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Abstract

A new active set based algorithm is proposed that uses the conjugate gradient
method to explore the face of the feasible region defined by the current iterate and
the reduced gradient projection with the fixed steplength to expand the active set.
The precision of approximate solutions of the auxiliary unconstrained problems is
controlled by the norm of violation of the Karush-Kuhn-Tucker conditions at active
constraints and the scalar product of the reduced gradient and the reduced gradi-
ent projection. The modifications were exploited to find the rate of convergence in
terms of the spectral condition number of the Hessian matrix, to preserve its finite
termination property even for problems whose solution does not satisfy the strict com-
plementarity condition, and to avoid any backtracking at the cost of evaluation of an
upper bound for the spectral radius of the Hessian matrix. The performance of the
algorithm is illustrated on solution of the inner obstacle problems. The result is an
important ingredient in development of scalable algorithms for numerical solution of
elliptic variational inequalities.
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1 Introduction

We shall be concerned with the problem to find

min
x∈Ω

f(x) (1.1)

with Ω = {x : 0 ≤ x}, f(x) = 1
2x⊤Ax − x⊤b, b a given column n-vector, and A an n × n

symmetric positive definite matrix. We shall be interested especially in problems with
n large and A reasonably conditioned or preconditioned [1], so that the application of
the conjugate gradient based methods is suitable. Problems of this type arise e.g. in
application of the duality based domain decomposition methods to the solution of the
discretized variational inequalities [13, 24, 25] or in the solution of auxiliary problems in
the augmented Lagrangian type algorithms for minimization of convex quadratic functions
subject to more general constraints [12].

A class of efficient algorithms for the solution of (1.1) that is relevant for our research
is based on the active set method [16]. The method dates back at least to Polyak [23]
who proposed to use the conjugate gradient method to minimize the cost function on the
face of the region defined by the current iterate until either the minimum on the current
face was reached or an unfeasible iteration was generated. In the first case the constraints
that violated the Karush-Kuhn-Tucker conditions were released, while in the second case
the conjugate gradient step was shortened to generate a feasible iterate at the boundary
of Ω which typically resulted in adding one index to the active set. Since the Polyak
algorithm decreases the cost function in each step, the faces with minimizers can never
reappear. The number of all faces being finite, the algorithm necessarily finds the face
with the solution of (1.1) and then the solution itself in a finite number of steps.

The Polyak algorithm suffers from several drawbacks. The first one is related to the
trial conjugate iterates that are not feasible. An unpleasant consequence of the Polyak
strategy is a lower bound on the number of iterations in terms of the difference between
the numbers of the active constraints in the initial approximation and the solution. To
relieve the problem, Dembo and Tulowitzski [6] and Yang and Tolle [27] proposed to use
projections with backtracking.

Another drawback concerns the basic approach combining the conjugate gradient
method, which is now understood as an efficient iterative method for approximate so-
lution of linear systems [1], and the finite termination strategy based on combinatorial
reasoning that gives extremely poor bound on the number of iterations that are necessary
to find the solution of (1.1). On the basis of results of Calamai and Moré [4], Moré and
Toraldo [21] proposed an algorithm that also exploits the conjugate gradients, but its con-
vergence is driven by the gradient projections with the steplength satisfying the sufficient
decrease condition. The steplength is found, as in earlier algorithms, by possibly expen-
sive backtracking. In spite of purely iterative basis of their algorithm, the authors proved
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that their algorithm preserved the finite termination property of the original algorithm
provided the solution satisfies the strict complementarity condition.

The last serious drawback of the Polyak algorithm that is relevant for our work con-
cerns precision of the solution of the auxiliary minimization problems. The exact mini-
mization assumed exact arithmetics, so that the original theory did not support standard
computer implementation of the algorithm, and there were doubts about its efficiency, as it
has been observed by O’Leary [22] that the number of iterations may be reduced to about
a half with the algorithm that refined the accuracy of the conjugate gradient minimiza-
tion during the course of iterations. The result does not seem surprising as the conjugate
gradient iterations reduce directly only the norm of violation of the Karush-Kuhn-Tucker
conditions at free variables even at the later stage of the minimization when it is relatively
small as compared to that at the active variables. The effective theoretically supported
strategies for adaptive precision control were presented independently by Friedlander and
Mart́ınez with their collaborators and Dostál [17, 18, 19, 3, 9, 10, 8]. The basic idea was
to control the precision of the solution of the auxiliary problems by the ratio of norms of
violation of the Karush-Kuhn-Tucker conditions at free and active variables. These results
offered exploitation of the conjugate gradient method as an effective approximate iterative
minimizer in faces, relaxed conditions for implementation of the gradient projections, and
gave guidance for development of effective algorithms applied to the solution of complex
engineering problems with up to millions of variables [13, 14, 15, 24, 25]. Moreover, it
was shown that the finite termination property of the original Polyak algorithm may be
preserved with inexact solution of the auxiliary problems even for problems whose solu-
tion does not satisfy the strict complementarity condition [9, 10]. By our opinion, the last
result is important because it indicates that the algorithm does not suffer from oscillations
often attributed to the active set based algorithms.

