D}$ on $\Gamma_{D}$ and

$$
\int_{\Omega} D \varepsilon(u): \varepsilon(v)=\int_{\Omega} f v \quad \forall v \in V_{0}
$$

with the linear strain operator $\varepsilon(\cdot):\left[H^{1}\right]^{d} \rightarrow\left[L_{2}\right]^{d \times d, \text { sym }}$

$$
\varepsilon(u)=\frac{1}{2}\left(\nabla u+(\nabla u)^{T}\right)=\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)_{i, j=1, . . d}
$$

and the isotropic material operator $D:\left[L_{2}\right]^{d \times d} \rightarrow\left[L_{2}\right]^{d \times d}$

$$
D \varepsilon=2 \mu \varepsilon+\lambda \operatorname{tr}(\varepsilon) I
$$

The stress tensor is

$$
\sigma=D \varepsilon(u)
$$

Continuous and elliptic in $\left[H^{1}\right]^{d}$
BUT: Constants depend on $\lambda / \mu$, and on the domain (Korn's inequality)

## Incompressible flows

## Stokes Equation:

$\Omega \subset \mathbb{R}^{d}$. Find $u \in\left[H^{1}\right]^{d}$ such that $u=u_{D}$ on $\Gamma_{D}, p \in Q:=L_{2}$ such that

$$
\int_{\Omega} D \varepsilon(u): \varepsilon(v)+\int_{\Omega} \operatorname{div} v p=\int_{\Omega} f v \quad \forall v \in V_{0}
$$

and incompressibility constraint

$$
\int \operatorname{div} u q=0 \quad \forall q \in Q
$$

with Dirichlet b.c. (no slip and inflow), point-wise mixed b.c. (slip) and Neumann (outflow).
Difficulty: Incompressibility constraint
Mixed finite elements: continuous pressure ? discontinuous pressure ? stabilized methods ?

## Elasticity examples: Visualization of stresses



## Von-Mises Stresses in a Machine Frame (linear elasticity)



Simulation with Netgen/NGSolve
45553 tets, $\quad \mathrm{p}=5, \quad 3 \times 1074201$ unknowns, $\quad 5 \mathrm{~min}$ on 8 core 2.4 GHz 64 -bit PC $\quad 6 \mathrm{~GB}$ RAM

## Toy Example: Sailplane



Stokes Flow, $2^{\text {nd }}$-order HDG elements, 59 E 3 elements, 1.65 E 6 dofs, 2 GB RAM, 5 min (2-core 1.8 GHz )

## Function spaces $H$ (curl) and $H$ (div)

$$
\begin{aligned}
H(\text { curl }) & =\left\{u \in\left[L_{2}\right]^{d}: \operatorname{curl} u \in L_{2}^{d(d-1) / 2}\right\} \\
H(\text { div }) & =\left\{u \in\left[L_{2}\right]^{d}: \operatorname{div} u \in L_{2}\right\}
\end{aligned}
$$

Piece-wise smooth functions in

- $H$ (curl) have continuous tangential components,
- $H($ div $)$ have continuous normal components.

Important for constructing conforming finite elements such as Raviart Thomas, Brezzi-Douglas-Marini, and Nedelec elements.

Natural function space for Maxwell equations: Find $A \in H$ (curl) such that

$$
\int_{\Omega} \mu^{-1} \operatorname{curl} A \operatorname{curl} v+\int_{\Omega}\left(i \sigma \omega-\varepsilon \omega^{2}\right) A v=\int j v \quad \forall v \in H(\operatorname{curl})
$$

## Contents

- Introduction
- Hybrid Discontinuous Galerkin Method
- Finite Elements for $H$ (div) and $H($ curl $)$
- Tangential-continuous finite elements for elasticity
- Normal-continuous finite elements for Stokes


## Hybrid Discontinuous Galerkin (HDG) Method

Model problem: $-\Delta u=f$
A mesh consisting of elements and facets (= edes in 2D and faces in 3D)

$$
\mathcal{T}=\{T\} \quad \mathcal{F}=\{F\}
$$

Goal: Approximate $u$ with piece-wise polynomials on elements and additional polynomials on facets:

$$
u_{N} \in P^{p}(\cup T) \quad \lambda_{N} \in P^{p}(\cup F)
$$



## HDG - Derivation

Exact solution $u$, traces on element boundaries: $\lambda:=\left.u\right|_{\cup F}$
Integrate against discontinuous test-functions $v \in H^{1}(\cup T)$, element-wise integration by parts:

$$
\sum_{T}\left\{\int_{T} \nabla u \nabla v-\int_{\partial T} \frac{\partial u}{\partial n} v\right\}=\int_{\Omega} f v
$$

Use continuity of $\frac{\partial u}{\partial n}$, and test with single-valued functions $\mu \in L_{2}(\cup F)$ :

$$
\sum_{T}\left\{\int_{T} \nabla u \nabla v-\int_{\partial T} \frac{\partial u}{\partial n}(v-\mu)\right\}=\int_{\Omega} f v
$$

Use consistency $u=\lambda$ on $\partial T$ to symmetrice, and stabilize $\ldots$

$$
\sum_{T}\left\{\int_{T} \nabla u \nabla v-\int_{\partial T} \frac{\partial u}{\partial n}(v-\mu)-\int_{\partial T} \frac{\partial v}{\partial n}(u-\lambda)+\frac{\alpha p^{2}}{h} \int_{\partial T}(u-\lambda)(v-\mu)\right\}=\int_{\Omega} f v
$$

Dirichlet b.c.: Imposed on $\lambda$, Neumann b.c.: $\int_{\Gamma_{N}} g \mu$

Inverse Inequality: For $u \in P^{p}(T)$ there holds

$$
\int_{\partial T}\left|\frac{\partial u}{\partial n}\right|^{2} \leq \frac{c_{i n v} p^{2}}{h} \int_{T}|\nabla u|^{2} d x
$$

