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Linear Elasticity

Ω ⊂ Rd. Find displacement u ∈ [H1]d such that u = uD on ΓD and∫
Ω

Dε(u) : ε(v) =
∫

Ω

fv ∀ v ∈ V0

with the linear strain operator ε(·) : [H1]d → [L2]d×d,sym

ε(u) =
1
2
(
∇u+ (∇u)T

)
=
(∂ui
∂xj

+
∂uj
∂xi

)
i,j=1,..d

and the isotropic material operator D : [L2]d×d → [L2]d×d

Dε = 2µε+ λ tr(ε)I

The stress tensor is
σ = Dε(u)

Continuous and elliptic in [H1]d

BUT: Constants depend on λ/µ, and on the domain (Korn’s inequality)
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Incompressible flows

Stokes Equation:

Ω ⊂ Rd. Find u ∈ [H1]d such that u = uD on ΓD, p ∈ Q := L2 such that∫
Ω

Dε(u) : ε(v) +
∫

Ω

div v p =
∫

Ω

fv ∀ v ∈ V0

and incompressibility constraint ∫
div u q = 0 ∀ q ∈ Q

with Dirichlet b.c. (no slip and inflow), point-wise mixed b.c. (slip) and Neumann (outflow).

Difficulty: Incompressibility constraint

Mixed finite elements: continuous pressure ? discontinuous pressure ? stabilized methods ?
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Elasticity examples: Visualization of stresses

Elastic beam: Shell structures:
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Von-Mises Stresses in a Machine Frame (linear elasticity)

Simulation with Netgen/NGSolve

45553 tets, p = 5, 3× 1074201 unknowns, 5 min on 8 core 2.4 GHz 64-bit PC 6 GB RAM
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Toy Example: Sailplane

Stokes Flow, 2nd-order HDG elements, 59E3 elements, 1.65E6 dofs, 2GB RAM, 5 min (2-core 1.8GHz)
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Function spaces H(curl) and H(div)

H(curl) = {u ∈ [L2]d : curlu ∈ Ld(d−1)/2
2 }

H(div) = {u ∈ [L2]d : div u ∈ L2}

Piece-wise smooth functions in

• H(curl) have continuous tangential components,

• H(div) have continuous normal components.

Important for constructing conforming finite elements such as Raviart Thomas, Brezzi-Douglas-Marini,
and Nedelec elements.

Natural function space for Maxwell equations: Find A ∈ H(curl) such that∫
Ω

µ−1 curlA curl v +
∫

Ω

(iσω − εω2)Av =
∫
jv ∀ v ∈ H(curl)
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Hybrid Discontinuous Galerkin (HDG) Method

Model problem: −∆u = f

A mesh consisting of elements and facets (= edes in 2D and faces in 3D)

T = {T} F = {F}

Goal: Approximate u with piece-wise polynomials on elements and additional polynomials on facets:

uN ∈ P p(∪T ) λN ∈ P p(∪F )

Joachim Schöberl Hybrid Discontinuous Galerkin (HDG) Page 9



HDG - Derivation

Exact solution u, traces on element boundaries: λ := u|∪F

Integrate against discontinuous test-functions v ∈ H1(∪T ), element-wise integration by parts:

∑
T

{∫
T

∇u∇v −
∫
∂T

∂u

∂n
v
}

=
∫

Ω

fv

Use continuity of ∂u∂n, and test with single-valued functions µ ∈ L2(∪F ):

∑
T

{∫
T

∇u∇v −
∫
∂T

∂u

∂n
(v − µ)

}
=
∫

Ω

fv

Use consistency u = λ on ∂T to symmetrice, and stabilize ...

∑
T

{∫
T

∇u∇v −
∫
∂T

∂u

∂n
(v − µ)−

∫
∂T

∂v

∂n
(u− λ) +

αp2

h

∫
∂T

(u− λ)(v − µ)
}

=
∫

Ω

fv

Dirichlet b.c.: Imposed on λ, Neumann b.c.:
∫

ΓN
gµ
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Inverse Inequality: For u ∈ P p(T ) there holds∫
∂T

∣∣∣∣∂u∂n
∣∣∣∣2 ≤ cinvp

2

h

∫
T

|∇u|2 dx

Proof for mapped quads: Numerical integration with Gauss-Lobatto integration rule (x0 = −1, xn = 1):∫ 1

−1

f(x)dx ≈
n∑
i=0

ωif(xi)

Consider bottom edge:∑
i

ωi|Si|
∣∣n · ∇u(Φ(xi,−1)

)∣∣2 ≤ max
i

{
|Si|
|Vi,0|

}
1
ω0

∑
i,j

ωiωj|Vi,j|
∣∣∇u(Φ(xi, yj)

)∣∣2
with surface measure and volume measures |Si| and |Vi,j|. There holds

1
hop

:=
|S|
|V |

and ω0 ≈ p−2

For Gauss-Lobatto integration, a good constant cinv is computable for free !