The common drawbacks of all the above mentioned strategies were possible back-
tracking in search of the gradient projection step and the lack of results on the rate of
convergence. A key to further progress was the result of Schöberl [24, 25] who gave the
rate of convergence of the gradient projection method for (1.1) in terms of the spectral
condition number κ(A) of A. Recently, it has been observed that this nice result may
be plugged into the proportioning algorithm [11] to get a similar result. Moreover, the
algorithm did not require any backtracking and it turned out that it was possible to pre-
serve the finite termination property for the problems whose solution satisfies the strict
complementarity condition.

In this paper, we give a new proof of the improved rate of convergence of the projection
method. Then we introduce the precision control that takes into account also the part of
the reduced gradient that can be used in the reduced gradient projection step. Finally a
modification of the proportioning algorithm is presented that enables us to prove both the
rate of convergence and the finite termination property for problems with solution that
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does not satisfy the strict complementarity condition. The algorithm works with the fixed
steplength of the reduced gradient projection step so that it does not use any backtracking,
but requires an upper bound on the spectral radius of the Hessian A of the cost function
f . The performance of the algorithm is demonstrated on a numerical example.

2 Notations and preliminaries

It is well known that the solution to the problem (1.1) always exists, and it is necessarily
unique [2]. For arbitrary n-vector x, let us define the gradient g = g(x) of f by

g = g(x) = Ax − b. (2.1)

Then the unique solution x of (1.1) is fully determined by the Karush-Kuhn-Tucker opti-
mality conditions [2] so that for i = 1, . . . , n,

xi = 0 implies gi ≥ 0 and xi > 0 implies gi = 0. (2.2)

Let N denote the set of all indices so that

N = {1, 2, . . . , n}.

The set of all indices for which xi = 0 is called an active set of x. We shall denote it by
A(x) so that

A(x) = {i ∈ N : xi = 0}.

Its complement
F(x) = {i ∈ N : xi 6= 0}

and subset
B(x) = {i ∈ N : xi = 0 and gi > 0}

are called a free set and a binding set , respectively.
To enable an alternative reference to the Karush-Kuhn-Tucker conditions (2.2), we

shall introduce a notation for the free gradient ϕ and the chopped gradient β that are
defined by

ϕi(x) = gi(x) for i ∈ F(x), ϕi(x) = 0 for i ∈ A(x)

βi(x) = 0 for i ∈ F(x), βi(x) = g−i (x) for i ∈ A(x)

where we have used the notation g−i = min{gi, 0}. Thus the Karush- Kuhn-Tucker condi-
tions (2.2) are satisfied iff the projected gradient ν(x) = ϕ(x) + β(x) is equal to zero.

The Euclidean norm and the A−energy norm of x will be denoted by ‖x‖ and ‖x‖A,
respectively. Thus ‖x‖2 = x⊤x and ‖x‖2

A = x⊤Ax . Analogous notation will be used for
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the induced matrix norm, so that the spectral condition number κ(A) of the matrix A is
defined by

κ(A) = ‖A‖‖A−1‖.

The projection PΩ to Ω is defined for any n-vector x by

PΩ(x) = x+

where x+ is the vector with entries x+
i =max {xi, 0}.

3 Algorithm with proportioning and gradient projections

The algorithm for the solution of (1.1) that we propose here combines the proportioning
algorithm mentioned above with the gradient projections. It exploits a given constant
Γ > 0, a test to decide about leaving the face and three types of steps to generate a
sequence of iterates {xk} that approximate the solution of (1.1).

The expansion step is defined by

xk+1 = PΩ

(
xk − αϕ(xk)

)
(3.1)

with the fixed steplength α ∈ (0, ‖A‖−1]. This step may expand the current active set.
To describe it without PΩ, let us introduce, for any x ∈ Ω, the reduced free gradient ϕ̃(x)
with the entries

ϕ̃i = ϕ̃i(x) = min{xi/α, ϕi},

so that
PΩ (x − αϕ(x)) = x − αϕ̃(x). (3.2)

Using the new notation, we can write also

PΩ (x − αg(x)) = x − α (ϕ̃(x) + β(x)) . (3.3)

If the inequality
||β(xk)||2 ≤ Γ2ϕ̃(xk)⊤ϕ(xk) (3.4)

holds then we call the iterate xk strictly proportional. The test (3.4) is used to decide which
component of the projected gradient ν(xk) will be reduced in the next step. Notice that the
right-hand side of (3.4) blends the information about the current free gradient and its part
that can be used in the expansion step, while the related relations in [17, 18, 19, 3, 9, 8, 7]
consider only the norm of the free gradient.

