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Incompressible flows

Stokes Equation:

Ω ⊂ Rd. Find velocity u ∈ [H1]d such that u = uD on ΓD, and pressure p ∈ Q := L2 such that∫
Ω

∇u · ∇v +

∫
Ω

div v p =

∫
Ω

fv ∀ v ∈ V0

and incompressibility constraint ∫
div u q = 0 ∀ q ∈ Q

with Dirichlet b.c. (no slip and inflow), point-wise mixed b.c. (slip) and Neumann (outflow).

Difficulty: Incompressibility constraint

Mixed finite elements: continuous pressure ? discontinuous pressure ? stabilized methods ?
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Linear Elasticity

Ω ⊂ Rd. Find displacement u ∈ [H1]d such that u = uD on ΓD and∫
Ω

Dε(u) : ε(v) =

∫
Ω

fv ∀ v ∈ V0

with the linear strain operator ε(·) : [H1]d → [L2]d×d,sym

ε(u) =
1

2

(
∇u+ (∇u)T

)
=
(∂ui
∂xj

+
∂uj
∂xi

)
i,j=1,..d

and the isotropic material operator D : [L2]d×d → [L2]d×d

Dε = 2µε+ λ tr(ε)I

The stress tensor is
σ = Dε(u)

Continuous and elliptic in [H1]d

BUT: Constants depend on λ/µ, and on the domain (Korn’s inequality) LOCKING !!
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Von-Mises Stresses in a Machine Frame (linear elasticity)

Simulation with Netgen/NGSolve

45553 tets, p = 5, 3× 1074201 unknowns, 5 min on 8 core 2.4 GHz 64-bit PC 6 GB RAM
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Toy Example: Sailplane

Incomp. N.-St., 2nd-order HDG elements, 59E3 elements, 1.65E6 dofs, 2GB RAM, 5 min (2-core 1.8GHz)

Joachim Schöberl Introduction Page 5



Function spaces H(curl) and H(div)

H(curl) = {u ∈ [L2]d : curlu ∈ Ld×d,skew2 }
H(div) = {u ∈ [L2]d : div u ∈ L2}

Piece-wise smooth functions in

• H(curl) have continuous tangential components,

• H(div) have continuous normal components.

Important for constructing conforming finite elements such as Raviart Thomas, Brezzi-Douglas-Marini,
and Nedelec elements.

Natural function space for Maxwell equations: Find A ∈ H(curl) such that∫
Ω

µ−1 curlA curl v +

∫
Ω

(iσω − εω2)Av =

∫
jv ∀ v ∈ H(curl)
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Hybrid Discontinuous Galerkin (HDG) Method

Model problem: −∆u = f

A mesh consisting of elements and facets (= edes in 2D and faces in 3D)

T = {T} F = {F}

Goal: Approximate u with piece-wise polynomials on elements and additional polynomials on facets:

uN ∈ P p(∪T ) λN ∈ P p(∪F )
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HDG - Derivation

Exact solution u, traces on element boundaries: λ := u|∪F

Integrate against discontinuous test-functions v ∈ H1(∪T ), element-wise integration by parts:

∑
T

{∫
T

∇u∇v −
∫
∂T

∂u

∂n
v
}

=

∫
Ω

fv

Use continuity of ∂u∂n, and test with single-valued functions µ ∈ L2(∪F ):

∑
T

{∫
T

∇u∇v −
∫
∂T

∂u

∂n
(v − µ)

}
=

∫
Ω

fv

Use consistency u = λ on ∂T to symmetrice, and stabilize ...

∑
T

{∫
T

∇u∇v −
∫
∂T

∂u

∂n
(v − µ)−

∫
∂T

∂v

∂n
(u− λ) + α (u− λ, v − µ)j,∂T

}
=

∫
Ω

fv

Dirichlet b.c.: Imposed on λ, Neumann b.c.:
∫

ΓN
gµ
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Interior penalty method

Stabilization with α suff large

α (u− λ, v − µ)j,∂T =
αp2

h
(u− λ, v − µ)L2(∂T )

Norm:
‖(u, λ)‖21,HDG := ‖∇u‖2L2(T ) + ‖u− λ‖2j,T

Stability is proven by Young’s inequality and inverse inequality ‖∂u∂n‖
2
L2(∂T ) ≤ cinv

p2

h ‖∇u‖
2
L2(T ):

