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High Order Finite Elements

e We are interested in variational boundary value problems posed in H! and H(curl).

e The high order finite element space is defined on a mesh consisting of (possibly curved) tetrahedral,
prismatic, pyramidal and hexahedral elements.

Unstructured tet mesh, p =5 Babuska-type hp-refinement
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Stresses in a Wrench (linear elasticity)

-8, 00000000 -4, 00000000 0, 00000000 4, 00000000 8, 00000000

&

Hetgen 4,2

Simulation with Netgen/NGSolve

539 tets, p=17, 108 681 unknowns, 58 PCG-its, 115 sec solver on P-Centrino, 1.7 GHz
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Von-Mises Stresses in a Crank-shaft (linear elasticity)

Eile Geometry Mesh Wiew Refinement Special Solve Help

it Generate Mesh | Stop | Solve | Recent | Solution — | Zoom &ll | Center |

Netgen 4,4

0

Points: 17998  Elements: 638339 Surf Elements: 23542 Mem: 0.0

Simulation with Netgen/NGSolve

69839 tets, p = 3, 3 X 368661 unknowns, 34 min on 2.4 GHz PC 1.2 GB RAM
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Thin Structures and High Order Finite Elements

0,000e+00 1,.250e-01 2,500e-01 3.750e-01 5,000e-01

Unstructured tet mesh with
Tensor product elements, p =6 anisotropic geometric refinement, p = 4
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Magnetic field induced by a coil
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Simulation with Netgen/NGSolve

2035 Nédélec-Il tets,

p =06,

186 470 unknowns,

59 PCG-its,

87 sec solver time
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Hierarchic V — E — I’ — I basis for H'-conforming Finite Elements

The high order elements have basis functions connected with the vertices, edges, (faces, ) and elements of
the mesh:

Vertex basis function Edge basis function p=3 Inner basis function p=3

ey
av

This allows an individual order for each edge, face, and element.
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Construction of high order finite elements in 1D

Usually, one chooses hierarchic shape functions on the reference element (—1,1):

_1—|—a:'
2

_1—:13

p1(x) = 5 w; = (1 — x2)¢i_2 with 1, _o € Pi_Q(—l, 1)

o)
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02 s ~
%
\\\\
N
0
01
w2
1 3 [ o 1

Most often, 1); are orthogonal polynomials such as

e Legendre P(s), orthogonal w.r.t. (p,q) = f+11p(x)q(a;)d$,

e Gegenbauer C*(s), orthogonal w.r.t. (p,q) = fjll(l — ) 1 2p(z)q(x)dx,

e Jacobi P*”(s), orthogonal w.r.t. (p,q) = fjll(l + 2)%(1 — 2)°p(x)q(x) dz

All of them are efficiently computable by 3 term recurrences.
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Higher-order H!-conforming shape functions in tensor product structure

Exploit the tensor product structure of quadrilateral elements to build edge and face shapes

(1,-1) (1,1)

Family of orthogonal polynomials ( P)[—1,1] )2<g<, vanishing in +1.

pii(z,y) = PP(z)P)(y),
o (v,y) = PP(x) S

(-1,-1) (1,-1)

Tensor-product structure for triangle [Dubiner, Karniadakis+Sherwin]:

Collapse the quadrilateral to the triangle by x — (1 — y)x

AN |
A PPwy) = PAE) (- y)
X i
(_ﬁ / \ }0) @Z(f,g) — on(l — y)(l — y) \Pj(Qy — 1):%
h ~~ v; (y)
uz(x7y)

Other edge basis functions by permutation of vertices
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Overlapping Schwarz methods for simplicial elements

Let 7, F , £, V be the sets of tetrahedra, faces, edges and vertices. Let wg, wg, wy be the patches of
elements sharing the face F', the edge E, and the vertex V, respectively.

let V={ve H':v=00nTp}, and

Vo ={veV :vlpre PPV €T}

Define the coarse space
Vo={veV:v|lre P VT cT}

and Icoal overlapping vertex-based spaces
Vo ={veV,:v=0inQ\wy}

Theorem 1. For any u € V), there is a stable sub-space decomposition u, = ug + ) oy uy such that
luoll + > lluv 1% = llull%

