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Abstract

In this paper, the second order boundary value problem −∇·(A(x, y)∇u) = f is discretized
by the Finite Element Method using piecewise polynomial functions of degree p on a triangular
mesh. On the reference element, we define integrated Jacobi polynomials as interior ansatz
functions. If A is a constant function on each triangle and each triangle has straight edges,
we prove that the element stiffness matrix has not more than 25/2p2 nonzero matrix entries.
An application for preconditioning is given. Numerical examples show the efficiency of the
proposed basis.

1 Introduction

In this paper, we investigate the following boundary value problem: Let Ω ⊂ R2 be a bounded
domain and let A(x, y) be a matrix which is symmetric and uniformly positive definite in Ω. Find
u ∈ H1

Γ1
(Ω) = {u ∈ H1(Ω), u = 0 on Γ1}, Γ1 ∩ Γ2 = ∅, Γ1 ∪ Γ2 = ∂Ω such that

a4(u, v) :=
∫

Ω

(∇u)TA(x, y)∇v =
∫

Ω

fv +
∫

Γ2

f1v := 〈f, v〉Ω + 〈f1, v〉Γ2 (1.1)

holds for all v ∈ H1
Γ1

(Ω). Problem (1.1) will be discretized by means of the hp-version of the finite
element method using triangular elements 4s, s = 1, . . . , nel. Let 4̂ be the reference triangle and
Fs : 4̂ → 4s be the (possibly nonlinear) isoparametric mapping to the element 4s. We define the
finite element space M := {u ∈ H1

Γ1
(Ω), u |4s= ũ(F−1

s (x, y)), ũ ∈ Pp}, where Pp is the space of
all polynomials of maximal total degree p.
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By Ψ = (ψ1, . . . , ψN ), we denote a basis forM in which the functions ψ1, . . . , ψnv are the usual hat
functions. The functions ψnv+(j−1)(p−1)+1, . . . , ψnv+j(p−1) correspond to the edge ej of the mesh,
and vanish on all other edges, i.e. satisfy the condition ψnv+(j−1)(p−1)+k−1 |el

= δj,lpk, where pk

is a polynomial of degree p, k = 2, . . . , p. The support of an edge function is formed by those two
elements, which have this edge ej in common. The remaining basis functions are interior bubble
functions consisting of a support containing one element only. These functions vanish on each edge
of the mesh. With this definition, the basis functions ψi can be divided into three groups,

• the vertex functions,

• the edge bubble functions,

• the interior bubbles,

locally on each element 4s, and globally on Ω.
The Galerkin projection of (1.1) onto M leads to the linear system of algebraic finite element
equations

KΨu = f, where KΨ = [a∆(ψj , ψi)]
N
i,j=1 , f

p
= [〈f, ψi〉+ 〈f1, ψi〉Γ2 ]

N
i=1 . (1.2)

The global stiffness matrix KΨ can be expressed by the local stiffness matrices on the elements,
i.e.

KΨ =
nel∑
s=1

RT
s KsRs, (1.3)

where Ks is the stiffness matrix on the element 4s and Rs denotes the connectivity matrix for the
numbering of the shape functions on 4s and Ω.
Using the vector u, an approximation up = Ψu of the exact solution u of (1.1) can be built by
the usual finite element isomorphism. In the case of smooth solutions u in parts of the domain
Ω, spectral methods, [21], and finite elements of high order (p-version), see e.g. [26], [27], and the
references therein, have become more popular for twenty years. For the h-version of the FEM, the
polynomial degree p of the shape functions on the elements is kept constant and the mesh-size h
is decreased. This is in contrast to the the p-version of the FEM in which the polynomial degree p
is increased and the mesh-size h is kept constant. Both ideas, mesh refinement and increasing the
polynomial degree, can be combined. This is called the hp-version of the FEM.
The advantage of the p-version in comparison to the h-version is that the solution converges faster
to the exact solution with respect to the number of unknowns N . However, the choice of a basis Ψ
in which the element stiffness matrix Ks has O(N) nonzero matrix entries is a difficult question. In
the one-dimensional case, i.e. for the differential equation −u′′+u = f , one can take the primitives
over orthogonal polynomials in order to get a sparse system matrix, see e.g. [20]. In the 2D and
3D case, the choice of a basis which is optimal due to condition number and sparsity of KΨ is not
so clear. In [7], several bases have been investigated due to the condition number. In the case
of rectangular elements 4s and Laplacian, one can take tensor products of integrated Legendre
polynomials, see e.g. [6], [20]. Then, the element stiffness matrix Ks has O(N) nonzero matrix
entries and KΨ can be computed in O(N) operations via (1.3). However, in the case of a general
quadrilateral element 4s with nonparallel opposite edges, most of the orthogonality relations of the
rectangular case disappear and Ks (and hence KΨ) has O(N2) matrix entries. Using a quadrature
rule, the cost in order to obtain KΨ is O(p6). In [24], tensor products of Lagrangian polynomials
on the grid of the Gauss-Lobatto points are proposed. Then, the cost for computing Ks by a
quadrature rule is O(N2), or O(p4). This approach can be extended to the triangular case by the
Duffy transformation. Here, the choice of a basis in which Ks has O(N) matrix entries for some
elements 4s is more difficult.

2



In this paper, we will present basis functions such that the element stiffness matrix Ks has O(p2)
nonzero matrix entries in the case of piecewise constant coefficients A(x, y) on the elements 4s

and affine linear mappings Fs. Moreover, each nonzero matrix entry can be computed in O(1)
operations. So, the matrix vector multiplication and the generation of the stiffness matrix can be
done in O(N) arithmetical operations.
Let us briefly motivate the construction of the basis functions which is similar to the construction
for spectral elements in [12]. The difficulty in the triangular case is the construction of orthogonal
polynomials on the triangle with respect to the L2( ˆtriangle scalar product. Let 4̂ be the triangle
with the vertices (−1,−1), (1,−1) and (0, 1) and set

gij(x, y) = h1,i

(
2x

1− y

)
(1− y)ih2,j(y), i, j ≥ 0, i+ j ≤ p,

where h1,i and h2,i are some polynomials of degree i specified later. In order to satisfy the orthog-
onality relations, the numbers

γi,j,k,l =
∫
4̂
h1,i

(
2x

1− y

)
(1− y)ih2,j(y)h1,k

(
2x

1− y

)
(1− y)kh2,l(y) d(x, y)

=
∫ 1

−1

∫ 1−y
2

y−1
2

h1,i

(
2x

1− y

)
h1,k

(
2x

1− y

)
(1− y)i+kh2,l(y)h2,j(y) dx dy

have to be zero if i 6= k or j 6= l. With the Duffy transformation z = 2x
1−y , we obtain

γi,j,k,l =
1
2

∫ 1

−1

h1,i(z)h1,k(z) dz
∫ 1

−1

(1− y)i+k+1h2,l(y)h2,j(y) dy.

In order to obtain γi,j,k,l = δikδjlρ̃iρ̂j , where δik is the Kronecker delta, we have to use polynomials
of degree i which are orthogonal with respect to the weight 1, i.e. Legendre polynomials, for h1,i.
For h2,i polynomials which are orthogonal with respect to the weight function (1 − x)2i+1, i.e.
special Jacobi polynomials, should be used. This should motivate the choice of the functions

φij(x, y) = p̂0
i

(
2x

1− y

)
(1− y)ip̂2i−1

j (y),

where p̂α
i are the primitives over the orthogonal polynomials of degree i−1 with respect to (1−x)α,

for the interior bubbles in section 3.
The direct application of this result is the fast generation of the matrix KΨ and the fast matrix
vector multiplication KΨu in the case of piecewise constant coefficients and polygonal bounded
domains in (1.1). Moreover, there is another application for preconditioning systems of linear
algebraic equations arising from the p-version of the finite element method. It is well known
from the literature that pcg-methods with domain decomposition preconditioners of Dirichlet-
Dirichlet-type are one of the most efficient iterative solvers for systems of the type (1.2), see
e.g. [15], [6], [4], [20], [18], [19], [22], [11]. Corresponding to the partition of basis functions
Ψ = [ΨV ,ΨE ,ΨI ] = [ΨC ,ΨI ], i.e. C = V ∪ E, let

KΨ =
[
KC KCI

KIC KI

]
=

[
I KCIK−1

I

0 I

] [
S 0
0 KI

] [
I 0

K−1
I KIC I

]
(1.4)

be the block structure of the stiffness matrix with the Schur-complement S = KC −KCIK−1
I KIC .