AT (u, λ;u, λ) = ‖∇u‖2L2(T ) − 2

∫
∂T

∂u

∂n
(u− λ)︸ ︷︷ ︸

≤
√

cinv
α ‖∇u‖

2
L2(T )

+
√
cinvα

p2

h ‖u−λ‖
2
L2(∂T )

+
αp2

h
‖u− λ‖2L2(∂T )

' ‖(u, λ)‖21,HDG

for α > cinv.
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Bassi-Rebay type method

Stabilization term is
α (u− λ, v − µ)j,∂T = α

(
r(u− λ), r(v − µ)

)
L2(T )

with lifting operator r : P p(FT )→ [P p(T )]d such that

(r(u− λ), σ)L2(T ) = (u− λ, σn)L2(∂T ) ∀σ ∈ [P p(T )]d

The corresponding jump-norm is

‖u− λ‖j,∂T = sup
σ∈[P p(T )]d

(u− λ, σn)L2(∂T )

‖σ‖L2(T )

Stability for any α > 1:

AT (u, λ;u, λ) = ‖∇u‖2L2(T ) − 2

∫
∂T

∂u

∂n
(u− λ)︸ ︷︷ ︸

≤‖∇u‖L2(T ) sup
σ∈[Pp]d

∫
∂T σn(u−λ)

‖σ‖L2(T )

+α‖u− λ‖2j,T

' ‖(u, λ)‖21,HDG
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Error estimates

Follows from consistency and discrete stability:

‖(u− uN , u− λN)‖1,HDG � inf
vN ,µN

{
‖∇(u− vN)‖L2(T ) + ‖uN − λN‖j + ‖∂nu− ∂nuN‖j∗

� pγ
hs

ps
‖u‖H1+s

• for 1 ≤ s ≤ p

• with γ = 1/2 or γ = 0 depending on mesh-conformity, and jump-term.
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Convection - Diffusion Problems

−ε∆u+ b · ∇u = f in ∂Ω

u = 0 on ∂Ω

HDG Formulation:

Ad(u, λ; v, µ) +Ac(u, λ; v, µ) =

∫
fv

with diffusive term Ad(., .) from above and upwind-discretization for convective term

Ac(u, λ; v, µ) =
∑
T

{
−
∫
bu · ∇v +

∫
∂T

bn{u/λ}v
}

with upwind choice

{u/λ} =

{
λ if bn < 0, i.e. inflow edge
u if bn > 0, i.e. outflow edge

assuming div b = 0. Then Ac(u, λ;u, λ) ≥ 0 (and inf − sup stability)
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Results for 1D

−εu′′ + u′ = 1, u(0) = u(1) = 0

HDG Discretization:
left: ε = 10−2

right: ε = 10−4
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Relation to standard Interior Penalty DG method

DG - space
VN := P p(∪T )

Bilinearform

ADG(u, v) =
∑
T

{∫
T

∇u∇v −
∫
∂T

∂u

∂n
[v]−

∫
∂T

∂v

∂n
[u] +

αp2

h

∫
∂T

[u][v]

}

Hybrid DG has

• even more unknowns, but less matrix entries

• allows element-wise assembling

• allows static condensation of element unknowns

Hybridization of standard DG methods [Cockburn+Gopalakrishnan+Lazarov]
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Relation to classical hybridization of mixed methods

First order system
Aσ −∇u = 0 and div σ = −f

Mixed method: Find σ ∈ H(div) and u ∈ L2 such that∫
Aστ −

∫
div τ u = 0 ∀ τ ∈ H(div)∫

div σ v = −
∫
fv ∀ v ∈ L2

Breaking normal-continuity of σn, and reinforcing it by another Lagrange parameter [Arnold-Brezzi, 86]

Find σ ∈ H(div), u ∈ L2, and λ ∈ L2(∪F ) such that∫
Aστ +

∑
T

∫
T

div τ u+
∑
F

∫
F

[τn]λ = 0 ∀ τ ∈ H(div)∑
T

∫
T

div σ v = −
∫
fv ∀ v ∈ L2∑

F

∫
F

[σn]µ = 0 ∀µ ∈ L2(∪F )

Allows to eliminate σ (and also u) leading to a coercive system in u and λ (or, only λ).
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Comparison to mixed hybrid system

HDG method needs facet variable of one order higher ???