The proportioning step is defined by

xk+1 = xk − αcgβ(xk) (3.5)
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with the steplength αcg that minimizes f
(
xk − αβ(xk)

)
. It is easy to check [1, 20] that

αcg that minimizes f(x − αd) for given d and x may be evaluated by the formula

αcg = αcg(d) =
d⊤g(x)

dT Ad
. (3.6)

The purpose of the proportioning step is to remove indices from the active set. Note that
if xk ∈ Ω, then xk+1 = xk − αcgβ(xk) ∈ Ω.

The conjugate gradient step is defined by

xk+1 = xk − αcgp
k (3.7)

where pk is the conjugate gradient direction [1, 20] which is constructed recurrently. The
recurrence starts (or restarts) from ps = ϕ(xs) whenever xs is generated by the expansion
step or the proportioning step. If pk is known, then pk+1 is given by the formulae [1, 20]

pk+1 = ϕ(xk) − γpk, γ =
ϕ(xk)⊤Apk

(pk)⊤Apk
. (3.8)

The basic property of the conjugate directions ps, . . . , pk that are generated by the recur-
rence (3.8) from the restart ps is their mutual A-orthogonality, i. e. (pi)⊤Apj = 0 for
i, j ∈ {s, . . . , k}, i 6= j. It follows easily [1, 20] that

f(xk+1) = min{f(xs + y) : y ∈ Span{ps, . . . , pk}} (3.9)

where Span{ps, . . . , pk} denotes the vector space of all linear combinations of the vectors
ps, . . . , pk. The conjugate gradient steps are used to carry out the minimization in the face

WI = {x : xi = 0 for i ∈ I } (3.10)

given by I = A(xs) efficiently.
Let us define the algorithm that we propose in the form that is convenient for analysis.

Algorithm 3.1. Modified proportioning with reduced gradient projections
(MPRGP).
Let x0 ∈ Ω, α ∈ (0, ‖A‖−1], and Γ > 0 be given. For k ≥ 0 and xk known, choose xk+1 by
the following rules:
(i) If ν(xk) = 0, set xk+1 = xk.
(ii) If xk is strictly proportional and ν(xk) 6= 0, try to generate xk+1 by the conjugate
gradient step. If xk+1 ∈ Ω, then accept it, else generate xk+1 by the expansion step.
(iii) If xk is not strictly proportional, define xk+1 by proportioning.
More details about implementation of the algorithm may be found in Section 7.
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4 Estimate for the gradient projection

We shall first present a new simplified proof of the strengthening of the above mentioned
result by Schöberl [24].
Theorem 4.1. Let x denote the unique solution of (1.1), let λ1 denote the smallest
eigenvalue of A, ‖A‖ ≤ 1, and x ∈ Ω. Then

f (PΩ (x − g(x))) − f(x) ≤ (1 − λ1) (f(x ) − f(x)) . (4.1)

Proof: Let x ∈ Ω be arbitrary but fixed, so that we can define a quadratic function

F (y) = f(y) +
1

2
(y − x)⊤(I − A)(y − x).

It is defined so that

F (y) ≥ f(y) for any y ∈ IR, F (x) = f(x), and ∇F (x) = ∇f(x).

Moreover, the Hessian matrix of F is equal to I, so that

∇F (y) = ∇f(y) + (I − A)(y − x) = y − x + g(x).

We shall define also the reduced gradient g̃(x) with the entries

g̃i = g̃i(x) = min{xi, gi},

so that
PΩ (x − g(x)) = x − g̃, 0 ≤ gi(x) − g̃i(x), 0 ≤ xi − g̃i(x).

Since any y ∈ Ω may be written in the form y = x− g̃(x) + d with di ≥ g̃i(x)− xi, we get

F (y) = F (PΩ (x − g(x)) + d) = F (PΩ(x − g(x))) + d⊤∇F (x − g̃(x)) +
1

2
‖d‖2

= F (PΩ(x − g(x))) + d⊤ (g(x) − g̃(x)) +
1

2
‖d‖2

≥ F (PΩ(x − g(x))) + (g̃i(x) − xi)
⊤ (g(x) − g̃(x)) +

1

2
‖d‖2

= F (PΩ(x − g(x))) +
1

2
‖d‖2 ≥ F (PΩ (x − g(x))). (4.2)

Let us now denote by [x, x] the convex hull of {x, x} and let d = x − x. Using (4.2),
[x, x] = {x + td : t ∈ [0, 1]} ⊆ Ω and λ1‖d‖

2 ≤ d⊤Ad, we get

f(PΩ (x − g(x))) − f(x) ≤ F (PΩ (x − g(x))) − f(x) = min{F (y) − f(x) : y ∈ Ω}

7



≤ min{F (y) − f(x) : y ∈ [x, x]}

= min{F (x + td) − f(x + d) : t ∈ [0, 1]}

= min{td⊤g(x) +
1

2
t2‖d‖2 − d⊤g(x) −

1

2
d⊤Ad : t ∈ [0, 1]}

≤ λ1d
⊤g(x) +

1

2
λ2

1‖d‖
2 − d⊤g(x) −

1

2
d⊤Ad

≤ λ1d
⊤g(x) +

1

2
λ1d

⊤Ad − d⊤g(x) −
1

2
d⊤Ad

= (λ1 − 1)(d⊤g(x) +
1

2
d⊤Ad) = (λ1 − 1) (f(x + d) − f(x))

