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High Order Finite Elements

• We are interested in variational boundary value problems posed in H1 and H(curl).

• The high order finite element space is defined on a mesh consisting of (possibly curved) tetrahedral,
prismatic, pyramidal and hexahedral elements.

Unstructured tet mesh, p = 5 Babuška-type hp-refinement
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Stresses in a Wrench (linear elasticity)

Simulation with Netgen/NGSolve

539 tets, p = 7, 108 681 unknowns, 58 PCG-its, 115 sec solver on P-Centrino, 1.7 GHz
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Von-Mises Stresses in a Crank-shaft (linear elasticity)

Simulation with Netgen/NGSolve

69839 tets, p = 3, 3× 368661 unknowns, 34 min on 2.4 GHz PC 1.2 GB RAM
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Thin Structures and High Order Finite Elements

Tensor product elements, p = 6
Unstructured tet mesh with

anisotropic geometric refinement, p = 4
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Magnetic field induced by a coil

Simulation with Netgen/NGSolve

2035 Nédélec-II tets, p = 6, 186 470 unknowns, 59 PCG-its, 87 sec solver time
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Hierarchic V − E − F − I basis for H1-conforming Finite Elements

The high order elements have basis functions connected with the vertices, edges, (faces, ) and elements of
the mesh:

Vertex basis function Edge basis function p=3 Inner basis function p=3

This allows an individual order for each edge, face, and element.
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Construction of high order finite elements in 1D

Usually, one chooses hierarchic shape functions on the reference element (−1, 1):

ϕ0(x) =
1 + x

2
ϕ1(x) =

1− x

2
ϕi = (1− x2)ψi−2 with ψi−2 ∈ P i−2(−1, 1)
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Most often, ψi are orthogonal polynomials such as

• Legendre P (s), orthogonal w.r.t. (p, q) =
∫ +1

−1
p(x)q(x)dx,

• Gegenbauer Cλ(s), orthogonal w.r.t. (p, q) =
∫ +1

−1
(1− x2)λ−1/2p(x)q(x)dx,

• Jacobi Pα,β(s), orthogonal w.r.t. (p, q) =
∫ +1

−1
(1 + x)α(1− x)βp(x)q(x) dx

All of them are efficiently computable by 3 term recurrences.
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Higher-order H1-conforming shape functions in tensor product structure

Exploit the tensor product structure of quadrilateral elements to build edge and face shapes

Family of orthogonal polynomials (P 0
k [−1, 1] )2≤k≤p vanishing in ±1.

ϕF
i j(x, y) = P 0

i (x)P 0
j (y),

ϕE1
i (x, y) = P 0

i (x) 1−y
2 .

Tensor-product structure for triangle [Dubiner, Karniadakis+Sherwin]:

Collapse the quadrilateral to the triangle by x→ (1− y)x

ϕE1
i (x, y) = P 0

i ( x
1−y) (1− y)i

ϕF
i j(x, y) = P 0

i (
x

1− y
)(1− y)i︸ ︷︷ ︸

ui(x,y)

Pj(2y − 1)y︸ ︷︷ ︸
vj(y)

Other edge basis functions by permutation of vertices
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Overlapping Schwarz methods for simplicial elements

Let T , F , E , V be the sets of tetrahedra, faces, edges and vertices. Let ωF , ωE, ωV be the patches of
elements sharing the face F , the edge E, and the vertex V , respectively.

Let V = {v ∈ H1 : v = 0 on ΓD}, and

Vp = {v ∈ V : v|T ∈ P p ∀T ∈ T }

Define the coarse space
V0 = {v ∈ V : v|T ∈ P 1 ∀T ∈ T }

and lcoal overlapping vertex-based spaces

VV = {v ∈ Vp : v = 0 in Ω \ ωV }

Theorem 1. For any u ∈ Vp, there is a stable sub-space decomposition up = u0 +
∑

V ∈V uV such that

‖u0‖2
A +

∑
‖uV ‖2

A � ‖u‖2
A

For hexes: Pavarino [96], for triangles: Melenk+Eibner [04]
New result for tets: together with Melenk+Pechstein+Zaglmayr [DD16]
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Step 1: Coarse grid contribution