Proof for mapped quads: Numerical integration with Gauss-Lobatto integration rule ( $x_{0}=-1, x_{n}=1$ ):

$$
\int_{-1}^{1} f(x) d x \approx \sum_{i=0}^{n} \omega_{i} f\left(x_{i}\right)
$$

Consider bottom edge:

$$
\sum_{i} \omega_{i}\left|S_{i}\right|\left|n \cdot \nabla u\left(\Phi\left(x_{i},-1\right)\right)\right|^{2} \leq \max _{i}\left\{\frac{\left|S_{i}\right|}{\left|V_{i, 0}\right|}\right\} \frac{1}{\omega_{0}} \sum_{i, j} \omega_{i} \omega_{j}\left|V_{i, j}\right|\left|\nabla u\left(\Phi\left(x_{i}, y_{j}\right)\right)\right|^{2}
$$

with surface measure and volume measures $\left|S_{i}\right|$ and $\left|V_{i, j}\right|$. There holds

$$
\frac{1}{h_{o p}}:=\frac{|S|}{|V|} \quad \text { and } \quad \omega_{0} \approx p^{-2}
$$

For Gauss-Lobatto integration, a good constant $c_{i n v}$ is computable for free!

## HDG - Stability

## HDG - norm:

$$
\|(u, \lambda)\|_{1, H D G}^{2}=\sum_{T}\left\{\|\nabla u\|_{L_{2}(T)}^{2}+\frac{p^{2}}{h}\|u-\lambda\|_{L_{2}(\partial T)}^{2}\right\}
$$

Lemma: Assume $\alpha>c_{i n v}$. Then, for $(u, \lambda) \in P^{p}(\cup T) \times P^{p}(\cup F)$ there holds

$$
\|(u, \lambda)\|_{1, H D G}^{2} \preceq A(u, \lambda ; u, \lambda) \preceq\|(u, \lambda)\|_{1, H D G}
$$

Proof of lower bound: Element by element:

$$
\begin{aligned}
A^{T}(u, \lambda ; u, \lambda) & =\int_{T}|\nabla u|^{2}-2 \int_{\partial T} \frac{\partial u}{\partial n}(u-\lambda)+\frac{\alpha p^{2}}{h} \int_{\partial T}(u-\lambda)^{2} \\
& \geq \int_{T}|\nabla u|^{2}-\frac{1}{\gamma} \int_{\partial T}\left|\frac{\partial u}{\partial n}\right|^{2}-\gamma \int_{\partial T}(u-\lambda)^{2}+\frac{\alpha p^{2}}{h} \int_{\partial T}(u-\lambda)^{2} \\
& \geq \int_{T}|\nabla u|^{2}-\frac{c_{i n v} p^{2}}{\gamma h} \int_{T}|\nabla u|^{2}-\gamma \int_{\partial T}(u-\lambda)^{2}+\frac{\alpha p^{2}}{h} \int_{\partial T}(u-\lambda)^{2}
\end{aligned}
$$

Choosing $\gamma=\sqrt{c_{i n v} \alpha} p^{2} / h$ gives the result. Equivalence constants depend only on $\alpha / c_{i n v}$

## Interpretation as low-order method on the collocation grid



$$
\begin{aligned}
\|u\|_{1, H D G}^{2} & \approx \sum_{i, j} \delta_{x_{i}} \delta_{y_{j}}\left(\left(\frac{u\left(x_{i+1}, y_{j}\right)-u\left(x_{i}, y_{j}\right)}{\delta_{x_{i}}}\right)^{2}+\left(\frac{u\left(x_{i}, y_{j+1}\right)-u\left(x_{i}, y_{j}\right)}{\delta_{y_{j}}}\right)^{2}\right) \\
& +\sum_{i} \delta_{x_{i}} \delta_{y_{0}}\left(\frac{u\left(x_{i}, y_{0}\right)-\lambda_{b o t}\left(x_{i}\right)}{\delta_{y_{0}}}\right)^{2}+E_{\text {right }}+E_{t o p}+E_{l e f t}
\end{aligned}
$$

This holds since $\delta_{y_{0}} \approx \frac{h}{p^{2}}$.

## Relation to standard Interior Penalty DG method

DG - space

$$
V_{N}:=P^{p}(\cup T)
$$

Bilinearform

$$
A^{D G}(u, v)=\sum_{T}\left\{\int_{T} \nabla u \nabla v-\int_{\partial T} \frac{\partial u}{\partial n}[v]-\int_{\partial T} \frac{\partial v}{\partial n}[u]+\frac{\alpha p^{2}}{h} \int_{\partial T}[u][v]\right\}
$$

Hybrid DG has

- even more unknowns, but less matrix entries
- allows element-wise assembling
- allows static condensation of element unknowns

Hybridization of standard DG methods [Cockburn+Gopalakrishnan+Lazarov]

## Consistency + Stability $\Rightarrow$ Convergence

$$
\left\|\left(u-u_{N}, \lambda-\lambda_{N}\right)\right\|_{1, H D G} \leq c\left\|\left(u-I_{N}^{T} u, u-I_{N}^{F} u\right)\right\|_{1, H D G}
$$

c ... absolute constant

## Relation to classical hybridization of mixed methods

First order system

$$
A \sigma-\nabla u=0 \quad \text { and } \quad \operatorname{div} \sigma=-f
$$

Mixed method: Find $\sigma \in H(\operatorname{div})$ and $u \in L_{2}$ such that

$$
\begin{aligned}
\int A \sigma \tau-\int \operatorname{div} \tau u & =0 & & \forall \tau \in H(\operatorname{div}) \\
\int \operatorname{div} \sigma v & & & -\int f v
\end{aligned} \begin{array}{ll} 
& \forall L_{2}
\end{array}
$$

Breaking normal-continuity of $\sigma_{n}$, and reinforcing it by another Lagrange parameter
Find $\sigma \in H($ div $), u \in L_{2}$, and $\lambda \in L_{2}(\cup F)$ such that

$$
\begin{aligned}
\int A \sigma \tau & +\sum_{T} \int_{T} \operatorname{div} \tau u+\sum_{F} \int_{F}\left[\tau_{n}\right] \lambda & =0 & \forall \tau \in H(\operatorname{div}) \\
\sum_{T} \int_{T} \operatorname{div} \sigma v & & & \forall v \in L_{2} \\
\sum_{F} \int_{F}\left[\sigma_{n}\right] \mu & & & \forall f v \\
& & & \forall \mu \in L_{2}(\cup F)
\end{aligned}
$$

Allows to eliminate $\sigma$ (and also $u$ ) leading to a coercive system in $u$ and $\lambda$ (or, only $\lambda$ ).

