Continuous - Hybrid Discontinuous Galerkin Methods for Vector-valued Applications

Joachim Schöberl

Center for Computational Engineering Science (CCES) RWTH Aachen University

contributions by Sabine Zaglmayr, Astrid Sinwel, Veronika Pillwein, Christoph Lehrenfeld

ICOSAHOM 2009, Trondheim

Joachim Schöberl Page 1

Linear Elasticity

 $\Omega \subset \mathbb{R}^d$. Find displacement $u \in [H^1]^d$ such that $u = u_D$ on Γ_D and

$$\int_{\Omega} D\varepsilon(u) : \varepsilon(v) = \int_{\Omega} fv \qquad \forall v \in V_0$$

with the linear strain operator $\varepsilon(\cdot): [H^1]^d \to [L_2]^{d \times d, sym}$

$$\varepsilon(u) = \frac{1}{2} \left(\nabla u + (\nabla u)^T \right) = \left(\frac{\partial u_i}{\partial x_i} + \frac{\partial u_j}{\partial x_i} \right)_{i,j=1,..d}$$

and the isotropic material operator $D: [L_2]^{d \times d} \to [L_2]^{d \times d}$

$$D\varepsilon = 2\mu\varepsilon + \lambda\operatorname{tr}(\varepsilon)I$$

The stress tensor is

$$\sigma = D\varepsilon(u)$$

Continuous and elliptic in $[H^1]^d$

BUT: Constants depend on λ/μ , and on the domain (Korn's inequality)

Incompressible flows

Stokes Equation:

 $\Omega \subset \mathbb{R}^d$. Find $u \in [H^1]^d$ such that $u = u_D$ on Γ_D , $p \in Q := L_2$ such that

$$\int_{\Omega} D\varepsilon(u) : \varepsilon(v) + \int_{\Omega} \operatorname{div} v \, p = \int_{\Omega} fv \qquad \forall \, v \in V_0$$

and incompressibility constraint

$$\int \operatorname{div} u \, q = 0 \qquad \forall \, q \in Q$$

with Dirichlet b.c. (no slip and inflow), point-wise mixed b.c. (slip) and Neumann (outflow).

Difficulty: Incompressibility constraint

Mixed finite elements: continuous pressure? discontinuous pressure? stabilized methods?

Elasticity examples: Visualization of stresses

Von-Mises Stresses in a Machine Frame (linear elasticity)

Simulation with Netgen/NGSolve

45553 tets, p=5, 3×1074201 unknowns, 5 min on 8 core 2.4 GHz 64-bit PC 6 GB RAM

Toy Example: Sailplane

Stokes Flow, 2^{nd} -order HDG elements, 59E3 elements, 1.65E6 dofs, 2GB RAM, 5 min (2-core 1.8GHz)

Function spaces H(curl) and H(div)

$$H(\text{curl}) = \{u \in [L_2]^d : \text{curl } u \in L_2^{d(d-1)/2}\}$$

 $H(\text{div}) = \{u \in [L_2]^d : \text{div } u \in L_2\}$

Piece-wise smooth functions in

- \bullet H(curl) have continuous tangential components,
- \bullet H(div) have continuous normal components.

Important for constructing conforming finite elements such as Raviart Thomas, Brezzi-Douglas-Marini, and Nedelec elements.

Natural function space for Maxwell equations: Find $A \in H(\text{curl})$ such that

$$\int_{\Omega} \mu^{-1} \operatorname{curl} A \operatorname{curl} v + \int_{\Omega} (i\sigma\omega - \varepsilon\omega^{2}) Av = \int jv \qquad \forall v \in H(\operatorname{curl})$$

Contents

- Introduction
- Hybrid Discontinuous Galerkin Method
- ullet Finite Elements for $H(\operatorname{div})$ and $H(\operatorname{curl})$
- Tangential-continuous finite elements for elasticity
- Normal-continuous finite elements for Stokes

Hybrid Discontinuous Galerkin (HDG) Method

Model problem: $-\Delta u = f$

A mesh consisting of elements and facets (= edes in 2D and faces in 3D)

$$\mathcal{T} = \{T\} \qquad \mathcal{F} = \{F\}$$

Goal: Approximate u with piece-wise polynomials on elements and additional polynomials on facets:

$$u_N \in P^p(\cup T) \qquad \lambda_N \in P^p(\cup F)$$

HDG - Derivation

Exact solution u, traces on element boundaries: $\lambda := u|_{\cup F}$

Integrate against discontinuous test-functions $v \in H^1(\cup T)$, element-wise integration by parts:

$$\sum_{T} \left\{ \int_{T} \nabla u \nabla v - \int_{\partial T} \frac{\partial u}{\partial n} v \right\} = \int_{\Omega} f v$$

Use continuity of $\frac{\partial u}{\partial n}$, and test with single-valued functions $\mu \in L_2(\cup F)$:

$$\sum_{T} \left\{ \int_{T} \nabla u \nabla v - \int_{\partial T} \frac{\partial u}{\partial n} (v - \mu) \right\} = \int_{\Omega} f v$$

Use consistency $u=\lambda$ on ∂T to symmetrice, and stabilize ...