The domain decomposition preconditioner will be of the form

C =
[
I −ET

0 I

] [
CS 0
0 CI

] [
I 0
−E I

]
, (1.5)

where
3



• CI is a preconditioner for KI ,

• CS is a preconditioner for the Schur-complement S = KC −KCIK−1
I KIC and

• E is the matrix representation of an extension operator acting from the edges of the elements
into the interior.

Preconditioners for the Schur-complement have been proposed in [18], [19], [20], [2], [16] and [22].
For CI , several preconditioners have been developed for the quadrilateral (hexahedron), see e.g.
[20], [9], [10], [23]. The papers [6], [8], [3] and [25] deal with the extension operator for the p-version
of the FEM using triangular or tetrahedral elements. In [11], see also [17], an algebraic analysis
of a preconditioner of the type (1.5) is given. In this paper, we will propose a relatively simple
preconditioner for KI and (based on this) a matrix representation for the extension operator.
This remaining part of this paper is organized as follows. In section 2, we formulate and prove
the most important properties of Jacobi polynomials and their primitives. In section 3, the shape
functions on the reference triangle 4̂ are defined and the main result of this paper, Theorem
3.3, is formulated. In section 4, we give two applications of this result, fast matrix evaluation
and preconditioning. Section 5 is very technical, Theorem 3.3 is proved. Finally, we show some
numerical experiments in section 6. In the appendix, we give the reader an impression of the
computation of the nonzero matrix entries of the element stiffness matrix.
Throughout this paper, the reference triangle 4̂ is the triangle with the vertices (−1,−1), (1,−1)
and (0, 1). The parameter nel denotes the number of elements, where the parameter p denotes the
polynomial degree. By Fs, we denote the isoparametric mapping from 4̂ to the triangle 4s.

2 Properties of Jacobi polynomials with weight (1− x)α

For the definition of our basis functions on the reference element, Jacobi polynomials are required.
In this section, we will summarize the most important properties of Jacobi polynomials. We refer
the reader to the books of Abramowitz and Stegun, [1], Andrews, Askey and Roy, [5], and Tricomi,
[28], for more details. Moreover, we will state and prove some properties which only hold for
polynomials with weight (1− x)α.
Let

pα
n(x) =

1
2nn!(1− x)α

dn

dxn

(
(1− x)α(x2 − 1)n

)
n ∈ N0, α > −1 (2.1)

be the n−th Jacobi polynomial with respect to the weight function (1 − x)α(1 + x)0. pα
n(x) is a

polynomial of degree n, i.e. pα
n ∈ Pn((−1, 1)), where Pn is the space of all polynomials of degree n

on the interval. In the special case α = 0, the functions are called Legendre polynomials. Moreover,
let

p̂α
n(x) =

∫ x

−1

pα
n−1(y) dy n ≥ 1, p̂α

0 (x) = 1 (2.2)

be the n−th integrated Jacobi polynomial with respect to the weight function (1− x)α(1 + x)0.

Lemma 2.1. Let pα
n and p̂α

n be defined via (2.1) and (2.2). Moreover, let j, l ∈ N0 and α > −1.
Then, we have

pα
n(−1) = (−1)n, pα

n(1) =
(
n+ α
n

)
,

d
dx
pα

n(1) =
n

2

(
n+ α+ 1

n

)
, (2.3)
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where
(
i
j

)
is the binomial coefficient i over j. Moreover, the relations

pα
n(x) =

n∑
k=0

2−n

(
n
k

) (
n+ α
n− k

)
xn +

n−1∑
j=0

ζjx
j , ζj ∈ R, (2.4)

pα−1
n (x) =

1
α+ 2n

[
(α+ n)pα

n(x)− npα
n−1(x)

]
, (2.5)

pα
n+1(x) =

2n+ α+ 1
(2n+ 2)(n+ α+ 1)(2n+ α)

(
(2n+ α+ 2)(2n+ α)x+ α2

)
pα

n(x)

− n(n+ α)(2n+ α+ 2)
(n+ 1)(n+ α+ 1)(2n+ α)

pα
n−1(x), n ≥ 1, (2.6)

and the integral relations∫ 1

−1

(1− x)αpα
j (x)pα

l (x) dx = ρα
j δjl, where ρα

j =
2α+1

2j + α+ 1
, (2.7)∫ 1

−1

(1− x)αpβ
j (x)ql(x) dx = 0 ∀ql ∈ Pl, α− β ∈ N0, j > l + α− β (2.8)

are valid.

Proof. • Relations (2.3) and (2.4) are direct consequences of (2.1).

• Relation (2.6) is the recurrence for the Jacobi polynomials, [1].

• Relation (2.7) is the orthogonality relation of the Jacobi polynomials.

• Relation (2.8) follows from (2.7):∫ 1

−1

(1− x)αpβ
j (x)ql(x) dx =

∫ 1

−1

(1− x)βpβ
j (x)ql(x)(1− x)α−β dx

=
∫ 1

−1

(1− x)βpβ
j (x)q̃l+α−β(x) dx,

where q̃l+α−β(x) ∈ Pl+α−β . Since
∫ 1

−1
(1 − x)βpβ

j (x)qm(x) dx = 0 for m < j, i.e. pβ
j (x) is

orthogonal to all polynomials of degree m < j with respect to the scalar product with weight
(1− x)β , this integral is zero for j > l + α− β which proves (2.8).

• Formula (2.5) can be found in e.g., [5]. In order to prove it, the polynomial pα−1
n is represented

in the basis of the Jacobi polynomials pα
n, i.e.

pα−1
n (x) =

n∑
i=0

γip
α
i (x), γi ∈ R.

Using (2.8) and (2.7) for l < n− 1 and β = α− 1, we have

0 =
∫ 1

−1

(1− x)αpα−1
n (x)pα

l (x) dx =
n∑

i=0

γi

∫ 1

−1

(1− x)αpα
i (x)pα

l (x) dx

=
n∑

i=0

γiδilρ
α
i = ρα

l γl.
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So,
pα−1

n (x) = γnp
α
n(x) + γn−1p

α
n−1(x).

In order to compute the coefficients γn and γn−1, we insert the values at the points x = ±1.
With (2.3), we obtain

γn − γn−1 = 1,
(
n+ α
n

)
γn +

(
n+ α− 1
n− 1

)
γn−1 =

(
n+ α− 1

n

)
.

Hence, a simple computation gives

γn =
α+ n

α+ 2n
and γn−1 = − n

α+ 2n
,

which proves the assertion.

The next lemma considers properties of the integrated Jacobi polynomials (2.2).

Lemma 2.2. Let l, j ∈ N0. Let pα
n and p̂α

n be defined via (2.1) and (2.2). Then, the recurrence
relations

p̂α
n(−1) = 0, n ≥ 1, (2.9)

p̂α
n(x) =

2n+ 2α
(2n+ α− 1)(2n+ α)

pα
n(x) +

2α
(2n+ α− 2)(2n+ α)

pα
n−1(x)

− 2n− 2
(2n+ α− 1)(2n+ α− 2)

pα
n−2(x), n ≥ 2, (2.10)

p̂α
n+1(x) =

2n+ α− 1
(2n+ 2)(n+ α)(2n+ α− 2)

((2n+ α− 2)(2n+ α)x+ α(α− 2)) p̂α
n(x)

− (n− 1)(n+ α− 2)(2n+ α)
(n+ 1)(n+ α)(2n+ α− 2)

p̂α
n−1(x), n ≥ 1, (2.11)

p̂α
n(x) =

1
2n+ α− 1

(
pα−1

n (x) + pα−1
n−1(x)

)
, n ≥ 1 (2.12)

and the integral relations∫ 1

−1

(1− x)αp̂α
j (x)p̂α

l (x) dx = 0 if |j − l| > 2, (2.13)∫ 1

−1

(1− x)αp̂β+1
j (x)ql(x) dx = 0 ∀ql ∈ Pl, α− β ∈ N0, j > l + 1 + α− β (2.14)

are valid.