## Comparison to mixed hybrid system

HDG method needs facet variable of one order higher ???

## Solutions

- Project

$$
\begin{aligned}
A^{H D G}(u, \lambda ; v, \mu)= & \sum_{T}\left\{\int_{T} \nabla u \nabla v-\int_{\partial T} \frac{\partial u}{\partial n}(v-\mu)\right. \\
& \left.-\int_{\partial T} \frac{\partial v}{\partial n}(u-\lambda)+\frac{\alpha p^{2}}{h} \int_{\partial T} P^{p-1}(u-\lambda) P^{p-1}(v-\mu)\right\}
\end{aligned}
$$

- Choose orthogonal basis for facet element, leave highest order discontinuous. Estimate non-conformity error by Strang lemma.


## Mixed Continuous / Hybrid Discontinuous Galerkin method

Vector-valued spaces with partial continuity and partial components

$$
\begin{array}{ll}
V_{\mathcal{T}, n}=\left\{v \in\left[P^{p}(\cup T)\right]^{d}:\left[v_{n}\right]=0\right\} & V_{\mathcal{T}, \tau}=\left\{v \in\left[P^{p}(\cup T)\right]^{d}:\left[v_{\tau}\right]=0\right\} \\
V_{\mathcal{F}, n}=\left\{v \in\left[P^{p}(\cup F)\right]^{d}: v_{\tau}=0\right\} & V_{\mathcal{F}, \tau}=\left\{v \in\left[P^{p}(\cup F)\right]^{d}: v_{n}=0\right\}
\end{array}
$$

$H$ (curl) - based formulation: Find $u \in V_{\mathcal{T}, \tau}$ and $\lambda \in V_{\mathcal{F}, n}$ such that

$$
\begin{gathered}
A^{\tau}(u, \lambda ; v, \mu)=\int f v \quad \forall v \in V_{\mathcal{T}, \tau} \forall \mu \in V_{\mathcal{F}, \nu} \\
A^{\tau}(u, \lambda ; v, \mu)=\sum_{T}\left\{\int_{T} D \varepsilon(u): \varepsilon(v)-\int_{\partial T}(D \varepsilon(u))_{n n}(v-\mu)_{n}\right. \\
\left.\quad-\int_{\partial T}(D \varepsilon(v))_{n n}(u-\lambda)_{n}+\frac{\alpha p^{2}}{h} \int_{\partial T}(u-\lambda)_{n}(v-\mu)_{n}\right\}
\end{gathered}
$$

Or, vice versa ...
[idea from notes by Cockburn, Gopalakrishnan, Lazarov]

## Collocation elements

$$
u_{T} \in \mathcal{N}_{1}=P^{p, p+1} \times P^{p+1, p}, \quad \lambda_{F} \in P^{p+1}
$$



## The de Rham Complex


satisfies the complete sequence property

$$
\begin{aligned}
\operatorname{range}(\nabla) & =\operatorname{ker}(\text { curl }) \\
\text { range }(\text { curl }) & =\operatorname{ker}(\text { div })
\end{aligned}
$$

on the continuous and the discrete level.
Important for stability, error estimates, preconditioning, ...

## Low-order $H$ (curl) finite elements

First order Nédélec I elements:

$$
V_{h}=\left\{v \in H(\text { curl }):\left.v\right|_{T}=a_{T}+b_{T} \times x\right\}
$$

first order approximation for $A$-field and $B$-field


First order Nédélec II elements:

$$
V_{h}=\left\{v \in H(\operatorname{curl}):\left.v\right|_{T} \in\left[P^{1}\right]^{3}\right\}
$$

second order for $A$-field, first order for $B$-field


Second order Nédélec II elements:

$$
V_{h}=\left\{v \in H(\operatorname{curl}):\left.v\right|_{T} \in\left[P^{2}\right]^{3}\right\}
$$

third order for $A$-field, second order for $B$-field


## On the construction of high order $H$ (curl) finite elements

- [Dubiner, Karniadakis+Sherwin] $H^{1}$-conforming shape functions in tensor product structure $\rightarrow$ allows fast summation techniques
- [Webb] $H$ (curl) hierarchical shape functions with local complete sequence property convenient to implement up to order 4
- [Demkowicz+Monk] Based on global complete sequence property construction of Nédélec elements of variable order (with constraints on order distribution) for hexahedra
- [Ainsworth+Coyle] Systematic construction of $H$ (curl)-conforming elements of arbitrarily high order for tetrahedra
- [JS+Zaglmayr] Based on local complete sequence property and by using tensor-product structure we achieve a systematic strategy for the construction of $H$ (curl)-conforming hierarchical shape functions of arbitrary and variable order for common element geometries (segments, quadrilaterals, triangles, hexahedra, tetrahedra, prisms, pyramids).
[COMPEL, 2005], PhD-Thesis Zaglmayr 2006


## Hierarchical VEFC basis for $H^{1}$-conforming Finite Elements

The high order elements have basis functions connected with the vertices, edges, (faces, ) and cell of the mesh:

Vertex basis function


Edge basis function $p=3$


Inner basis function $\mathrm{p}=3$


This allows an individual polynomial order for each edge, face, and cell..