$$\sum_{T} \left\{ \int_{T} \nabla u \nabla v - \int_{\partial T} \frac{\partial u}{\partial n} (v - \mu) - \int_{\partial T} \frac{\partial v}{\partial n} (u - \lambda) + \frac{\alpha p^{2}}{h} \int_{\partial T} (u - \lambda) (v - \mu) \right\} = \int_{\Omega} f v$$

Dirichlet b.c.: Imposed on λ , Neumann b.c.: $\int_{\Gamma_N} g \mu$

Inverse Inequality: For $u \in P^p(T)$ there holds

$$\left| \int_{\partial T} \left| \frac{\partial u}{\partial n} \right|^2 \le \frac{c_{inv} p^2}{h} \int_T |\nabla u|^2 \, dx \right|$$

Proof for mapped quads: Numerical integration with Gauss-Lobatto integration rule $(x_0 = -1, x_n = 1)$:

$$\int_{-1}^{1} f(x)dx \approx \sum_{i=0}^{n} \omega_i f(x_i)$$

Consider bottom edge:

$$\sum_{i} \omega_{i} |S_{i}| \left| n \cdot \nabla u \left(\Phi(x_{i}, -1) \right) \right|^{2} \leq \max_{i} \left\{ \frac{|S_{i}|}{|V_{i,0}|} \right\} \frac{1}{\omega_{0}} \sum_{i,j} \omega_{i} \omega_{j} |V_{i,j}| \left| \nabla u \left(\Phi(x_{i}, y_{j}) \right) \right|^{2}$$

with surface measure and volume measures $|S_i|$ and $|V_{i,j}|$. There holds

$$\frac{1}{h_{op}} := \frac{|S|}{|V|} \quad \text{and} \quad \omega_0 \approx p^{-2}$$

For Gauss-Lobatto integration, a good constant c_{inv} is computable for free !

11

HDG - Stability

HDG - norm:

$$\|(u,\lambda)\|_{1,HDG}^2 = \sum_{T} \left\{ \|\nabla u\|_{L_2(T)}^2 + \frac{p^2}{h} \|u - \lambda\|_{L_2(\partial T)}^2 \right\}$$

Lemma: Assume $\alpha > c_{inv}$. Then, for $(u, \lambda) \in P^p(\cup T) \times P^p(\cup F)$ there holds

$$\|(u,\lambda)\|_{1,HDG}^2 \leq A(u,\lambda;u,\lambda) \leq \|(u,\lambda)\|_{1,HDG}$$

Proof of lower bound: Element by element:

$$A^{T}(u,\lambda;u,\lambda) = \int_{T} |\nabla u|^{2} - 2 \int_{\partial T} \frac{\partial u}{\partial n} (u-\lambda) + \frac{\alpha p^{2}}{h} \int_{\partial T} (u-\lambda)^{2}$$

$$\geq \int_{T} |\nabla u|^{2} - \frac{1}{\gamma} \int_{\partial T} \left| \frac{\partial u}{\partial n} \right|^{2} - \gamma \int_{\partial T} (u-\lambda)^{2} + \frac{\alpha p^{2}}{h} \int_{\partial T} (u-\lambda)^{2}$$

$$\geq \int_{T} |\nabla u|^{2} - \frac{c_{inv}p^{2}}{\gamma h} \int_{T} |\nabla u|^{2} - \gamma \int_{\partial T} (u-\lambda)^{2} + \frac{\alpha p^{2}}{h} \int_{\partial T} (u-\lambda)^{2}$$

Choosing $\gamma = \sqrt{c_{inv}\alpha}p^2/h$ gives the result. Equivalence constants depend only on α/c_{inv}

Interpretation as low-order method on the collocation grid

$$||u||_{1,HDG}^{2} \approx \sum_{i,j} \delta_{x_{i}} \delta_{y_{j}} \left(\left(\frac{u(x_{i+1}, y_{j}) - u(x_{i}, y_{j})}{\delta_{x_{i}}} \right)^{2} + \left(\frac{u(x_{i}, y_{j+1}) - u(x_{i}, y_{j})}{\delta_{y_{j}}} \right)^{2} \right)$$

$$+ \sum_{i} \delta_{x_{i}} \delta_{y_{0}} \left(\frac{u(x_{i}, y_{0}) - \lambda_{bot}(x_{i})}{\delta_{y_{0}}} \right)^{2} + E_{right} + E_{top} + E_{left}$$

This holds since $\delta_{y_0} \approx \frac{h}{p^2}$.