= (1 − λ1) (f(x) − f(x)) . 2 (4.3)

Corollary 4.2. Let x denote the unique solution of (1.1), let λ1 denote the smallest
eigenvalue of A, α ∈ (0, ‖A‖−1], and let x ∈ Ω. Then

f (PΩ (x − αg(x))) − f(x) ≤ ρ (f(x ) − f(x)) (4.4)

where
ρ = (1 − αλ1) < 1. (4.5)

Proof: Apply Theorem 4.1 to the function αf(x). 2

5 Rate of convergence

Theorem 5.1. Let Γ > 0 be a given constant, let λ1 denote the smallest eigenvalue of
A, Γ̂ = max{Γ, Γ−1}, let x denote the unique solution of (1.1), and let {xk} denote the
sequence generated by Algorithm 3.1 with α ∈ (0, ‖A‖−1]. Then

f(xk+1) − f(x) ≤ η
(
f(xk) − f(x)

)
(5.1)

where x denotes the unique solution of (1.1) and

η = 1 −
αλ1

2 + 2Γ̂2
. (5.2)

The error in the A-energy norm is bounded by

‖xk − x‖2
A ≤ 2ηk

(
f(x0) − f(x)

)
. (5.3)
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Proof: We shall compare separately all three possible steps with the gradient projection
estimate (4.4), using that for any vectors x and d

f(x + d) = f(x) + d⊤g(x) +
1

2
d⊤Ad ≥ f(x) + d⊤g(x). (5.4)

In particular, combining (5.4) with (3.3), we get the estimate

f
(
PΩ

(
xk − αg(xk)

))
≥ f(xk) − α(ϕ̃(xk)⊤ϕ(xk) + ‖β(xk)‖2). (5.5)

If xk+1 is generated by the expansion step ((3.1)), then after using

α2ϕ̃(xk)⊤Aϕ̃(xk) ≤ α2‖A‖‖ϕ̃(xk)‖2 ≤ α‖ϕ̃(xk)‖2 ≤ αϕ̃(xk)⊤ϕ(xk),

(5.4) and a little manipulation, we get

f(xk+1) = f
(
xk − αϕ̃(xk))

)
= f(xk) − αϕ̃(xk)⊤ϕ(xk) +

α2

2
ϕ̃(xk)⊤Aϕ̃(xk)

≤ f(xk) −
α

2
ϕ̃(xk)⊤ϕ(xk). (5.6)

If xk+1 is generated by the conjugate gradient step (3.7), then by (3.9) and (3.6)

f(xk+1) ≤ f(xk − αcgϕ(xk)) = f(xk) −
1

2

‖ϕ(xk)‖4

ϕ(xk)⊤Aϕ(xk)
.

Taking into account the definition of α and ϕ̃(xk), we get

f(xk+1) ≤ f(xk) −
α

2
‖ϕ(xk)‖2 ≤ f(xk) −

α

2
ϕ̃(xk)⊤ϕ(xk). (5.7)

Comparing (5.6) and (5.7), we may observe that we got the same estimates for the
expansion and conjugate gradient steps. These steps are taken only when xk is strictly
proportional, so that

‖β(xk)‖2 ≤ Γ2ϕ̃(xk)⊤ϕ(xk). (5.8)

After substituting (5.8) into (5.7), we get

f
(
PΩ

(
xk − αg(xk)

))
≥ f(xk) − α(1 + Γ2)ϕ̃(xk)⊤ϕ(xk). (5.9)

Thus for xk+1 generated by the expansion or conjugate gradient steps, we get after a little
manipulation and application of (5.9) that

f(xk+1) ≤ f(xk) −
α

2
ϕ̃(xk)⊤ϕ(xk)

=
1

2(1 + Γ2)

(
f(xk) − α(1 + Γ2)ϕ̃(xk)⊤ϕ(xk) + (1 + 2Γ2)f(xk)

)

≤
1

2(1 + Γ2)

(
f

(
PΩ

(
xk − αg(xk)

))
+ (1 + 2Γ2)f(xk)

)
. (5.10)
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After using (4.4) with x = xk, (5.6) and a little manipulation, we get

f(xk+1) ≤
ρ + 1 + 2Γ2

2 + 2Γ2
f(xk) +

1 − ρ

2 + 2Γ2
f(x). (5.11)

Let us finally assume that xk+1 is generated by the proportioning step (3.5), so that

‖β(xk)‖2 > Γ2ϕ̃(xk)⊤ϕ(xk) (5.12)

and

f(xk+1) = f
(
xk − αcgβ(xk)

)
= f(xk) −

1

2

‖β(xk)‖4

β(xk)⊤Aβ(xk)
.