For hexes: Pavarino [96], for triangles: Melenk+Eibner [04]
New result for tets: together with Melenk-+Pechstein+Zaglmayr [DD16]
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Step 1: Coarse grid contribution

Subtract a coarse grid quasi-interpolant:

u; = u — llpu
by estimates of the Clément operator:

IVur|* + 1™ |* = [lullz
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Step 2: Vertex contribution by spider averaging

level sets of vertex functions

’YV(S) = {y c wy : gpv(y) — 3} 1(x)

multi-dimensional vertex space \\“§‘ll//

SV — {w - V}; : UJ|7V(S) = COﬂSt} — Span{la PV ey 901\)/}

Spider vertex averaging operator

1
v ()] [yv(az) v(y) dy,

It satisfies IV V,, = Sy, preservers vertex values (ITYu)(V) = u(V), and is continuous in the sense

(ITV ) (z) :=

IVIT Ul Ly + Iy {u = T ub| ) X VUl Ly
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Spider averaging with boundary values

(w)
Svo:={we Sy :w=00nv(0)} =span{py, ..., o} }

. | 1) @),
Dirichlet spider vertex operator v

(I ) (2) == (1Y 0) (&) — (I1V0) |y 0) (1 — v ().

It satisfies T} V,, = Sy o, preservers vertex values (IT} u)(V) = u(V'), and is continuous in the sense

IV g ll Ly ey o) + 1175 {u = g bl Lo wy) 2 NVl Loy) + 127 | Ly

with 7y (x) ;= min{|lx — V| : V € V}
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Global vertex interpolator:

Lemma: The decomposition

Is stable in the sense of

[ Vo || + [l uz |+ Y I w3 = [V ||+ 1A
|%

We have subtracted multi-dimensional vertex functions in Sy o C V. The rest uy satisfies well-defined

O-values in the vertices.

The global vertex interpolator
My := Yy I
veV,vegl'p

U1 = £U1 — Hvu12+ S: H(‘)/’U,l

::’u,2 V

AS for hp-FEM
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Step 3: Decompositon of edge-contributions

Lemma: There holds the trace estimate

luzl?, vz = = [Vuz[* + [y, ue|?
()
EcE

The Munoz-Sola extension Rg_,7 is a bounded extension operator from Héf(E) to H'(T') preserving
polynomials, and 0-boundary values on the other 2 edges:

Define the edge interpolation operator Ilg : V,,,—o — Vg as

I[Ipu = Rg_ptrgu,

and decompose

UQ—UQ—ZUQ+ZUQ

Eeg = Ee€

~
=:us3

Then, u3 = 0 on UE, and

lusl| B + D IMpual’ = [Vuz|? + [y szl < [lull.
EcE

AS for hp-FEM Additive Schwarz decomposition for simplicial elements Page 16



The Spidervertex-Edge-Inner space splitting

With u € Vp, ui = Igu, ug = u1 — >y, 1Y uy, ug = ug — D Eece 15 us,

the decomposition

U = Ug + ZH(‘)/’LL1+ZH6EU2—|— Z’LL|T
vVey FEe& TeT
is stable in H!.

Each of the vertex, edge, and element contribution is contained in one of the overlapping vertex patches,
thus the overlapping Schwarz method is robust in p.

AS for hp-FEM Additive Schwarz decomposition for simplicial elements Page 17



Low energy vertex basis functions

[lon Bica 97|, [Sherwin + Casarin 02] Implicit low energy basis functions
The optimal low energy vertex interpolant into Sy is defined by

Jnin [l £
w(V)=u(V) w=0 on~(0)

By setting w(x) = v(py(x)), this is a 1D problem with weighted norms

min /01(1 ) (v'(s)) % ds.

vePP:v(1)=1,v(0)=0

In terms of Jacobi polynomials P,L.O’_l, Its solution is

p

o) = (32 >R - )

1=1

Then, the explicit 2D low energy vertex function is

AS for hp-FEM Additive Schwarz decomposition for simplicial elements
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Solve (Vu, Vv)

Computational results in 2D

+ (u,v)a0 = (1,v) on

eliminate internal bubbles

condition number

40
35
30
25
20
15
10

(0,1)?