Joachim Schöberl Hybrid Discontinuous Galerkin (HDG) Page 11



HDG - Stability

HDG - norm:

‖(u, λ)‖21,HDG =
∑
T

{
‖∇u‖2L2(T ) +

p2

h
‖u− λ‖2L2(∂T )

}
Lemma: Assume α > cinv. Then, for (u, λ) ∈ P p(∪T )× P p(∪F ) there holds

‖(u, λ)‖21,HDG � A(u, λ;u, λ) � ‖(u, λ)‖1,HDG

Proof of lower bound: Element by element:

AT (u, λ;u, λ) =
∫
T

|∇u|2 − 2
∫
∂T

∂u

∂n
(u− λ) +

αp2

h

∫
∂T

(u− λ)2

≥
∫
T

|∇u|2 − 1
γ

∫
∂T

∣∣∣∣∂u∂n
∣∣∣∣2 − γ ∫

∂T

(u− λ)2 +
αp2

h

∫
∂T

(u− λ)2

≥
∫
T

|∇u|2 − cinvp
2

γh

∫
T

|∇u|2 − γ
∫
∂T

(u− λ)2 +
αp2

h

∫
∂T

(u− λ)2

Choosing γ =
√
cinvαp

2/h gives the result. Equivalence constants depend only on α/cinv
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Interpretation as low-order method on the collocation grid

‖u‖21,HDG ≈
∑
i,j

δxiδyj

(u(xi+1, yj)− u(xi, yj)
δxi

)2

+

(
u(xi, yj+1)− u(xi, yj)

δyj

)2


+
∑
i

δxiδy0

(
u(xi, y0)− λbot(xi)

δy0

)2

+ Eright + Etop + Eleft

This holds since δy0 ≈ h
p2.
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Relation to standard Interior Penalty DG method

DG - space
VN := P p(∪T )

Bilinearform

ADG(u, v) =
∑
T

{∫
T

∇u∇v −
∫
∂T

∂u

∂n
[v]−

∫
∂T

∂v

∂n
[u] +

αp2

h

∫
∂T

[u][v]
}

Hybrid DG has

• even more unknowns, but less matrix entries

• allows element-wise assembling

• allows static condensation of element unknowns

Hybridization of standard DG methods [Cockburn+Gopalakrishnan+Lazarov]
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Consistency + Stability ⇒ Convergence

‖(u− uN , λ− λN)‖1,HDG ≤ c ‖(u− ITNu, u− IFNu)‖1,HDG

c ... absolute constant
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Relation to classical hybridization of mixed methods

First order system
Aσ −∇u = 0 and div σ = −f

Mixed method: Find σ ∈ H(div) and u ∈ L2 such that∫
Aστ −

∫
div τ u = 0 ∀ τ ∈ H(div)∫

div σ v = −
∫
fv ∀ v ∈ L2

Breaking normal-continuity of σn, and reinforcing it by another Lagrange parameter

Find σ ∈ H(div), u ∈ L2, and λ ∈ L2(∪F ) such that∫
Aστ +

∑
T

∫
T

div τ u+
∑
F

∫
F

[τn]λ = 0 ∀ τ ∈ H(div)∑
T

∫
T

div σ v = −
∫
fv ∀ v ∈ L2∑

F

∫
F

[σn]µ = 0 ∀µ ∈ L2(∪F )

Allows to eliminate σ (and also u) leading to a coercive system in u and λ (or, only λ).
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Comparison to mixed hybrid system

HDG method needs facet variable of one order higher ???