Subtract a coarse grid quasi-interpolant:

u1 = u−Π0u

by estimates of the Clément operator:

‖∇u1‖2 + ‖h−1u1‖2 � ‖u‖2
A
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Step 2: Vertex contribution by spider averaging

level sets of vertex functions

γV (s) := {y ∈ ωV : ϕV (y) = s}

multi-dimensional vertex space

SV := {w ∈ Vp : w|γV (s) = const} = span{1, ϕV , ..., ϕ
p
V }

Spider vertex averaging operator

(
ΠV v

)
(x) :=

1
|γV (x)|

∫
γV (x)

v(y) dy,

x

γ(x)

V

It satisfies ΠV Vp = SV , preservers vertex values (ΠV u)(V ) = u(V ), and is continuous in the sense

‖∇ΠV u‖L2(ωV ) + ‖r−1
V {u−ΠV u}‖L2(ωV ) � ‖∇u‖L2(ωV )

AS for hp-FEM Additive Schwarz decomposition for simplicial elements Page 13



Spider averaging with boundary values

SV,0 := {w ∈ SV : w = 0 on γ(0)} = span{ϕV , ..., ϕ
p
V }

Dirichlet spider vertex operator(
ΠV

0 v
)
(x) :=

(
ΠV v

)
(x)− (ΠV v)|γV (0)(1− ϕV (x)).

Π γ(0)
V(u)

x

(u)VΠ

)ϕ
V

(1−    

It satisfies ΠV
0 Vp = SV,0, preservers vertex values (ΠV

0 u)(V ) = u(V ), and is continuous in the sense

‖∇ΠV
0 u‖L2(ωV,0) + ‖r−1

V {u−ΠV
0 u}‖L2(ωV ) � ‖∇u‖L2(ωV ) + ‖h−1u‖L2(ωV )

with rV(x) := min{|x− V | : V ∈ V}

AS for hp-FEM Additive Schwarz decomposition for simplicial elements Page 14



The global vertex interpolator

Global vertex interpolator:

ΠV :=
∑

v∈V, v 6∈ΓD

ΠV
0

Lemma: The decomposition

u1 = (u1 −ΠVu1)︸ ︷︷ ︸
=:u2

+
∑
V

ΠV
0 u1

is stable in the sense of

‖∇u2‖2 + ‖r−1
V u2‖2 +

∑
V

‖ΠV
0 u1‖2

A � ‖∇u1‖2 + ‖h−1u1‖2.

We have subtracted multi-dimensional vertex functions in SV,0 ⊂ VV . The rest u2 satisfies well-defined
0-values in the vertices.
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Step 3: Decompositon of edge-contributions

Lemma: There holds the trace estimate∑
E∈E

‖u2‖2

H
1/2
00 (E)

� ‖∇u2‖2 + ‖r−1
V u2‖2

The Munoz-Sola extension RE→T is a bounded extension operator from H
1/2
00 (E) to H1(T ) preserving

polynomials, and 0-boundary values on the other 2 edges:

Define the edge interpolation operator ΠE : Vuv=0 → VE as

ΠEu = RE→T trE u,

and decompose

u2 = u2 −
∑
E∈E

u2︸ ︷︷ ︸
=:u3

+
∑
E∈E

u2

Then, u3 = 0 on ∪E, and

‖u3‖2
H1 +

∑
E∈E

‖ΠEu2‖2
A � ‖∇u2‖2 + ‖r−1

V u2‖ � ‖u‖2
A.
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The Spidervertex-Edge-Inner space splitting

With u ∈ VP , u1 = Π0u, u2 = u1 −
∑

V ∈V ΠV
0 u1, u3 = u2 −

∑
E∈E ΠE

0 u2,

the decomposition

u = u0 +
∑
V ∈V

ΠV
0 u1 +

∑
E∈E

ΠE
0 u2 +

∑
T∈T

u|T

is stable in H1.