L] L] LILI I L] L] L] L] L] L] LILI
standard vertex ——

multi vertex ---=--- 50

80
- 70 k-

50 F
40 |
30 F
20 F

iteration number

polynomial order

. 10 F %

L] L] LILI I L] L] L] L] L] L] LILI
standard vertex ——

multi vertex ------

polynomial order
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Additive Schwarz on tetrahedra

Very similar as in 2D:

e Spider vertex spaces on level set surfaces:

Pv(z) = {y:evly) =eviz)}

e Spider edge spaces for edge E = (e, e3) on level set curves:

Ye(z) = {Yy:9e(y) = ve,(x), 1 = 1,2}
SE,0 {weVgo: w|’7E($) = const} = span{p(pe, (T), pe, (7)) : p(s,t) € Sth_2(3’t)}

AS for hp-FEM Additive Schwarz decomposition for simplicial elements Page 20



Stable AS subspace decompositions

e Spider-vertex space (p-dim)
Spider-edge spaces (p?-dim)
Face spaces with Munoz-Sola extension (p?-dim)
Element spaces (p>-dim)

Vo=Vo+ > Svo+ > Spo+ Y We+ ) Vi
|%4 E F T

e Spider-vertex space (p-dim)
Overlapping spaces on edge-patches (p?-dim)

%ZV0+ZSV,0+ZVE,0
v E

AS for hp-FEM Additive Schwarz decomposition for simplicial elements Page 21



Computational results in 3D, Overlapping edge blocks

solve (Vu, Vv) + (u,v)sq = (1,v) on (0,1)3
Mesh of 44 elements, elimination of internal bubbles,

| | | | | | 4 | | | | |
140 standard vertex —+— - 35 standard vertex —+—
. 120 |- multi vertex ---*--- 7 . 3 L multi vertex ---*--- |
S 100 5
§ § 2.5 - _
c 80 I i c 2 -
2 ke
= 60 . 5 151 o o T SR SR % -
c C
8 40 r g 3 1+ -
20 - n 0.5 | -
O ] O ] ] ] ] ]
12 14 2 4 6 8 10
polynomial order polynomial order
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Polynomial preserving explicit extension from one edge

Step 1: Extension HY/2(E) — H(T)

0.1)

w(z,y) = — / Y (s ds

2y Jo—y

[Babuska-+Craig+Mandel+Pitkaranta, 91]

(-1,0) X—-y X+y (1,0)

Step 2: Preserving boundary conditions by blending

1/2
Hoc{ (£) — H&,aT\E(T)

0,1)

upper right edge:

((14+x=y)/2, (1-x+y)/2

. 2y l+4z—y 1—x+y
U(.CU,y) :U(SU,y)— u )

l—x+y 2 2

(-1.0) x-y (10)
and similar for upper left edge.

Alternative to [Munoz-Sola, 97]

AS for hp-FEM Additive Schwarz decomposition for simplicial elements
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Explicit low energy edge-based shape functions

Define edge-based basis function as

pilw,y) = [EP*)(x,y),
where © = )\1 — )\2, and Yy = )\1 + )\2.

P. Paule, A. Riese, C. Schneider, colleagues from the Linz-SFB “Numerical and Symbolic Scientific
Computing”: work on special function algorithms.

They could compute a 5-term reccurence for the evaluation of these basis-functions:

u(x,y) = ayuj—g + bizw—3 + (¢ + Clll(SL‘2 — yQ))ul—z + ejru—q

The coefficients a;, b, ¢;, d;, e; are rational in [ and are computed once and for all.

