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Resonances on the open cavity domain

\\ ? / / —Au—w*u = 0 Helmholtz equation

0
~ e a_;‘: — 0  Wall boundary
0
0_:J_Z'wu = o(r~=1/2)  Radiation condition

Find discrete resonances (eigenvalues) w !

Solutions:

Mode 2-0 Mode 2-2
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The spectrum from finite element simulation
Implementation of radiation condition by the PML (perfectly matched layer) method.
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e Artificial eigenvalues due to the PML

e Artificial eigenvalues due to the FEM discretization
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The spectrum from finite element simulation
Implementation of radiation condition by the PML (perfectly matched layer) method.

resonances
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e Artificial eigenvalues due to the PML

e Artificial eigenvalues due to the FEM discretization
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The spectrum from finite element simulation
Implementation of radiation condition by the PML (perfectly matched layer) method.
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e Artificial eigenvalues due to the PML

e Artificial eigenvalues due to the FEM discretization
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Aﬁ Major Sources of Airframe Noise

Source: U. Michel International Symposivm Arcachon, France (2002)

Seminar Johannes Keppler Universitat Linz back to start 27

17.9.2004
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Slat-resonances: Simulation and Measurement (DLR)
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Slat-resonances

S. Hein, T. Hohage, W. Koch, and J. Schoberl: Acoustic Resonances in a High-Lift Configuration, J.
Fluid Mech., 2007
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A one-dimensional Example

. : : P (X)
Schrodinger-like equation:
—u" —w'p(z)u = 0 in I=(01)
ou .
5, WU = 0 on 0I ={0,1}
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Finite Element Spectra

first order elements
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Finite Element Spectra
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Reduced Integration Finite Element Method

Finite element space V}, = {v € C : vy € P'}.

Finite element method: Find (w,up) € C x Vj:

/u}bvﬂb — wQ/puhvh — iw/ upvy = 0 Yo, €V
I I oI

Reduced integration method:

/u;lv;l — w? / PURVE — iw/ upvp, =0 Yo €V
I a1

mid—point
rule
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Reduced Integration Finite Element Method

Finite element space V}, = {v € C : vy € P'}.

Finite element method: Find (w,up) € C x Vj:

/u}bvﬂb — wQ/puhvh — iw/ upvy = 0 Yo, €V
I I oI

Reduced integration method:

/u;lv;l — w? / PURVE — iw/ upvp, =0 Yo €V
I a1

mid—point
rule

Equivalent: Lo-projection into piecewise constants, i.e., Py : Vj, — Qp, with Qp = {v :vp € PO}

/u%vg — w2/pPhuhthh — z'w/ upvy =0 Yo €V
I I a1
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Travelling waves

An outgoing wave satisfies
ou

— —wu = 0.

O|x|
This relation cannot be satisfied exactly by finite element functions, since uy, is continuous and piecewise
Pl while v is discontinuous and piecewise PY;

Travelling wave Travelling wave - derivative
I I I I I I I I I I I I I

1 real —+— 1 real
1 imag - 7] B imag ]
05 . 0.5 o .
0 r . 0+ T — .
05 F . 05F -
1r | | | 1 | 1 -1t | | | | | | | 1
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 16

Compatible Discretization: It can be satisfied in reduced sense:

Z?uh
— —wP = 0.
(9|£C| WL pLUp
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Dispersion relation

On a uniform, infinite grid, the stiffness and mass matrices have the structure

K = % tridiag | — 1, 2, —1]

I 2 1 I 11
Meons = 1d1 {_7 Y _} Mproj = 1d1 {_7 a)? _}
¢ = h tridiag 53§ proj = h tridiag 1% 1
All operators have the eigenfunctions u = (u;),ez = (cos(jkh));cz, where k is the wave vector. The
dispersion relation is to find w(k) such that Ku — w(k)*Mu = 0.

Dispersion Relation

I I I I I I
conforming ——

projected

y (k) — \/6\/1—coskh
conf  h V2+coskh

Wproj (k)

\/ZL\/l—coskh
h V1+coskh

O P N W » 01 O N
T T T 1T T 1
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Reduction property - Matrix level

The reduced integration FEM leads to the matrix eigenvalue problem:

i

— Ww?h — W

N\

h -1 2 -1
-1 1

==
N [ = -
S S | =

\

The last equation allows to express u,, from u,,_1 via

1,1 1,

Plugging into the previous equation leads to the reduced evp:
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Reduction property - Variational formulation

a I, c |5 b

Theorem: V), is a continuous FE space of order p, and P is the projection into discontinuous elements
of order p — 1. Let p =1 in I, and ¢ be a point in the mesh.