Relation to standard Interior Penalty DG method

DG - space

$$V_N := P^p(\cup T)$$

Bilinearform

$$A^{DG}(u,v) = \sum_{T} \left\{ \int_{T} \nabla u \nabla v - \int_{\partial T} \frac{\partial u}{\partial n}[v] - \int_{\partial T} \frac{\partial v}{\partial n}[u] + \frac{\alpha p^{2}}{h} \int_{\partial T} [u][v] \right\}$$

Hybrid DG has

- even more unknowns, but less matrix entries
- allows element-wise assembling
- allows static condensation of element unknowns

Hybridization of standard DG methods [Cockburn+Gopalakrishnan+Lazarov]

Consistency + **Stability** ⇒ **Convergence**

$$\|(u - u_N, \lambda - \lambda_N)\|_{1, HDG} \le c \|(u - I_N^T u, u - I_N^F u)\|_{1, HDG}$$

 $c \dots$ absolute constant

Relation to classical hybridization of mixed methods

First order system

$$A\sigma - \nabla u = 0$$
 and $\operatorname{div} \sigma = -f$

Mixed method: Find $\sigma \in H(\operatorname{div})$ and $u \in L_2$ such that

$$\int A\sigma\tau - \int \operatorname{div}\tau u = 0 \qquad \forall \tau \in H(\operatorname{div})$$

$$\int \operatorname{div}\sigma v = -\int fv \qquad \forall v \in L_2$$

Breaking normal-continuity of σ_n , and reinforcing it by another Lagrange parameter

Find $\sigma \in H(\text{div})$, $u \in L_2$, and $\lambda \in L_2(\cup F)$ such that

$$\int A\sigma\tau + \sum_{T} \int_{T} \operatorname{div} \tau \, u + \sum_{F} \int_{F} [\tau_{n}] \lambda = 0 \qquad \forall \tau \in H(\operatorname{div})$$

$$\sum_{T} \int_{T} \operatorname{div} \sigma \, v = -\int f v \qquad \forall v \in L_{2}$$

$$\sum_{F} \int_{F} [\sigma_{n}] \mu = 0 \qquad \forall \mu \in L_{2}(\cup F)$$

Allows to eliminate σ (and also u) leading to a coercive system in u and λ (or, only λ).

Comparison to mixed hybrid system

HDG method needs facet variable of one order higher ???

Solutions

Project

$$A^{HDG}(u,\lambda;v,\mu) = \sum_{T} \left\{ \int_{T} \nabla u \nabla v - \int_{\partial T} \frac{\partial u}{\partial n} (v - \mu) - \int_{\partial T} \frac{\partial v}{\partial n} (u - \lambda) + \frac{\alpha p^{2}}{h} \int_{\partial T} P^{p-1}(u - \lambda) P^{p-1}(v - \mu) \right\}$$

• Choose orthogonal basis for facet element, leave highest order discontinuous. Estimate non-conformity error by Strang lemma.

Mixed Continuous / Hybrid Discontinuous Galerkin method

Vector-valued spaces with partial continuity and partial components

$$V_{\mathcal{T},n} = \{ v \in [P^p(\cup T)]^d : [v_n] = 0 \} \qquad V_{\mathcal{T},\tau} = \{ v \in [P^p(\cup T)]^d : [v_\tau] = 0 \}$$
$$V_{\mathcal{F},n} = \{ v \in [P^p(\cup F)]^d : v_\tau = 0 \} \qquad V_{\mathcal{F},\tau} = \{ v \in [P^p(\cup F)]^d : v_n = 0 \}$$

 $H(\mathrm{curl})$ - based formulation: Find $u \in V_{\mathcal{T},\tau}$ and $\lambda \in V_{\mathcal{F},n}$ such that

$$A^{\tau}(u,\lambda;v,\mu) = \int fv \qquad \forall v \in V_{\mathcal{T},\tau} \ \forall \mu \in V_{\mathcal{F},\nu}$$

$$A^{\tau}(u,\lambda;v,\mu) = \sum_{T} \left\{ \int_{T} D\varepsilon(u) : \varepsilon(v) - \int_{\partial T} (D\varepsilon(u))_{nn} (v-\mu)_{n} - \int_{\partial T} (D\varepsilon(v))_{nn} (u-\lambda)_{n} + \frac{\alpha p^{2}}{h} \int_{\partial T} (u-\lambda)_{n} (v-\mu)_{n} \right\}$$

Or, vice versa ...

[idea from notes by Cockburn, Gopalakrishnan, Lazarov]

Collocation elements

The de Rham Complex

$$H^{1} \xrightarrow{\nabla} H(\text{curl}) \xrightarrow{\text{curl}} H(\text{div}) \xrightarrow{\text{div}} L^{2}$$

$$\bigcup \qquad \qquad \bigcup \qquad \qquad \bigcup$$

$$W_{h} \xrightarrow{\nabla} V_{h} \xrightarrow{\text{curl}} Q_{h} \xrightarrow{\text{div}} S_{h}$$

satisfies the complete sequence property

$$range(\nabla) = ker(curl)$$

$$range(curl) = ker(div)$$

on the continuous and the discrete level.

Important for stability, error estimates, preconditioning, ...