Solutions

• Project

AHDG(u, λ; v, µ) =
∑
T

{∫
T

∇u∇v −
∫
∂T

∂u

∂n
(v − µ)

−
∫
∂T

∂v

∂n
(u− λ) +

αp2

h

∫
∂T

P p−1(u− λ)P p−1(v − µ)
}

• Choose orthogonal basis for facet element, leave highest order discontinuous. Estimate non-conformity
error by Strang lemma.
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Mixed Continuous / Hybrid Discontinuous Galerkin method

Vector-valued spaces with partial continuity and partial components

VT ,n = {v ∈ [P p(∪T )]d : [vn] = 0} VT ,τ = {v ∈ [P p(∪T )]d : [vτ ] = 0}

VF,n = {v ∈ [P p(∪F )]d : vτ = 0} VF,τ = {v ∈ [P p(∪F )]d : vn = 0}

H(curl) - based formulation: Find u ∈ VT ,τ and λ ∈ VF,n such that

Aτ(u, λ; v, µ) =
∫
fv ∀ v ∈ VT ,τ ∀µ ∈ VF,ν

Aτ(u, λ; v, µ) =
∑
T

{∫
T

Dε(u) : ε(v)−
∫
∂T

(Dε(u))nn(v − µ)n

−
∫
∂T

(Dε(v))nn(u− λ)n +
αp2

h

∫
∂T

(u− λ)n(v − µ)n
}

Or, vice versa ... [idea from notes by Cockburn, Gopalakrishnan, Lazarov]
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Collocation elements

uT ∈ N1 = P p,p+1 × P p+1,p, λF ∈ P p+1
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The de Rham Complex

H1 ∇−→ H(curl) curl−→ H(div) div−→ L2⋃ ⋃ ⋃ ⋃
Wh

∇−→ Vh
curl−→ Qh

div−→ Sh

satisfies the complete sequence property

range(∇) = ker(curl)

range(curl) = ker(div)

on the continuous and the discrete level.

Important for stability, error estimates, preconditioning, ...

Joachim Schöberl Finite elements for H(curl) and H(div) Page 20



Low-order H(curl) finite elements

First order Nédélec I elements:

Vh = {v ∈ H(curl) : v|T = aT + bT × x}

first order approximation for A-field and B-field

First order Nédélec II elements:

Vh = {v ∈ H(curl) : v|T ∈ [P 1]3}

second order for A-field, first order for B-field

Second order Nédélec II elements:

Vh = {v ∈ H(curl) : v|T ∈ [P 2]3}

third order for A-field, second order for B-field
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On the construction of high order H(curl) finite elements

• [Dubiner, Karniadakis+Sherwin] H1-conforming shape functions in tensor product structure
→ allows fast summation techniques

• [Webb] H(curl) hierarchical shape functions with local complete sequence property
convenient to implement up to order 4

• [Demkowicz+Monk] Based on global complete sequence property construction of Nédélec elements of
variable order (with constraints on order distribution) for hexahedra

• [Ainsworth+Coyle] Systematic construction of H(curl)-conforming elements of arbitrarily high order for
tetrahedra

• [JS+Zaglmayr] Based on local complete sequence property and by using tensor-product structure
we achieve a systematic strategy for the construction of H(curl)-conforming hierarchical shape
functions of arbitrary and variable order for common element geometries (segments,
quadrilaterals, triangles, hexahedra, tetrahedra, prisms, pyramids).
[COMPEL, 2005], PhD-Thesis Zaglmayr 2006
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Hierarchical V EFC basis for H1-conforming Finite Elements

The high order elements have basis functions connected with the vertices, edges, (faces, ) and cell of the
mesh:

Vertex basis function Edge basis function p=3 Inner basis function p=3

This allows an individual polynomial order for each edge, face, and cell..
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High-order H1-conforming shape functions in tensor product structure

Exploit the tensor product structure of quadrilateral elements to build edge and face shapes

Family of orthogonal polynomials (P 0
k [−1, 1] )2≤k≤p vanishing in ±1.

ϕFi j(x, y) = P 0
i (x)P 0

j (y),

ϕE1
i (x, y) = P 0

i (x) 1−y
2 .

Tensor-product structure for triangle [Dubiner, Karniadakis+Sherwin]:

Collapse the quadrilateral to the triangle by x→ (1− y)x

ϕE1
i (x, y) = P 0

i ( x
1−y) (1− y)i

ϕFi j(x, y) = P 0
i (

x

1− y
)(1− y)i︸ ︷︷ ︸

ui(x,y)

Pj(2y − 1)y︸ ︷︷ ︸
vj(y)

Remark: Implementation is free of divisions
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The deRham Complex tells us that ∇H1 ⊂ H(curl), as well for discrete spaces ∇W p+1 ⊂ V p.