Each of the vertex, edge, and element contribution is contained in one of the overlapping vertex patches,
thus the overlapping Schwarz method is robust in p.
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Low energy vertex basis functions

[Ion Bica 97], [Sherwin + Casarin 02] Implicit low energy basis functions
The optimal low energy vertex interpolant into SV,0 is defined by

min
w∈SV,0

w(V )=u(V ) w=0 on γ(0)

‖w‖H1,

By setting w(x) = v(ϕV (x)), this is a 1D problem with weighted norms

min
v∈P p:v(1)=1,v(0)=0

∫ 1

0

(1− s)
(
v′(s)

)2
ds.

In terms of Jacobi polynomials P 0,−1
i , its solution is

v(x) =
( p∑

i=1

1
i

)−1
p∑

i=1

1
i
P 0,−1

i (2x− 1)

Then, the explicit 2D low energy vertex function is

w(x) = v(ϕV (x)).
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Computational results in 2D

Solve (∇u,∇v) + (u, v)∂Ω = (1, v) on (0, 1)2

eliminate internal bubbles
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Additive Schwarz on tetrahedra

Very similar as in 2D:

• Spider vertex spaces on level set surfaces:

ΓV (x) = {y : ϕV (y) = ϕV (x)}
SV,0 = {w ∈ VV,0 : w|ΓV (x) = const} = span{ϕV , ..., ϕ

p
V }

• Spider edge spaces for edge E = (e1, e2) on level set curves:

γE(x) = {y : ϕei
(y) = ϕei

(x), i = 1, 2}
SE,0 = {w ∈ VE,0 : w|γE(x) = const} = span{p(ϕe1(x), ϕe2(x)) : p(s, t) ∈ stP p−2(s, t)}
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Stable AS subspace decompositions

• Spider-vertex space (p-dim)
Spider-edge spaces (p2-dim)
Face spaces with Munoz-Sola extension (p2-dim)
Element spaces (p3-dim)

Vp = V0 +
∑
V

SV,0 +
∑
E

SE,0 +
∑
F

WF +
∑
T

VT

• Spider-vertex space (p-dim)
Overlapping spaces on edge-patches (p3-dim)

Vp = V0 +
∑
V

SV,0 +
∑
E

VE,0
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Computational results in 3D, Overlapping edge blocks

solve (∇u,∇v) + (u, v)∂Ω = (1, v) on (0, 1)3

Mesh of 44 elements, elimination of internal bubbles,
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Polynomial preserving explicit extension from one edge

Step 1: Extension H1/2(E) → H1(T )

u(x, y) :=
1
2y

∫ x+y

x−y

uE(s) ds

[Babuška+Craig+Mandel+Pitkäranta, 91]

(x,y)

(−1,0) (1,0)

(0,1)

x−y x+y

Step 2: Preserving boundary conditions by blending

H
1/2
00 (E) → H1

0,∂T\E(T )

upper right edge:

û(x, y) = u(x, y)− 2y
1− x+ y

u

(
1 + x− y

2
,
1− x+ y

2

)
,

and similar for upper left edge.
Alternative to [Munoz-Sola, 97]

(x,y)

(−1,0) (1,0)

(0,1)

x−y

((1+x−y)/2, (1−x+y)/2)

AS for hp-FEM Additive Schwarz decomposition for simplicial elements Page 23



Explicit low energy edge-based shape functions

Define edge-based basis function as

ϕi(x, y) := [E P (2,2)
i ](x, y),

where x = λ1 − λ2, and y = λ1 + λ2.

P. Paule, A. Riese, C. Schneider, colleagues from the Linz-SFB “Numerical and Symbolic Scientific
Computing”: work on special function algorithms.

They could compute a 5-term reccurence for the evaluation of these basis-functions:

ul(x, y) = alul−4 + blxul−3 + (cl + dl(x2 − y2))ul−2 + elxul−1

The coefficients al, bl, cl, dl, el are rational in l and are computed once and for all.
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Non-overlapping AS: Computational results in 3D

• explicit low energy vertex functions

• elimination of inner variables

• edge functions: standard vs explicit low energy
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The p-version and hp-version FEM on a simple example

Example: Electric field in a plate capacitor

Geometry Electrostatic Potential Absolut value of the E-field
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Higher order FEM in 2D

Adaptive mesh and potential
Based on ZZ error estimator
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Adaptive hp-FEM in 2D