Taking into account the definition of α, we get

f(xk+1) ≤ f(xk) −
α

2
‖β(xk)‖2, (5.13)

where the right hand side may be rewritten in the form

f(xk) −
α

2
‖β(xk)‖2 =

1

2(1 + Γ−2)

(
f(xk) − α(1 + Γ−2)‖β(xk)‖2 + (1 + 2Γ−2)f(xk)

)
.

(5.14)
We can also substitute (5.12) into (5.5) to get

f
(
PΩ

(
xk − αg(xk)

))
> f(xk) − α(1 + Γ−2)‖β(xk)‖2. (5.15)

Substituting (5.15) into (5.14) yields

f(xk) −
α

2
‖β(xk)‖2 <

1

2(1 + Γ−2)

(
f

(
PΩ

(
xk − αg(xk)

))
+ (1 + 2Γ−2)f(xk)

)
. (5.16)

After using (4.4) with x = xk, (5.13) and a little manipulation, we get

f(xk+1) ≤
ρ + 1 + 2Γ−2

2 + 2Γ−2
f(xk) +

1 − ρ

2 + 2Γ−2
f(x). (5.17)

Comparing our result with (5.11) we conclude that we have the same estimate for all three
steps of Algorthm 3.1. The proof of (5.1) may be completed by direct computation.

To get the error bound (5.3), notice that the Karush-Kuhn-Tucker conditions (2.2)
imply that (xk − x)⊤g(x) ≥ 0, so that by (5.4) applied to d = xk − x, x = x and by (5.1)

‖xk−x‖2
A = 2

(
f(xk) − f(x) − (xk − x)⊤g(x)

)
≤ 2

(
f(xk) − f(x)

)
≤ 2ηk

(
f(x0) − f(x)

)
.

2

Theorem 5.1 yields the best estimate for Γ = Γ̂ = 1 in agreement with heuristics
that we should leave the face when the chopped gradient dominates the violation of the
Karush-Kuhn-Tucker conditions. The formula for η than reads

η = 1 −
αλ1

4
.
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6 Finite termination

Lemma 6.1. Let {xk} denote the sequence generated by Algorithm 3.1 with a given Γ > 0.
Then there is k0 such that for k ≥ k0

F(x) ⊆ F(xk), F(x) ⊆ F(xk − αϕ̃(xk)) and B(x) ⊆ B(xk). (6.1)

Proof: Since (6.1) is trivially satisfied when there is k = k0 such that xk = x, we shall
assume in what follows that xk 6= x for any k ≥ 0.

Let us first assume that F(x) 6= ∅ and B(x) 6= ∅, so that

ǫ = min{xi : i ∈ F(x)} > 0 and δ = min{gi(x) : i ∈ B(x)} > 0.

Since by Theorem 5.1 {xi} converges to x, there is k0 such that for any k ≥ k0

gi(x
k) ≤

ǫ

4
for i ∈ F(x) (6.2)

xk
i ≥

αǫ

2
for i ∈ F(x) (6.3)

xk
i ≤

αδ

4
for i ∈ B(x) (6.4)

gi(x
k) ≥

δ

2
for i ∈ B(x). (6.5)

In particular, for k ≥ k0, the first inclusion of (6.1) follows from (6.3), while the second
inclusion follows from (6.2) and (6.3) as for i ∈ F(x)

xk
i − αϕi(x

k) = xk
i − αgi(x

k) ≥
αǫ

2
−

αǫ

4
> 0

.
Let k ≥ k0 and observe that, by (6.4) and (6.5), for any i ∈ B(x )

xk
i − αgi(x

k) ≤
αδ

4
−

αδ

2
< 0,

so that if some xk+1, k ≥ k0 is generated by the expansion step and i ∈ B(x ), then

xk+1
i = (xk

i − αgi(x
k))+ = 0

and B(xk+1) ⊇ B(x ). Moreover, using (6.5) and definition of Algorithm 3.1, we can directly
verify that if B(xk) ⊇ B(x ), then also B(xk+1) ⊇ B(x ). Thus it remains to prove that
there must be some s ≥ k0 such that xs is generated for by the expansion step.
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Let us examine what may happen for k ≥ k0. First observe that if xi > 0 for
some i ∈ B(x ), then we can never take the full conjugate direction step in the direction
pk = ϕ(xk). The reason is that

αcg(p
k) =

ϕ(xk)g(xk)

ϕ(xk)⊤Aϕ(xk)
=

‖ϕ(xk)‖2

ϕ(xk)⊤Aϕ(xk)
≥ ‖A‖−1 ≥ α,

so that for i ∈ F(xk)
⋂
B(x), by (6.4) and (6.5),

xk
i − αcgp

k
i = xk

i − αcggi(x
k) ≤ xk

i − αgi(x
k) ≤

αδ

4
−

αδ

2
< 0. (6.6)

It follows by definition of Algorithm 3.1 that if xk, k ≥ k0 is generated by the proportioning
step, then the following trial conjugate gradient step is not feasible and xk+1 is necessarily
generated by the expansion step.

