Compatible Discretization of the Helmholtz Equation

Joachim Schöberl

Center for Computational Engineering Sciences (CCES)
RWTH Aachen University

Collaborators:

Johannes Kepler University Linz

Thorsten Hohage

Inst for Numerical and Applied Mathematics, University of Göttingen

Mark Ainswoth

Department of Mathematics, Strathclyde University

Werner Koch, Stefan Hain

Institute of Aerodynamics and Flow Technology, DLR Göttingen

ICIAM Zürich, 2007

Comp Disc for Helmholtz

Resonances on the open cavity domain

$$-\Delta u-\omega^2 u=0$$
 Helmholtz equation
$$\frac{\partial u}{\partial n}=0$$
 Wall boundary
$$\frac{\partial u}{\partial r}-i\omega u=o(r^{-(d-1)/2})$$
 Radiation condition

Find discrete resonances (eigenvalues) ω !

Solutions:

The spectrum from finite element simulation

Implementation of radiation condition by the PML (perfectly matched layer) method.

- Artificial eigenvalues due to the PML
- Artificial eigenvalues due to the FEM discretization

The spectrum from finite element simulation

Implementation of radiation condition by the PML (perfectly matched layer) method.

- Artificial eigenvalues due to the PML
- Artificial eigenvalues due to the FEM discretization

The spectrum from finite element simulation

Implementation of radiation condition by the PML (perfectly matched layer) method.

- Artificial eigenvalues due to the PML
- Artificial eigenvalues due to the FEM discretization

Major Sources of Airframe Noise

Source: U. Michel International Symposium Arcachon, France (2002)

Seminar Johannes Keppler Universität Linz back to start 27 17.9.2004

Comp Disc for Helmholtz Cavity Resonances Page 5

Slat-resonances: Simulation and Measurement (DLR)

Slat-resonances

S. Hein, T. Hohage, W. Koch, and J. Schöberl: Acoustic Resonances in a High-Lift Configuration, J. Fluid Mech., 2007

A one-dimensional Example

Schrödinger-like equation:

$$-u'' - \omega^2 \rho(x) u = 0 \quad \text{in } I = (0, 1)$$

$$\frac{\partial u}{\partial n} - i\omega u = 0 \quad \text{on } \partial I = \{0, 1\}$$

Finite Element Spectra

Finite Element Spectra

Reduced Integration Finite Element Method

Finite element space $V_h = \{v \in C : v_T \in P^1\}.$

Finite element method: Find $(\omega, u_h) \in \mathbb{C} \times V_h$:

$$\int_{I} u'_{h} v'_{h} - \omega^{2} \int_{I} \rho u_{h} v_{h} - i\omega \int_{\partial I} u_{h} v_{h} = 0 \qquad \forall v_{h} \in V_{h}$$

Reduced integration method:

$$\int_{I} u'_{h} v'_{h} - \omega^{2} \int_{\substack{mid-point \\ rule}} \rho u_{h} v_{h} - i\omega \int_{\partial I} u_{h} v_{h} = 0 \qquad \forall v_{h} \in V_{h}$$

Reduced Integration Finite Element Method

Finite element space $V_h = \{v \in C : v_T \in P^1\}.$

Finite element method: Find $(\omega, u_h) \in \mathbb{C} \times V_h$:

$$\int_{I} u'_{h} v'_{h} - \omega^{2} \int_{I} \rho u_{h} v_{h} - i\omega \int_{\partial I} u_{h} v_{h} = 0 \qquad \forall v_{h} \in V_{h}$$

Reduced integration method:

$$\int_{I} u'_{h} v'_{h} - \omega^{2} \int_{\substack{mid-point}} \rho u_{h} v_{h} - i\omega \int_{\partial I} u_{h} v_{h} = 0 \qquad \forall v_{h} \in V_{h}$$

Equivalent: L_2 -projection into piecewise constants, i.e., $P_h:V_h\to Q_h$, with $Q_h=\{v:v_T\in P^0\}$:

$$\int_{I} u'_{h} v'_{h} - \omega^{2} \int_{I} \rho P_{h} u_{h} P_{h} v_{h} - i\omega \int_{\partial I} u_{h} v_{h} = 0 \qquad \forall v_{h} \in V_{h}$$

Travelling waves

An outgoing wave satisfies

$$\frac{\partial u}{\partial |x|} - i\omega u = 0.$$

This relation cannot be satisfied exactly by finite element functions, since u_h is continuous and piecewise P^1 , while u' is discontinuous and piecewise P^0 :

Compatible Discretization: It can be satisfied in reduced sense:

$$\frac{\partial u_h}{\partial |x|} - i\omega P_h u_h = 0.$$

Dispersion relation

On a uniform, infinite grid, the stiffness and mass matrices have the structure

$$K = \frac{1}{h} \operatorname{tridiag} \left[-1, 2, -1 \right]$$

$$M_{conf} = h \text{ tridiag} \left[\frac{1}{6}, \frac{2}{3}, \frac{1}{6} \right]$$

$$M_{proj} = h \text{ tridiag} \left[\frac{1}{4}, \frac{1}{2}, \frac{1}{4} \right]$$

