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A posteriori Error Estimates and Adaptive Refinement
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Magnetic flux density in a power transformer:
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Eddy losses in casing:
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Magnetic flux density:
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Energy Error Estimates

Bilinear form a(., .) and linear form f(.):

a(u, v) = (∇u,∇v) and f(v) =
∑
T

(fT , v)T

Exact solution u ∈ V ⊂ H1 and FEM solution uh ∈ Vh satisfy

a(u, v) = f(v) ∀ v ∈ V and a(uh, vh) = f(vh) ∀ vh ∈ Vh.

The residual in V ∗ is

〈r, v〉 = a(u− uh, v) =
∑
T

(fT + ∆uh, v)T +
∑
E

([∂nuh], v)E

It satisfies 〈r, ϕV 〉 = 0.
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Residual a posteriori Error Estimates

‖∇(u− uh)‖ = ‖r‖V ∗ = sup
‖∇v‖≤1

(∇(u− uh),∇v)

= sup
‖∇v‖≤1

(∇(u− uh),∇(v −Πhv))

= sup
‖∇v‖≤1

∑
T

(f + ∆uh, v −Πhv)T +
∑
E

([∂nuh], v −Πhv)T

≤ sup
‖∇v‖≤1

∑
T

‖f + ∆uh‖L2(T )‖v −Πhv‖L2(T ) +
∑
E

‖[∂nuh]‖L2(E) ‖v −Πhv‖L2(E)

≤ sup
‖∇v‖≤1

∑
T

‖f + ∆uh‖L2(T ) ch ‖∇v‖L2(ωT ) +
∑
E

‖[∂nuh]‖L2(E) ch
1/2‖∇v‖L2(ωE)

≤ C
{∑

T

h2‖f + ∆uh‖2L2(T ) +
∑
E

h‖[∂nuh]‖2L2(E)

}1/2

For Maxwell: Monk 98, Hiptmair 99, JS 08

How big is the constant C ?
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The Hypercircle Method

For any flux σ ∈ H(div) there holds

‖∇(u− uh)‖ ≤ sup
‖∇v‖≤1

(∇(u− uh),∇v)

≤ sup
‖∇v‖≤1

(∇u− σ,∇v) + sup
‖∇v‖≤1

(σ −∇uh,∇v)

≤ sup
‖∇v‖≤1

(f + div σ, v) + ‖σ −∇uh‖

= ‖f + div σ‖H−1 + ‖σ −∇uh‖

• Estimate ‖f + div σ‖H−1: Neitaanmäki + Repin 04, Vejchodsky 04

• Ignore ‖f + div σ‖H−1: Gradient recovery methods, Zienkiewicz+Zhou (ZZ) - estimators

• Let ‖f + div σ‖ disappear: Equilibrate residuals. Ainsworth + Oden 2000, Demkowicz 90++
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A lifting for the residual

Goal: Find a flux σ∆ ∈ [L2]d such that

div σ∆ = r ∈ V ∗ i.e. − (σ∆,∇v) = 〈r, v〉

Then there holds
‖∇(u− uh)‖L2 = sup

‖∇v‖≤1

〈r, v〉 = sup
‖∇v‖≤1

(σ∆,∇v) ≤ ‖σ∆‖L2

This is an a posteriori error estimate providing a true upper bound without generic constant !

The equilibrated flux
σ := ∇uh − σ∆

satisfies
div σ = div∇uh + div σ∆ = −fh − (f − fh) = −f

[Equilibration by postprocessing: Ladeveze + Leguillon, 83]
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Local construction of the lifting σ∆

We decompose the residual into local contributions on vertex patches:

r =
∑

rV such that 〈rV , 1〉 = 0

For each patch, we solve a local problem with boundary conditions σV · n = 0 and

div σV = rV

The global lifting is obtained as

σ∆ =
∑

σV

Two principles:

1. Decomposition of the residual

2. Solvability of the local problems : Exact sequences

Equilibrated Residuals Equilibrated Residual Error Estimates Page 11



Decomposition of the residual

Lowest order case: uh is p.w. linear, and fT is piecewise constant.