AS for hp-FEM Additive Schwarz decomposition for simplicial elements Page 24



Non-overlapping AS: Computational results in 3D

e explicit low energy vertex functions
e elimination of inner variables

e edge functions: standard vs explicit low energy

25 | | | | | 50 | | | | |
std edge —+— 45 L std edge —— _
. 20 - _ 40 -
é o 35| -
5 15| - E 30+ -

c c

S c 25 -
=2 10 . -E 20 | .
S g 15 r y
° 5t . 10 | .
P~ 5 B 7]

O i ] ] ] ] ] O ] ] ] ] ] ]

2 4 6 8 10 12 2 4 6 8 10 12

polynomial order polynomial order
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The p-version and hp-version FEM on a simple example

Example: Electric field in a plate capacitor

OOOOOOOOO

Geometry Electrostatic Potential Absolut value of the E-field

AS for hp-FEM The p-version and hp-version FEM Page 26



Higher order FEM in 2D

[ - . lr " T " T " T i " ]
0, 000+ 00 2, 500s-01 5. 000s-01 7.500s-01 1, 000s+00 L Order=1 —— |
Order =2 ——-x---
Order=3 ---%--- |
01 k- Order =4 -8 __
0.01 | .
o 3 X
£ 0001 F e -
w X PR
c % X
= B %
g - E-.E X X
& 00001 F OX : E
o *
r E“m % 1
1le-05 - X\X ]
Metgen 4,5 r E‘-. \\X
E[_‘
1le-06 .
[ @]
Adaptive mesh and potential |
. 1le-07 . . | \ \ L L L \ \ \
Based on ZZ error estimator 10 100 1000 10000 100000 1e+06

Unknowns

AS for hp-FEM The p-version and hp-version FEM Page 27



0., 000e+00 3. 000e+00 6, 000e+00 9, 000e+00 1.200e+01

Netgen 4.5

Variable polynomial order
based on ZZ error estimator

Adaptive hp-FEM in 2D

L2 error in E-field

1 [ T T T T T T ]
Order=1 —— |
Order =2 ---x---
g B Order =3 ---%--- |
o Order =4 -8
0.1¢F lﬁx‘x Variable order - -m—
0.01 .
0.001 .
0.0001 X 7
1le-05 | . % 7
- E \X\ -1
[lu
-
1e-06 |- .
@]
1le-07 . | - o -
10 100 1000 10000 100000
Unknowns

AS for hp-FEM
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Adaptive high order FEM in 3D

OI'I(',iEI’:I:I.I4‘7I i ”:

L2 error in E-field

_ mesh refinement based on ZZ error
estimator

0.01 . e | . e | . | . e
100 1000 10000 100000 1e+06
Unknowns

AS for hp-FEM The p-version and hp-version FEM Page 29



hp-FEM in 3D

1r : | . | -
; Order=1 —+—
i Order=2 -——-x---
Order=3 ---%---
Order=4 @
Anisotropic, Order =4 ---e--- |
Anisotropic, Order =5 -4 -
. x% Anisotropic, Order =6 - 4---
0.1 | e |
[ o Xﬂ%\\
E Ry
L S
£ .« -
3 B, -
N W
B e e
0.01 | “ ]
L o
AA .
o
T-A
0.001 . M | L o
100 1000 10000 100000 1e+06
Unknowns

[Babuska, Schwab, Guo,

Dauge, Costabel, Apel, ...]

a priori anisotropic mesh refinement

AS for hp-FEM
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Template based geometric mesh refinement

e Generate initial tetrahedral mesh, and mark a priori singular corners and edges

e Perform k steps of geometric mesh refinement

1 singular vertex 1 singular edge

1 singv + 1sing e 2 sing v+ 2sing e

AS for hp-FEM The p-version and hp-version FEM
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AS decomposition for anisotropic edge refinement

Is plane smoothing necessary ?

Finite element stiffness matrix:

A=Ay, ® M, + M, ® A,

Local ASM-preconditioners for 2D problems:

C;, = blockdiag A,  Ca = blockdiag My,

3D ASM-preconditioner:
C=CL M, +Cl®A,

2D problem: coarsegrid only 1 triangle, standard vertex shape functions, static condensation:

k=0*+p*) (a=2?)