Low-order H(curl) finite elements

First order Nédélec Lelements:

$$V_h = \{ v \in H(\text{curl}) : v|_T = a_T + b_T \times x \}$$

first order approximation for A-field and B-field

First order Nédélec II elements:

$$V_h = \{ v \in H(\text{curl}) : v|_T \in [P^1]^3 \}$$

second order for A-field, first order for B-field Second order Nédélec II elements:

$$V_h = \{ v \in H(\text{curl}) : v|_T \in [P^2]^3 \}$$

On the construction of high order H(curl) finite elements

- ullet [Dubiner, Karniadakis+Sherwin] H^1 -conforming shape functions in tensor product structure ullet allows fast summation techniques
- ullet [Webb] $H({
 m curl})$ hierarchical shape functions with local complete sequence property convenient to implement up to order 4
- [Demkowicz+Monk] Based on global complete sequence property construction of Nédélec elements of variable order (with constraints on order distribution) for hexahedra
- [Ainsworth+Coyle] Systematic construction of H(curl)-conforming elements of arbitrarily high order for tetrahedra
- [JS+Zaglmayr] Based on **local complete sequence property** and by using **tensor-product structure** we achieve a **systematic strategy** for the construction of H(curl)-conforming hierarchical shape functions of **arbitrary** and **variable order for common element geometries** (segments, quadrilaterals, triangles, hexahedra, tetrahedra, prisms, pyramids). [COMPEL, 2005], PhD-Thesis Zaglmayr 2006

22

Hierarchical VEFC basis for H^1 -conforming Finite Elements

The high order elements have basis functions connected with the vertices, edges, (faces,) and cell of the mesh:

This allows an individual polynomial order for each edge, face, and cell..

High-order H^1 -conforming shape functions in tensor product structure

Exploit the tensor product structure of quadrilateral elements to build edge and face shapes

Family of orthogonal polynomials $(P_k^0[-1,1])_{2 \le k \le p}$ vanishing in ± 1 .

$$\varphi_{ij}^F(x,y) = P_i^0(x) P_j^0(y),$$

$$\varphi_i^{E_1}(x,y) = P_i^0(x) \frac{1-y}{2}.$$

Tensor-product structure for triangle [Dubiner, Karniadakis+Sherwin]:

Collapse the quadrilateral to the triangle by $x \to (1-y)x$

$$\varphi_{i}^{E_{1}}(x,y) = P_{i}^{0}(\frac{x}{1-y})(1-y)^{i}$$

$$\varphi_{ij}^{F}(x,y) = \underbrace{P_{i}^{0}(\frac{x}{1-y})(1-y)^{i}}_{u_{i}(x,y)} \underbrace{P_{j}(2y-1)y}_{v_{j}(y)}$$

Remark: Implementation is free of divisions

24

The deRham Complex tells us that $\nabla H^1 \subset H(\mathrm{curl})$, as well for discrete spaces $\nabla W^{p+1} \subset V^p$.

Vertex basis function

Edge basis function p=3

Inner basis function p=3

The deRham Complex tells us that $\nabla H^1 \subset H(\operatorname{curl})$, as well for discrete spaces $\nabla W^{p+1} \subset V^p$.

Joachim Schöberl

$H(\operatorname{curl})$ -conforming face shape functions with $\nabla W_F^{p+1} \subset V_F^p$

We use inner H^1 -shape functions spanning $W^{p+1}_F\subset H^1$ of the structure

$$\varphi_{i,j}^{F,\nabla} = u_i(x,y) \, v_j(y).$$

We suggest the following H(curl) face shape functions consisting of 3 types:

• Type 1: Gradient-fields

$$\varphi_{1,i,j}^{F,curl} = \nabla \varphi_{i,j}^{F,\nabla} = \nabla (u_i \, v_j) = u_i \, \nabla v_j + v_j \, \nabla u_i$$

• Type 2: other combination

$$\varphi_{2, i, j}^{F, \text{curl}} = u_i \nabla v_j - v_j \nabla u_i$$

ullet Type 3: to achieve a base spanning $V_F\ (p-1)$ lin. independent functions are missing

$$\varphi_{3,j}^{F,\text{curl}} = \mathcal{N}_0(x,y) \, v_j(y).$$

Localized complete sequence property

We have constructed Vertex-Edge-Face-Cell shape functions satisfying

Advantages are

- allows arbitrary and variable polynomial order on each edge, face and cell
- ullet Additive Schwarz Preconditioning with cheap $\mathcal{N}_0-E-F-C$ blocks gets efficient
- Reduced-basis gauging by skipping higher-order gradient bases functions
- ullet discrete differential operators $B_{
 abla}$, $B_{
 m curl}$, $B_{
 m div}$ are trivial

Vector transformations

Element transformation Φ , Jacobian $F=\Phi'$, and $J=\det F$

Transformation of scalar functions:

$$w(\Phi(\hat{x})) = \hat{w}(\hat{x}) \qquad \Rightarrow \qquad (\nabla w)(\Phi(\hat{x})) = F^{-T}(\nabla \hat{w})(\hat{x})$$

Transformation of H(curl) functions

$$u(\Phi(\hat{x})) = F^{-T}\hat{u}(\hat{x}) \qquad \Rightarrow \qquad (\operatorname{curl} u)(\Phi(\hat{x})) = J^{-1}F(\operatorname{curl} \hat{u})(\hat{x})$$

Preserves line integrals:

$$\int_E u_\tau = \int_{\hat{E}} \hat{u}_\tau$$

Transformation of H(div) functions (Piola transformation)

$$q(\Phi(\hat{x})) = J^{-1}F\hat{q}(\hat{x}) \qquad \Rightarrow \qquad (\operatorname{div} q)(\Phi(\hat{x})) = J^{-1}(\operatorname{div} \hat{q})(\hat{x})$$

Preserves face integrals:

$$\int_{F} q_n = \int_{\hat{F}} \hat{q}_n$$

28

Magnetostatic BVP - The shielding problem

Simulation of the magnetic field induced by a coil with prescribed currents:

Absolute value of magnetic flux, p=5

Electromagnetic shielding problem: magnetic field, p=5

... prism layer in shield, unstructured mesh (tets, pyramids) in air/coil.

