Domain Decomposition Methods for Hybrid Discontinuous Galerkin Methods

Joachim Schöberl
Computational Mathematics in Engineering Institute for Analysis and Scientific Computing
Vienna University of Technology

Christoph Lehrenfeld

RWIHAACHEN
Institut für Geometrie und praktische Mathematik (IGPM)
RWTH Aachen University
hp-FEM Workshop Bonn, Feb 2012

Hybrid Discontinuous Galerkin (HDG) Method

Model problem: $-\Delta u=f$ with mixed boundary conditions
A mesh consisting of elements and facets ($=$ edges in 2D and faces in 3D)

$$
\mathcal{T}=\{T\} \quad \mathcal{F}=\{F\}
$$

Goal: Approximate u with piece-wise polynomials on elements and additional polynomials on facets:

$$
u_{N} \in P^{p}(\mathcal{T}) \quad \lambda_{N} \in P^{p}(\mathcal{F})
$$

HDG - Derivation

Exact solution u, traces on facets: $\lambda:=\left.u\right|_{\mathcal{F}}$
Integrate against discontinuous test-functions $v \in H^{1}(\mathcal{T})$, element-wise integration by parts:

$$
\sum_{T}\left\{\int_{T} \nabla u \nabla v-\int_{\partial T} \frac{\partial u}{\partial n} v\right\}=\int_{\Omega} f v
$$

Use continuity of $\frac{\partial u}{\partial n}$, and test with single-valued functions $\mu \in L_{2}(\mathcal{F})$:

$$
\sum_{T}\left\{\int_{T} \nabla u \nabla v-\int_{\partial T} \frac{\partial u}{\partial n}(v-\mu)\right\}=\int_{\Omega} f v
$$

Use consistency $u=\lambda$ on ∂T to symmetrice, and stabilize \ldots

$$
\sum_{T}\left\{\int_{T} \nabla u \nabla v-\int_{\partial T} \frac{\partial u}{\partial n}(v-\mu)-\int_{\partial T} \frac{\partial v}{\partial n}(u-\lambda)+\alpha(u-\lambda, v-\mu)_{j, \partial T}\right\}=\int_{\Omega} f v
$$

Dirichlet b.c.: Imposed on λ, Neumann b.c.: $\int_{\Gamma_{N}} g \mu$

Interior penalty method

Stabilization with α suff large

$$
\alpha(u-\lambda, v-\mu)_{j, \partial T}=\frac{\alpha p^{2}}{h}(u-\lambda, v-\mu)_{L_{2}(\partial T)}
$$

Norm:

$$
\|(u, \lambda)\|_{1, H D G}^{2}:=\|\nabla u\|_{L_{2}(T)}^{2}+\|u-\lambda\|_{j, T}^{2}
$$

Stability is proven by Young's inequality and inverse inequality $\left\|\frac{\partial u}{\partial n}\right\|_{L_{2}(\partial T)}^{2} \leq c_{i n v} \frac{p^{2}}{h}\|\nabla u\|_{L_{2}(T)}^{2}$:

$$
\begin{aligned}
A^{T}(u, \lambda ; u, \lambda) & =\|\nabla u\|_{L_{2}(T)}^{2}-\underbrace{2 \int_{\partial T} \frac{\partial u}{\partial n}(u-\lambda)}_{\leq \sqrt{\frac{c_{i n v}}{\alpha}}\|\nabla u\|_{L_{2}(T)}^{2}+\sqrt{c_{i n v} \alpha} \frac{p^{2}}{h}\|u-\lambda\|_{L_{2}(\partial T)}^{2}}+\frac{\alpha p^{2}}{h}\|u-\lambda\|_{L_{2}(\partial T)}^{2} \\
& \simeq\|(u, \lambda)\|_{1, H D G}^{2}
\end{aligned}
$$

for $\alpha>c_{i n v}$.