Proof. Relation (2.9) is a direct consequence of (2.2). In order to show (2.10), we have∫
(1− x)αpα

l (x) dx =
1

2ll!

∫
dl

dxl

[
(x2 − 1)l(1− x)α

]
dx

=
1

2ll!
dl−1

dxl−1

[
(x2 − 1)l(1− x)α

]
+ C

by (2.1). Thus, ∫
(1− x)αpα

l (x) dx = (1− x)α+1(1 + x)ql−1(x) + C, (2.15)
6



where ql−1 ∈ Pl−1 and C is some constant. Now, we compute m(0)
jl =

∫ 1

−1
(1 − x)αp̂α

j (x)pα
l (x) dx

by partial integration. Due to (2.8), m(0)
jl = 0 for j < l. Using (2.15), (2.2) and α > −1, one

obtains

m
(0)
jl = (1− x)α+1(1 + x)ql−1(x)p̂α

j (x)
∣∣1
−1
−

∫ 1

−1

(1− x)α+1(1 + x)ql−1(x)pα
j−1(x) dx

=
∫ 1

−1

(1− x)α(1− x2)ql−1(x)pα
j−1(x) dx.

The function (1 − x2)ql−1(x) is a polynomial of degree l + 1. Using (2.8), m(0)
jl = 0 for j > l + 2.

Hence as in the proof of relation (2.5), one can conclude

p̂α
n(x) = βnp

α
n(x) + βn−1p

α
n−1(x) + βn−2pn−2(x) (2.16)

with coefficients βn, βn−1 and βn−2. Using (2.4), one obtains βn = 2n+2α
(2n+α−1)(2n+α) . The numbers

βn−1 and βn−2 can be computed by inserting x = ±1 into (2.16) and using (2.3) and (2.9).
In order to prove (2.12), we start from (2.10) and obtain

p̂α
n(x) =

n+ α

2n+ α

pα
n(x)

2n+ α− 1
+

2αpα
n−1(x)

(2n+ α− 1)(2n+ α)
− n− 1

2n+ α− 2
pα

n−2(x)
2n+ α− 1

=
pα−1

n (x)
2n+ α− 1

+
pα−1

n−1(x)
2n+ α− 1

by using two times relation (2.5). Relation (2.11) follows from (2.10) and (2.6), whereas relation
(2.13) follows from (2.10) and (2.7). Relation (2.14) follows from (2.12).

The most important results are the formulas (2.10) and (2.6). With relation (2.6), we are able
to compute recursively function values of the Jacobi polynomials, relation (2.10) gives a simple
formula between the Jacobi and integrated Jacobi polynomials.
Finally, we need two properties of integrated Legendre polynomials, i.e. p̂0

n. Using (2.7), one
obtains

p̂0
n(1) = 0 for n ≥ 2. (2.17)

A direct consequence of (2.10) with α = 0 is

(1− y)p̂0
j−1(y) = − j − 1

2j − 3
p̂0

j−2(y) + p̂0
j−1(y)−

j

2j − 3
p̂0

j (y), j ≥ 3. (2.18)

3 Element stiffness matrix

In this section, we define the shape functions on the reference element. Then, we will formulate
the main theorem of this section in which we state that the element stiffness matrix has about
25/2p2 nonzero matrix entries. The parameter p denotes the polynomial degree.

3.1 Definition of the shape functions

Let 4̂ be the reference triangle with the vertices (−1,−1), (1,−1) and (0, 1) and the edges e2 =
{(x, y) ∈ R2,−1 ≤ y ≤ 1, 2x = 1 − y}, e3 = {(x, y) ∈ R2,−1 ≤ y ≤ 1,−2x = 1 − y} and
e1 = {(x, y)) ∈ R2,−1 ≤ x ≤ 1, y = −1}.
Using the polynomials (2.2), we define the shape functions on the element 4̂:

7



• Vertex functions:

φV,1/2(x, y) =
1± 2x− y

4
and φV,3(x, y) =

1 + y

2
. (3.1)

Let ΦV = [φV,1, φV,2, φV,3] be the basis of the vertex functions.

• Edge bubble functions: For the edge e1, we define

φe1,i(x, y) = p̂0
i

(
2x

1− y

)
(1− y)i, 2 ≤ i ≤ p. (3.2)

For the remaining two edges e2 and e3, the definition is different:

φe2/e3,i(x, y) =
1± 2x− y

2
p̂0

i (y), 1 ≤ i ≤ p− 1. (3.3)

By Φek
= [φek,i]

p
i=2, k = 1, 2, 3, we denote the bases of the edge bubble functions on the

edges e1, e2 and e3 and ΦE = [Φe1 ,Φe2 ,Φe3 ] is the basis of all edge bubble functions.

• Interior bubbles: Here, the functions

φij(x, y) = p̂0
i

(
2x

1− y

)
(1− y)ip̂2i−1

j (y), i+ j ≤ p, i ≥ 2, j ≥ 1, (3.4)

are used. Moreover, ΦI = [φij ]
i+j≤p
i≥2,j≥1 denotes the basis of the interior bubbles.

• Finally, let Φ = [ΦV ,ΦE ,ΦI ] be the set of all shape functions on 4̂.

The most important properties are summarized in the following proposition.

Proposition 3.1. • The functions (3.4) are polynomials of degree i+j. Moreover, φij(x, y) =
0 holds for (x, y) ∈ ek with k = 1, 2, 3. So, φij(∂4̂) = 0, i ≥ 2, j ≥ 1.

• The edge bubble functions (3.2), (3.3) are polynomials of degree p and satisfy the property

φek,i(ej) = 0, if j 6= k,max{3− k, 1} ≤ i ≤ max{p− 1, p+ 1− k}.

• The vertex functions (3.1) are the usual hat functions.

• The functions (3.1), (3.2), (3.3), (3.4) span a basis in the space of all polynomials of degree
p.

Proof. We start with the first assertion: Since p̂0
i is a polynomial of degree i, p̂0

i

(
2x

1−y

)
(1− y)i is

a polynomial of degree i in x and y. Let
[
x
y

]
∈ e1. Thus,

[
x
y

]
=

[
0
1

]
+ t

[
1
0

]
, t ∈ [−1, 1].

By (3.4), we have φij(x, y) = p̂0
i (

2t
2 )2ip̂2i−1

j (−1). Using (2.9) with α = 2i− 1, one easily concludes
φij(x, y) = 0 for (x, y) ∈ e1.

Let
[
x
y

]
∈ e2. Thus, [

x
y

]
=

[
1
2
0

]
+
t

2

[
−1
2

]
, t ∈ [−1, 1].

8



Using (3.4) and (2.17), we have

φij(x, y) = p̂0
i

(
2(1/2− t/2)

1− t

)
(1− t)ip̂2i−1

j (t) = p̂0
i (1)(1− t)ip̂2i−1

j (t) = 0,

which proves the assertion that φij(x, y) = 0 for (x, y) ∈ e2.
By the same arguments, the assertion φij(x, y) = 0 for (x, y) ∈ e3 and the second assertion can be
proved. The third assertion is trivial. The last assertion follows from the first three assertions and
the linear independence of the functions (3.1), (3.2), (3.3), and (3.4).