р	dofs	grads	$\kappa(C^{-1}A)$	iter	solvertime
4	96870	yes	34.31	37	24.9 s
4	57602	no	31.14	36	6.6 s
7	425976	yes	140.74	63	241.7 s
7	265221	no	72.63	51	87.6 s

Application: Simulation of eddy-currents in bus bars

Full basis for p=3 in conductor, reduced basis for p=3 in air

Elasticity: A beam in a beam

Reenforcement with E=50 in medium with E=1.

New mixed FEM, p=2

Primal FEM, p=3

Tangential displacement - normal normal stress constinuous mixed method

[Phd thesis A. Sinwel 09]

Mixed elements for approximating displacements and stresses.

- tangential components of displacement vector
- normal-normal component of stress tensor

Triangular Finite Element:

Tetrahedral Finite Element:

The quadrilateral element

Dofs for general quadrilateral element:

Thin beam dofs ($\sigma_{nn} = 0$ on bottom and top):

Beam stretching components:

Beam bending components:

Hellinger Reissner mixed methods for elasticity

Primal mixed method:

Find $\sigma \in L_2^{sym}$ and $u \in [H^1]^2$ such that

$$\int A\sigma : \tau - \int \tau : \varepsilon(u) = 0 \quad \forall \tau \\
-\int \sigma : \varepsilon(v) = -\int f \cdot v \quad \forall v$$

Dual mixed method:

Find $\sigma \in H(\operatorname{div})^{sym}$ and $u \in [L_2]^2$ such that

$$\int A\sigma : \tau + \int \operatorname{div} \tau \cdot u = 0 \qquad \forall \tau
\int \operatorname{div} \sigma \cdot v = -\int f \cdot v \qquad \forall v$$

[Arnold+Falk+Winther]

Reduced Symmetry mixed methods

Decompose

$$\varepsilon(u) = \nabla u + \frac{1}{2}\operatorname{Curl} u = \nabla u + \omega$$
 with $\operatorname{Curl} u = 2\operatorname{skew}(\nabla u) = \left(\partial_{x_i}u_j - \partial_{x_j}u_i\right)_{i,j=1,\dots d}$

Impose symmetry of the stress tensor by an additional Lagrange parameter:

Find $\sigma \in [H(\operatorname{div})]^d$, $u \in [L_2]^d$, and $\omega \in L_2^{d \times d, skew}$ such that

$$\int A\sigma : \tau + \int u \operatorname{div} \tau + \int \tau : \omega = 0 \quad \forall \tau
\int v \operatorname{div} \sigma = -\int fv \quad \forall v
\int \sigma : \gamma = 0 \quad \forall \gamma$$

The solution satisfies $u \in L_2$ and $\omega = \operatorname{Curl} u \in L_2^{d \times d, skew}$, i.e.,

$$u \in H(\text{curl})$$

Arnold+Brezzi, Stenberg,... 80s

Choices of spaces

$$\int \operatorname{div} \sigma \cdot u$$
 understood as

$$\langle \operatorname{div} \sigma, u \rangle_{H^{-1} \times H^1} = -(\varepsilon(u), \sigma)_{L_2}$$

$$(\operatorname{div}\sigma,u)_{L_2}$$

Displacement

$$u \in [H^1]^2$$
 continuous f.e.

$$u \in [L_2]^2$$
 non-continuous f.e.

Stress

$$\sigma \in L_2^{sym}$$
 non-continuous f.e.

$$\sigma \in H(\mathrm{div})^{sym}$$
 normal continuous (σ_n) f.e.

The mixed system is well posed for all of these pairs.

Choices of spaces

$$\int \operatorname{div} \sigma \cdot u$$
 understood as

$$\langle \operatorname{div} \sigma, u \rangle_{H^{-1} \times H^1} = -(\varepsilon(u), \sigma)_{L_2}$$

$$\langle \operatorname{div} \sigma, u \rangle_{H(\operatorname{curl})^* \times H(\operatorname{curl})}$$

$$(\operatorname{div}\sigma,u)_{L_2}$$

Displacement

$$u \in [H^1]^2$$
 continuous f.e.

$$u \in H(\operatorname{curl})$$
 tangential-continuous f.e.

$$u \in [L_2]^2$$
 non-continuous f.e.

Stress

$$\sigma \in L_2^{sym}$$
 non-continuous f.e.

$$\sigma \in L_2^{sym}, \operatorname{div} \operatorname{div} \sigma \in H^{-1}$$
 $\sigma \in H(\operatorname{div})^{sym}$ normal-normal continuous (σ_{nn}) f.e. normal continuous (σ_n) f.e.

$$\sigma \in H(\mathrm{div})^{sym}$$
 normal continuous (σ_n) f.e

The mixed system is well posed for all of these pairs.