Bassi-Rebay type method

Stabilization term is

$$
\alpha(u-\lambda, v-\mu)_{j, \partial T}=\alpha(r(u-\lambda), r(v-\mu))_{L_{2}(T)}
$$

with lifting operator $r: P^{p}\left(\mathcal{F}_{T}\right) \rightarrow\left[P^{p}(T)\right]^{d}$ such that

$$
(r(u-\lambda), \sigma)_{L_{2}(T)}=\left(u-\lambda, \sigma_{n}\right)_{L_{2}(\partial T)} \quad \forall \sigma \in\left[P^{p}(T)\right]^{d}
$$

The corresponding jump-norm is

$$
\|u-\lambda\|_{j, \partial T}=\sup _{\sigma \in\left[P^{p}(T)\right]^{d}} \frac{\left(u-\lambda, \sigma_{n}\right)_{L_{2}(\partial T)}}{\|\sigma\|_{L_{2}(T)}}
$$

Stability for any $\alpha>1$:

$$
\begin{aligned}
A^{T}(u, \lambda ; u, \lambda) & =\|\nabla u\|_{L_{2}(T)}^{2}-\underbrace{2 \int_{\partial T} \frac{\partial u}{\partial n}(u-\lambda)}_{\leq\|\nabla u\|_{L_{2}(T)} \sup _{\sigma \in[P p] d} \frac{\int_{\partial T} \sigma_{n}(u-\lambda)}{\|\sigma\|_{L_{2}(T)}}}+\alpha\|u-\lambda\|_{j, T}^{2} \\
& \simeq\|(u, \lambda)\|_{1, H D G}^{2}
\end{aligned}
$$

Facet-wise Bassi-Rebay type method

Stabilization term is

$$
\alpha(u-\lambda, v-\mu)_{j, \partial T}=\alpha \sum_{F \in \mathcal{F}_{T}}\left(r_{F}(u-\lambda), r_{F}(v-\mu)\right)_{L_{2}(T)}
$$

with lifting operator $r_{F}: P^{p}(F) \rightarrow\left[P^{p}(T)\right]^{d}$ such that

$$
(r(u-\lambda), \sigma)_{L_{2}(T)}=\left(u-\lambda, \sigma_{n}\right)_{L_{2}(F)} \quad \forall \sigma \in\left[P^{p}(T)\right]^{d}
$$

The corresponding jump-norm is (here we assume non-curved elements)

$$
\|u-\lambda\|_{j, \partial T}=\sup _{\sigma \in\left[P^{p}(T)\right]^{d}} \frac{\left(u-\lambda, \sigma_{n}\right)_{L_{2}(\partial T)}}{\|\sigma\|_{L_{2}(T)}}=\sup _{\sigma \in P^{p}(T)} \frac{(u-\lambda, \sigma)_{L_{2}(\partial T)}}{\|\sigma\|_{L_{2}(T)}}
$$

Stability for any $\alpha>\left|\mathcal{F}_{T}\right|$.

Error estimates

Follows from consistency and discrete stability:

$$
\begin{aligned}
\left\|\left(u-u_{N}, u-\lambda_{N}\right)\right\|_{1, H D G} & \preceq \inf _{v_{N}, \mu_{N}}\left\{\left\|\nabla\left(u-v_{N}\right)\right\|_{L_{2}(\mathcal{T})}+\left\|u_{N}-\lambda_{N}\right\|_{j}+\left\|\partial_{n} u-\partial_{n} u_{N}\right\|_{j^{*}}\right. \\
& \preceq p^{\gamma} \frac{h^{s}}{p^{s}}\|u\|_{H^{1+s}}
\end{aligned}
$$

- for $1 \leq s \leq p$
- with $\gamma=1 / 2$ or $\gamma=0$ depending on mesh-conformity, and jump-term.

Relation to standard IP/BR DG method

DG - space

$$
V_{N}:=P^{p}(\mathcal{T})
$$

Bilinear-form

$$
A^{D G}(u, v)=\sum_{T}\left\{\int_{T} \nabla u \nabla v-\frac{1}{2} \int_{\partial T} \frac{\partial u}{\partial n}[v]-\frac{1}{2} \int_{\partial T} \frac{\partial v}{\partial n}[u]+\alpha([u],[v])_{j}\right\}
$$

Hybrid DG has

- even more unknowns, but less matrix entries
- allows element-wise assembling
- allows static condensation of element unknowns

Hybridization of standard DG methods [Cockburn+Gopalakrishnan+Lazarov]

Good properties

mathematical:

- conservative fluxes: σ_{n} defined by $\left(\sigma_{n}, \mu\right)=A_{T}(u, \lambda ; 0, \mu) \forall \mu$ satisfies

$$
\int_{\partial T} \sigma_{n}=\int_{T} f
$$

- allows upwinding for convection dominated problems
- allows interesting elements with partial continuity (LBB, ...)
computational:
- only polynomial spaces on T and F, no bubbles for T, F, E and V.
- only direct neighbour communication in parallel computing

Incompressible Navier Stokes Equation

$$
\frac{\partial u}{\partial t}+\operatorname{div}(u \otimes u)-\nu \Delta u+\nabla p=f, \quad \operatorname{div} u=0
$$

Semi-Implicit time discretization

$$
\begin{aligned}
\frac{1}{\tau} M(\hat{u}-u)-\nu \Delta_{h} \hat{u}+B \hat{p} & =f-\operatorname{div}_{h}(u \otimes u) \\
B \hat{u} & =0
\end{aligned}
$$

- $u_{h} \in V_{h}:=B D M_{k} \subset H(\operatorname{div}) \times V_{f a c e t, \tau}, p \in Q_{h}:=P_{k-1} \subset L_{2}$
hybrid form of [Cockburn+Kanschat+Schötzau, 07]
- u_{h} is exactly div-free
- viscosity term by hybrid DG (facet element with tangential component)
- convective term by upwinding
- bound for kinetic energy $\left(\frac{d}{d t}\|u\|_{0}^{2} \preceq \frac{1}{\nu}\|f\|_{L_{2}}^{2}\right)$

Flow around a disk, 2D
$\operatorname{Re}=100,5^{\text {th }}$-order elements

Boundary layer mesh around cylinder:

Flow around a disk, 2D

$$
\operatorname{Re}=1000
$$

$\operatorname{Re}=5000:$

Flow around a cylinder, $\operatorname{Re}=100$

$p=5, N \approx 5 \cdot 10^{6}, 20$ sec per timestep
on 4×10-core Intel Xeon server

Master's thesis Christoph Lehrenfeld, 2011, [H. Egger+C. Waluga]

Hybrid DG in elasticity

Tangential components continuous, normal component by HDG
HDG version of tangential-displacement normal-normal-stress (TD-NNS) mixed method Anisotropic error estimates:

$$
\sum_{T}\left\|\varepsilon\left(u-u_{h}\right)\right\|_{T}^{2}+\sum_{F} h_{o p}^{-1}\left\|\left[u_{n}\right]\right\|_{F}^{2}+\left\|\sigma-\sigma_{h}\right\|^{2} \leq c\left\{h_{x}^{p}\left\|\partial_{x}^{p} \varepsilon(u)\right\|+h_{y}^{p}\left\|\partial_{y}^{p} \varepsilon(u)\right\|\right\}^{2}
$$

Reinforcement with $E=50$ in medium with $E=1$.

PhD thesis A. Pechstein (born Sinwel) '09, [A. Pechstein + JS, '11]

Hybrid method for the Helmholtz Equation

$$
\begin{aligned}
-\Delta u-\omega^{2} u & =f \\
\frac{\partial u}{\partial n}+i \omega u & =g \quad \text { impedance b.c. }
\end{aligned}
$$

Hybrid discretization with left- and right-going traces on element-interfaces:

$$
g_{l}=\frac{\partial u}{\partial n}+i \omega u \quad g_{r}=\frac{\partial u}{\partial n}-i \omega u
$$

Goal: scalable iterative solver [P. Monk, A. Sinwel (now Pechstein), JS, 2010]

Diffraction from a grating

Sphere with $D=40 \lambda, 127 k$ elements, $h \approx \lambda, p=5,39 M$ dofs (corresponds to $9.4 M$ primal dofs) 78 sub-domains / processes
$T_{\text {ass }}=9 \mathrm{~m}, T_{\text {pre }}=12 \mathrm{~m}, T_{\text {solve }}=21 \mathrm{~m}, 156$ its

HDG/Nitsche for non-matching meshes for 2D Laplace

$f=x$ in circle, else $f=0$.

Solution u :

Solution $\partial u / \partial x$:

Finite element order $p=5$.