〈r, v〉 =
∑
T

(rT , v)T +
∑
E

(rE, v)E

with p.w. constants rT = fT and rE = [∂nuh]. The degrees of freedom are

r̂T :=
∫
T

rT r̂E :=
∫
E

rE

The Galerkin condition 〈r, ϕV 〉 = 0 reads as

∑
T⊂ωV

∫
T

rTϕV +
∑
E⊂ωV

∫
E

rEϕV =
1
3

∑
T⊂ωV

r̂T +
1
2

∑
E⊂ωV

r̂E = 0
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Decomposition of the residual

From Galerkin orthogonality:
1
3

∑
T⊂ωV

r̂T +
1
2

∑
E⊂ωV

r̂E = 0

1/3 1/3

1/3

r
T

r
E

Define the localized residual on the vertex patch with dofs

r̂V
T :=

1
3
r̂T r̂V

E :=
1
2
r̂E

This is a decomposition of the residual, i.e.
∑
V rV = r which satisfies

〈rV , 1〉 =
∑
T⊂ωV

r̂V
T +

∑
E⊂ωV

r̂V
E =

1
3

∑
T⊂ωV

r̂T +
1
2

∑
E⊂ωV

r̂E = 0.
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de Rham Sequences

Let Ω ⊂ R2 be contractible. Then

R id−→ H1 curl−→ H(div) div−→ L2 −→ 0

is an exact sequence. This means that

• the kernel {u ∈ H1 : curlu = 0} are constant functions

• the kernel {σ ∈ H(div) : div σ = 0} of the operator div is exactly the range of the operator curl

• the range of the operator div is exactly L2.

An exact sequence with boundary conditions is

0 −→ H1
0

curl−→ H0(div) div−→ L2

R
1
−→ R −→ 0.
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Finite Element de Rham Sequences

M1
0

curl−→ RT div−→ M0
−1

Discrete calculus:
σ = curlu reads as σ̂ E = û VE,1 − û VE,2,

f = div σ reads as f̂
T

=
∑
E⊂T

±σ̂ E,
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First Distributional de Rham Sequences

rT rE

M1
0

curl−→ RT−1
div−→ M0

−2

Discrete calculus:
σ = curlu reads as σ̂T

E = û VE,1 − û VE,2,

f = div σ reads as f̂
T

=
∑
E⊂T

σ̂T
E and f̂

E
= −

∑
T :E⊂T

σ̂T
E
.
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Second Distributional de Rham Sequences

f

f

T

V
fE

M1
−1

curl−→ RT−2
div−→ M0

−3

Discrete calculus:

σ = curlu reads as σ̂T
E = ûT

VE,1 − ûT VE,2, σ̂E
V = ûT1

V − ûT2

V
,

f = div σ reads as f̂
T

=
∑
E⊂T

σ̂T
E
, f̂

E
=
∑
V ∈E

σ̂E
V −

∑
T :E⊂T

σ̂T
E
, f̂

V
= −

∑
E:V ∈E

σ̂E
V
.
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Regular elements on Slim Rectangles
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Lifting for scalar equation

Given: Local residual rV ∈M0
−2 with 〈rV , 1〉 = 0.

Compute σV ∈ RT−1 with homogeneous boundary conditions

Solvable by exactness of the sequence

rT rE

RT−1 0 b.c.
div−→ M0

−2

R
1
−→ R
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Full reliability and local efficiency

The EE satisfies the reliability estimate

‖∇(u− uh)‖L2(Ω) ≤ ‖σ∆‖L2(Ω)

The EE satisfies the local efficiency estimate with generic constants depending on the shape of elements:

‖∇(u− uh)‖L2(ωV ) ≥ cv‖σV ‖L2(ωV )

Important for convergence of adaptive process !
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Equations of Magnetostatics

Given: Current density j such that div j = 0.
Compute: Vector potential A such that

curlµ−1 curlA = j

Magnetic field intensity
H = µ−1 curlA

Assume that j is given in terms of lowest order RT elements.

Use H(curl)-conforming Nédélec elements for Ah.

• 3D: A, H, and j are vectors

• 2D: A and j are vectors, H is a scalar
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The Residual

r = curlµ−1 curl(A−Ah) = j − curlHh

The discrete magnetic field Hh is p.w. constant, i.e. in M1
−1. Use distributional f.e. to compute curlHh:

f

f

T

V
fE

M1
−1

curl−→ RT−2
div−→ M0

−3

The residual r is a divergence-free RT−2 distribution.