λ ∈ P p−1(∪F ) is enough when inserting a projector:

AHDG(u, λ; v, µ) =
∑
T

{∫
T

∇u∇v −
∫
∂T

∂u

∂n
(v − µ)

−
∫
∂T

∂v

∂n
(u− λ) +

αp2

h

∫
∂T

Πp−1(u− λ) Πp−1(v − µ)
}

Implementation of the projector by an EAS - like method.
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How to solve ?

Standard DG

κ{C−1
ASMA} ' p

2

for element-by-element Schwarz
preconditioner CASM plus coarse grid
[Antonietti+Houston,11]

Hybrid DG
with facet Schur-complement S

κ{C−1
ASMS} ' (log p)γ

for facet-by-facet Schwarz preconditioner
CASM plus coarse grid
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Trace norms inequality

For λ ∈ P p(F ) define semi-norm and norm

|λ|2F := inf
u∈P p

{
‖∇u‖2L2(T ) + ‖u− λ‖2j,F

}
‖λ‖2F,0 := inf

u∈P p

{
‖∇u‖2L2(T ) + ‖u− λ‖2j,F + ‖u− 0‖2j,∂T\F

}
mimic | · |H1/2(F ) and ‖ · ‖

H
1/2
00 (F )

.

Theorem: For λ ∈ P p(F ) with
∫
F
λ = 0 there holds

‖λ‖2F,0 � (log p)γ|λ|2F with γ = 3

• if T is a trig, quad, or hex, and ‖ · ‖j is IP or BR

• if T is a tet, and ‖ · ‖j is BR

From the trace norms inequality we get immediately condition number estimates for Schwarz methods and
BDDC preconditioners
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Condition numbers for BDDC preconditioner

Laplace equation, mesh consisting of 184 tetrahedra, HDG discretization
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• Bassi-Rebay with α = 1.5 (proven to be O(log3 p))

• interior penalty with α = 10, 20, 40 (only O(p) is proven)

Joachim Schöberl Preconditioning Page 20



Mixed Continuous / Hybrid Discontinuous Galerkin method

Vector-valued spaces with partial continuity and partial components on facets:

VT ,n = {v ∈ [P p(∪T )]d : [vn] = 0} VT ,τ = {v ∈ [P p(∪T )]d : [vτ ] = 0}

VF,n = {v ∈ [P p(∪F )]d : vτ = 0} VF,τ = {v ∈ [P p(∪F )]d : vn = 0}

H(curl) - based formulation for elasticity: Find u ∈ VT ,τ and λ ∈ VF,n such that

Aτ(u, λ; v, µ) =

∫
fv ∀ v ∈ VT ,τ ∀µ ∈ VF,ν

Aτ(u, λ; v, µ) =
∑
T

{∫
T

Dε(u) : ε(v)−
∫
∂T

(Dε(u))nn(v − µ)n

−
∫
∂T

(Dε(v))nn(u− λ)n +
αp2

h

∫
∂T

(u− λ)n(v − µ)n

}

Or, vice versa ...
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The de Rham Complex

H1 ∇−→ H(curl)
curl−→ H(div)

div−→ L2⋃ ⋃ ⋃ ⋃
Wh

∇−→ Vh
curl−→ Qh

div−→ Sh

satisfies the exact sequence property

range(∇) = ker(curl)

range(curl) = ker(div)

on the continuous and the discrete level.

Important for stability, error estimates, preconditioning, ...
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Construction of high order H(curl) and H(div) finite elements

• [Dubiner, Karniadakis+Sherwin] H1-conforming shape functions in tensor product structure
→ allows fast summation techniques

• [Webb] H(curl) hierarchical shape functions with local exact sequence property
convenient to implement up to order 4

• [Demkowicz+Monk] Based on global exact sequence property construction of Nédélec elements of
variable order (with constraints on order distribution) for hexahedra

• [Ainsworth+Coyle] Systematic construction of H(curl)-conforming and H(div)-conforming elements of
arbitrarily high order for tetrahedra

• [JS+Zaglmayr] Based on local exact sequence property and by using tensor-product structure we
achieve a systematic strategy for the construction of H(curl)-conforming hierarchical shape functions
of arbitrary and variable order for common element geometries (segments, quadrilaterals,
triangles, hexahedra, tetrahedra, prisms, pyramids).
[COMPEL, 2005], PhD-Thesis Zaglmayr 2006
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Hierarchical V EFC basis for H1-conforming Finite Elements

The high order elements have basis functions connected with the vertices, edges, (faces, ) and cell of the
mesh:

Vertex basis function Edge basis function p=3 Inner basis function p=3

This allows an individual polynomial order for each edge, face, and cell..
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High-order H1-conforming shape functions in tensor product structure

Exploit the tensor product structure of quadrilateral elements to build edge and face shapes

Family of orthogonal polynomials (P 0
k [−1, 1] )2≤k≤p vanishing in ±1.