Remark 3.2. Since, p̂α
0 (y) ≡ 1, the edge bubble functions Φe1 (3.2) can be written as φe1,i(x, y) =

φi,0(x, y), i = 2, . . . , p.

3.2 Properties of the element stiffness matrix

Let A =
[
a b
b c

]
and let

K̂ =
∫
4̂

(∇Φ(x, y))TA∇Φ(x, y) d(x, y) (3.5)

is the stiffness matrix on 4̂ with respect to the basis Φ. According to the partitioning of the basis
Φ into vertex functions, edge bubble functions and interior bubble functions, the matrix K̂ can be
split into 3× 3 blocks, i.e.

K̂ =

 K̂V,(A) K̂V,E,(A) K̂V,I,(A)

K̂E,V,(A) K̂E,(A) K̂E,I,(A)

K̂I,V,(A) K̂I,E,(A) K̂I,(A)

 , (3.6)

where the matrix

K̂I,(A) = [aij,kl](i,j);(k,l) =
[∫
4̂

(∇φij(x, y))TA∇φkl(x, y) d(x, y)
]
(i,j);(k,l)

(3.7)

is the block of the interior bubbles.
Now, we are able to formulate the main theorem of this section.

Theorem 3.3. Let K̂ be defined via (3.5)-(3.7). Then, the matrix K̂ has O(p2) nonzero matrix
entries. More precisely, aij,kl = 0 if |i − k| > 2 or |i − k + j − l| > 2. In the special case of
the matrix K̂I,(I), i.e. A is the identity matrix, the entries of aij,kl are zero if |i − k| 6∈ {0, 2} or
|i− k − l + j| > 2.

A detailed proof of this theorem will be given in section 5.
Now, we will extend this result to more general triangles 4s. Let 4s be a triangle and let
Fs : 4̂ 7→ 4s be the affine linear mapping from the reference element to 4s. On 4s, we define the
shape functions

Φs = Φ ◦ F−1
s . (3.8)

Let
Ks =

∫
4s

(∇Φs(x, y))TA∇Φs(x, y) d(x, y) (3.9)

be the stiffness matrix with respect to the basis Φs.
9



Theorem 3.4. Let Ks be defined via (3.9). Then, the matrix Ks has O(p2) nonzero matrix entries.

Proof. Since Fs is an affine linear mapping, F−1
s is affine linear too, and ∇F−1

s is constant. By
the transformation F−1

s from 4s to 4̂ and (3.8), we have

Ks =
∫
4s

(∇Φs(x, y))TA∇Φs(x, y) d(x, y)

=
∫
4̂

[∇Φ(x̂, ŷ)]T (∇F−1
s )TA∇F−1

s |det(∇Fs)|∇Φ(x̂, ŷ) d(x̂, ŷ)

=
∫
4̂

[∇Φ(x̂, ŷ)]T As∇Φ(x̂, ŷ) d(x̂, ŷ), (3.10)

where As = |det(∇Fs)|(∇F−1
s )TA∇F−1

s is a constant positive definite matrix. Using Theorem
3.3, the assertion follows.

3.3 Modification of the edge bubble functions on the edges e2 and e3.

With the definition of the functions (3.2), (3.3), the edge bubble basis functions restricted to an
edge are integrated Legendre polynomials, i.e. p̂0

j (x), j = 2, . . . , p on the edge e1 and functions
(1 − x)p̂0

j (x), j = 1, . . . , p − 1, on the remaining two edges e2 and e3. Globally, we will use
integrated Legendre polynomials on each edge in order to ensure that our basis functions are
globally continuous. So, the basis functions can be extended much simpler to a neighboring element.
More precisely, let

φ̃e2/e3,j(x, y) =
1± 2x− y

2− 2y
p̂0

j (y), j = 2, . . . , p. (3.11)

Since p̂0
j (1) = 0, the functions in (3.11) are polynomials of degree p. Moreover, φ̃ek,j(x, y) = p̂0

j (y)
for (x, y) ∈ ek, k = 2, 3. So, these functions are integrated Legendre polynomials on the edges e2
and e3. Between the bases (3.11) and (3.3), one has a basis transformation, i.e.

Φ̃ek
=

[
φ̃ek,2(x, y), . . . , φ̃ek,p(x, y)

]
= [φek,1(x, y), . . . , φek,p−1(x, y)]W, k = 2, 3. (3.12)

Lemma 3.5. Let W be defined via (3.12). Then,

W =



−2 0 0 . . .
1 −1 0 . . .

− 1
5 1 − 4

5 0 . . . 0
− 2

7 1 − 5
7 0 0

...
. . .

. . . 0 − p−3
2p−3 1 − p

2p−3


.

Proof. The assertion follows from relation (2.18).

Now, let
Φ̃ =

[
ΦV , Φ̃E ,ΦI

]
with Φ̃E =

[
Φe1 , Φ̃e2 , Φ̃e3

]
(3.13)

and

K̃ =
∫
4̂

(∇Φ̃(x, y))TA∇Φ̃(x, y) d(x, y), K̃s =
∫
4s

(∇Φ̃s(x, y))TA∇Φ̃s(x, y) d(x, y). (3.14)
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Theorem 3.6. Let K̃ and K̃s be defined via (3.14). Then,

K̃ =

 I
WT

E

I

K
 I

WE

I

 with WE = blockdiag [I,W,W ] . (3.15)

Moreover, the multiplications K̃u and K̃su can be done in O(p2) operations.

Proof. The first assertion follows from (3.5), (3.14) and (3.12). The second assertion is a conse-
quence of Theorem 3.3 and Lemma 3.5 for K̃ and Theorem 3.4 and Lemma 3.5 for K̃s.

4 Applications

In this section, we give two applications of the results of section 3 for the discretization of the
boundary value problem (1.1) using for the hp-version of the finite element method.

4.1 Fast hp-FEM for straight triangles with sparse matrices

In this subsection, let us assume that

• the domain Ω is bounded by polygons and

• the matrix A(x, y) is piecewise constant on subdomains Ωi ⊂ Ω which are bounded by
polygons, too.

In order to find an approximate solution of (1.1), we use a finite element mesh of triangles 4s,
which satisfy the following two properties:

• the matrix A(x, y) is constant on 4s,

• the edges of the element 4s are straight lines.

Let Fs : 4̂ 7→ 4s be the affine linear mapping. On each element, we take the basis Φ̃s, i.e.

Φ̃s = Φ̃ ◦ F−1
s , (4.1)

cf. (3.8) and (3.13) with polynomial degree ps. Let Ψ be the corresponding global basis and let
p = maxs ps be the maximal polynomial degree over all triangles 4s.

Theorem 4.1. Let us assume that each element 4s of the triangulation is bounded by straight lines
and that A(x, y) is constant on each element. Let KΨ be defined in (1.2), (1.3). Then, the operation
KΨu requires O(p2) operations. Moreover, the generation of KΨ requires O(p2) operations.

Proof. The first assertion follows from Theorem 3.6. Concerning the second assertion, the method
in order to derive explicit formulas for the nonzero matrix entries of K̂, see (3.6), is explained in
the appendix. Using (3.10) and (3.15), the assertion follows.

Summarizing, we have proposed a method, in which the cost for the generation of the stiffness
matrix KΨ and for the multiplication KΨu is proportionally to the number of unknowns with
respect to the polynomial degree p.
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4.2 A simple preconditioner for the interior bubbles

In subsection 4.1, we have investigated the special case of a polygonal bounded domain Ω and
piecewise constant coefficients A(x, y). In the case of curved boundaries, it is well known from
the literature to use curved triangles on the boundary of Ω. Then, the mapping Fs : 4̂ 7→ 4s

is nonlinear on some triangles 4s. Hence, the matrix As in (3.10) is not constant on 4̂. So, we
are not able to apply Theorem 3.4 and the element stiffness matrix As has O(p4) matrix entries.
Thus, the operation KΨu requires O(p4) operations.
However, we can derive a preconditioner for the block of the interior bubbles which is efficient
for this case. Corresponding to the partition of basis functions Ψ = [ΨV ,ΨE ,ΨI ] = [ΨC ,ΨI ], i.e.
C = V ∪ E, let

KΨ =
[
KC KCI

KIC KI

]
be the block structure of the stiffness matrix, see (1.4).
Now, we will derive a preconditioner of the form (1.5) for the matrix KΨ. By (1.3), the global
stiffness matrix is the result of assembling local stiffness matrices K̃s, i.e. KΨ =

∑nel
s=1R

T
s K̃sRs.