To complete the proof, observe that Algorithm 3.1 can generate only a finite sequence
of consecutive iterates by the conjugate gradient steps. In particular, it follows by the
finite termination property of the conjugate gradient method [1] that if there is neither
proportioning step nor the expansion step for k ≥ k0, then there is l ≤ n such that
ϕ(xk0+l) = 0. Thus either xk0+l = x and by the definition of the step (i) of Algorithm 3.1
B(xk) = B(x) for k ≥ k0 + l, or xk0+l is not strictly proportional and the next iterate is
generated by the proportioning step followed by the expansion step. This completes the
proof, as the cases F(x) = ∅ and B(x) = ∅ may be easily proved by the specialization of
the above arguments. 2

Corollary 6.2. Let {xk} denote the sequence generated by Algorithm 3.1, and let the
solution x satisfies the condition of strict complementarity, i.e. xi = 0 implies gi(x) 6= 0.
Then there is k ≥ 0 such that xk = x.
Proof: If x satisfies the condition of strict complementarity, then A(x) = B(x), and by
assumptions and Lemma 6.1, there is k0 ≥ 0 such that F(xk) = F (x) and B(xk) = B(x).
Thus all xk, k ≥ k0 that satisfy x 6= xk−1 are generated by the conjugate gradient steps
and by the finite termination property of the conjugate gradient method there is k ≤ k0+n
such that xk = x. 2

Our final goal in this section is to obtain the result on finite termination of Algorithm
3.1 for the solution of (1.1) in case that it does not satisfy the condition of strict comple-
mentarity. We shall base our analysis on our earlier result on proportioning.

Theorem 6.3. Let x ∈ Ω and κ(A)1/2 ≤ Γ. Denote I = A(x), and suppose that

Γ‖ϕ(x)‖ < ‖β(x)‖. (6.7)
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Then the vector y = x − ‖A‖−1β(x) satisfies

j(y) < min{f(z) : z ∈ WI} (6.8)

where WI is defined in (3.10).
Proof: See [10]. 2

Lemma 6.4. Let α ∈ (0, ‖A‖−1], x ∈ Ω and y = x − αϕ̃(x). Then

‖ϕ(y)‖2 ≤ 4ϕ̃⊤(x)ϕ(x) and ‖β(y)‖ ≥ ‖β(x)‖ − 2‖ϕ̃(x)‖. (6.9)

Proof: Let us denote F = F(y) and notice that F(y) ⊆ F(x). Since

g(y) = g(x) − αAϕ̃(x) and ϕ̃F (x) = ϕF (x) = gF (x), (6.10)

we get

‖ϕ(y)‖ = ‖gF (y)‖ = ‖gF (x) − αAF ϕ̃(x)‖ ≤ ‖ϕ̃F (x)‖ + α‖AF ϕ̃(x)‖ ≤ 2‖ϕ̃(x)‖. (6.11)

Using (6.11) and the definition of ϕ̃(x), we get

‖ϕ(y)‖2 ≤ 4‖ϕ̃(x)‖2 ≤ 4ϕ̃T (x)ϕ(x). (6.12)

To prove the second inequality of (6.9), denote B = {i ∈ A(x) : gi(x) ≤ 0} and notice
that

A(y) ⊇ A(x) ⊇ B, (6.13)

so that

‖β(y)‖ = ‖gA(y)(y)−‖ ≥ ‖gB(y)−‖ = ‖(gB(x) − αABϕ̃(x))−‖

= ‖(βB(x) − αABϕ̃(x))−‖. (6.14)

Using in sequence ‖βB(x)‖ = ‖β(x)‖, ‖αABϕ̃(x)‖ ≤ ‖ϕ̃(x)‖, (6.14), properties of the
norm, β−(x) = β(x), and ‖z − z−‖ ≤ ‖z − t‖ for any t with non-positive entries, we get

‖β(x)‖ − ‖ϕ̃(x)‖ − ‖β(y)‖ ≤ ‖βB(x)‖ − ‖αABϕ̃(x)‖ − ‖(βB(x) − αABϕ̃(x))−)‖

≤ ‖(βB(x) − αABϕ̃(x))‖ − ‖(βB(x) − αABϕ̃(x))−‖

≤ ‖(βB(x) − αABϕ̃(x)) − (βB(x) − αABϕ̃(x))−‖

≤ ‖(βB(x) − αABϕ̃(x)) − βB(x)‖ ≤ ‖ϕ̃(x)‖.
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This proves the second inequality of (6.9). 2