The space $H(\operatorname{div}\operatorname{div})$

The dual space of H(curl) is $H^{-1}(\text{div})$:

$$||f||_{H(\text{curl})^*} = \sup_{v \in H(\text{curl})} \frac{\langle f, v \rangle}{||v||_{H(\text{curl})}} \simeq \sup_{\varphi \in H^1, z \in [H^1]^2} \frac{\langle f, \nabla \varphi + z \rangle}{||\varphi||_{H^1} + ||z||_{H^1}} \simeq ||\operatorname{div} f||_{H^{-1}} + ||f||_{H^{-1}}$$

$$\simeq H^{-1}(\operatorname{div})$$

We search for $\sigma \in L_2^{sym}$ and $\operatorname{div} \sigma \in H^{-1}(\operatorname{div})$. This is equivalent to

$$\sigma \in H(\operatorname{div}\operatorname{div}) := \{ \sigma \in L_2^{sym} : \operatorname{div}\operatorname{div}\sigma \in H^{-1} \},$$

where

$$\operatorname{div}\operatorname{div}\left(\begin{array}{cc}\sigma_{xx} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy}\end{array}\right) = \operatorname{div}\left(\begin{array}{c}\frac{\partial\sigma_{xx}}{\partial x} + \frac{\partial\sigma_{xy}}{\partial y} \\ \frac{\partial\sigma_{yx}}{\partial x} + \frac{\partial\sigma_{yy}}{\partial y}\end{array}\right) = \sum_{ij}\frac{\partial^2\sigma_{ij}}{\partial x_i\partial x_j} \in H^{-1}$$

This implies continuity and LBB for $\langle \operatorname{div} \sigma, u \rangle$.

Continuity properties of the space $H(\operatorname{div}\operatorname{div})$

Lemma: Let σ be a piece-wise smooth tensor field on the mesh $\mathcal{T} = \{T\}$ such that $\sigma_{nt} \in H^{1/2}(\partial T)$. Assume that $\sigma_{nn} = n^T \sigma n$ is continuous across element interfaces. Then there holds $\operatorname{div} \sigma \in H(\operatorname{curl})^*$.

Joachim Schöberl Mixed elasticity Page 38

The 3-step 'exact sequence'

$$H^1 \xrightarrow{\nabla} H(\text{curl}) \xrightarrow{\sigma(\cdot)} H(\text{div div}) \xrightarrow{\text{div}} H^{-1}(\text{div}) \xrightarrow{\text{div}} H^{-1}$$

with the stress operator

$$\sigma(v) = \begin{pmatrix} \frac{\partial v_y}{\partial y} & -\frac{1}{2} \left\{ \frac{\partial v_y}{\partial x} + \frac{\partial v_y}{\partial x} \right\} \\ sym & \frac{\partial v_x}{\partial x} \end{pmatrix}.$$

The composite operators are

$$\operatorname{airy}(w) = \sigma(\nabla w) = \begin{pmatrix} \frac{\partial^2 w}{\partial y^2} & -\frac{\partial w}{\partial x \partial y} \\ sym & \frac{\partial w}{\partial x^2} \end{pmatrix}$$
$$\operatorname{div} \sigma(v) = \frac{1}{2} \operatorname{Curl} \operatorname{curl} v$$

There holds

$$range(\sigma(\nabla \cdot)) = \ker(\operatorname{div})$$

$$range(\operatorname{div} \sigma(\cdot)) = \ker(\operatorname{div})$$

related to the Elasticiy complex by Arnold-Falk-Winther

Finite elements for $H(\operatorname{div}\operatorname{div})$

Start with C^0 -continuous finite elements for $H^1\cap H^2(\mathcal{T})$

Finite elements for $H(\operatorname{div}\operatorname{div})$ can be built with

edge-based basis functions: $\sigma(\nabla \varphi^E)$

cell basis functions: $\operatorname{Sym}[\nabla \lambda_{\alpha}^{\perp} \otimes \nabla \lambda_{\beta}^{\perp}] \ \lambda_{\gamma} P^{k-1}$

Potential to save dofs for subdomains with $\operatorname{div} \sigma = 0$.

Finite Element Analysis

Analysis in discrete norms:

$$||v||_{V_h}^2 = \sum_{T} ||\varepsilon(v)||_T^2 + \sum_{E} h^{-1} ||[v_n]||_{L_2(E)}^2$$
$$||\tau||_{\Sigma_h}^2 = ||\tau||_{L_2}^2 + \sum_{E} h ||\tau_{nn}||_{L_2(E)}^2.$$

Continuous and inf-sup stable. By saddle-point theory:

$$||u - u_h||_{V_h} + ||\sigma - \sigma_h||_{\Sigma_h} \le ch^m ||\varepsilon(u)||_{H^m}$$

for $m \leq k$.

By adding a local stabilization term, the method is robust for $\nu \to \frac{1}{2}$.