HDG/Nitsche for non-matching meshes for 3D Laplace

$f=x z$ in cylinder, else $f=0$.

Solution u :

Solution $\partial u / \partial x$:

Finite element order $p=4$.

Bore-hole electromagnetics

borehole with soil
tool with antennas

Bore-hole electromagnetics

B-field, field-lines:

Master's thesis Daniel Feldengut '11, [Hollaus,Feldengut,JS,Wabro,Omeragic '11]

How to solve ?

Standard DG

$$
\kappa\left\{C_{A S M}^{-1} A\right\} \simeq p^{2}
$$

for element-by-element Schwarz preconditioner $C_{A S M}$ plus coarse grid [Antonietti+Houston,11]

Hybrid DG
with facet Schur-complement S

$$
\kappa\left\{C_{A S M}^{-1} S\right\} \simeq(\log p)^{\gamma}
$$

for facet-by-facet Schwarz preconditioner $C_{A S M}$ plus coarse grid

Trace norms inequality

For $\lambda \in P^{p}(F)$ define semi-norm and norm

$$
\begin{aligned}
|\lambda|_{F}^{2} & :=\inf _{u \in P^{p}}\left\{\|\nabla u\|_{L_{2}(T)}^{2}+\|u-\lambda\|_{j, F}^{2}\right\} \\
\|\lambda\|_{F, 0}^{2} & :=\inf _{u \in P^{p}}\left\{\|\nabla u\|_{L_{2}(T)}^{2}+\|u-\lambda\|_{j, F}^{2}+\|u-0\|_{j, \partial T \backslash F}^{2}\right\}
\end{aligned}
$$

mimic $|\cdot|_{H^{1 / 2}(F)}$ and $\|\cdot\|_{H_{00}^{1 / 2}(F)}$.
Theorem: For $\lambda \in P^{p}(F)$ with $\int_{F} \lambda=0$ there holds

$$
\|\lambda\|_{F, 0}^{2} \preceq(\log p)^{\gamma}|\lambda|_{F}^{2} \quad \text { with } \gamma=3
$$

- if T is a trig, quad, or hex, and $\|\cdot\|_{j}$ is IP or BR
- if T is a tet, and $\|\cdot\|_{j}$ is BR

From the trace norms inequality we get immediately condition number estimates for Schwarz methods and BDDC preconditioners

Meta-proof of trace norms inequality

scale to reference element, given $\lambda \in P^{p}(F)$ with $\int_{F} \lambda=0$. Take $u \in P^{p}(T)$ such that

$$
\|u\|_{H^{1}(T)}^{2}+\|u-\lambda\|_{j}^{2} \preceq|\lambda|_{F}^{2}
$$

(Poincare-type estimate). Projection-based interpolation technique

$$
\begin{aligned}
u_{2} & =u-\sum_{V \in F} \mathcal{E}_{V \rightarrow T} u(V) \\
u_{3} & =u_{2}-\left.\sum_{E \subset F} \mathcal{E}_{E \rightarrow T} u_{2}\right|_{E} \quad \text { (3D only) } \\
\tilde{u} & =\mathcal{E}_{F \rightarrow T} u_{3}
\end{aligned}
$$

gives $\tilde{u} \in P^{p}$ such that $\tilde{u}=0$ on $\partial T \backslash F$, and

$$
\|\nabla \tilde{u}\|_{L_{2}(T)}^{2}+\|\tilde{u}-u\|_{j, F}^{2} \preceq(\log p)^{\gamma}\|u\|_{H^{1}(T)}^{2}
$$

and thus

$$
\|\lambda\|_{F, 0}^{2} \preceq\|\nabla \tilde{u}\|_{L_{2}(T)}^{2}+\|\lambda-\tilde{u}\|_{j}^{2} \preceq(\log p)^{\gamma}\|u\|_{H^{1}(T)}^{2}+\|\lambda-u\|_{j}^{2} \preceq(\log p)^{\gamma}\|\lambda\|_{F}^{2}
$$

Components for quads and trigs

define polynomial fast decaying function (Pavarino+Widlund)

$$
l^{p}(x)=\underset{\substack{v \in P p \\ v(0)=1, v(1)=0}}{\operatorname{argmin}} \int_{0}^{1} v^{2}(x) d x
$$

there holds

$$
\left\|l^{p}\right\|_{0}^{2} \preceq p^{-2} \quad \text { and } \quad\left\|\left(l^{p}\right)^{\prime}\right\|_{0}^{2} \preceq p^{2}
$$