## High-order $H^{1}$-conforming shape functions in tensor product structure

Exploit the tensor product structure of quadrilateral elements to build edge and face shapes


Family of orthogonal polynomials $\left(P_{k}^{0}[-1,1]\right)_{2 \leq k \leq p}$ vanishing in $\pm 1$.

$$
\begin{aligned}
\varphi_{i j}^{F}(x, y) & =P_{i}^{0}(x) P_{j}^{0}(y) \\
\varphi_{i}^{E_{1}}(x, y) & =P_{i}^{0}(x) \frac{1-y}{2}
\end{aligned}
$$

Tensor-product structure for triangle [Dubiner, Karniadakis+Sherwin]:
Collapse the quadrilateral to the triangle by $x \rightarrow(1-y) x$


$$
\begin{aligned}
\varphi_{i}^{E_{1}}(x, y) & =P_{i}^{0}\left(\frac{x}{1-y}\right)(1-y)^{i} \\
\varphi_{i j}^{F}(x, y) & =\underbrace{P_{i}^{0}\left(\frac{x}{1-y}\right)(1-y)^{i}}_{u_{i}(x, y)} \underbrace{P_{j}(2 y-1) y}_{v_{j}(y)}
\end{aligned}
$$

Remark: Implementation is free of divisions

The deRham Complex tells us that $\nabla H^{1} \subset H($ curl $)$, as well for discrete spaces $\nabla W^{p+1} \subset V^{p}$.

Vertex basis function


Edge basis function $\mathrm{p}=3$


Inner basis function $\mathrm{p}=3$


The deRham Complex tells us that $\nabla H^{1} \subset H($ curl $)$, as well for discrete spaces $\nabla W^{p+1} \subset V^{p}$.

Vertex basis function

$\nabla W_{V_{i}} \subset V_{\mathcal{N}_{0}}$

Edge basis function $\mathrm{p}=3$

$\nabla W_{E_{k}}^{p+1}=V_{E_{k}}^{p}$

Inner basis function $p=3$

$\nabla W_{F_{k}}^{p+1} \subset V_{F_{k}}^{p}$

## $H$ (curl)-conforming face shape functions with $\nabla W_{F}^{p+1} \subset V_{F}^{p}$

We use inner $H^{1}$-shape functions spanning $W_{F}^{p+1} \subset H^{1}$ of the structure

$$
\varphi_{i, j}^{F, \nabla}=u_{i}(x, y) v_{j}(y) .
$$

We suggest the following $H$ (curl) face shape functions consisting of 3 types:

- Type 1: Gradient-fields

$$
\varphi_{1, i, j}^{F, c u r l}=\nabla \varphi_{i, j}^{F, \nabla}=\nabla\left(u_{i} v_{j}\right)=u_{i} \nabla v_{j}+v_{j} \nabla u_{i}
$$

- Type 2: other combination

$$
\varphi_{2, i, j}^{F, \text { curl }}=u_{i} \nabla v_{j}-v_{j} \nabla u_{i}
$$

- Type 3: to achieve a base spanning $V_{F}(p-1)$ lin. independent functions are missing

$$
\varphi_{3, j}^{F, \text { curl }}=\mathcal{N}_{0}(x, y) v_{j}(y) .
$$

## Localized complete sequence property

We have constructed Vertex-Edge-Face-Cell shape functions satisfying

$$
\begin{array}{llllll}
W_{h, p+1=1}^{V} & \xrightarrow{\nabla} V_{h}^{\mathcal{N}_{0}} & \xrightarrow{\text { curl }} & Q_{h}^{\mathcal{R} \mathcal{T}_{0}} & \xrightarrow{\text { div }} & S_{h, 0} \\
W_{p_{E}+1}^{E} & \longrightarrow & V_{p_{E}}^{E} & & & \\
W_{p_{F}+1}^{F} & \nabla & V_{p_{F}}^{F} & \xrightarrow{\text { curl }} & Q_{p_{F}-1}^{F} & \\
W_{p_{C}+1}^{C} & \nabla & V_{p_{C}}^{C} & \xrightarrow{\text { curl }} & Q_{p_{C}-1}^{C} & \xrightarrow{\text { div }}
\end{array} S_{p_{C}-2}^{C} .
$$

## Advantages are

- allows arbitrary and variable polynomial order on each edge, face and cell
- Additive Schwarz Preconditioning with cheap $\mathcal{N}_{0}-E-F-C$ blocks gets efficient
- Reduced-basis gauging by skipping higher-order gradient bases functions
- discrete differential operators $B_{\nabla}, B_{\text {curl }}, B_{\text {div }}$ are trivial


## Vector transformations

Element transformation $\Phi$, Jacobian $F=\Phi^{\prime}$, and $J=\operatorname{det} F$
Transformation of scalar functions:

$$
w(\Phi(\hat{x}))=\hat{w}(\hat{x}) \quad \Rightarrow \quad(\nabla w)(\Phi(\hat{x}))=F^{-T}(\nabla \hat{w})(\hat{x})
$$

Transformation of $H$ (curl) functions

$$
u(\Phi(\hat{x}))=F^{-T} \hat{u}(\hat{x}) \quad \Rightarrow \quad(\operatorname{curl} u)(\Phi(\hat{x}))=J^{-1} F(\operatorname{curl} \hat{u})(\hat{x})
$$

Preserves line integrals:

$$
\int_{E} u_{\tau}=\int_{\hat{E}} \hat{u}_{\tau}
$$

Transformation of $H$ (div) functions (Piola transformation)

$$
q(\Phi(\hat{x}))=J^{-1} F \hat{q}(\hat{x}) \quad \Rightarrow \quad(\operatorname{div} q)(\Phi(\hat{x}))=J^{-1}(\operatorname{div} \hat{q})(\hat{x})
$$