Unit square, left side fixed, vertical load, adaptive refinement

$$\begin{split} \sigma &\in P^1 \\ 2 \text{ dof } \sigma_{nn} \text{ per edge} \end{split}$$

	conforming non-conforming	
$u \in P^1$	2 dof $u_{ au}$	$1 \; dof \; u_{ au}$
$u \in P^2$	3 dof $u_ au$	2 dof $u_ au$

$$\nu = 0.3$$
:

Curved elements

fixed left top, pull right top Elements of order 5

For Hot Days ...

Contact problem with friction

Undeformed bear

Stress, component σ_{33}

Reissner Mindlin Plates

Energy functional for vertical displacement w and rotations β :

$$\|\varepsilon(\beta)\|_{A^{-1}}^2 + t^{-2} \|\nabla w - \beta\|^2$$

MITC elements with Nédélec reduction operator:

$$\|\varepsilon(\beta)\|_{A^{-1}}^2 + t^{-2} \|\nabla w - R_h \beta\|^2$$

Mixed method with $\sigma = A^{-1}\varepsilon(\beta) \in H(\operatorname{div}\operatorname{div})$, $\beta \in H(\operatorname{curl})$, and $w \in H^1$:

$$L(\sigma; \beta, w) = \|\sigma\|_A^2 + \langle \operatorname{div} \sigma, \beta \rangle - t^{-2} \|\nabla w - \beta\|^2$$

Reissner Mindlin Plates and Thin 3D Elements

Mixed method with $\sigma = A^{-1}\varepsilon(\beta) \in H(\operatorname{div}\operatorname{div})$, $\beta \in H(\operatorname{curl})$, and $w \in H^1$:

$$L(\sigma; \beta, w) = \|\sigma\|_A^2 + \langle \operatorname{div} \sigma, \beta \rangle - t^{-2} \|\nabla w - \beta\|^2$$

Reissner Mindlin element:

 β_{τ}

3D prism element:

Tensor-product Finite Elements

Thin domain: $\omega \subset \mathbb{R}^2$, I=(-t/2,t/2), $\Omega=\omega \times I$. FE-space for displacement:

$$\mathcal{L}_{k+1}^{xy} = \{ v \in H^{1}(\omega) : v|_{T} \in P^{k+1} \}$$

$$\mathcal{L}_{k+1}^{z} = \{ v \in H^{1}(I) : v|_{T} \in P^{k+1} \}$$

$$\mathcal{N}_{k}^{xy} = \{ v \in H(\operatorname{curl}, \omega) : v|_{T} \in P^{k} \}$$

$$\mathcal{N}_{k}^{z} = \{ v \in L_{2}(I) : v|_{T} \in P^{k} \}$$

Tensor-product Nédélec space:

$$V_k = \underbrace{\mathcal{N}_k^{xy} \otimes \mathcal{L}_{k+1}^z}_{u_{xy}} \times \underbrace{\mathcal{L}_{k+1}^{xy} \otimes \mathcal{N}_k^z}_{u_z}$$

Regularity-free quasi-interpolation operators (Clement) which commute (JS 2001):

$$I_{k+1}^{xy}: L_2(\omega) \to \mathcal{L}_{k+1}^{xy}, \qquad Q_k^{xy}: L_2(\omega) \to \mathcal{N}_k^{xy}: \qquad \nabla I_{k+1}^{xy} = Q_k^{xy} \nabla I_{k+1}^{xy}$$

Tensor product interpolation operator:

$$Q_k = \underbrace{Q_k^{xy} \otimes I_{k+1}^z}_{u_{xy}} \times \underbrace{I_{k+1}^{xy} \otimes Q_k^z}_{u_z}$$

Anisotropic Estimates

Thm: There holds

$$\sum_{T} \|\varepsilon(u - u_h)\|_{T}^{2} + \sum_{F} h_{op}^{-1} \|[u_n]\|_{F}^{2} + \|\sigma - \sigma_h\|^{2} \le c \left\{ h_{xy}^{m} \|\nabla_{xy}^{m} \varepsilon(u)\| + h_{z}^{m} \|\nabla_{z}^{m} \varepsilon(u)\| \right\}^{2}$$

Proof: Stability constants are robust in aspect ratio (for tensor product elements)

Anisotropic interpolation estimates (H^1 : Apel). E.g., the shear strain components

$$2\|\varepsilon_{xy,z}(u-Q_ku)\|_{L_2} = \|\nabla_z(u_{xy}-I^z\otimes Q^{xy}u_{xy}) + \nabla_{xy}(u_z-I^{xy}\otimes Q^zu_z)\|_{L_2}$$
$$= \|(I-Q^{xy}\otimes Q^z)(\nabla_z u_{xy} + \nabla_{xy}u_z)\|_{L_2}$$
$$\leq h_{xy}^m\|\nabla_x^m \varepsilon_{xy,z}(u)\|_0 + h_z^m\|\nabla_z^m \varepsilon_{xy,z}(u)\|_{L_2}$$

Shell structure

$$\label{eq:resolvent} \begin{split} \mathbf{R} &= \text{0.5, t} = \text{0.005} \\ \sigma &\in P^2 \text{, } u \in P^3 \end{split}$$

Netgen 4.5

stress component σ_{yy}

Hybridization: Implementation aspects

Both methods are equivalent (for affine element transformations):

• Classical hybridization of mixed method:

Introduce Lagrange parameter λ_n to enforce continuity of σ_{nn} . Its meaning is the displacement in normal direction.