In the following, we investigate the preconditioner

C0 =
nel∑
s=1

LsC0L
T
s , (4.2)

where
C0 =

∫
4̂

(∇Φ̃(x, y))T∇Φ̃(x, y) d(x, y).

In this preconditioner, the stiffness matrix for the Laplacian on the reference element is assembled
on each element. Then, it can be shown, see e.g. [20], that κ(C0

− 1
2KΨC0

− 1
2 ) = O(1) under the

assumption that the angles of all triangles are distinct from 0 and π. According to (1.4), we
consider a block decomposition of C0, i.e.

C0 =
[
CC CCI

CIC CI

]
. (4.3)

By (4.2), the matrix CI is a block diagonal matrix, one block corresponds to the interior bubbles
of one element. Due to (3.7), (4.2), (3.14) and (3.13), each block is equal to the matrix K̂I,(I), i.e.

CI = blockdiag
[
K̂I,(I)

]nel

s=1
. By Theorem 3.3, the matrix K̂I,(I) has a special nonzero pattern which

is displayed in Figure 1. This pattern is similar to a stencil structure. The maximal bandwidth is
2p − 2. So, the Cholesky factorization can be computed in O(p4) operations. Using a reordering
of the unknowns, i.e. the method of minimal degree or the method of nested disection, [13], this
arithmetical cost can be reduced to O(p3), [14]. Figure 2 displays the nonzero pattern of several
Cholesky factors. Due to (1.5), we propose now the preconditioner

C1 =
[
I CCIC−1

I

0 I

] [
CS 0
0 CI

] [
I 0

C−1
I CIC I

]
, (4.4)

where CS is a preconditioner for the Schur complement and CI and CIC are taken from (4.3). We
summarize the above observations in the following theorem.

Theorem 4.2. Let C1 be defined via (4.4). Moreover, let CS be a preconditioner for the Schur
complement such that C−1

S v requires not more than O(p3) operations and

c1 (CSv, v) ≤ (Sv, v) ≤ c2 (CSv, v) ∀v
12



Figure 1: Nonzero pattern of K̂I,(I) for p = 130.

Figure 2: Nonzero pattern of the Cholesky factor of K̂I,(I) for p = 130: without permutation of
the unknowns (left) and with minimal degree permutation (right).
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and some constants c1, c2. Then, κ(C1
− 1

2KΨC1
− 1

2 ) = O( c2
c1

). The operation C−1
1 u requires O(p3)

operations.

Remark 4.3. 1. So, we have to use a preconditioner for the Schur-complement in the basis of
the integrated Legendre polynomials which requires not more than O(p3) operations. Begin-
ning with the Schur complement preconditioners developed in [6], several preconditioners have
been proposed in the literature, see e.g., [20], or [22] which is based on the multi-resolution
analysis done in [10]. The cost of C−1

S v is of order p.

2. The cost of C−1
1 u is O(p3) and not O(p2), which would be optimal. However, the matrix

vector-multiplication requires, in general, O(p4) operations. So, this preconditioner is efficient
enough. The most expensive operation of the preconditioner (4.4) is the computation of the
Cholesky decomposition for K̂I,(I), which have to be done only one times before starting the
pcg-method.

5 Proof of Theorem 3.3.

In this section, we will prove the main theorem of this paper. We will split the proof into several
auxiliary results. In a first lemma, we give a formula for the derivative of the interior bubble
functions (3.4).

Lemma 5.1. Let φij be defined via (3.4). Then,

∇φij =

 2p0
i−1

(
2x

1−y

)
(1− y)i−1p̂2i−1

j (y)

p0
i−2

(
2x

1−y

)
(1− y)i−1p̂2i−1

j (y) + p̂0
i

(
2x

1−y

)
(1− y)ip2i−1

j−1 (y)

 . (5.1)

Proof. Using (2.2), one easily derives the expression for ∂φij

∂x . In order to compute ∂φij

∂y , we use
the product rule and obtain

∂φij

∂y
(x, y) = p0

i−1

(
2x

1− y

)
2x(1− y)i−2p̂2i−1

j (y)

−ip̂0
i

(
2x

1− y

)
(1− y)i−1p̂2i−1

j (y)

+p̂0
i

(
2x

1− y

)
(1− y)ip2i−1

j−1 (y). (5.2)

Using (2.6), we have

2x
1− y

p0
i−1

(
2x

1− y

)
=

i

2i− 1
p0

i

(
2x

1− y

)
+

i− 1
2i− 1

p0
i−2

(
2x

1− y

)
. (5.3)

Moreover, by (2.10), one easily derives

−ip̂0
i

(
2x

1− y

)
= − i

2i− 1

[
p0

i

(
2x

1− y

)
− p0

i−2

(
2x

1− y

)]
. (5.4)

Inserting (5.4) and (5.3) into (5.2) proves the assertion.

In a second step, we will determine the nonzero structure of several weighted mass matrices
M1, . . . ,M8 with respect to the polynomials (2.1) and (2.2) on the unit interval I = (−1, 1).
All these matrices have a banded structure and all matrix entries depend on the parameter i.
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Lemma 5.2. Let

M1 =
[
m

(1,i)
j,l

]
j,l

=
[∫ 1

−1

(1− y)2i−2p̂2i−3
j (y)p̂2i−1

l (y) dy
]

j,l

.

Then, m(1,i)
j,l = 0 if j > l + 1 or l > j + 3.

Proof. By (2.14) with α = β = 2i − 2, we can conclude m(1,i)
j,l = 0 for j > l + 1. In the case

l > j + 3, we use (2.14) with α = 2i− 2 and β = 2i− 4.

Lemma 5.3. Let

M2 =
[
m

(2)
j,l

]
j,l

=
[∫ 1

−1

(1− y)2i−1p̂2i−1
j (y)p2i−3

l (y) dy
]

j,l

.

Then, m(2)
j,l = 0 if j > l + 2 or l > j + 2.

Proof. The proof is similar to the proof of Lemma 5.1.

Lemma 5.4. Let

M3 =
[
m

(3)
j,l

]
j,l

=
[∫ 1

−1

(1− y)2i+1p̂2i−1
j (y)p2i+1

l (y) dy
]

j,l

.

Then, m(3)
j,l = 0 if j > l + 4 or l > j.

Proof. Using (2.7), we have m(3)
j,l = 0 for l > j. If j > l + 4, we use (2.14).

Lemma 5.5. Let j, l ≥ 0 and

M4 =
[
m

(4)
j,l

]
j,l

=
[∫ 1

−1

(1− y)2i+1p2i−1
j (y)p2i−1

l (y) dy
]

j,l

.

Then, m(4)
j,l = 0 if j > l + 2 or l > j + 2.

Proof. The assertion follows from relation (2.8) with α = 2i+ 1 and β = 2i− 1.

Lemma 5.6. Let j, l ≥ 0 and

M5 =
[
m

(5)
j,l

]
j,l

=
[∫ 1

−1

(1− y)2i−1p2i−1
j (y)p2i−5

l (y) dy
]

j,l

.

Then, m(5)
j,l = 0 if j > l or l > j + 4.