All operators have the eigenfunctions $u=(u_j)_{j\in\mathbb{Z}}=(cos(jkh))_{j\in\mathbb{Z}}$, where k is the wave vector. The dispersion relation is to find $\omega(k)$ such that $Ku-\omega(k)^2Mu=0$.

$$\omega_{conf}(k) = \frac{\sqrt{6}}{h} \sqrt{\frac{1 - \cos kh}{2 + \cos kh}}$$

$$\omega_{proj}(k) = \frac{\sqrt{4}}{h} \sqrt{\frac{1 - \cos kh}{1 + \cos kh}}$$

Reduction property - Matrix level

The reduced integration FEM leads to the matrix eigenvalue problem:

$$\left\{ \frac{1}{h} \left(\begin{array}{cccc} \cdots & \cdots & & \\ \cdots & \cdots & \cdots & \\ & -1 & 2 & -1 \\ & & -1 & 1 \end{array} \right) - \omega^2 h \left(\begin{array}{cccc} \cdots & \cdots & & \\ \cdots & \cdots & \cdots & \\ & \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\ & & \frac{1}{4} & \frac{1}{4} \end{array} \right) - i \omega \left(\begin{array}{cccc} \cdots & & & \\ & \cdots & & \\ & & 0 & \\ & & 1 \end{array} \right) \right\} \left(\begin{array}{c} \vdots & & \\ \vdots & & \\ u_{n-1} & & \\ u_n \end{array} \right) = 0$$

The last equation allows to express u_n from u_{n-1} via

$$\left(\frac{1}{h} - \omega^2 h \frac{1}{4} - i\omega\right) u_n = \left(\frac{1}{h} + \omega^2 h \frac{1}{4}\right) u_{n-1}.$$

Plugging into the previous equation leads to the reduced evp:

$$\left\{ \frac{1}{h} \left(\begin{array}{cccc} & \ddots & \ddots & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ & & & -1 & 1 \end{array} \right) - \omega^2 h \left(\begin{array}{cccc} & \ddots & \ddots & & \\ & \ddots & \ddots & \ddots & \\ & & \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\ & & & \frac{1}{4} & \frac{1}{4} \end{array} \right) - i \omega \left(\begin{array}{cccc} & \ddots & & & \\ & \ddots & & & \\ & & & 0 & \\ & & & 1 \end{array} \right) \right\} \left(\begin{array}{c} \vdots \\ u_{n-2} \\ u_{n-1} \end{array} \right) = 0$$

Comp Disc for Helmholtz Reduced integration method Page

13

Reduction property - Variational formulation

Theorem: V_h is a continuous FE space of order p, and P is the projection into discontinuous elements of order p-1. Let $\rho=1$ in I_2 , and c be a point in the mesh.

If u_h solves

$$\int_{I} u'_{h}v'_{h} - \omega^{2} \int_{I} \rho P u_{h} P v_{h} - i\omega \int_{\partial I} u_{h} v_{h} = 0,$$

then the same u_h solves also

$$\int_{I_1} u_h' v_h' - \omega^2 \int_{I_1} \rho P u_h P v_h - i\omega \int_{\partial I_1} u_h v_h = 0.$$

Reduction property - Variational formulation

Theorem: V_h is a continuous FE space of order p, and P is the projection into discontinuous elements of order p-1. Let $\rho=1$ in I_2 , and c be a point in the mesh.

If u_h solves

$$\int_{I} u_h' v_h' - \omega^2 \int_{I} \rho P u_h P v_h - i\omega \int_{\partial I} u_h v_h = 0,$$

then the same u_h solves also

$$\int_{I_1} u_h' v_h' - \omega^2 \int_{I_1} \rho P u_h P v_h - i\omega \int_{\partial I_1} u_h v_h = 0.$$

Proof: The difference is

$$\int_{I_2} u_h' v_h' - \omega^2 \int_{I_2} \rho P u_h P v_h - i\omega \{ u_h(b) v_h(b) - u_h(c) v_h(c) \}$$

From the variational equation on I there follows that this term vanishes for v_h satisfying $v_h(c) = 0$. We have to show that the term vanishes for all v_h .

Proof: The difference is

$$\int_{I_2} u'_h v'_h - \omega^2 \int_{I_2} \rho P u_h P v_h - i\omega \{ u_h(b) v_h(b) - u_h(c) v_h(c) \}$$

From the variational equation on I there follows that this term vanishes for v_h satisfying $v_h(c) = 0$. We have to show that the term vanishes for all v_h .