Corollary 6.5. Let Γ ≥ 2, α ∈ (0, ‖A‖−1], x ∈ Ω and

Γ2ϕ̃⊤(x)ϕ(x) < ‖β(x)‖2. (6.15)

Then the vector y = x − αϕ̃(x) satisfies

Γ − 2

2
‖ϕ(y)‖ < ‖β(y)‖. (6.16)

Proof: The inequality (6.16) holds trivially for Γ = 2. For Γ > 2, using (6.9), ‖ϕ̃(x)‖2 ≤
ϕ̃⊤(x)ϕ(x) and (6.15), we get

‖β(y)‖ ≥ ‖β(x)‖ − 2‖ϕ̃(x)‖ ≥ ‖β(x)‖ − 2
√

ϕ̃⊤(x)ϕ(x) > (1 − 2Γ−1)‖β(x)‖. (6.17)

The inequality (6.16) follows from (6.15), (6.17) and (6.9). 2

Theorem 6.6. Let {xk} denote the sequence generated by Algorithm 3.1. with

Γ ≥ 2

(√
κ(A) + 1

)
. (6.18)

Then there is k ≥ 0 such that xk = x.
Proof: Let xk be generated by Algorithm 3.1 and let Γ satisfy (6.18). Let k0 be that
of Lemma 6.1 and let k ≥ k0 be such that xk is not strictly proportional, so that
Γ2ϕ̃(xk)⊤ϕ(xk) < ‖β(xk)‖2. Then by Corollary 6.5 the vector y = xk − αϕ̃(xk) satis-
fies

Γ1‖ϕ(y)‖ < ‖β(y)‖ (6.19)

with

Γ1 =
Γ − 2

2
≥

√
κ(A).

Moreover, y ∈ Ω and by Lemma 6.1 and definition of y

A(x) ⊇ A(y) ⊇ A(xk) ⊇ B(xk) ⊇ B(x), (6.20)

so that by Theorem 6.3 the vector

z = y − ‖A‖−1β(y)

satisfies
f(z) < min{f(x) : x ∈ WI} (6.21)
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with I = A(y). Since I satisfies by (6.20) A(x) ⊇ I ⊇ B(x), we have also

f(x) = min{f(x) : x ∈ Ω} = min{f(x) : x ∈ WI}. (6.22)

However, z ∈ Ω, so that (6.22) contradicts (6.21). Thus all xk are strictly proportional for
k ≥ k0 so that

A(xk0) ⊆ A(xk0+1) ⊆ . . . .

Using the finite termination property of the conjugate gradient method, we conclude that
there must be k such that x = xk. 2

7 Implementation of the algorithm

In this section, we shall describe in more details implementation of Algorithm 3.1 that
we use in our numerical experiments. The implementation differs from Algorithm 3.1
in that it exploits the current conjugate direction to generate an intermediate iteration
xk+ 1

2 before the expansion step that generates xk from xk+ 1

2 . Such modification does not
require any additional matrix-vector multiplication and the estimate (5.1) remains valid

as f(xk+ 1

2 ) − f(xk) ≤ 0 and

f(xk+1)−f(x) ≤ η(f(xk+ 1

2 )−f(x)) = η((f(xk+ 1

2 )−f(xk))+f(xk)−f(x)) ≤ η(f(xk)−f(x)).

We also adapted the algorithm so that it can carry out the minimization over more general
set Ω = {x : l ≤ x} defined by a given n-vector l. If l 6= 0 then the reduced gradient is
defined by

ϕ̃i = ϕ̃i(x) = min{(xi − li)/α, ϕi}.

We describe our algorithm in an easily understandable variant of the Matlab-like lan-
guage. To preserve readability, we do not distinguish generations of variables by indices
unless it is convenient for further reference.

Algorithm 7.1 (MODIFIED PROPORTIONING WITH REDUCED GRADIENT PRO-
JECTIONS (MPRGP)). Given a symmetric positive definite matrix A of the order n and
n-vectors b, l, Ω = {x : l ≤ x}, x0 ∈ Ω, Γ > 0, α ∈ (0, ‖A‖−1] and ǫ > 0.
Step 0. {Initialization.}

Set k = 0, r = Ax0 − b, p = ϕ(x0)
while ‖ν(xk)‖ > ǫ

if ‖β(xk)‖2 ≤ Γ ϕ̃(xk)⊤ϕ(xk)
Step 1. {Proportional xk. Trial conjugate gradient step.}

αcg = r⊤p/p⊤Ap, y = xk − αcgp
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αf = max{α : xk − αp ∈ Ω}.
if αcg ≤ αf

Step 2. {Conjugate gradient step.}
xk+1 = y, r = r − αcgAp,
γ = ϕ(y)⊤Ap/p⊤Ap, p = ϕ(y) − γp

end if
else

Step 3. {Expansion step.}

xk+ 1

2 = xk − αfp; r = r − αfAp;

xk+1 = PΩ(xk+ 1

2 − αϕ(xk+ 1

2 )),
r = Axk+1 − b, p = ϕ(xk+1)

end else
end if
else

Step 4. { Proportioning step.}
d = β(xk), αcg = r⊤d/d⊤Ad,
xk+1 = xk − αcgd, r = r − αcgAd, p = ϕ(xk+1)

end else
k = k + 1

end while
Step 5. {Return solution.}

x = xk.