Proof. Using (2.5), we have

p2i−2
j (x) =

1
2i+ 2j − 1

[
(2i− 1 + j)p2i−1

j (x)− jp2i−1
j−1 (x)

]
,

p2i−3
j (x) =

1
2i+ 2j − 2

[
(2i− 2 + j)p2i−2

j (x)− jp2i−2
j−1 (x)

]
,

p2i−4
j (x) =

1
2i+ 2j − 3

[
(2i− 3 + j)p2i−3

j (x)− jp2i−3
j−1 (x)

]
, and

p2i−5
j (x) =

1
2i+ 2j − 4

[
(2i− 4 + j)p2i−4

j (x)− jp2i−4
j−1 (x)

]
.
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So, the polynomial p2i−5
j (x) can be represented as a linear combination of p2i−1

j (x), p2i−1
j−1 (x),

p2i−1
j−2 (x), p2i−1

j−3 (x) and p2i−1
j−4 (x). Using (2.7), the assertion follows.

Lemma 5.7. Let j, l ≥ 0 and

M6 =
[
m

(6)
j,l

]
j,l

=
[∫ 1

−1

(1− y)2ip̂2i−1
j (y)p2i−1

l (y) dy
]

j,l

.

Then, m(6)
j,l = 0 if j > l + 3 or l > j + 1.

Proof. The assertion follows from relation (2.8) with α = 2i and β = 2i − 1 and relation (2.14)
with α = 2i and β = 2i− 2.

Lemma 5.8. Let j, l ≥ 0 and

M7 =
[
m

(7)
j,l

]
j,l

=
[∫ 1

−1

(1− y)2i−1p̂2i−1
j (y)p̂2i−1

l (y) dy
]

j,l

.

Then, m(7)
j,l = 0 if j > l + 2 or l > j + 2.

Proof. The assertion follows from (2.14) with α = 2i− 1 and β = 2i− 2.

Lemma 5.9. Let j, l ≥ 0 and

M8 =
[
m

(8)
j,l

]
j,l

=
[∫ 1

−1

(1− y)2i−2p̂2i−1
j (y)p2i−5

l (y) dy
]

j,l

.

Then, m(8)
j,l = 0 if j > l + 1 or l > j + 3.

Proof. The assertion follows from (2.14) with α = β = 2i − 2 and (2.8) with α = 2i − 2 and
β = 2i− 5.

Now, we consider the matrix

K̂I,x =
[
a
(x)
ij,kl

]
(i,j);(k,l)

=
[∫
4̂

∂φij(x, y)
∂x

∂φkl(x, y)
∂x

d(x, y)
]
(i,j);(k,l)

. (5.5)

Lemma 5.10. Let K̂I,x be defined via relation (5.5). Then, a(x)
ij,kl = 0 if i 6= k and |j − l| > 2.

Proof. Using (5.5), (5.1) and the substitution z = 2x
1−y , we obtain

a
(x)
ij,kl =

∫
4̂

2p0
i−1

(
2x

1− y

)
(1− y)i−1p̂2i−1

j (y)2p0
k−1

(
2x

1− y

)
(1− y)k−1p̂2k−1

l (y) d(x, y)

=
∫ 1

−1

∫ 1−y
2

y−1
2

p0
i−1

(
2x

1− y

)
p0

k−1

(
2x

1− y

)
4(1− y)i+k−2p̂2i−1

j (y)p̂2k−1
l (y) dx dy

=
∫ 1

−1

p0
i−1(z)p

0
k−1(z) dz

∫ 1

−1

2(1− y)i+k−1p̂2i−1
j (y)p̂2k−1

l (y) dy.
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By (2.7), we have
∫ 1

−1
p0

i−1(z)p
0
k−1(z) dz = ρ0

i−1δik. Inserting this into the above equation, one
easily concludes

a
(x)
ij,kl = ρ0

i−1δik

∫ 1

−1

2(1− y)i+k−1p̂2i−1
j−1 (y)p̂2k−1

l−1 (y) dy

= ρ0
i−1δik

∫ 1

−1

2(1− y)2i−1p̂2i−1
j (y)p̂2i−1

l (y) dy

= ρ0
i−1δik2m(7)

j,l .

Using Lemma 5.8, the second integral is zero if |j − l| > 2. This proves the assertion.

In a next step, the matrix

K̂I,y =
[
a
(y)
ij,kl

]
(i,j);(k,l)

[∫
4̂

∂φij(x, y)
∂y

∂φkl(x, y)
∂y

d(x, y)
]
(i,j);(k,l)

(5.6)

is investigated.

Lemma 5.11. Let K̂I,y be defined via relation (5.6). Then, a(y)
ij,kl = 0 if |i − k| 6∈ {0, 2} or

|i+ j − k − l| > 2.

Proof. The proof is similar to the proof of Lemma 5.10. With the substitution z = 2x
1−y (Duffy

transformation), and relations (5.1) and (5.6), we obtain

a
(y)
ij,kl =

∫ 1

−1

∫ 1

−1

[
p0

i−2(z)(1− y)i−1p̂2i−1
j (y) + p̂0

i (z)(1− y)ip2i−1
j−1 (y)

]
×

[
p0

k−2(z)(1− y)k−1p̂2k−1
l (y) + p̂0

k(z)(1− y)kp2k−1
l−1 (y)

] 1− y

2
dz dy

=
1
2

(∫ 1

−1

p0
i−2(z)p

0
k−2(z) dz

∫ 1

−1

(1− y)i+k−1p̂2i−1
j (y)p̂2k−1

l (y) dy

+
∫ 1

−1

p0
i−2(z)p̂

0
k(z) dz

∫ 1

−1

(1− y)i+kp̂2i−1
j (y)p2k−1

l−1 (y) dy

+
∫ 1

−1

p̂0
i (z)p

0
k−2(z) dz

∫ 1

−1

(1− y)i+kp2i−1
j−1 (y)p̂2k−1

l (y) dy

+
∫ 1

−1

p̂0
i (z)p̂

0
k(z) dz

∫ 1

−1

(1− y)i+k+1p2i−1
j−1 (y)p2k−1

l−1 (y) dy
)

:=
1
2

(
a
(y,1)
ij,kl + a

(y,2)
ij,kl + a

(y,3)
ij,kl + a

(y,4)
ij,kl

)
. (5.7)

Now, we start with a(y,1)
ij,kl . Using (2.7), one derives

a
(y,1)
ij,kl =

∫ 1

−1

p0
i−2(z)p

0
k−2(z) dz

∫ 1

−1

(1− y)i+k−1p̂2i−1
j (y)p̂2k−1

l (y) dy

= ρ0
i−2δi,k

∫ 1

−1

(1− y)2i−1p̂2i−1
j (y)p̂2i−1

l (y) dy = ρ0
i−2δi,km

(7)
j,l .

By Lemma 5.8, we have
a
(y,1)
ij,kl = 0 if i 6= k ∨ |j − l| > 2. (5.8)
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The next term is a(y,2)
ij,kl . Using (2.10) with α = 0 and (2.7), one obtains

a
(y,2)
ij,kl =

∫ 1

−1

p0
i−2(z)p̂

0
k(z) dz

∫ 1

−1

2(1− y)i+kp̂2i−1
j (y)p2k−1

l−1 (y) dy

=
1

2k − 1

∫ 1

−1

p0
i−2(z)(p

0
k(z)− p0

k−2(z)) dz
∫ 1

−1

(1− y)i+kp̂2i−1
j (y)p2k−1

l−1 (y) dy.

:=
ρ0

i−2

2k − 1
(δi−2,k − δi−2,k−2)ti,k,j,l.

So, the factor before ti,k,j,l is zero if i− 2 = k or i = k. In the case i− 2 = k, we have

ti,i−2,j,l =
∫ 1

−1

(1− y)2i−2p̂2i−1
j (y)p2i−5

l−1 (y) dy = m
(8)
j,l−1.

By Lemma 5.9, ti,i−2,j,l = 0 if j > l or l > j + 4. In the case i = k, one obtains

ti,i,j,l =
∫ 1

−1

(1− y)2ip̂2i−1
j (y)p2i−1

l−1 (y) dy = m
(6)
j,l−1.