• Continuous / hybrid discontinuous Galerkin method:

Displacement u is strictly tangential continuous, HDG facet variable (= normal displacement) enforces weak continuity of normal component.

Anisotropic error estimates from mixed methods can be applied for HDG method!

p-robust anisotropic error estimates

... are on the way:

Key ingredients: Commuting quasi-interpolation operators in 1D:

$$(I_N w)' = \widetilde{I}_N w'$$

such that

$$||I_N||_{L_2} \le c \qquad ||\widetilde{I}_N||_{L_2} \le c$$

Based on polynomial δ functions f_p such that

$$\int_{-1}^{1} f_p(x)q(x) = q(0) \qquad \forall q \in P^p$$

and

$$||f_p||_{L_1} \le c \qquad ||f_p||_{L_\infty} \le cp$$

Computer algebra based construction and proofs by Veronika Pillwein.

Continuous / hybrid discontinuous Galerkin method for Stokes

(with Ch. Lehrenfeld, RWTH)

H(div) - based formulation for Stokes:

Find $u \in V_{\mathcal{T},n} \subset H(\mathrm{div})$, $\lambda \in V_{\mathcal{F},\tau}$ and $p \in P^{p-1}(\mathcal{T})$ such that

$$A^{n}(u, \lambda; v, \mu) + \int_{\Omega} \operatorname{div} v \, q = \int f v \quad \forall (v, \mu)$$
$$\int \operatorname{div} u \, q = 0 \quad \forall \, q$$

Provides exactly divergence-free discrete velocity field u

LBB is proven by commuting interpolation operators for de Rham diagram

[Cockburn, Kanschat, Schötzau 2005]

Joachim Schöberl Navier Stokes Equations Page 53

H(div)-conforming elements for Navier Stokes

$$\frac{\partial u}{\partial t} - \operatorname{div}(2\nu\varepsilon(u) - u \otimes u - pI) = f$$

$$\operatorname{div} u = 0$$

$$+b.c.$$

Fully discrete scheme, semi-implicit time stepping:

$$(\frac{1}{\tau}M + A^{\nu})\hat{u} + B^{T}\hat{p} = f - \frac{1}{\tau}Mu - A^{c}(u)$$

$$B\hat{u} = 0$$

- u is exactly div-free \Rightarrow non-negative convective term $\int u \nabla v v \geq 0$
- \bullet stability for kinetic energy $(\frac{d}{dt}\|u\|_0^2 \preceq \frac{1}{\nu}\|f\|_{L_2}^2)$
- convective term by upwinding
- allows kernel-preserving smoothing and grid-transfer for fast iterative solver

The de Rham Complex

$$H^{1} \xrightarrow{\nabla} H(\operatorname{curl}) \xrightarrow{\operatorname{curl}} H(\operatorname{div}) \xrightarrow{\operatorname{div}} L^{2}$$

$$\bigcup \qquad \qquad \bigcup \qquad \qquad \bigcup$$

$$W_{h} \xrightarrow{\nabla} V_{h} \xrightarrow{\operatorname{curl}} Q_{h} \xrightarrow{\operatorname{div}} S_{h}$$

For constructing high order finite elements

$$W_{hp} = W_{\mathcal{L}_1} + \operatorname{span}\{\varphi_{h.o.}^W\}$$

$$V_{hp} = V_{\mathcal{N}_0} + \operatorname{span}\{\nabla \varphi_{h.o.}^W\} + \operatorname{span}\{\varphi_{h.o.}^V\}$$

$$Q_{hp} = Q_{\mathcal{R}T_0} + \operatorname{span}\{\operatorname{curl}\varphi_{h.o.}^V\} + \operatorname{span}\{\varphi_{h.o.}^Q\}$$

$$S_{hp} = S_{\mathcal{P}_0} + \operatorname{span}\{\operatorname{div}\varphi_{h.o.}^S\}$$

Allows to construct high-order-divergence free elements $\{v \in BDM_k : \operatorname{div} v \in P_0\}$

Flow around a disk, 2D

 ${
m Re}=100$, $5^{th}{
m -order}$ elements

Boundary layer mesh around cylinder:

Flow around a disk, 2D

Re = 1000:

Re = 5000:

Flow around a cylinder, Re = 100

Low-order / high-order two-level preconditioning for augmented Lagrangian:

Order	N	$\kappa(C^{-1}A)$	its (1E-8)	N	$\kappa(C^{-1}A)$	its (1E-8)
1	3046	6.2	11	28978	20.6	17
2	9369	21.1	19	92781	45.9	25
3	20052	31.8	22	202080	60.3	29
4	35965	33.9	22	_		

Joachim Schöberl Navier Stokes Equations Page 58

Concluding Remarks

- Hybrid DG is a simple and efficient hp discretization scheme
- Use of tangential continuous / normal continuous vectorial finite elements
- Robust anisotropic elements for linear elasticity
- Exactly divergence free finite elements for incompressible flows

Ongoing work:

- Geometric non-linear elasticity
- Compressible flows, turbulence models (vms)

Joachim Schöberl Navier Stokes Equations Page