Preserves face integrals:

$$
\int_{F} q_{n}=\int_{\hat{F}} \hat{q}_{n}
$$

## Magnetostatic BVP - The shielding problem

Simulation of the magnetic field induced by a coil with prescribed currents:



Absolute value of magnetic flux, $\mathrm{p}=5$

Electromagnetic shielding problem: magnetic field, $\mathrm{p}=5$
... prism layer in shield, unstructured mesh (tets, pyramids) in air/coil.

| p | dofs | grads | $\kappa\left(C^{-1} A\right)$ | iter | solvertime |
| ---: | ---: | :---: | ---: | ---: | ---: |
| 4 | 96870 | yes | 34.31 | 37 | 24.9 s |
| 4 | 57602 | no | 31.14 | 36 | 6.6 s |
| 7 | 425976 | yes | 140.74 | 63 | 241.7 s |
| 7 | 265221 | no | 72.63 | 51 | 87.6 s |

## Application: Simulation of eddy-currents in bus bars



Points: 4614 Elements: 26094 Surf Elements: 6130 Mem: 569.4
Full basis for $p=3$ in conductor, reduced basis for $p=3$ in air

## Elasticity: A beam in a beam



Reenforcement with $E=50$ in medium with $E=1$.


New mixed FEM, $p=2$


Primal FEM, $p=3$

## Tangential displacement - normal normal stress constinuous mixed method

[Phd thesis A. Sinwel 09]
Mixed elements for approximating displacements and stresses.

- tangential components of displacement vector
- normal-normal component of stress tensor

Triangular Finite Element:


Tetrahedral Finite Element:


## The quadrilateral element

Dofs for general quadrilateral element:


Thin beam dofs ( $\sigma_{n n}=0$ on bottom and top):

Beam stretching components:


Beam bending components:


## Hellinger Reissner mixed methods for elasticity

Primal mixed method:

Find $\sigma \in L_{2}^{\text {sym }}$ and $u \in\left[H^{1}\right]^{2}$ such that

$$
\begin{aligned}
\int A \sigma: \tau & -\int \tau: \varepsilon(u) & =0 & \forall \tau \\
-\int \sigma: \varepsilon(v) & & & -\int f \cdot v
\end{aligned}
$$

Dual mixed method:

Find $\sigma \in H(\operatorname{div})^{s y m}$ and $u \in\left[L_{2}\right]^{2}$ such that

$$
\begin{aligned}
\int A \sigma: \tau & +\quad \int \operatorname{div} \tau \cdot u & =0 & \forall \tau \\
\int \operatorname{div} \sigma \cdot v & & & -\int f \cdot v
\end{aligned}
$$

[Arnold + Falk + Winther $]$

## Reduced Symmetry mixed methods

## Decompose

$$
\varepsilon(u)=\nabla u+\frac{1}{2} \operatorname{Curl} u=\nabla u+\omega
$$

with $\operatorname{Curl} u=2 \operatorname{skew}(\nabla u)=\left(\partial_{x_{i}} u_{j}-\partial_{x_{j}} u_{i}\right)_{i, j=1, \ldots d}$
Impose symmetry of the stress tensor by an additional Lagrange parameter:
Find $\sigma \in[H(\operatorname{div})]^{d}, u \in\left[L_{2}\right]^{d}$, and $\omega \in L_{2}^{d \times d, \text { skew }}$ such that

$$
\begin{array}{rlrl}
\int A \sigma: \tau+\int u \operatorname{div} \tau+\int \tau: \omega & =0 & \forall \tau \\
\int v \operatorname{div} \sigma & & -\int f v & \forall v \\
\int \sigma: \gamma & & 0 & \forall \gamma
\end{array}
$$

The solution satisfies $u \in L_{2}$ and $\omega=\operatorname{Curl} u \in L_{2}^{d \times d, \text { skew }}$, i.e.,

$$
u \in H(\operatorname{curl})
$$

Arnold+Brezzi, Stenberg,... 80s

## Choices of spaces

$$
\int \operatorname{div} \sigma \cdot u \text { understood as }
$$

$$
\langle\operatorname{div} \sigma, u\rangle_{H^{-1} \times H^{1}}=-(\varepsilon(u), \sigma)_{L_{2}} \quad(\operatorname{div} \sigma, u)_{L_{2}}
$$

## Displacement

$$
\begin{gathered}
u \in\left[H^{1}\right]^{2} \\
\text { continuous f.e. }
\end{gathered}
$$

## Stress

$$
\begin{gathered}
\sigma \in L_{2}^{\text {sym }} \\
\text { non-continuous f.e. }
\end{gathered}
$$

$$
\begin{gathered}
u \in\left[L_{2}\right]^{2} \\
\text { non-continuous f.e. }
\end{gathered}
$$

$$
\sigma \in H(\operatorname{div})^{\text {sym }}
$$

$$
\text { normal continuous }\left(\sigma_{n}\right) \text { f.e. }
$$

The mixed system is well posed for all of these pairs.

## Choices of spaces

$$
\begin{array}{lll} 
& \int \operatorname{div} \sigma \cdot u \text { understood as } & \\
\langle\operatorname{div} \sigma, u\rangle_{H^{-1} \times H^{1}}=-(\varepsilon(u), \sigma)_{L_{2}} & \langle\operatorname{div} \sigma, u\rangle_{H(\text { curr } 1)^{*} \times H(\text { curr) })} & (\operatorname{div} \sigma, u)_{L_{2}}
\end{array}
$$

## Displacement

$$
\begin{array}{cc}
u \in\left[H^{1}\right]^{2} & u \in H \text { (curl) } \\
\text { continuous f.e. } & \text { tangential-continuous f.e. }
\end{array}
$$

$$
\begin{gathered}
u \in\left[L_{2}\right]^{2} \\
\text { non-continuous f.e. }
\end{gathered}
$$

## Stress

$$
\begin{gathered}
\sigma \in L_{2}^{s y m} \\
\text { non-continuous f.e. }
\end{gathered}
$$

$\sigma \in L_{2}^{\text {sym }}, \operatorname{div} \operatorname{div} \sigma \in H^{-1}$ $\sigma \in H(\operatorname{div})^{\text {sym }}$ normal-normal continuous $\left(\sigma_{n n}\right)$ f.e. normal continuous $\left(\sigma_{n}\right)$ f.e.