ϕFi j(x, y) = P 0
i (x)P 0

j (y),

ϕE1
i (x, y) = P 0

i (x) 1−y
2 .

Tensor-product structure for triangle [Dubiner, Karniadakis+Sherwin]:

Collapse the quadrilateral to the triangle by x→ (1− y)x

ϕE1
i (x, y) = P 0

i ( x
1−y) (1− y)i

ϕFi j(x, y) = P 0
i (

x

1− y
)(1− y)i︸ ︷︷ ︸

ui(x,y)

Pj(2y − 1)y︸ ︷︷ ︸
vj(y)

Remark: Implementation is free of divisions
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The deRham Complex tells us that ∇H1 ⊂ H(curl), as well for discrete spaces ∇W p+1 ⊂ V p.

Vertex basis function Edge basis function p=3 Inner basis function p=3
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The deRham Complex tells us that ∇H1 ⊂ H(curl), as well for discrete spaces ∇W p+1 ⊂ V p.

Vertex basis function

y∇

Edge basis function p=3

y∇

Inner basis function p=3

y∇

∇WVi ⊂ VN0 ∇W p+1
Ek

= V pEk ∇W p+1
Fk
⊂ V pFk

Joachim Schöberl Finite elements for H(curl) and H(div) Page 26



H(curl)-conforming face shape functions with ∇W p+1
F ⊂ V pF

We use inner H1-shape functions spanning W p+1
F ⊂ H1 of the structure

ϕF,∇i,j = ui(x, y) vj(y).

We suggest the following H(curl) face shape functions consisting of 3 types:

• Type 1: Gradient-fields

ϕ F,curl
1, i,j = ∇ϕF,∇i,j = ∇(ui vj) = ui∇vj + vj∇ui

• Type 2: other combination

ϕ F,curl
2, i,j = ui∇vj− vj∇ui

• Type 3: to achieve a base spanning VF (p− 1) lin. independent functions are missing

ϕ F,curl
3, j = N0(x, y) vj(y).

Similar in 3D and for H(div).
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Localized exact sequence property

We have constructed Vertex-Edge-Face-Cell shape functions satisfying

WV
h, p+1=1

∇−→ V N0
h

curl−→ QRT 0
h

div−→ Sh, 0

WE
pE+1

∇−→ V EpE

WF
pF+1

∇−→ V FpF
curl−→ QFpF−1

WC
pC+1

∇−→ V CpC
curl−→ QCpC−1

div−→ SCpC−2.

Advantages are

• allows arbitrary and variable polynomial order on each edge, face and cell

• Additive Schwarz Preconditioning with cheap N0 − E − F − C blocks gets efficient

• Reduced-basis gauging by skipping higher-order gradient bases functions

• discrete differential operators B∇, Bcurl, Bdiv are trivial
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Magnetostatic BVP - The shielding problem

Simulation of the magnetic field induced by a coil with prescribed currents:

Electromagnetic shielding problem: magnetic field, p=5

Absolute value of magnetic flux, p=5

... prism layer in shield, unstructured mesh (tets, pyramids) in air/coil.

p dofs grads κ(C−1A) iter solvertime

4 96870 yes 34.31 37 24.9 s
4 57602 no 31.14 36 6.6 s

7 425976 yes 140.74 63 241.7 s
7 265221 no 72.63 51 87.6 s
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Application: Simulation of eddy-currents in bus bars

Full basis for p = 3 in conductor, reduced basis for p = 3 in air
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Elasticity: A beam in a beam

Reenforcement with E = 50 in medium with E = 1.

HDG FEM, p = 3 Primal FEM, p = 3
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Tangential displacement - normal normal stress constinuous mixed method

[Phd thesis Astrid Sinwel 09 (now Astrid Pechstein)], [A. Pechstein + JS 2011]

Mixed elements for approximating displacements and stresses.