AS for hp-FEM The p-version and hp-version FEM Page 32



Computations on prismatic domain with 1 singular edge

h-refinement level L =0,...5

element aspect ratio = 8%. (8% = 32768)
900 S B S S
-ret = -

200 T h-ref = 1B --x--- -
g 00F h-ref=2 % -
£ 600 h-rej/, ,,,,,,, .
2 500 h1di=5 o
c i
S 400 | ]
2 300 | ]
(@]
© 200 ]

100 | ]
O |

1 2 3 4 5 6 7 8 9 10
polynomial order
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Poisson problem on a crank shaft

2 levels h-ref, p = 4, N = 209664, 32 iterations, solver: 52 sec, total 203 sec (1.7 GHz notebook)

AS for hp-FEM The p-version and hp-version FEM Page 34



Maxwell equations

Time harmonic setting:

curl H = j;,4+0FE +iwwek,
curl # = —iwuH.

By introducing the magnetic vector potential A = z_—le there follows

—1
H=—cul E=p""tcurl A
W L

Strong vector potential formulation:

1

curl p~teurl A +iwocA — w?eA = j;

with boundary conditions:

A xn=0, or (™ teurl A) x n = js, or (uteurl A) x n = k(A x n)

AS for hp-FEM The p-version and hp-version FEM
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Variational problems in H(curl)
Function space
H(curl) := {u € [Ls)? : curl u € [L)?}

Magnetostatic/Eddy-current problem in weak form:

Find vector potential A € H(curl) such that

/,LL_lcurlA-Curlvda:—l—/iwaA-’vdac:/j-vdx Vv € H(curl),
Q Q 9)

Gauging by regularization in insulators

Maxwell eigenvalue problem:

Find eigenfrequencies w € R, and E € H(curl) such that

/,u_l curlE-curlvd$:w2/5E'vd$ Vv € H(curl)
Q Q

AS for hp-FEM The p-version and hp-version FEM Page 36



The de Rham Complex

H! Y H(wl) 2 g@v) % L2
U U U U
\Y4 curl div
Wy, — Vi — Qn — Sh

Y N “

\

\

satisfies the complete sequence property

range(V) = ker(curl)
range(curl) = ker(div)

on the continuous and the discrete level.

Important for stability, error estimates, preconditioning, ...

AS for hp-FEM The p-version and hp-version FEM Page 37



Magnetic field induced by a coil (magnetostatics)

A=)/

YL
T

e
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BAA N N
0‘44&!’ XN

N7V

5,000e-02

Netgen/NGSolve

2035 Nédélec-Il tets,

p =06,

186 470 unknowns,

59 PCG-its,

87 sec solver time

AS for hp-FEM
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On the construction of high order finite elements

[Dubiner, Karniadakis+Sherwin] H!-conforming shape functions in tensor product structure
— allows fast summation techniques

[Webb| H (curl) hierarchic shape functions with local complete sequence property
convenient to implement up to order 4

[Demkowicz et al] Based on global complete sequence property construction of Nédélec elements of
variable order (with constraints on order distribution) for hexahedra

[Ainsworth+Coyle| Systematic construction of H(curl)-conforming elements of arbitrarily high order for
tetrahedra

[Schoberl+Zaglmayr] Based on local complete sequence property and by using tensor-product
structure we achieve a systematic strategy for the construction of H (curl)-conforming hierarchic
shape functions of arbitrary and variable order for common element geometries (segments,
quadrilaterals, triangles, hexahedra, tetrahedra, prisms).

[JS + Zaglmayr, Compel, 2005]

AS for hp-FEM Maxwell Equations and Finite Elements Page 39



The deRham Complex tells us that VH! C H(curl), as well for discrete spaces VIWP*+! C VP,

Vertex basis function Edge basis function p=3 Inner basis function p=3

ey
wr
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The deRham Complex tells us that VH! C H(curl), as well for discrete spaces VIWP*+! C VP,

Vertex basis function Edge basis function p=3 Inner basis function p=3

NN
.