Vertex basis function Edge basis function p=3 Inner basis function p=3
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The deRham Complex tells us that ∇H1 ⊂ H(curl), as well for discrete spaces ∇W p+1 ⊂ V p.

Vertex basis function

y∇

Edge basis function p=3

y∇

Inner basis function p=3

y∇

∇WVi ⊂ VN0 ∇W p+1
Ek

= V pEk ∇W p+1
Fk
⊂ V pFk
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H(curl)-conforming face shape functions with ∇W p+1
F ⊂ V pF

We use inner H1-shape functions spanning W p+1
F ⊂ H1 of the structure

ϕF,∇i,j = ui(x, y) vj(y).

We suggest the following H(curl) face shape functions consisting of 3 types:

• Type 1: Gradient-fields

ϕ F,curl
1, i,j = ∇ϕF,∇i,j = ∇(ui vj) = ui∇vj + vj∇ui

• Type 2: other combination

ϕ F,curl
2, i,j = ui∇vj− vj∇ui

• Type 3: to achieve a base spanning VF (p− 1) lin. independent functions are missing

ϕ F,curl
3, j = N0(x, y) vj(y).
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Localized complete sequence property

We have constructed Vertex-Edge-Face-Cell shape functions satisfying

WV
h, p+1=1

∇−→ V N0
h

curl−→ QRT 0
h

div−→ Sh, 0

WE
pE+1

∇−→ V EpE

WF
pF+1

∇−→ V FpF
curl−→ QFpF−1

WC
pC+1

∇−→ V CpC
curl−→ QCpC−1

div−→ SCpC−2.

Advantages are

• allows arbitrary and variable polynomial order on each edge, face and cell

• Additive Schwarz Preconditioning with cheap N0 − E − F − C blocks gets efficient

• Reduced-basis gauging by skipping higher-order gradient bases functions

• discrete differential operators B∇, Bcurl, Bdiv are trivial
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Vector transformations

Element transformation Φ, Jacobian F = Φ′, and J = detF
Transformation of scalar functions:

w(Φ(x̂)) = ŵ(x̂) ⇒ (∇w)(Φ(x̂)) = F−T (∇ŵ)(x̂)

Transformation of H(curl) functions

u(Φ(x̂)) = F−T û(x̂) ⇒ (curlu)(Φ(x̂)) = J−1F (curl û)(x̂)

Preserves line integrals: ∫
E

uτ =
∫
Ê

ûτ

Transformation of H(div) functions (Piola transformation)

q(Φ(x̂)) = J−1F q̂(x̂) ⇒ (div q)(Φ(x̂)) = J−1(div q̂)(x̂)

Preserves face integrals: ∫
F

qn =
∫
F̂

q̂n
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Magnetostatic BVP - The shielding problem

Simulation of the magnetic field induced by a coil with prescribed currents:

Electromagnetic shielding problem: magnetic field, p=5

Absolute value of magnetic flux, p=5

... prism layer in shield, unstructured mesh (tets, pyramids) in air/coil.

p dofs grads κ(C−1A) iter solvertime

4 96870 yes 34.31 37 24.9 s
4 57602 no 31.14 36 6.6 s

7 425976 yes 140.74 63 241.7 s
7 265221 no 72.63 51 87.6 s

Joachim Schöberl Finite elements for H(curl) and H(div) Page 29



Application: Simulation of eddy-currents in bus bars

Full basis for p = 3 in conductor, reduced basis for p = 3 in air
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Elasticity: A beam in a beam

Reenforcement with E = 50 in medium with E = 1.

New mixed FEM, p = 2 Primal FEM, p = 3
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Tangential displacement - normal normal stress constinuous mixed method

[Phd thesis A. Sinwel 09]

Mixed elements for approximating displacements and stresses.