Vertex-to-Element extension:

$$
\mathcal{E}_{V \rightarrow T} u=u(V) l^{p}\left(1-\lambda_{v}\right)
$$

Then

$$
\left\|\mathcal{E}_{V \rightarrow T^{2}} u\right\|_{H^{1}(T)}^{2}+p^{2}\left\|\mathcal{E}_{V \rightarrow T} u\right\|_{L_{2}(F)}^{2} \preceq u(V)^{2} \preceq \log p\|u\|_{H^{1}(T)}^{2}
$$

Components for hexes

need additionally edge-to-element extension for $u_{E} \in P_{0}^{p}(E)$

$$
\mathcal{E}_{E \rightarrow T} u_{E}:=u(x) l^{p}(1-y) l^{p}(1-z) \quad \text { for } E=(x, 1,1)
$$

satisfies

$$
\left\|\mathcal{E}_{E \rightarrow T} u\right\|_{H^{1}(T)}^{2}+p^{2}\left\|\mathcal{E}_{E \rightarrow T} u\right\|_{L_{2}(F)}^{2} \preceq\|u\|_{L_{2}(E)}^{2} \preceq \log p\|u\|_{H^{1}(T)}^{2}
$$

Difficulty on tets

- Cannot multiply with fast decaying function in polynomial space of total order p
- Babus̆ka et al averaging - extension, from $E=(x, 0,0)$:

$$
\mathcal{E}_{E \rightarrow T} u(x, y, z):=\frac{1}{y+z} \int_{x-y-z}^{x+y+z} u(s) d s
$$

does not give low energy in jump-norm!

- On triangles, the estimate

$$
\min _{\substack{v \in P^{\prime}(T) \\ v=u \text { on } E}} p\|v\|_{L_{2}(T)}^{2} \preceq\|u\|_{L_{2}(E)}^{2}
$$

is sharp (in contrast to p^{2} on quads!).

Way out on tets

- Bassi-Rebay stabilization is essentially weaker than interior penalty !
- Construct new fast decaying edge-to-tet extension operator motivated by Pavarino-Widlund construction

Technical tool: trace estimate on the interval

Lemma:

$$
\min _{v \in P^{n}, v(0)=1} \int_{0}^{1} y^{\alpha}(1-y)^{\beta} v(y)^{2} d y \simeq \frac{1}{n^{\alpha+1}(n+\beta)^{\alpha+1}}
$$

Proof: expanding $v=\sum c_{k} P^{(\alpha, \beta)}(1-2 y)$ leads to a quadratic minimization problem with a diagonal matrix and a scalar constraint, direct evaluation of the KKT system gives

$$
\frac{1}{\min }=\sum_{k=0}^{n}(2 k+\alpha+\beta+1) \frac{(k+\alpha)!(k+\alpha+\beta)!}{(\alpha!)^{2} k!(k+\beta)!}
$$

by means of Gosper's algorithm for hypergeometric summation, friends from computer algebra (Veronika Pillwein) computed the closed form

$$
\frac{1}{\min }=\frac{(n+\alpha+1)!(n+\alpha+\beta+1)!}{\alpha!(\alpha+1)!n!(n+\beta)!}
$$

Bassi-Rebay jump norm

Lemma: tet T with face F, and $\lambda \in P^{p}(F), \mathbf{P}^{p}$ is $L_{2}(F)$-orthogonal projection. Then:

$$
\sup _{\sigma \in P^{p}(T)} \frac{(\lambda, \sigma)_{L_{2}(F)}^{2}}{\|\sigma\|_{L_{2}(T)}^{2}} \simeq \sum_{k=0}^{p} p(p-k+1)\left\|\left(\mathbf{P}^{p}-\mathbf{P}^{p-1}\right) \lambda\right\|_{L_{2}(F)}^{2}
$$