A lifting H∆ ∈M1
−1 such that

curlH∆ = r

provides a true upper bound for the error:

‖ curl(A−Ah)‖µ−1 ≤ ‖H∆‖µ
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Localization

E
E

T
T,2

T,1

V2

1/6 −1/6

1/6
−1/6

V1

1/2

−1/2

T

T,OE
T,PE

E

V

OV

Galerkin orthogonality leads to one equation for each edge:

1
6

∑
T :E⊂T

{
r̂T

ET,1 − r̂T ET,2
}
− 1

2
{
r̂E

V1 − r̂E V2
}

= 0.

Divergence-free local decomposition:

r̂ωV ,T
E :=

1
2
r̂T

E +
1
6

(r̂T
ET,O − r̂T ET,P ) ,

r̂ωV ,T
EP :=

1
2
r̂T

ET,P +
1
6

(r̂T
ET,O − r̂T E) ,

r̂ωV ,T
EO := 0,

r̂ωV ,E
V := r̂E

V ,

r̂ωV ,E
VO := 0 .
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High Order Methods - Construction

Residual

〈r, v〉 = a(u− uh, v) =
∑
T

(f + ∆uh, v) +
∑
E

([∂nuh], v) =
∑
T

(rT , v)T +
∑
E

(rE, v)E

with polynomial element terms rT and polynomial edge terms rE.
Localization:

〈rV , v〉 := 〈r, ϕV v〉 =
∑
T

(ϕV rT , v)T +
∑
E

(ϕV rE, v)E,

i.e. rV,T = ϕV rT and rE,T = ϕV rE.

The rV form a decomposition of r, i.e.,〈∑
rV , v

〉
=
∑
〈r, ϕV v〉 = 〈r, v〉 ,

and are bi-orthogonal to constants, i.e.,

〈rV , 1〉 = 〈r, ϕV 〉 = 0.

Thus, there exists a high order, discontinuous RT fe function with homogeneous b.c. σV such that
div σV = rV .
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p-robust Efficiency

Step 1: Local decomposition is stable:∑
V

‖rV ‖2[H1(ω)]∗ � ‖r‖
2
[H1

0,D
(Ω)]∗

Step 2: Find polynomial right inverse to div on patches, uniformly bounded in H−1 → L2:

σ ∈ RT p−1 : div σ = rV , ‖σ‖L2 ≤ c‖r‖[H1(ω)]∗

Requires

a) continuous right inverses on elements
tensor product elements: Braess, Pillwein, JS
simplicial elements: Costabel, McIntosh

b) div-preserving extension operators from element-boundaries
tensor product elements: Costabel, Dauge, Demkowicz
triangles: Ainswoth, Demkowicz
tetrahedral elements: Demkowicz, Gopalakrishnan, JS (preprint)
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Continuous right inverse on the quadrilateral

Problem: given fp ∈ P p,p(Q), find σp ∈ RT p such that div σ = f .

Construction: Solve Dirichlet problem:

−∆u = fp, u = 0 on ∂Q, σ := ∇u

need commuting projection operators in 1D which are L2-bounded:

(P p+1v)′ = P̃ p(v′)

Project σ back to polynomials:

σp = (P p+1 ⊗ P̃ pσx, P̃ p ⊗ P p+1σy)

Then
div σp = P̃ p ⊗ P̃ p div σ = P̃ p ⊗ P̃ p fp = fp

and
‖σp‖L2 � ‖σ‖L2
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Numerical Experiments

L-shape domain, mixed b.c. in non-convex vertex, f = 1,
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Summary

We have

• Fully reliable and locally efficient error estimator for scalar and magnetostatic equations with lowest
order elements

• Fully reliable EE for scalar equation with high order elements with p-robust efficiency.

D. Braess, J.S: Equilibrated Residual Error Estimates for Maxwell’s Equations, Math. Comp., 2008

D. Braess, V. Pillwein, J.S.: Equilibrated Residual Error Estimates are p-robust, Comp. Meth. Appl Mech.
Eng, 2009

D. Braess, R. Hoppe, J.S. A posteriori estimators for obstacle problems, Comp. Vis. Sci., 2008
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We have
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D. Braess, J.S: Equilibrated Residual Error Estimates for Maxwell’s Equations, Math. Comp., 2008

D. Braess, V. Pillwein, J.S.: Equilibrated Residual Error Estimates are p-robust, Comp. Meth. Appl Mech.
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D. Braess, R. Hoppe, J.S. A posteriori estimators for obstacle problems, Comp. Vis. Sci., 2008

Happy Birthday, Ragnar !
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