• tangential components of displacement vector

• normal-normal component of stress tensor

Triangular Finite Element:

u

σ

τ

nn

Tetrahedral Finite Element:

u

σnn

τ

Joachim Schöberl Mixed elasticity Page 32



The quadrilateral element

Dofs for general quadrilateral element:

uτ

σnn

Thin beam dofs (σnn = 0 on bottom and top):

Beam stretching components:

σnnu τ mean value mean value

Beam bending components:

uτ
vertical
deflection

moment
bendingrotation
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Hellinger Reissner mixed methods for elasticity

Primal mixed method:

Find σ ∈ Lsym2 and u ∈ [H1]2 such that∫
Aσ : τ −

∫
τ : ε(u) = 0 ∀ τ

−
∫
σ : ε(v) = −

∫
f · v ∀ v

Dual mixed method:

Find σ ∈ H(div)sym and u ∈ [L2]2 such that∫
Aσ : τ +

∫
div τ · u = 0 ∀ τ∫

div σ · v = −
∫
f · v ∀ v

[Arnold+Falk+Winther]
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Reduced Symmetry mixed methods

Decompose
ε(u) = ∇u+ 1

2 Curlu = ∇u+ ω

with Curlu = 2 skew(∇u) =
(
∂xiuj − ∂xjui

)
i,j=1,...d

Impose symmetry of the stress tensor by an additional Lagrange parameter:

Find σ ∈ [H(div)]d, u ∈ [L2]d, and ω ∈ Ld×d,skew2 such that∫
Aσ : τ +

∫
udiv τ +

∫
τ : ω = 0 ∀ τ∫

v div σ = −
∫
fv ∀ v∫

σ : γ = 0 ∀ γ

The solution satisfies u ∈ L2 and ω = Curlu ∈ Ld×d,skew2 , i.e.,

u ∈ H(curl)

Arnold+Brezzi, Stenberg,... 80s
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Choices of spaces

∫
div σ · u understood as

〈div σ, u〉H−1×H1 = −(ε(u), σ)L2 (div σ, u)L2

Displacement

u ∈ [H1]2 u ∈ [L2]2

continuous f.e. non-continuous f.e.

Stress

σ ∈ Lsym2 σ ∈ H(div)sym

non-continuous f.e. normal continuous (σn) f.e.

The mixed system is well posed for all of these pairs.

Joachim Schöberl Mixed elasticity Page 36



Choices of spaces

∫
div σ · u understood as

〈div σ, u〉H−1×H1 = −(ε(u), σ)L2 〈div σ, u〉H(curl)∗×H(curl) (div σ, u)L2

Displacement

u ∈ [H1]2 u ∈ H(curl) u ∈ [L2]2

continuous f.e. tangential-continuous f.e. non-continuous f.e.

Stress

σ ∈ Lsym2 σ ∈ Lsym2 ,div div σ ∈ H−1 σ ∈ H(div)sym

non-continuous f.e. normal-normal continuous (σnn) f.e. normal continuous (σn) f.e.

The mixed system is well posed for all of these pairs.
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The space H(div div)

The dual space of H(curl) is H−1(div):

‖f‖H(curl)∗ = sup
v∈H(curl)

〈f, v〉
‖v‖H(curl)

' sup
ϕ∈H1,z∈[H1]2

〈f,∇ϕ+ z〉
‖ϕ‖H1 + ‖z‖H1

' ‖div f‖H−1 + ‖f‖H−1

' H−1(div)

We search for σ ∈ Lsym2 and div σ ∈ H−1(div). This is equivalent to

σ ∈ H(div div) := {σ ∈ Lsym2 : div div σ ∈ H−1},

where

div div
(
σxx σxy
σyx σyy

)
= div

(
∂σxx
∂x + ∂σxy

∂y
∂σyx
∂x + ∂σyy

∂y

)
=
∑
ij

∂2σij
∂xi∂xj

∈ H−1

This implies continuity and LBB for 〈div σ, u〉.
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Continuity properties of the space H(div div)

Lemma: Let σ be a piece-wise smooth tensor field on the mesh T = {T} such that σnt ∈ H1/2(∂T ).
Assume that σnn = nTσn is continuous across element interfaces. Then there holds div σ ∈ H(curl)∗.
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The 3-step ’exact sequence’

H1 ∇−→ H(curl)
σ(·)−→ H(div div) div−→ H−1(div) div−→ H−1

with the stress operator

σ(v) =

(
∂vy
∂y −1

2

{∂vy
∂x + ∂vy

∂x

}
sym ∂vx

∂x

)
.