The term is rewritten as

$$\int_{I_{2}} (u'_{h} - i\omega P u_{h})(v'_{h} - i\omega P v_{h}) + i\omega \int_{I_{2}} P u_{h} v'_{h} + P v_{h} u'_{h} - i\omega \{u_{h}(b)v_{h}(b) - u_{h}(c)v_{h}(c)\}$$

$$= \int_{I_{2}} (u'_{h} - i\omega P u_{h})(v'_{h} - i\omega P v_{h}) + i\omega \int_{c}^{b} (u_{h}v_{h})' - i\omega \{u_{h}(b)v_{h}(b) - u_{h}(c)v_{h}(c)\}$$

$$= \int_{I_{2}} (u'_{h} - i\omega P u_{h})(v'_{h} - i\omega P v_{h}).$$

One verifies that

$$\{v'_h - i\omega P v_h : v_h \in P^p, v_h(c) = 0\} = P^{p-1}.$$

Since $u'_h + i\omega Pu_h$ is in P^{p-1} , and is orthogonal to P^{p-1} , it is 0. One can test against any v_h ! (together with Mark Ainsworth)

The Effect of PML

PML formulation:

$$\int_{I} \frac{1}{\sigma} u'v' - \omega^{2} \int_{I} \sigma uv + i\omega \int_{\partial I} Ruv = 0$$

Where $\sigma = 1$ inside, and σ is a complex number in the PML layer.

Let R be some absorbing coefficient. Repeating the matrix-reduction process leads to a new absorbing coefficient for the reduced problem as

$$\hat{R} = \frac{1 + Rc}{c + R}$$
 with $c = \frac{1}{i\omega h\sigma} + \frac{i\omega h\sigma}{4}$

If R is the correct coefficient (=1), it is the fixed point of the reduction formula. Otherwise, the reduction process converges to the correct coefficient with asymptotic rate

$$\left| \frac{\hat{R} - R^*}{R - R^*} \right| \approx \left| \frac{i\omega h\sigma - 2}{i\omega h\sigma + 2} \right|$$

16

The Channel Problem

2D PML Problem:

$$\int_{\Omega} \frac{1}{\sigma} \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} + \sigma \frac{\partial u}{\partial y} \frac{\partial v}{\partial y} dx - \omega^2 \int_{\Omega} \rho \sigma u v \, dx - i\omega \int_{\Gamma_R} u v = 0$$

Separation of variables based on eigensystem in y-direction:

$$(\varphi_i'(y), \psi'(y)) = \lambda_i^2(\varphi_i(y), \psi(y))$$

The expansion $u = \sum u_i(x)\varphi_i(y)$ leads to the decoupled problems

$$\int_{I} \frac{1}{\sigma} u_i' v_i' + \sigma(\lambda_i^2 - \omega^2 \rho) uv \, dx - i\omega Ru(1)v(1) = 0.$$

The right a.b.c for the i^{th} mode would be $\omega R = \sqrt{\omega^2 \rho - \lambda_i^2}$. We do not want to adjust the R for each mode. The PML lets the R converge to the right R_i for the reduced system.

The projection operator

The 2D projection should map into the space which is

- ullet continuous and of order k in y-direction
- ullet discontinuous and of order k-1 in x direction

Then, the 2D problem is equivalent to the family of 1D problems.

The projection is not local on the element-level and thus cannot be realized by a reduced integration formula anymore.

The mixed method

Original equation:

$$\int \nabla u \nabla v \, dx + (i\omega)^2 \int \rho u v \, dx - i\omega \int_{\Gamma_R} u v \, dx = 0$$

Introduce a new variable $p=i\omega\rho u$ and obtain:

$$\int \nabla u \nabla v \, dx = -i\omega \int pv \, dx + i\omega \int_{\Gamma_R} uv \, dx \quad \forall v
-\int \rho^{-1} pq \, dx = -i\omega \int qu \, dx \quad \forall q$$

The finite element method with $u_h \in V_h$ and $p_h \in Q_h$ satisfies

$$p_h = i\omega P_h(\rho u_h).$$

It is a way to implement the projection. The fe space \mathcal{Q}_h must be

- continuous and of order k in y-direction
- ullet discontinuous and of order k-1 in x direction

Cavity Resonances

64 elements, p=4 N=2145

Cavity Resonances

64 elements, p=4 N=2145

Cavity Resonances

64 elements, p=4 N=2145

Concluding Remarks

- Compatible discretization avoiding spurious FE eigenvalues
- 1D: implementation by reduced integration formulas
- 2D/3D on topological tensor product meshes: mixed method

Ongoing work

- Extension to unstructured meshes (distance layers, projection space)
- Structure preserving eigenvalue solver

References:

- S. Hein, T. Hohage, W. Koch, J. Schöberl: Acoustic Resonances in a High Lift Configuration, J. Fluid Mech., 2007
- M. Rechberger: Numerical Methods for the Simulation of Acoustic Resonances, Master Th. JKU Linz