Variable polynomial order
based on ZZ error estimator  1e-07
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Adaptive high order FEM in 3D
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estimator
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hp-FEM in 3D
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Anisotropic, Order = 2
Anisotropic, Order = 3
Anisotropic, Order = 4
Anisotropic, Order = 5
Anisotropic, Order = 6

a priori anisotropic mesh refinement

[Babuška, Schwab, Guo, Dauge, Costabel, Apel, ...]
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Template based geometric mesh refinement

• Generate initial tetrahedral mesh, and mark a priori singular corners and edges

• Perform k steps of geometric mesh refinement

1 singular vertex 1 singular edge

1 sing v + 1 sing e 2 sing v + 2 sing e
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AS decomposition for anisotropic edge refinement

Is plane smoothing necessary ?

Finite element stiffness matrix:

A = Axy ⊗Mz +Mxy ⊗Az

Local ASM-preconditioners for 2D problems:

CA
xy = blockdiagAxy CM

xy = blockdiagMxy

3D ASM-preconditioner:
C = CA

xy ⊗Mz + CM
xy ⊗Az

2D problem: coarsegrid only 1 triangle, standard vertex shape functions, static condensation:

κ = O(l2 + pα) (α = 2?)
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Computations on prismatic domain with 1 singular edge

h-refinement level L = 0, . . . 5
element aspect ratio = 8L. (85 = 32768)
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Poisson problem on a crank shaft

2 levels h-ref, p = 4, N = 209664, 32 iterations, solver: 52 sec, total 203 sec (1.7 GHz notebook)
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Maxwell equations

Time harmonic setting:

curl H = ji + σE + iωεE,

curl E = −iωµH.

By introducing the magnetic vector potential A = −1
iωE, there follows

H =
−1
iωµ

curl E = µ−1 curl A

Strong vector potential formulation:

curl µ−1 curl A+ iωσA− ω2εA = ji

with boundary conditions:

A× n = 0, or (µ−1 curl A)× n = js, or (µ−1 curlA)× n = κ(A× n)

AS for hp-FEM The p-version and hp-version FEM Page 35



Variational problems in H(curl)

Function space

H(curl) := {u ∈ [L2]3 : curl u ∈ [L2]3}

Magnetostatic/Eddy-current problem in weak form:

Find vector potential A ∈ H(curl) such that∫
Ω

µ−1 curl A · curl v dx+
∫

Ω

iωσ A · v dx =
∫

Ω

j · v dx ∀ v ∈ H(curl),

Gauging by regularization in insulators

Maxwell eigenvalue problem:

Find eigenfrequencies ω ∈ R+ and E ∈ H(curl) such that∫
Ω

µ−1 curl E · curl v dx = ω2

∫
Ω

εE · v dx ∀ v ∈ H(curl)
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The de Rham Complex

H1 ∇−→ H(curl) curl−→ H(div) div−→ L2⋃ ⋃ ⋃ ⋃
Wh

∇−→ Vh
curl−→ Qh

div−→ Sh

satisfies the complete sequence property

range(∇) = ker(curl)

range(curl) = ker(div)

on the continuous and the discrete level.

Important for stability, error estimates, preconditioning, ...
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Magnetic field induced by a coil (magnetostatics)

Netgen/NGSolve

2035 Nédélec-II tets, p = 6, 186 470 unknowns, 59 PCG-its, 87 sec solver time
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On the construction of high order finite elements

• [Dubiner, Karniadakis+Sherwin] H1-conforming shape functions in tensor product structure
→ allows fast summation techniques

• [Webb] H(curl) hierarchic shape functions with local complete sequence property
convenient to implement up to order 4

• [Demkowicz et al] Based on global complete sequence property construction of Nédélec elements of
variable order (with constraints on order distribution) for hexahedra

• [Ainsworth+Coyle] Systematic construction of H(curl)-conforming elements of arbitrarily high order for
tetrahedra

• [Schöberl+Zaglmayr] Based on local complete sequence property and by using tensor-product
structure we achieve a systematic strategy for the construction of H(curl)-conforming hierarchic
shape functions of arbitrary and variable order for common element geometries (segments,
quadrilaterals, triangles, hexahedra, tetrahedra, prisms).
[JS + Zaglmayr, Compel, 2005]
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The deRham Complex tells us that ∇H1 ⊂ H(curl), as well for discrete spaces ∇W p+1 ⊂ V p.