The composite operators are

airy(w) = σ(∇w) =

(
∂2w
∂y2 − ∂w

∂x∂y

sym ∂w
∂x2

)

div σ(v) =
1
2

Curl curl v

There holds

range(σ(∇·)) = ker(div)

range(div σ(·) = ker(div)

related to the Elasticiy complex by Arnold-Falk-Winther
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Finite elements for H(div div)

Start with C0-continuous finite elements for H1 ∩H2(T )

Finite elements for H(div div) can be built with

edge-based basis functions: σ(∇ϕE)

cell basis functions: Sym[∇λ⊥α ⊗∇λ⊥β ] λγP k−1

Potential to save dofs for subdomains with div σ = 0.
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Finite Element Analysis

Analysis in discrete norms:

‖v‖2Vh =
∑
T

‖ε(v)‖2T +
∑
E

h−1‖[vn]‖2L2(E)

‖τ‖2Σh = ‖τ‖2L2
+
∑
E

h ‖τnn‖2L2(E).

Continuous and inf-sup stable. By saddle-point theory:

‖u− uh‖Vh + ‖σ − σh‖Σh ≤ ch
m‖ε(u)‖Hm

for m ≤ k.

By adding a local stabilization term, the method is robust for ν → 1
2.
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Unit square, left side fixed, vertical load, adaptive refinement

σ ∈ P 1

2 dof σnn per edge

conforming non-conforming
u ∈ P 1 2 dof uτ 1 dof uτ
u ∈ P 2 3 dof uτ 2 dof uτ

ν = 0.3:
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ν = 0.4999:
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Curved elements

fixed left top, pull right top
Elements of order 5

σxx
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For Hot Days ...

Geometry

Deformed geometry, stress σxx

Displacement uy

Interior stress
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Contact problem with friction

Undeformed bear
Stress, component σ33
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Reissner Mindlin Plates

Energy functional for vertical displacement w and rotations β:

‖ε(β)‖2A−1 + t−2‖∇w − β‖2

MITC elements with Nédélec reduction operator:

‖ε(β)‖2A−1 + t−2‖∇w −Rhβ‖2

Mixed method with σ = A−1ε(β) ∈ H(div div), β ∈ H(curl), and w ∈ H1:

L(σ;β,w) = ‖σ‖2A + 〈div σ, β〉 − t−2‖∇w − β‖2
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Reissner Mindlin Plates and Thin 3D Elements

Mixed method with σ = A−1ε(β) ∈ H(div div), β ∈ H(curl), and w ∈ H1:

L(σ;β,w) = ‖σ‖2A + 〈div σ, β〉 − t−2‖∇w − β‖2

Reissner Mindlin element:

σ

τ

nn

β	

w

3D prism element:

σnn uτ

Joachim Schöberl Thin structures Page 47



Tensor-product Finite Elements

Thin domain: ω ⊂ R2, I = (−t/2, t/2), Ω = ω × I. FE-space for displacement:

Lxyk+1 = {v ∈ H1(ω) : v|T ∈ P k+1}

N xy
k = {v ∈ H(curl, ω) : v|T ∈ P k}

Lzk+1 = {v ∈ H1(I) : v|T ∈ P k+1}

N z
k = {v ∈ L2(I) : v|T ∈ P k}

Tensor-product Nédélec space:
Vk = N xy

k ⊗ L
z
k+1︸ ︷︷ ︸

uxy

×Lxyk+1 ⊗N
z
k︸ ︷︷ ︸

uz

Regularity-free quasi-interpolation operators (Clement) which commute (JS 2001):

Ixyk+1 : L2(ω)→ Lxyk+1, Qxyk : L2(ω)→ N xy
k : ∇Ixyk+1 = Qxyk ∇

Tensor product interpolation operator:

Qk = Qxyk ⊗ I
z
k+1︸ ︷︷ ︸

uxy

× Ixyk+1 ⊗Q
z
k︸ ︷︷ ︸

uz
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Anisotropic Estimates

Thm: There holds∑
T

‖ε(u− uh)‖2T +
∑
F

h−1
op ‖[un]‖2F + ‖σ − σh‖2 ≤ c

{
hmxy‖∇mxyε(u)‖+ hmz ‖∇mz ε(u)‖

}2

Proof: Stability constants are robust in aspect ratio (for tensor product elements)

Anisotropic interpolation estimates (H1: Apel). E.g., the shear strain components