8 Numerical experiments

We have implemented our algorithm in Matlab and compared its performance with that
of two other algorithms on 1D and 2D inner obstacle problems. We used the stopping
criterion ‖ν(x)‖ ≤ 10−5‖b‖, α = ‖A‖∞ and Γ = 1.

The first problem arises from the discretization of the problem to find the minimum
of

f(u) =
1

2

∫ 0.5

0
‖u′(x)‖2dx +

∫ 0.5

0
udx

subject to u ∈ K, where

K = {u ∈ H1[0, 0.5] : l ≤ u on (0, 0.5) and u(0) = u′(0.5) = 0}.

The problem was discretized by linear finite elements on a regular grid with 50 nodal
variables.
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Table 1: Performance of the algorithm on 1D problems
Support Algorithm nA Active constraints

l MPRGP 116 23
l MP 112 23
l Polyak 360 23
c MPRGP 153 19
c MP 179 19
c Polyak 537 19

We have used two supports in our tests. The circular support c was defined by the
lower part of the circle of radius R = 2.03 with center S = (.5, 1.943). The line support l
was defined by the horizontal line y = −.04.

To solve the problem, we used the algorithm MPRPG of the previous section and, for
comparison, also the monotone proportioning MP [9] and the Polyak algorithm Polyak
[23]. We started our computations always from x0 = 0. The parameters of the circular
support are such that if we start the solution with x0 = 0, the first constraints that are
activated in the process of solution are later released. We use the line support to examine
the performance of the algorithm on problems with expanding active set. The performance
of the MPRGP algorithm on problems with shrinking active set is similar to that of any
other proportioning algorithm with the same Γ.

The results of computations are in Table 1. The computational cost is measured by
the number nA of the multiplications by the matrix A.

The second problem is the minimization of

f(u) =
1

2

∫

Ω
‖∇u(x)‖2dΩ +

∫

Ω
udΩ

subject to u ∈ K, where Ω = [0, 0.5] × [0, 0.5] and

K = {u ∈ H1(Ω) : l ≤ u on Ω, u(x, .5) = uy(x, .5) = u(.5, y) = ux(.5, y) = 0 for (x, y) ∈ Ω}.

The problem was discretized using the linear finite elements on a regular grid with 50
nodal variables in each direction. The results for the sphere obstacle s defined by the
radius R = 5 and center S = (0, 0, 4.94) and for the plane obstacle p defined by z = −.05
are in Table 2.

The tables indicate that the performance of the MPRPG algorithm is for the problems
considered comparable to the efficient proportioning algorithms. Let us mention that the
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Table 2: Performance of the algorithm on 2D problems
Support Algorithm nA Active constraints

p MPRGP 260 283
p MP 283 283
p Polyak 1897 283
s MPRGP 484 245
s MP 491 245
s Polyak 1207 245

solution of the related unconstrained problems in D1 and D2 required 51 and 147 conjugate
gradient iterations, respectively.

9 Comments and conclusions

We presented a new variant of the active set based algorithm for the solution of strictly
convex quadratic programming problems with inexact solution of auxiliary linear prob-
lems. The unique feature of the new algorithm is balanced treatment of the chopped and
free gradients that enables to prove both its rate of convergence and its finite termination
property even for problems whose solution does not satisfy the strict complementary con-
dition. The algorithm avoids any backtracking at the cost of using the upper bound on
the spectral norm of the Hessian matrix. The experiments show that its performance is
comparable with that of some other efficient methods.

The rate of convergence of the new algorithm seems to be a bit pessimistic as it is
even worse than that of the gradient projection (4.4). The reason is that it is based on
analysis of particular steps and does not take into account better estimates of the rate
of convergence for the conjugate gradient method [1, 20] that yield much more efficient
performance of the algorithm in consecutive conjugate gradient steps. In spite of that
our estimate seems to be a considerable improvement over qualitative convergence results
of related algorithms based on sufficient decrease condition that were discussed in the
introduction.

Due to the finite termination property of the algorithm, the algorithm switches at cer-
tain stage to the conjugate gradient method, so that the nice self-accelerating properties
of the latter [26] necessarily apply in the final stage of computation. Let us recall that
there are algorithms with even superlinear convergence (e. g. Coleman and Hulbert [5]),
but their typical step requires solution of related linear problem which may be comparable
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with solution of the whole problem by the algorithm presented here. The algorithm pre-
sented here is an important ingredient in development of scalable algorithms for numerical
solution of elliptic variational inequalities based on the FETI methods [13, 14, 15, 24, 25].
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