Proof: Expand λ and σ in $L_{2}(F)$-orthogonal Dubiner basis:

$$
\begin{aligned}
\lambda(x, y) & =\sum_{i+j \leq p} \lambda_{i j} \varphi_{i j}(x, y) \\
\sigma(x, y, z) & =\sum_{i+j \leq p} \sigma_{i j}(z) \varphi_{i j}\left(\frac{x}{1-z}, \frac{y}{1-z}\right)(1-z)^{i+j}
\end{aligned}
$$

with $\sigma_{i j} \in P^{p-i-j}$. Then

$$
\|\sigma\|_{L_{2}(T)}^{2}=\sum_{i+j \leq p}\left\|\varphi_{i j}\right\|^{2} \int_{0}^{1}(1-z)^{2 i+2 j+2} \sigma_{i j}(z)^{2} d z
$$

$$
\begin{aligned}
\sup _{\sigma \in P^{p}(T)} \frac{(\lambda, \sigma)_{F}^{2}}{\|\sigma\|_{T}^{2}} & =\sup _{\sigma \in P^{p}} \frac{\left(\sum \lambda_{i j} \sigma_{i j}(0)\left\|\varphi_{i j}\right\|^{2}\right)^{2}}{\sum_{i j} \int_{0}^{1}(1-z)^{2 i+2 j+2} \sigma_{i j}^{2}(z) d z\left\|\varphi_{i j}\right\|^{2}} \\
& =\sum_{i+j \leq p^{\prime} \sigma_{i j} \in P^{p-i-j}} \sup _{\int_{0}^{1}(1-z)^{2 i+2 j+2} \sigma_{i j}(z)^{2} d z} \lambda_{i j}\|\varphi\|_{L_{2}(F)}^{2} \\
& \simeq \sum_{i+j \leq p} p(p-i-j+1) \lambda_{i j}\left\|\varphi_{i j}\right\|_{L_{2}(F)}^{2} \\
& =\sum_{k=0}^{p} p(p-k+1) \sum_{i+j=k}\left\|\lambda_{i j} \varphi_{i j}\right\|_{L_{2}(F)}^{2} \\
& =\sum_{k=0}^{p} p(p-k+1)\left\|\left(\mathbf{P}^{k}-\mathbf{P}^{k-1}\right) \lambda\right\|_{L_{2}(F)}^{2}
\end{aligned}
$$

First idea for simplicial extension operator

Let

$$
e_{i}(y)=\underset{v \in P^{p-i}, v(0)=1}{\operatorname{argmin}} \int_{0}^{1} y(1-y)^{2 i+1} v(y)^{2} d y
$$

and $L_{i}(x):=\int_{-1}^{x} P_{i-1}(s) d s$ are the integrated Legendre pols.
For an edge-bubble

$$
u_{E}(x)=\sum u_{i} L_{i}(x)
$$

define the extension

$$
\mathcal{E}_{E \rightarrow T} u_{E}(x, y, z):=\sum_{i=2}^{p} u_{i} L_{i}\left(\frac{x}{1-y-z}\right)(1-y-z)^{i} e_{i}(y+z)
$$

Then

$$
\left\|\mathcal{E}_{E \rightarrow F} u_{E}\right\|_{H^{1}(T)}^{2} \simeq \sum_{i} \int_{0}^{1} y e_{i}^{2} d y \frac{u_{i}^{2}}{i}+\int_{0}^{1} y\left(\partial_{y}\left(e_{i}-e_{i-2}\right)\right)^{2} d y \frac{\left(u_{i}-u_{i-2}\right)^{2}}{i^{3}}
$$

Problem: Term with differences $e_{i}-e_{i-2}$ is dominating too much.

Simplicial extension operator with averaging

Let

$$
\tilde{e}_{i}(y)=\underset{v \in P^{p-i}, v(0)=1}{\operatorname{argmin}} \int_{0}^{1} y(1-y)^{2 i+1} v(y)^{2} d y
$$

and

$$
e_{i}=\frac{1}{p-i+1} \sum_{k=i}^{p}(1-y)^{k-i} \tilde{e}_{k}(y)
$$

Theorem: The extension

$$
\mathcal{E}_{E \rightarrow T} u_{E}(x, y, z):=\sum_{i=2}^{p} u_{i} L_{i}\left(\frac{x}{1-y-z}\right)(1-y-z)^{i} e_{i}(y+z)
$$

satisfies

$$
\left\|\mathcal{E}_{E \rightarrow T} u_{E}\right\|_{H^{1}(T)}^{2}+\left\|\mathcal{E}_{E \rightarrow F} u_{E}\right\|_{j}^{2} \preceq\left\|u_{E}\right\|_{L_{2}(E)}^{2}
$$