The mixed system is well posed for all of these pairs.

## The space $H$ (div div)

The dual space of $H$ (curl) is $H^{-1}($ div $)$ :

$$
\begin{aligned}
\|f\|_{H(\text { curl })^{*}} & =\sup _{v \in H(\operatorname{curl})} \frac{\langle f, v\rangle}{\|v\|_{H(\operatorname{curl})}} \simeq \sup _{\varphi \in H^{1}, z \in\left[H^{1}\right]^{2}} \frac{\langle f, \nabla \varphi+z\rangle}{\|\varphi\|_{H^{1}}+\|z\|_{H^{1}}} \simeq\|\operatorname{div} f\|_{H^{-1}}+\|f\|_{H^{-1}} \\
& \simeq H^{-1}(\mathrm{div})
\end{aligned}
$$

We search for $\sigma \in L_{2}^{\text {sym }}$ and $\operatorname{div} \sigma \in H^{-1}$ (div). This is equivalent to

$$
\sigma \in H(\operatorname{div} \operatorname{div}):=\left\{\sigma \in L_{2}^{\text {sym }}: \operatorname{div} \operatorname{div} \sigma \in H^{-1}\right\}
$$

where

$$
\operatorname{div} \operatorname{div}\left(\begin{array}{ll}
\sigma_{x x} & \sigma_{x y} \\
\sigma_{y x} & \sigma_{y y}
\end{array}\right)=\operatorname{div}\binom{\frac{\partial \sigma_{x x}}{\partial x}+\frac{\partial \sigma_{x y}}{\partial y}}{\frac{\partial \sigma_{y x}}{\partial x}+\frac{\partial \sigma_{y y}}{\partial y}}=\sum_{i j} \frac{\partial^{2} \sigma_{i j}}{\partial x_{i} \partial x_{j}} \in H^{-1}
$$

This implies continuity and LBB for $\langle\operatorname{div} \sigma, u\rangle$.

## Continuity properties of the space $H$ (div div)

Lemma: Let $\sigma$ be a piece-wise smooth tensor field on the mesh $\mathcal{T}=\{T\}$ such that $\sigma_{n t} \in H^{1 / 2}(\partial T)$. Assume that $\sigma_{n n}=n^{T} \sigma n$ is continuous across element interfaces. Then there holds $\operatorname{div} \sigma \in H$ (curl)*.

## The 3-step 'exact sequence'

$$
H^{1} \xrightarrow{\nabla} H(\operatorname{curl}) \xrightarrow{\sigma(\cdot)} H(\text { div div }) \xrightarrow{\text { div }} H^{-1}(\operatorname{div}) \xrightarrow{\text { div }} H^{-1}
$$

with the stress operator

$$
\sigma(v)=\left(\begin{array}{cc}
\frac{\partial v_{y}}{\partial y} & -\frac{1}{2}\left\{\frac{\partial v_{y}}{\partial x}+\frac{\partial v_{y}}{\partial x}\right\} \\
s y m & \frac{\partial v_{x}}{\partial x}
\end{array}\right)
$$

The composite operators are

$$
\begin{aligned}
\operatorname{airy}(w)=\sigma(\nabla w) & =\left(\begin{array}{cc}
\frac{\partial^{2} w}{\partial y^{2}} & -\frac{\partial w}{\partial x \partial y} \\
s y m & \frac{\partial w}{\partial x^{2}}
\end{array}\right) \\
\operatorname{div} \sigma(v) & =\frac{1}{2} \operatorname{Curl} \operatorname{curl} v
\end{aligned}
$$

There holds

$$
\begin{aligned}
\operatorname{range}(\sigma(\nabla \cdot)) & =\operatorname{ker}(\operatorname{div}) \\
\operatorname{range}(\operatorname{div} \sigma(\cdot) & =\operatorname{ker}(\operatorname{div})
\end{aligned}
$$

related to the Elasticiy complex by Arnold-Falk-Winther

## Finite elements for $H$ (div div)

Start with $C^{0}$-continuous finite elements for $H^{1} \cap H^{2}(\mathcal{T})$
Finite elements for $H$ (div div) can be built with
edge-based basis functions: $\quad \sigma\left(\nabla \varphi^{E}\right)$
cell basis functions: $\quad \operatorname{Sym}\left[\nabla \lambda_{\alpha}^{\perp} \otimes \nabla \lambda_{\beta}^{\perp}\right] \lambda_{\gamma} P^{k-1}$

Potential to save dofs for subdomains with $\operatorname{div} \sigma=0$.

## Finite Element Analysis

Analysis in discrete norms:

$$
\begin{aligned}
\|v\|_{V_{h}}^{2} & =\sum_{T}\|\varepsilon(v)\|_{T}^{2}+\sum_{E} h^{-1}\left\|\left[v_{n}\right]\right\|_{L_{2}(E)}^{2} \\
\|\tau\|_{\Sigma_{h}}^{2} & =\|\tau\|_{L_{2}}^{2}+\sum_{E} h\left\|\tau_{n n}\right\|_{L_{2}(E)}^{2} .
\end{aligned}
$$

Continuous and inf-sup stable. By saddle-point theory:

$$
\left\|u-u_{h}\right\|_{V_{h}}+\left\|\sigma-\sigma_{h}\right\|_{\Sigma_{h}} \leq c h^{m}\|\varepsilon(u)\|_{H^{m}}
$$

for $m \leq k$.
By adding a local stabilization term, the method is robust for $\nu \rightarrow \frac{1}{2}$.