2‖εxy,z(u−Qku)‖L2 = ‖∇z(uxy − Iz ⊗Qxyuxy) +∇xy(uz − Ixy ⊗Qzuz)‖L2

= ‖(I −Qxy ⊗Qz)
(
∇zuxy +∇xyuz

)
‖L2

� hmxy‖∇mx εxy,z(u)‖0 + hmz ‖∇mz εxy,z(u)‖L2
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Shell structure

R = 0.5, t = 0.005
σ ∈ P 2, u ∈ P 3

stress component σyy
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Hybridization: Implementation aspects

Both methods are equivalent (for affine element transformations):

• Classical hybridization of mixed method:

Introduce Lagrange parameter λn to enforce continuity of σnn. Its meaning is the displacement in
normal direction.

• Continuous / hybrid discontinuous Galerkin method:

Displacement u is strictly tangential continuous, HDG facet variable (= normal displacement) enforces
weak continuity of normal component.

Anisotropic error estimates from mixed methods can be applied for HDG method !
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p-robust anisotropic error estimates

... are on the way:

Key ingredients: Commuting quasi-interpolation operators in 1D:

(INw)′ = ĨNw
′

such that
‖IN‖L2 ≤ c ‖ĨN‖L2 ≤ c

Based on polynomial δ functions fp such that

∫ 1

−1

fp(x)q(x) = q(0) ∀ q ∈ P p

and
‖fp‖L1 ≤ c ‖fp‖L∞ ≤ cp

Computer algebra based construction and proofs by Veronika Pillwein.
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Continuous / hybrid discontinuous Galerkin method for Stokes

(with Ch. Lehrenfeld, RWTH)

H(div) - based formulation for Stokes:

Find u ∈ VT ,n ⊂ H(div), λ ∈ VF,τ and p ∈ P p−1(T ) such that

An(u, λ; v, µ) +
∫

Ω
div v q =

∫
fv ∀ (v, µ)∫

div u q = 0 ∀ q

Provides exactly divergence-free discrete velocity field u

LBB is proven by commuting interpolation operators for de Rham diagram

[Cockburn, Kanschat, Schötzau 2005]
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H(div)-conforming elements for Navier Stokes

∂u

∂t
− div(2νε(u)− u⊗ u− pI) = f

div u = 0

+b.c.

Fully discrete scheme, semi-implicit time stepping:

(
1
τ
M +Aν)û+BT p̂ = f − 1

τ
Mu−Ac(u)

Bû = 0

• u is exactly div-free ⇒ non-negative convective term
∫
u∇vv ≥ 0

• stability for kinetic energy ( ddt‖u‖
2
0 � 1

ν‖f‖
2
L2

)

• convective term by upwinding

• allows kernel-preserving smoothing and grid-transfer for fast iterative solver

Joachim Schöberl Navier Stokes Equations Page 54



The de Rham Complex

H1 ∇−→ H(curl) curl−→ H(div) div−→ L2⋃ ⋃ ⋃ ⋃
Wh

∇−→ Vh
curl−→ Qh

div−→ Sh

For constructing high order finite elements

Whp = WL1 + span{ϕWh.o.}
Vhp = VN0 + span{∇ϕWh.o.}+ span{ϕVh.o.}

Qhp = QRT 0 + span{curlϕVh.o.}+ span{ϕQh.o.}
Shp = SP0 + span{divϕSh.o.}

Allows to construct high-order-divergence free elements {v ∈ BDMk : div v ∈ P0}
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Flow around a disk, 2D

Re = 100, 5th-order elements

Boundary layer mesh around cylinder:
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Flow around a disk, 2D

Re = 1000:

Re = 5000:
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Flow around a cylinder, Re = 100

Low-order / high-order two-level preconditioning for augmented Lagrangian:

Order N κ(C−1A) its (1E-8) N κ(C−1A) its (1E-8)
1 3046 6.2 11 28978 20.6 17
2 9369 21.1 19 92781 45.9 25
3 20052 31.8 22 202080 60.3 29
4 35965 33.9 22 -
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Concluding Remarks

• Hybrid DG is a simple and efficient hp - discretization scheme

• Use of tangential continuous / normal continuous vectorial finite elements

• Robust anisotropic elements for linear elasticity

• Exactly divergence free finite elements for incompressible flows

Ongoing work:

• Geometric non-linear elasticity

• Compressible flows, turbulence models (vms)
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