Y
“YYVYY
="yyVyvy,
A e
'f"'fﬂ' ') ASSYVY R R D
[ FyY Yy AppAAGSIN VYV
;‘i“k-_'“- "‘":A‘—-“‘“\\ \.-rj\
P Yy v -
S ;\,7;/’/{;?"\’\\\"’(
L 4 4 VVVY = MALLGT 4 4 2Dy
veyidyvvy U1 TR
v AA A /::“Z;',)f/;;/;“.
TZALALY ST
AAAdA > 335
h A4
VWy. CV p+1 _ /P p+1 p
Vi No VW B, — VEk VW F, C VFk
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Localized complete sequence property

We have constructed Vertex-Edge-Face-Inner shape functions satisfying

\V4 N curl RT div
Wf‘:p—kl:l - Vh ° ’ h v Sh,O
E V \E
WpE+1 VPE
Ia \V4 Ia curl E
WPF+1 %F prp—1
W[ \V4 VI curl I div SI
pr+1 DI pr—1 pr—2-

Advantages are

e allows arbitrary and variable polynomial order on each edge, face and cell
e Additive Schwarz Preconditioning with cheap Ny — E — I’ — I blocks gets efficient

e Reduced-basis gauging by skipping higher-order gradient bases functions

e discrete differential operators By, Beurl, Baiv are trivial

AS for hp-FEM Maxwell Equations and Finite Elements Page 41



Robust preconditioners for H (curl)

The finite element discretization of

A(u,v) = /curlu-curlv+su-vda:

leads to the matrix A = K + M, where the kernel of K corresponds to the gradients of the H!-finite
elements:

Vo = VIV,

An e-robust additive Schwarz preconditioner must fulfill

Vi=>_V; and  Vo=> V;nVj

Let W = ) W, the decomposition w.r.t. the nodal basis functions. Then Vj = > VW,. The
preconditioner is robust if one chooses V; such that

YW;3V; : VW; C V;

AS for hp-FEM Maxwell Equations and Finite Elements Page 42



Two-level /Multigrid analysis for H (curl)

e Toselli: Overlapping DD methods on convex domains, FETI - DP
e Arnold-Falk-Winther: Multigrid for convex domain, robust in ¢
e Hiptmair: Multilevel techniques, Lipschitz domains, non-robust in ¢

e Pasciak + Zhao: Overlapping DD for Lipschitz domains, robust in ¢

AS for hp-FEM Maxwell Equations and Finite Elements Page 43



Partition of unity for H(curl)

Pasciak + Zhao: Helmholtz-like decomposition:

u, =V ¢ + 2
~—~—~ ~ =~
€ H(curl) cH1 c[H1]3

with global estimate:
IVella < c(@)flulle [[Vzlla < c(Q)]] curl ullo

With Clément-type quasi-interpolation operator [JS, Report 01] to the coarse grid, and new estimates [JS,
Report 05]
u—Illgu=V ¢ 4+ _z
T K~
cHl E€HP

with patch-wise local stability:

Ih Plloy + IVEllwy < clwv)llulla, 1A 2llwy + IV2llwy, < clwv)]curl ulls,

AS for hp-FEM Maxwell Equations and Finite Elements Page 44



Reduced Basis Gauging for Magnetostatic problem

e regularization term for lowest-order subspace

e skipping higher-order gradient basis functions

Reduced-base vs. full-space regularization in simulation of coil-problem:

In reduced system about a third less shape functions — ~ 55% faster integration

p dofs | reduced/full | K(C~'A) | iterations | solver time
2 19719 full 7.9 20 1.9s
2 10686 reduced 7.9 21 0.7 s
3 50884 full 24.2 32 0.8 s
3 29130 reduced 18.2 31 29 s
4 | 104520 full 71.4 48 40.5 s
4 61862 reduced 32.3 40 10.7 s
5 | 186731 full 179.9 69 1379 s
5 | 112952 reduced 55.5 49 319 s
6 | 303625 full 421.0 97 427.8 s
6 | 186470 reduced 84.0 59 87.4 s
[ | 286486 reduced 120.0 68 209.6 s

Note: the computed B = curl A are the same for both versions.