Unit square, left side fixed, vertical load, adaptive refinement

$$
\begin{array}{ll} 
& \sigma \in P^{1} \\
& 2 \text { dof } \sigma_{n n} \text { per edge } \\
\nu=0.3: & \\
&
\end{array}
$$

|  | conforming | non-conforming |
| :---: | :---: | :---: |
| $u \in P^{1}$ | 2 dof $u_{\tau}$ | 1 dof $u_{\tau}$ |
| $u \in P^{2}$ | 3 dof $u_{\tau}$ | 2 dof $u_{\tau}$ |

$$
\nu=0.4999
$$




## Curved elements

fixed left top, pull right top Elements of order 5

$\sigma_{x x}$

## For Hot Days ...



## Contact problem with friction



Stress, component $\sigma_{33}$

## Reissner Mindlin Plates

Energy functional for vertical displacement $w$ and rotations $\beta$ :

$$
\|\varepsilon(\beta)\|_{A^{-1}}^{2}+t^{-2}\|\nabla w-\beta\|^{2}
$$

MITC elements with Nédélec reduction operator:

$$
\|\varepsilon(\beta)\|_{A^{-1}}^{2}+t^{-2}\left\|\nabla w-R_{h} \beta\right\|^{2}
$$

Mixed method with $\sigma=A^{-1} \varepsilon(\beta) \in H(\operatorname{div} \operatorname{div}), \beta \in H(\operatorname{curl})$, and $w \in H^{1}$ :

$$
L(\sigma ; \beta, w)=\|\sigma\|_{A}^{2}+\langle\operatorname{div} \sigma, \beta\rangle-t^{-2}\|\nabla w-\beta\|^{2}
$$

## Reissner Mindlin Plates and Thin 3D Elements

Mixed method with $\sigma=A^{-1} \varepsilon(\beta) \in H(\operatorname{div} \operatorname{div}), \beta \in H(\operatorname{curl})$, and $w \in H^{1}$ :

$$
L(\sigma ; \beta, w)=\|\sigma\|_{A}^{2}+\langle\operatorname{div} \sigma, \beta\rangle-t^{-2}\|\nabla w-\beta\|^{2}
$$

Reissner Mindlin element:


3D prism element:


## Tensor-product Finite Elements

Thin domain: $\omega \subset \mathbb{R}^{2}, I=(-t / 2, t / 2), \Omega=\omega \times I$. FE-space for displacement:

$$
\begin{aligned}
\mathcal{L}_{k+1}^{x y} & =\left\{v \in H^{1}(\omega):\left.v\right|_{T} \in P^{k+1}\right\} & \mathcal{L}_{k+1}^{z} & =\left\{v \in H^{1}(I):\left.v\right|_{T} \in P^{k+1}\right\} \\
\mathcal{N}_{k}^{x y} & =\left\{v \in H(\operatorname{curl}, \omega):\left.v\right|_{T} \in P^{k}\right\} & \mathcal{N}_{k}^{z} & =\left\{v \in L_{2}(I):\left.v\right|_{T} \in P^{k}\right\}
\end{aligned}
$$

Tensor-product Nédélec space:

$$
V_{k}=\underbrace{\mathcal{N}_{k}^{x y} \otimes \mathcal{L}_{k+1}^{z}}_{u_{x y}} \times \underbrace{\mathcal{L}_{k+1}^{x y} \otimes \mathcal{N}_{k}^{z}}_{u_{z}}
$$

Regularity-free quasi-interpolation operators (Clement) which commute (JS 2001):

$$
I_{k+1}^{x y}: L_{2}(\omega) \rightarrow \mathcal{L}_{k+1}^{x y}, \quad Q_{k}^{x y}: L_{2}(\omega) \rightarrow \mathcal{N}_{k}^{x y}: \quad \nabla I_{k+1}^{x y}=Q_{k}^{x y} \nabla
$$

Tensor product interpolation operator:

$$
Q_{k}=\underbrace{Q_{k}^{x y} \otimes I_{k+1}^{z}}_{u_{x y}} \times \underbrace{I_{k+1}^{x y} \otimes Q_{k}^{z}}_{u_{z}}
$$

## Anisotropic Estimates

Thm: There holds

$$
\sum_{T}\left\|\varepsilon\left(u-u_{h}\right)\right\|_{T}^{2}+\sum_{F} h_{o p}^{-1}\left\|\left[u_{n}\right]\right\|_{F}^{2}+\left\|\sigma-\sigma_{h}\right\|^{2} \leq c\left\{h_{x y}^{m}\left\|\nabla_{x y}^{m} \varepsilon(u)\right\|+h_{z}^{m}\left\|\nabla_{z}^{m} \varepsilon(u)\right\|\right\}^{2}
$$

Proof: Stability constants are robust in aspect ratio (for tensor product elements) Anisotropic interpolation estimates ( $H^{1}$ : Apel). E.g., the shear strain components

$$
\begin{aligned}
2\left\|\varepsilon_{x y, z}\left(u-Q_{k} u\right)\right\|_{L_{2}} & =\left\|\nabla_{z}\left(u_{x y}-I^{z} \otimes Q^{x y} u_{x y}\right)+\nabla_{x y}\left(u_{z}-I^{x y} \otimes Q^{z} u_{z}\right)\right\|_{L_{2}} \\
& =\left\|\left(I-Q^{x y} \otimes Q^{z}\right)\left(\nabla_{z} u_{x y}+\nabla_{x y} u_{z}\right)\right\|_{L_{2}} \\
& \preceq h_{x y}^{m}\left\|\nabla_{x}^{m} \varepsilon_{x y, z}(u)\right\|_{0}+h_{z}^{m}\left\|\nabla_{z}^{m} \varepsilon_{x y, z}(u)\right\|_{L_{2}}
\end{aligned}
$$

## Shell structure

$$
\begin{aligned}
& \mathrm{R}=0.5, \mathrm{t}=0.005 \\
& \sigma \in P^{2}, u \in P^{3}
\end{aligned}
$$



Netgen 4.5
stress component $\sigma_{y y}$

## Hybridization: Implementation aspects

Both methods are equivalent (for affine element transformations):

- Classical hybridization of mixed method:

Introduce Lagrange parameter $\lambda_{n}$ to enforce continuity of $\sigma_{n n}$. Its meaning is the displacement in normal direction.