• tangential components of displacement vector

• normal-normal component of stress tensor

Triangular Finite Element:

u

σ

τ

nn

Tetrahedral Finite Element:

u

σnn

τ
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The quadrilateral element

Dofs for general quadrilateral element:

uτ

σnn

Thin beam dofs (σnn = 0 on bottom and top):

Beam stretching components:

σnnu τ mean value mean value

Beam bending components:

uτ
vertical
deflection

moment
bendingrotation
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Hellinger Reissner mixed methods for elasticity

Primal mixed method:

Find σ ∈ Lsym2 and u ∈ [H1]2 such that∫
Aσ : τ −

∫
τ : ε(u) = 0 ∀ τ

−
∫
σ : ε(v) = −

∫
f · v ∀ v

Dual mixed method:

Find σ ∈ H(div)sym and u ∈ [L2]2 such that∫
Aσ : τ +

∫
div τ · u = 0 ∀ τ∫

div σ · v = −
∫
f · v ∀ v

[Arnold+Falk+Winther]
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Reduced Symmetry mixed methods

Decompose
ε(u) = ∇u+ 1

2 Curlu = ∇u+ ω

with Curlu = 2 skew(∇u) =
(
∂xiuj − ∂xjui

)
i,j=1,...d

Impose symmetry of the stress tensor by an additional Lagrange parameter:

Find σ ∈ [H(div)]d, u ∈ [L2]d, and ω ∈ Ld×d,skew2 such that∫
Aσ : τ +

∫
udiv τ +

∫
τ : ω = 0 ∀ τ∫

v div σ = −
∫
fv ∀ v∫

σ : γ = 0 ∀ γ

The solution satisfies u ∈ L2 and ω = Curlu ∈ Ld×d,skew2 , i.e.,

u ∈ H(curl)

Arnold+Brezzi, Stenberg,... 80s
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Choices of spaces

∫
div σ · u understood as

〈div σ, u〉H−1×H1 = −(ε(u), σ)L2 (div σ, u)L2

Displacement

u ∈ [H1]2 u ∈ [L2]2

continuous f.e. non-continuous f.e.

Stress

σ ∈ Lsym2 σ ∈ H(div)sym

non-continuous f.e. normal continuous (σn) f.e.

The mixed system is well posed for all of these pairs.
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Choices of spaces

∫
div σ · u understood as

〈div σ, u〉H−1×H1 = −(ε(u), σ)L2 〈div σ, u〉H(curl)∗×H(curl) (div σ, u)L2

Displacement

u ∈ [H1]2 u ∈ H(curl) u ∈ [L2]2

continuous f.e. tangential-continuous f.e. non-continuous f.e.

Stress

σ ∈ Lsym2 σ ∈ Lsym2 ,div div σ ∈ H−1 σ ∈ H(div)sym

non-continuous f.e. normal-normal continuous (σnn) f.e. normal continuous (σn) f.e.

The mixed system is well posed for all of these pairs.
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The TD-NNS-continuous mixed method

Assuming piece-wise smooth solutions, the elasticity problem is equivalent to the following mixed problem:
Find σ ∈ H(div div) and u ∈ H(curl) such that∫

Aσ : τ +
∑
T

{∫
T

div τ · u−
∫
∂T
τnτuτ

}
= 0 ∀ τ∑

T

{∫
T

div σ · v −
∫
∂T
σnτvτ

}
= −

∫
f · v ∀ v

Proof: The second line is equilibrium, plus tangential continuity of the normal stress vector:∑
T

∫
T

(div σ + f)v +
∑
E

∫
E

[σnτ ]vτ = 0 ∀ v

Since the space requires continuity of σnn, the normal stress vector is continuous.
Element-wise integration by parts in the first line gives∑

T

∫
T

(Aσ − ε(u)) : τ +
∑
E

∫
E

τnn[un] = 0 ∀ τ

This is the constitutive relation, plus normal-continuity of the displacement. Tangential continuity of the
displacement is implied by the space H(curl).
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Reissner Mindlin Plates

Energy functional for vertical displacement w and rotations β:

‖ε(β)‖2A−1 + t−2‖∇w − β‖2

MITC elements with Nédélec reduction operator:

‖ε(β)‖2A−1 + t−2‖∇w −Rhβ‖2

Mixed method with σ = A−1ε(β) ∈ H(div div), β ∈ H(curl), and w ∈ H1:

L(σ;β,w) =
1

2
‖σ‖2A + 〈div σ, β〉 − t−2‖∇w − β‖2
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Reissner Mindlin Plates and Thin 3D Elements

Mixed method with σ = A−1ε(β) ∈ H(div div), β ∈ H(curl), and w ∈ H1:

L(σ;β,w) = ‖σ‖2A + 〈div σ, β〉 − t−2‖∇w − β‖2

Reissner Mindlin element:

σ

τ

nn

β	

w

3D prism element:

σnn uτ
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Anisotropic Estimates

Thm: There holds∑
T

‖ε(u− uh)‖2T +
∑
F

h−1
op ‖[un]‖2F + ‖σ − σh‖2 ≤ c

{
hmxy‖∇mxyε(u)‖+ hmz ‖∇mz ε(u)‖

}2

Proof: Stability constants are robust in aspect ratio (for tensor product elements)

Anisotropic interpolation estimates (H1: Apel). Interpolation operators commute with the strain operator:

‖ε(u−Qu)‖L2 = ‖(I − Q̃)ε(u)‖L2

� hmxy‖∇mx εxy,z(u)‖0 + hmz ‖∇mz εxy,z(u)‖L2

[A. Pechstein + JS, 2011]
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For Hot Days ...

Geometry

Deformed geometry, stress σxx

Displacement uy

Interior stress
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Contact problem with friction

Undeformed bear
Stress, component σ33
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Shell structure

R = 0.5, t = 0.005
σ ∈ P 2, u ∈ P 3

stress component σyy
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Hybridization: Implementation aspects

Both methods are (essentially) equivalent:

• Classical hybridization of mixed method:

Introduce Lagrange parameter λn to enforce continuity of σnn. Its meaning is the displacement in
normal direction.

• Continuous / hybrid discontinuous Galerkin method:

Displacement u is strictly tangential continuous, HDG facet variable (= normal displacement) enforces
weak continuity of normal component.

Anisotropic error estimates from mixed methods can be applied for HDG method !
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Continuous / hybrid discontinuous Galerkin method for Stokes

(Thesis C. Lehrenfeld 2010, RWTH)

H(div) - based formulation for Stokes:

Find u ∈ VT ,n ⊂ H(div), λ ∈ VF,τ and p ∈ P p−1(T ) such that

An(u, λ; v, µ) +
∫

Ω
div v q =

∫
fv ∀ (v, µ)∫

div u q = 0 ∀ q

Provides exactly divergence-free discrete velocity field u

LBB is proven by commuting interpolation operators for de Rham diagram

[Cockburn, Kanschat, Schötzau 2005]
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H(div)-conforming elements for Navier Stokes

∂u

∂t
− div(2νε(u)− u⊗ u− pI) = f

div u = 0

+b.c.

Fully discrete scheme, semi-implicit time stepping:

(
1

τ
M +Aν)û+BT p̂ = f +

1

τ
Mu−Ac(u)

Bû = 0

• u is exactly div-free ⇒ non-negative convective term
∫
u∇vv ≥ 0

• stability for kinetic energy ( ddt‖u‖
2
0 � 1

ν‖f‖
2
L2

)

• convective term by upwinding

• allows kernel-preserving smoothing and grid-transfer for fast iterative solver
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The de Rham Complex

H1 ∇−→ H(curl)
curl−→ H(div)

div−→ L2⋃ ⋃ ⋃ ⋃
Wh

∇−→ Vh
curl−→ Qh

div−→ Sh

For constructing high order finite elements

Whp = WL1 + span{ϕWh.o.}
Vhp = VN0 + span{∇ϕWh.o.}+ span{ϕVh.o.}

Qhp = QRT 0 + span{curlϕVh.o.}+ span{ϕQh.o.}
Shp = SP0 + span{divϕSh.o.}

Allows to construct high-order-divergence free elements {v ∈ BDMk : div v ∈ P0}
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Flow around a disk, 2D

Re = 100, 5th-order elements

Boundary layer mesh around cylinder:
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Flow around a disk, 2D

Re = 1000:

Re = 5000:
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Flow around a cylinder, Re = 100
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Concluding Remarks

• Hybrid DG is a simple and efficient hp - discretization scheme

• Robust anisotropic elements for linear elasticity

• Exactly divergence free finite elements for incompressible flows

Ongoing work:

• Operator splitting time integration

• Preconditioning (BDDC element-level domain decomposition)

• MPI-based Parallelization, GPU implementation of explicit time-stepping methods

Open source software on sourceforge:

• Netgen/NGSolve : Mesh generator and general purpose finite element code

• NGS-flow : CFD module for Netgen/NGSolve
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