By Lemma 5.7, ti,i,j,l = 0 if j > l + 2 or l > j + 2. Summarizing,

a
(y,2)
ij,kl = 0 if (i 6= k ∨ |j − l| > 2) ∧ (i− 2 6= k ∨ |j + 2− l| > 2). (5.9)

By symmetry with respect to i and k, and j and l,

a
(y,3)
ij,kl = 0 if (i 6= k ∨ |j − l| > 2) ∧ (k − 2 6= i ∨ |l + 2− j| > 2). (5.10)

The last summand in (5.7) is a(y,4)
ij,kl . Using (2.10) and (2.7) again, a simple computation gives

a
(y,4)
ij,kl =

(
(ρ0

i + ρ0
i−2)δik

(2i− 1)2
− δi,k−2ρ

0
i + δi−2,kρ

0
k

(2i− 1)(2k − 1)

) ∫ 1

−1

(1− y)i+k+1p2i−1
j−1 (y)p2k−1

l−1 (y) dy. (5.11)

The first factor of (5.11) is zero if |i− k| 6∈ {0, 2}. If i = k, then

a
(y,4)
ij,il =

ρ0
i + ρ0

i−2

(2i− 1)2

∫ 1

−1

(1− y)2i+1p2i−1
j−1 (y)p2i−1

l−1 (y) dy =
ρ0

i + ρ0
i−2

(2i− 1)2
m

(4)
j−1,l−1.

By Lemma 5.5, a(y,4)
ij,il = 0 if |j − l| > 2. If k = i− 2, then

a
(y,4)
i,j;i−2,l =

−ρ0
i−2

(2i− 1)(2i− 5)

∫ 1

−1

(1− y)2i−1p2i−1
j−1 (y)p2i−5

l−1 (y) dy =
−ρ0

i−2

(2i− 1)(2i− 5)
m

(5)
j−1,l−1.

Using Lemma 5.6, a(y,4)
i,j;i−2,l = 0 if |j + 2 − l| > 2. By symmetry with respect to i and k, j and l,

we have a(y,4)
i−2,j;i,l = 0 if |l + 2− j| > 2. Summarizing,

a
(y,4)
ij,kl = 0 if (i 6= k ∨ |j − l| > 2) ∧ (|i− k| 6= 2 ∨ |j + i− k − l| > 2). (5.12)

Inserting (5.8), (5.9), (5.10), and (5.12) into (5.7), we can conclude

a
(y)
ij,kl = 0 if |i− k| 6∈ {0, 2} ∨ |j + i− k − l| > 2),

which proves the assertion.
18



Finally, we consider the matrix

K̂I,xy =
[
a
(xy)
ij,kl

]
(i,j);(k,l)

=
[∫
4̂

∂φij(x, y)
∂x

∂φkl(x, y)
∂y

d(x, y)
]
(i,j);(k,l)

. (5.13)

Lemma 5.12. Let K̂I,xy be defined via relation (5.13). Then, a(xy)
ij,kl = 0 if |i − k| 6= 1 and

|i+ j − k − l| > 2.

Proof. As in the proof of Lemma 5.11, we obtain

a
(xy)
ij,kl =

∫ 1

−1

p0
i−1(z)p

0
k−2(z) dz

∫ 1

−1

(1− y)i+k−1p̂2i−1
j (y)p̂2k−1

l (y) dy

+
∫ 1

−1

p0
i−1(z)p̂

0
k(z) dz

∫ 1

−1

(1− y)i+kp̂2i−1
j (y)p2k−1

l−1 (y) dy

:= a
(xy,1)
ij,kl + a

(xy,2)
ij,kl

using (5.1) and (5.6). By (2.7), one derives

a
(xy,1)
ij,kl = ρ0

i−1δi−1,k−2

∫ 1

−1

(1− y)2i−2p̂2i−1
j (y)p̂2i−3

l (y) dy = m
(1)
j,l .

By Lemma 5.2, a(xy,1)
ij,kl = 0 if i 6= k − 1 or |l + 1− j| > 2.

Using (2.10) and (2.7), we have

a
(xy,2)
ij,kl =

ρ0
i−1

2k − 1
(δi−1,k − δi−2,k−1)

∫ 1

−1

(1− y)i+kp̂2i−1
j (y)p2k−1

l−1 (y) dy.

So a(xy,2)
ij,kl is zero if |i− k| 6= 1. In the case k = i− 1, we conclude

a
(xy,2)
i,j;i−1,l =

ρ0
i−1

2i− 3

∫ 1

−1

(1− y)2i−1p̂2i−1
j (y)p2i−3

l−1 (y) dy = m
(2)
j,l−1.

By Lemma 5.3, a(xy,2)
i,j;i−1,l is zero if |j + 1− l| > 2. If k − 2 = i− 1, i.e. i+ 1 = k, one obtains

a
(xy,2)
i,j;i+1,l =

ρ0
i−1

2i− 3

∫ 1

−1

(1− y)2i+1p̂2i−1
j (y)p2i+1

l−1 (y) dy = m
(3)
j,l−1.

By Lemma 5.4, a(xy,2)
i,j;i+1,l is zero if l − 1 < j or l > j − 3. Summarizing a(xy)

ij,kl = 0 if |i − k| 6= 1 or
|i+ j − k − l| > 2. This proves the assertion.

Summarizing Lemmas 5.10, 5.11 and 5.12, we have shown the following result.

Lemma 5.13. Let φij, i ≥ 2, j ≥ 0 be defined via (3.4). Then,

aij,kl =
∫
4̂

(∇φij(x, y))TA∇φkl(x, y) d(x, y) = 0

if i− k 6∈ {−2,−1, 0, 1, 2} or |i+ j − k − l| > 2.
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In a last step, we consider the coupling between the edge block corresponding to e2 or e3 and the
interior bubbles.
By a simple computation, we obtain

∇φe2/3,l(x, y) =

[
±p̂0

l (y)
− 1

2 p̂
0
l (y) + 1

2

(
1± 2x

1−y

)
(1− y)p0

l−1(y)

]
. (5.14)

Lemma 5.14. The following assertions are valid for k = 2, 3.

1. For all i, j, l ∈ N, we have ∫
4̂

∂φek,l

∂x

∂φij

∂x
d(x, y) = 0.

2. For i ≥ 4 or |l − j − 0.5− i| > 2.5, we have∫
4̂

∂φek,l

∂y

∂φij

∂y
d(x, y) = 0.

3. For i ≥ 4 or |l − j − 0.5− i| > 2.5, we have∫
4̂

∂φek,l

∂x

∂φij

∂y
d(x, y) = 0.

4. For i ≥ 4 or |l − j − 0.5− i| > 2.5, we have∫
4̂

∂φek,l

∂y

∂φij

∂x
d(x, y) = 0.

Proof. The proof of this result is similar as the proof of Lemmas 5.10-5.12.

Finally, we give the proof of Theorem 3.3:

Proof. The symmetric matrix K̂ (3.6) has 9 blocks, where K̂V,(A) ∈ R3×3, K̂V,E,(A) ∈ R3×3p−3,
K̂V,E,(A) ∈ R3×(p−1)(p−2)/2 and K̂E,(A) ∈ R3p−3×3p−3. So, it suffices to investigate the remaining
blocks K̂E,I,(A) and K̂I,(A). For K̂E,I,(A), we can conclude from Lemma 5.14 (for edges e2 and e3)
and Lemma 5.13 with Remark 3.2 (for edge e1) that this matrix has O(p) nonzero matrix entries.
For the matrix K̂I,(A), the assertion follows from Lemma 5.13. The special structure of the nonzero
matrix entries for K̂I,(I) follows from Lemmas 5.10 and 5.11.

Remark 5.15. With the arguments in Lemmas 5.10-5.14, one can prove the relation K̂V,I,(A) = 0.
Moreover, the matrix K̂V,E,(A) has O(1) nonzero matrix entries and the matrix K̂E,(A) has O(p)
nonzero matrix entries.