- Continuous / hybrid discontinuous Galerkin method:

Displacement $u$ is strictly tangential continuous, HDG facet variable (= normal displacement) enforces weak continuity of normal component.

Anisotropic error estimates from mixed methods can be applied for HDG method!

## p-robust anisotropic error estimates

... are on the way:
Key ingredients: Commuting quasi-interpolation operators in 1D:

$$
\left(I_{N} w\right)^{\prime}=\widetilde{I}_{N} w^{\prime}
$$

such that

$$
\left\|I_{N}\right\|_{L_{2}} \leq c \quad\left\|\widetilde{I}_{N}\right\|_{L_{2}} \leq c
$$

Based on polynomial $\delta$ functions $f_{p}$ such that

$$
\int_{-1}^{1} f_{p}(x) q(x)=q(0) \quad \forall q \in P^{p}
$$

and

$$
\left\|f_{p}\right\|_{L_{1}} \leq c \quad\left\|f_{p}\right\|_{L_{\infty}} \leq c p
$$

Computer algebra based construction and proofs by Veronika Pillwein.

## Continuous / hybrid discontinuous Galerkin method for Stokes

(with Ch. Lehrenfeld, RWTH)
$H($ div ) - based formulation for Stokes:
Find $u \in V_{\mathcal{T}, n} \subset H(\operatorname{div}), \lambda \in V_{\mathcal{F}, \tau}$ and $p \in P^{p-1}(\mathcal{T})$ such that

$$
\begin{aligned}
A^{n}(u, \lambda ; v, \mu)+\int_{\Omega} \operatorname{div} v q & =\int f v \quad \forall(v, \mu) \\
\int \operatorname{div} u q & =0
\end{aligned} \quad \forall q
$$

Provides exactly divergence-free discrete velocity field $u$
LBB is proven by commuting interpolation operators for de Rham diagram
[Cockburn, Kanschat, Schötzau 2005]

## $H$ (div)-conforming elements for Navier Stokes

$$
\begin{aligned}
\frac{\partial u}{\partial t}-\operatorname{div}(2 \nu \varepsilon(u)-u \otimes u-p I) & =f \\
\operatorname{div} u & =0 \\
+b . c . &
\end{aligned}
$$

Fully discrete scheme, semi-implicit time stepping:

$$
\begin{aligned}
\left(\frac{1}{\tau} M+A^{\nu}\right) \hat{u}+B^{T} \hat{p} & =f-\frac{1}{\tau} M u-A^{c}(u) \\
B \hat{u} & =0
\end{aligned}
$$

- $u$ is exactly div-free $\Rightarrow$ non-negative convective term $\int u \nabla v v \geq 0$
- stability for kinetic energy $\left(\frac{d}{d t}\|u\|_{0}^{2} \preceq \frac{1}{\nu}\|f\|_{L_{2}}^{2}\right)$
- convective term by upwinding
- allows kernel-preserving smoothing and grid-transfer for fast iterative solver


## The de Rham Complex



For constructing high order finite elements

$$
\begin{aligned}
W_{h p} & =W_{\mathcal{L}_{1}}+\operatorname{span}\left\{\varphi_{h . o .}^{W}\right\} \\
V_{h p} & =V_{\mathcal{N}_{0}}+\operatorname{span}\left\{\nabla \varphi_{h . o .}^{W}\right\}+\operatorname{span}\left\{\varphi_{h . o .}^{V}\right\} \\
Q_{h p} & =Q_{\mathcal{R} T_{0}}+\operatorname{span}\left\{\operatorname{curl} \varphi_{\text {h.o. }}^{V}\right\}+\operatorname{span}\left\{\varphi_{h . o .}^{Q}\right\} \\
S_{h p} & =S_{\mathcal{P}_{0}}+\operatorname{span}\left\{\operatorname{div} \varphi_{\text {h.o. }}^{S}\right\}
\end{aligned}
$$

Allows to construct high-order-divergence free elements $\left\{v \in B D M_{k}: \operatorname{div} v \in P_{0}\right\}$

Flow around a disk, 2D
$\operatorname{Re}=100,5^{\text {th }}$-order elements


Boundary layer mesh around cylinder:


Flow around a disk, 2D

$$
\operatorname{Re}=1000
$$


$\operatorname{Re}=5000:$


Flow around a cylinder, $\operatorname{Re}=100$


Low-order / high-order two-level preconditioning for augmented Lagrangian:

| Order | $N$ | $\kappa\left(C^{-1} A\right)$ | its (1E-8) | $N$ | $\kappa\left(C^{-1} A\right)$ | its (1E-8) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 3046 | 6.2 | 11 | 28978 | 20.6 | 17 |
| 2 | 9369 | 21.1 | 19 | 92781 | 45.9 | 25 |
| 3 | 20052 | 31.8 | 22 | 202080 | 60.3 | 29 |
| 4 | 35965 | 33.9 | 22 | - |  |  |

Concluding Remarks

- Hybrid DG is a simple and efficient hp - discretization scheme
- Use of tangential continuous / normal continuous vectorial finite elements
- Robust anisotropic elements for linear elasticity
- Exactly divergence free finite elements for incompressible flows

Ongoing work:

- Geometric non-linear elasticity
- Compressible flows, turbulence models (vms)