BDDC Preconditioning

[Dohrmann, Mandel, Tezaur, Li, Widlund, Tu, Brenner, Sung, Klawonn, Pavarino, Rheinbach, ... 2003+]
Model problem: Conforming high order finite elements for 2D Laplace:

continuous fe-space V matrix A

discontinuous fe-space \widetilde{V} with vertex constraints matrix \widetilde{A}
averaging operator $R: \widetilde{V} \rightarrow V$
BDDC preconditioning action:

$$
C_{B D D C}^{-1}=R \widetilde{A}^{-1} R^{t}
$$

for HDG: keep mean-value on facets continuous

The algorithm

Preconditioning action: $C_{B D D C}^{-1}: d \mapsto w$

1. $\underset{\sim}{w}:=A_{I}^{-1} d \quad$ (local pre-correction step)
2. $\widetilde{d}:=R_{1}^{t}(d-A w) \quad$ (residual distribution)
3. $\widetilde{w}:=\widetilde{A}^{-1} \widetilde{d} \quad$ (global solve)
4. $w:=w+R_{1} \widetilde{w} \quad$ (simple averaging of edge dofs)
5. $w:=w+A_{I}^{-1}(d-A w) \quad$ (local post-correction step)
with
A_{I} element-wise Dirichlet matrix
R_{1} simple averaging of interface-dofs
no local solves are necessary after static condensation

BDDC Analysis

There holds the representation (fictitious space lemma)

$$
\|u\|_{C_{B D D C}}^{2}=\inf _{\substack{y \tilde{V} \\ R y=u}}\|y\|_{\widetilde{A}}^{2}
$$

It implies immediately

$$
\sigma\left\{C_{B D D C}^{-1} A\right\} \subset\left[1,\|R\|^{2}\right]
$$

with the norm of the averaging operator

$$
\|R\|:=\sup _{y \in \widetilde{V}} \frac{\|R y\|_{A}}{\|y\|_{\widetilde{A}}}
$$

Estimating $\|R\|$

For $y \in \widetilde{V}$ there holds

$$
\begin{aligned}
\|R y\|_{S}^{2} & =\sum_{T}|R y|_{H^{1 / 2}(\partial T)}^{2} \preceq \sum_{T}|R y-y|_{H^{1 / 2}(\partial T)}^{2}+\sum_{T}|y|_{H^{1 / 2}(\partial T)}^{2} \\
& \preceq \sum_{T} \sum_{F \in \mathcal{F}_{T}}|R y-y|_{H_{00}^{1 / 2}(F)}^{2}+\sum_{T}|y|_{H^{1 / 2}(\partial T)}^{2} \\
& \preceq(\log p)^{\gamma} \sum_{F \in \mathcal{F}}|[y]|_{H^{1 / 2}(F)}^{2}+\sum_{T}|y|_{H^{1 / 2}(\partial T)}^{2} \\
& \preceq(\log p)^{\gamma} \sum_{T}|y|_{H^{1 / 2}(\partial T)}^{2}=(\log p)^{\gamma}\|y\|_{\tilde{S}}^{2}
\end{aligned}
$$

Condition numbers of BDDC

Laplace equation, mesh consisting of 184 tetrahedra, HDG discretization

- element-wise Bassi-Rebay with $\alpha=1.5$ (nearly proven to be $O\left(\log ^{3} p\right)$)
- facet-wise Bassi-Rebay with $\alpha=5$ (proven to be $O\left(\log ^{3} p\right)$)
- interior penalty with $\alpha=10,20,40$ (only $O(p)$ is proven)

Conclusions

- DG and HDG are powerful methods with a lot of tuning possibilities for interesting equations
- HDG allows for fast iterative solvers
- freely available hp-finite element software Netgen/NgSolve from sourceforge
- [Lehrenfeld/JS]-preprint on HDG-DD analysis available from www.asc.tuwien.ac.at/~schoeberl