AS for hp-FEM

Maxwell Equations and Finite Elements
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Eddy-current Simulation of a bus bar

Time harmonic low fequency Maxwell equations

File Geometry Mesh View Refinement Special Solve Help
Gluit Generate hiesh Stop Solve Recent Solution Zoom All Center

Points: 4614 Elements: 26094 Surf Elements: 5130 Mem: 5B3.4

Full basis for p = 3 in conductor, reduced basis for p = 3 in air
450k complex unknowns, 20 min on P4 Centrino, 1600MHz

AS for hp-FEM Maxwell Equations and Finite Elements Page 46



Fast p-FEM

time for computing one curved tetrahedral element matrix for (Vu, Vv) (on 1.7 GHz notebook):

P Niot Ninner std. integration fast integration static cond.
(p+1)(p-g2)(p+3) (p—3)(pg2)(p—1) O(pg) O(pG) O(pg)

4 35 1 0.0045 0.009 n.a.

38 165 35 0.198 0.041 0.001

16 816 455 16.86 1.158 0.556

24 2925 1771 n.a. 11.1 18.2

Fast integration is based on

e sum factorization for tets (Hex: Melenk et al, Tets: Karniadakis + Sherwin) ... O(p")

e utilizing recursive definition of 1D Jacobi polynomials .... O(p°)
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Fast matrix vector product

Fast matrix vector multiplication based on element level:

1. Given element coefficient vector u’, compute Y. ul V;(x) in integration points ... O(p?).

2. Apply geometry data (Jacobian) and coefficient ... O(p?)
3. Evaluate for test-functions (= Transpose (1.))... O(p?).

Times for element-matrix element-vector multiplication (for curved elements):

P Niot Ninner fast integration [s] static cond [s] matrix x vector [s]
(p+1)(p—6F?)(p+3) (p—3)(pg2)(p—1) O(p®) O(p°) O(p*)

4 35 1 0.009 n.a. 0.00065

3 165 35 0.041 0.001 0.00124

16 316 455 1.158 0.556 0.00971

24 2925 1771 11.1 18.2 0.02564

32 6545 4495 n.a n.a 0.06877

non-zero matrix entries can be reduced to O(p® x Pg), Where p, is the order of geometry approximation
[Beuchler+1JS, Report Jan. 05 (triangles)]
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Preconditioning for matrix-free version

We have implemented an AS preconditioner with

e explicit low energy vertex functions
e precomputed edge — face, edge — element, face — element extensions on the reference element

e precomputed Dirchlet-inverse, and edge and face Schur complements.
Available fast DD components for tensor product elements:

e Preconditioners based on spectral equivalence to weighted h-version matrices (Jensen + Korneev)
e Wavelet preconditioners for weighted h-version matrices (Beuchler+Schneider+Schwab)

e Explicit optimal extension operators from edges to quads (Beuchler 4 JS, 04)
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Poisson problem on a crank shaft

1L/x Metzen 4.5

p= 12, N = 1102716, 159 iterations, total time: 20 minuts, 400 MB RAM (1.7 GHz notebook)
with flat tetrahedra, p = 15, N = 5 mio, 500 MB, 1 hour (1.7 GHz notebook)
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Netgen/NGSolve Software

e NETGEN: An automatic tetrahedral mesh generator

— Internal CSG based modeller

— Geometry import from IGES/Step or STL

— Delaunay and advancing front mesh generation algorithms
— Arbitrary order curved elements

— Visualization of meshes and fields
— Open Source (LGPL), 100-150 downloads / month

e NGSolve: A finite element package

— Mechanical and magnetic field problems

— High order finite elements

— lterative solvers with various preconditioners

— Adaptive mesh refinement

— Intensively object oriented C++ (Compile time polymorphism by templates)

— Open Source (LGPL)
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Conclusion

e High order low energy basis functions for hp-FEM
e Robust two-level Schwarz analysis for H (curl)

e Fast p-FEM for tensor product and simplicial elements
Ongoing work:
e General implementation of matrix-free hp-FEM

e Utilize sparse element matrix on reference element for preconditioning

e Go to a big parallel computer
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