Vertex basis function Edge basis function p=3 Inner basis function p=3
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The deRham Complex tells us that ∇H1 ⊂ H(curl), as well for discrete spaces ∇W p+1 ⊂ V p.

Vertex basis function

y∇

Edge basis function p=3

y∇

Inner basis function p=3

y∇

∇WVi
⊂ VN0 ∇W p+1

Ek
= V p

Ek
∇W p+1

Fk
⊂ V p

Fk

AS for hp-FEM Maxwell Equations and Finite Elements Page 40



Localized complete sequence property

We have constructed Vertex-Edge-Face-Inner shape functions satisfying

WV
h, p+1=1

∇−→ V N0
h

curl−→ QRT 0
h

div−→ Sh, 0

WE
pE+1

∇−→ V E
pE

WF
pF+1

∇−→ V F
pF

curl−→ QF
pF−1

W I
pI+1

∇−→ V I
pI

curl−→ QI
pI−1

div−→ SI
pI−2.

Advantages are

• allows arbitrary and variable polynomial order on each edge, face and cell

• Additive Schwarz Preconditioning with cheap N0 − E − F − I blocks gets efficient

• Reduced-basis gauging by skipping higher-order gradient bases functions

• discrete differential operators B∇, Bcurl, Bdiv are trivial
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Robust preconditioners for H(curl)

The finite element discretization of

A(u, v) =
∫

curlu · curl v + ε u · v dx

leads to the matrix A = K + εM , where the kernel of K corresponds to the gradients of the H1-finite
elements:

V0 = ∇Wh

An ε-robust additive Schwarz preconditioner must fulfill

Vh =
∑

Vi and V0 =
∑

Vi ∩ V0

Let W =
∑
Wi the decomposition w.r.t. the nodal basis functions. Then V0 =

∑
∇Wi. The

preconditioner is robust if one chooses Vi such that

∀Wi ∃Vj : ∇Wi ⊂ Vj
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Two-level/Multigrid analysis for H(curl)

• Toselli: Overlapping DD methods on convex domains, FETI - DP

• Arnold-Falk-Winther: Multigrid for convex domain, robust in ε

• Hiptmair: Multilevel techniques, Lipschitz domains, non-robust in ε

• Pasciak + Zhao: Overlapping DD for Lipschitz domains, robust in ε
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Partition of unity for H(curl)

Pasciak + Zhao: Helmholtz-like decomposition:

u︸︷︷︸
∈H(curl)

= ∇ ϕ︸︷︷︸
∈H1

+ z︸︷︷︸
∈[H1]3

with global estimate:
‖∇ϕ‖Ω ≤ c(Ω)‖u‖Ω ‖∇z‖Ω ≤ c(Ω)‖ curl u‖Ω

With Clément-type quasi-interpolation operator [JS, Report 01] to the coarse grid, and new estimates [JS,
Report 05]

u−ΠHu = ∇ ϕ︸︷︷︸
∈H1

+ z︸︷︷︸
∈[H1]3

with patch-wise local stability:

‖h−1ϕ‖ωV
+ ‖∇ϕ‖ωV

≤ c(ωV )‖u‖ω̃V
‖h−1z‖ωV

+ ‖∇z‖ωV
≤ c(ωV )‖ curl u‖ω̃V
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Reduced Basis Gauging for Magnetostatic problem

• regularization term for lowest-order subspace

• skipping higher-order gradient basis functions

Reduced-base vs. full-space regularization in simulation of coil-problem:

In reduced system about a third less shape functions →≈ 55% faster integration

p dofs reduced/full κ(C−1A) iterations solver time

2 19719 full 7.9 20 1.9 s

2 10686 reduced 7.9 21 0.7 s

3 50884 full 24.2 32 9.8 s

3 29130 reduced 18.2 31 2.9 s

4 104520 full 71.4 48 40.5 s

4 61862 reduced 32.3 40 10.7 s

5 186731 full 179.9 69 137.9 s

5 112952 reduced 55.5 49 31.9 s

6 303625 full 421.0 97 427.8 s

6 186470 reduced 84.0 59 87.4 s

7 286486 reduced 120.0 68 209.6 s

Note: the computed B = curl A are the same for both versions.
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Eddy-current Simulation of a bus bar

Time harmonic low fequency Maxwell equations

Full basis for p = 3 in conductor, reduced basis for p = 3 in air
450k complex unknowns, 20 min on P4 Centrino, 1600MHz
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Fast p-FEM

time for computing one curved tetrahedral element matrix for (∇u,∇v) (on 1.7 GHz notebook):

p Ntot Ninner std. integration fast integration static cond.

(p+1)(p+2)(p+3)
6

(p−3)(p−2)(p−1)
6 O(p9) O(p6) O(p9)

4 35 1 0.0045 0.009 n.a.
8 165 35 0.198 0.041 0.001
16 816 455 16.86 1.158 0.556
24 2925 1771 n.a. 11.1 18.2

Fast integration is based on

• sum factorization for tets (Hex: Melenk et al, Tets: Karniadakis + Sherwin) ... O(p7)

• utilizing recursive definition of 1D Jacobi polynomials .... O(p6)
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Fast matrix vector product

Fast matrix vector multiplication based on element level:

1. Given element coefficient vector uT , compute
∑

i u
T
i ∇ϕi(x) in integration points ... O(p4).

2. Apply geometry data (Jacobian) and coefficient ... O(p3)
3. Evaluate for test-functions (= Transpose (1.))... O(p4).

Times for element-matrix element-vector multiplication (for curved elements):

p Ntot Ninner fast integration [s] static cond [s] matrix × vector [s]

(p+1)(p+2)(p+3)
6

(p−3)(p−2)(p−1)
6 O(p6) O(p9) O(p4)

4 35 1 0.009 n.a. 0.00065
8 165 35 0.041 0.001 0.00124
16 816 455 1.158 0.556 0.00971
24 2925 1771 11.1 18.2 0.02564
32 6545 4495 n.a n.a 0.06877

non-zero matrix entries can be reduced to O(p3 × pg), where pg is the order of geometry approximation
[Beuchler+JS, Report Jan. 05 (triangles)]
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Preconditioning for matrix-free version

We have implemented an AS preconditioner with

• explicit low energy vertex functions

• precomputed edge → face, edge → element, face → element extensions on the reference element

• precomputed Dirchlet-inverse, and edge and face Schur complements.

Available fast DD components for tensor product elements:

• Preconditioners based on spectral equivalence to weighted h-version matrices (Jensen + Korneev)

• Wavelet preconditioners for weighted h-version matrices (Beuchler+Schneider+Schwab)

• Explicit optimal extension operators from edges to quads (Beuchler + JS, 04)
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Poisson problem on a crank shaft

p = 12, N = 1102716, 159 iterations, total time: 20 minuts, 400 MB RAM (1.7 GHz notebook)

with flat tetrahedra, p = 15, N = 5 mio, 500 MB, 1 hour (1.7 GHz notebook)
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Netgen/NGSolve Software

• NETGEN: An automatic tetrahedral mesh generator

– Internal CSG based modeller
– Geometry import from IGES/Step or STL
– Delaunay and advancing front mesh generation algorithms
– Arbitrary order curved elements
– Visualization of meshes and fields
– Open Source (LGPL), 100-150 downloads / month

• NGSolve: A finite element package

– Mechanical and magnetic field problems
– High order finite elements
– Iterative solvers with various preconditioners
– Adaptive mesh refinement
– Intensively object oriented C++ (Compile time polymorphism by templates)
– Open Source (LGPL)
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Conclusion

• High order low energy basis functions for hp-FEM

• Robust two-level Schwarz analysis for H(curl)

• Fast p-FEM for tensor product and simplicial elements

Ongoing work:

• General implementation of matrix-free hp-FEM

• Utilize sparse element matrix on reference element for preconditioning

• Go to a big parallel computer
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