/u'hv;l — w2/pPuhPfUh — iw/ upvp = 0,
I I oI

then the same wuy, solves also
/ uy vy — w2/ pPuy, Pvy, — z'w/ upvp, = 0.
I I oI

If u;, solves
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Reduction property - Variational formulation

a I, c |5 b

Theorem: V), is a continuous FE space of order p, and P is the projection into discontinuous elements
of order p — 1. Let p =1 in I, and ¢ be a point in the mesh.

/u'hv;l — w2/pPuhPfUh — iw/ upvp = 0,
I I oI

then the same wuy, solves also
/ uy vy — w2/ pPuy, Pvy, — z'w/ upvp, = 0.
I I oI

If u;, solves

Proof: The difference is
/ uy vy — w2/ pPuy Pvy, — iw{up(b)vy(b) — up(c)vn(c)}
Iy Iy

From the variational equation on I there follows that this term vanishes for v, satisfying vy, (c) = 0. We
have to show that the term vanishes for all vy,.
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Proof: The difference is
/ Uy — w2/ pPup Pvy, — iw{up(b)vy(b) — up(c)vp(c)}
Iy Iy

From the variational equation on I there follows that this term vanishes for vy satisfying vj,(c) = 0. We
have to show that the term vanishes for all vy,.

The term is rewritten as

/ (u, — iwPup) (v, — iwPup) + iw/ Pupvy, + Popuy, — iw{up(b)vp(b) — up(c)vp(c)}
Iy Iy

= /I (u}, — iwPup) (v}, — iwPuy) + iw/ (unvr)" — iw{un(b)vn(b) — un(c)vn(c)}

= / (u), — iwPup) (v, — iwPup).
Iy

One verifies that
{v}, —iwPuvy, : vy € PP uy(c) = 0} = PP,

Since u) + iwPuy, is in PP~ and is orthogonal to PP~ it is 0. One can test against any v;, | (together
with Mark Ainsworth)
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The Effect of PML

PML formulation:

1
/—u'v’—w2/0uv+iw/ Ruv =0
10 I oI

Where o = 1 inside, and o is a complex number in the PML layer.

Let R be some absorbing coefficient. Repeating the matrix-reduction process leads to a new absorbing
coefficient for the reduced problem as

1+ Re th 1 N who
wi c =
c+ R iwho 4

R =

If R is the correct coefficient (=1), it is the fixed point of the reduction formula. Otherwise, the reduction
process converges to the correct coefficient with asymptotic rate

A

R— R”
R — R*

a4

who — 2
who + 2
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The Channel Problem

2D PML Problem:

IR 1 Ou Ov ou Ov
— dr—w? dx—1 =0
/ —|—ayyxw/pauvxzw/r uv

b0 [y  PML

Separation of variables based on eigensystem in y-direction:

(25 (), ¥ (1) = X (pi(y), ¥ (v))

The expansion u = > wu;(x)p;(y) leads to the decoupled problems

1
/—u,’ivg + o (AF — w?p)uv dxr — iwRu(1)v(1) = 0.
I

o

The right a.b.c for the ¥ mode would be wR = \/pr — A2, We do not want to adjust the R for each
mode. The PML lets the R converge to the right R, for the reduced system.
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The projection operator

The 2D projection should map into the space which is

e continuous and of order k£ in y-direction

e discontinuous and of order £k — 1 in x direction

Then, the 2D problem is equivalent to the family of 1D problems.

The projection is not local on the element-level and thus cannot be realized by a reduced integration
formula anymore.
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The mixed method

Original equation:
/VUV’U dx + (iw)Q/puv dx — z'w/ uwvdr =0
I'r

Introduce a new variable p = iwpu and obtain:

[ VuVudx —iw [ pvdx + iw fFR wvdr Yo
—fp_lpqda: = —iwfqu dx Vq

The finite element method with uj;, € V}, and p;, € Q}, satisfies

pr = twPp(pun).
It is a way to implement the projection. The fe space (), must be
e continuous and of order k in y-direction

e discontinuous and of order k — 1 in x direction
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Cavity Resonances
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Cavity Resonances
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Cavity Resonances
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Concluding Remarks

e Compatible discretization avoiding spurious FE eigenvalues

e 1D: implementation by reduced integration formulas

e 2D /3D on topological tensor product meshes: mixed method
Ongoing work

e Extension to unstructured meshes (distance layers, projection space)
e Structure preserving eigenvalue solver
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