6 Numerical Experiments

In this section, we will present two numerical experiments. In the first experiment, we determine the
arithmetical cost in order to compute the matrix K̂I,(I) (3.7). This matrix has about 15/2 p2 ≈ 15N
nonzero matrix entries. The results are compared with the computation of the element matrix
stiffness matrix for the Laplacian using sum factorization, [24]. The cost of this algorithm is
O(p4). In order to get measurable results, we have computed both matrices 100 times. The
computations are executed on a Pentium IV, 2400 MHz. Table 1 displays the time in order to
compute the matrix block for the interior bubbles using
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p explicit sum factor.
5 ¡0.004 0.016
9 0.004 0.078

13 0.012 0.272
19 0.035 1.411
25 0.059 4.153
31 0.098 9.813
37 0.133 26.265
43 0.180 43.393
49 0.234 83.156
59 0.340
69 0.473

Table 1: Time in order to compute the matrix block for the interior bubbles 100 times.

• the basis functions (3.1)-(3.4) and explicit formulas, see the appendix,

• using sum factorization.

From the results, one can see the high speed for the generation of the stiffness matrix if the basis
functions (3.1)-(3.4) are used.
In a second example, we measure the quality of a possible preconditioner C−1

I for K̂I,(I) (3.7),
see subsection 4.2. First, we determine the number of nonzero matrix entries of the Cholesky
factor without permutation, and with the method of minimal degree starting from the first and
last column of K̂I,(I) for several polynomial degrees p up to 130.

p K̂I,(I) Cholesky Minimal degree with start
first row last row

10 168 188 178 174
20 1082 1992 1713 1777
30 2795 7395 5860 6024
40 5307 18397 14085 14196
50 8619 36999 27187 27343
60 12733 65203 45650 45216
70 17644 105004 71895 68578
80 23354 158404 101478 97745
90 29685 227405 136635 134060
100 37179 314009 186376 176898
110 45291 420211 239246 224198
120 54207 548017 297884 280076
130 63922 699422 383028 343644

Table 2: Nonzero matrix entries for K̂I,(I) and its Cholesky factors.

From the results, one can see that about six times of the memory of the matrix K̂I,(I) is required
in order to save its Cholesky factor for p = 130.
Finally, we determine maximal and minimal eigenvalue of the matrix Ĉ−1

k K̂I,(I), where

[Ĉk]ij =

{
[K̂I,(I)]ij if |i− j| ≤ k[
K̂

]
ij

= 0 else ,
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k = 0, 2. Figure 3 displays the increase of maximal and minimal eigenvalue. For Ĉ0, i.e. it is
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Figure 3: Maximal and minimal eigenvalue of the matrix Ĉ−1
k K̂I,(I) for k = 0 (left) and k = 2

(right).

the diagonal part of K̂I,(I), the maximal eigenvalue is bounded whereas the minimal eigenvalue
goes to zero about proportionally to O(p−4). For Ĉ2, the minimal eigenvalue goes to zero about
proportionally to O(p−2). So, this reduces the condition number of the preconditioned system.
However, this idea does not yield to an optimal or a suboptimal preconditioner.

7 Open Questions and concluding remarks

Summarizing, the choice of the basis (3.4) has several advantages in order to get sparse system
matrices. All orthogonality arguments base on the integral relations (2.8) and (2.14), i.e. a
polynomial of degree p is orthogonal to all polynomials of degree p − k in some weighted scalar
product. Hence, the results of Theorem 3.3 and 3.4 can be extended to the case of piecewise
polynomial coefficients A(x, y), i.e. A(x, y)|4s

∈ Pk. Then, the matrix K̂I,(A) has about (5 +
2k)2p2/2 nonzero matrix elements.
For practical computations, a scaled version of the bubbles should be preferred, i.e.

φ̃ij(x, y) = p̂0
i

(
2x

1− y

) (
1− y

2

)i

p̂2i−1
j (y) =

φij(x, y)
2i

. (7.1)

Then, cf. (2.7) with α ≈ 2i−1, the nonzero entries of the matrix K̂I,(A) have no factor 4i which can
be very large for p = 50, . . . , 100. For the evaluation of the function values of the shape functions,
the recursions (2.6) and (2.11) can be used.
In general, this basis can be used as preconditioner for the block of the interior bubbles KI , see the
Domain Decomposition preconditioner C1 (4.4). This preconditioner is an optimal preconditioner
for KΨ. However, the cost in order to compute C−1

1 v is not proportionally to the number of
unknowns, i.e. O(p2) using Cholesky decomposition. Due to this fact, it is important to derive an
optimal solver in the case of a sparse stiffness matrix KΨ, too. It is a challenge to derive optimal
multilevel solvers for C1 which has been done for quadrilateral elements in [10], [9], [23].
Finally, we would like to mention that the approach can be extended to the 3D case. In the case
of the reference tetrahedron with the vertices (−1,−1,−1), (1,−1,−1), (0, 1,−1) and (0, 0, 1) one
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has to take the interior bubbles

φijk(x, y, z) = p̂0
i

(
4x

1− 2y − z

)
(1− 2y − z)ip̂2i−1

j

(
2y

1− z

)
(1− z)j p̂2i+2j−1

k (z). (7.2)

This will be presented in a forthcoming paper.

A Computation of the nonzero matrix entries of K̂

Now, we give the structure of the nonzero entries of K̂ (3.5).

A.1 Structure of the matrices M1 to M8

Due to the proofs of Lemmas 5.10-5.14, the matrices M1, . . . , M8 introduced in Lemmas 5.2-5.9 have to be
determined, in order to derive explicit formulas for the nonzero matrix entries of K̂. We will demonstrate
the idea for the example of the matrix M3 in Lemma 5.4, i.e.

M3 =
h
m

(3)
j,l

i
j,l

=

»Z 1

−1

(1− y2i+1p̂2i−1
j (y)p2i+1

l (y) dy

–
j,l

. (A.1)

The idea is based on the relations (2.10) and (2.5). Due to (2.10), we have

p̂2i−1
j (y) =

2(2i + j − 1)p2i−1
j (y)

(2i + 2j − 1)(2i + 2j − 2)
+

2(2i− 1)p2i−1
j−1 (y)

(2i + 2j − 1)(2i + 2j − 3)
−

2(j − 1)p2i−1
j−2 (y)

(2i + 2j − 2)(2i + 2j − 3)
.

Moreover, by (2.5), one has

pα−2
j−1 (y) =

(j + α− 1)pα−1
j−1 (y)− (j − 1)pα−1

j−2 (y)

α + 2j − 2
,

pα−1
j−1 (y) =

(j + α)pα
j−1(y)− jpα

j−2(y)

α + 2j
,

pα−2
j (y) =

(j + α− 1)pα−1
j−1 (y)− jpα−1

j−2 (y)

α + 2j − 1
,

i.e.

pα−2
j (y) =

(α + j)(α + j − 1)

(α + 2j)(α + 2j − 1)
pα

j (y)− 2j(α + j − 1)

(α + 2j)(α + 2j − 2)
pα

j−1(y)

+
j(j − 1)

(α + 2j − 1)(α + 2j − 2)
pα

j−2(y). (A.2)

Using (A.2) for α = 2i + 1 and j, j − 1 and j − 2, one obtains

p̂2i−1
j (y) =

2(2i + j + 1)(2i + j)(2i + j − 1)

(2i + 2j + 1)(2i + 2j)(2i + 2j − 1)(2i + 2j − 2)
p2i+1

j (y)

+2
(2i− 2j + 1)(2i + j)(2i + j − 1)

(2i + 2j + 1)(2i + 2j − 1)(2i + 2j − 2)(2i + 2j − 3)
p2i+1

j−1 (y)

− 12i(j − 1)(2i + j − 1)

(2i + 2j)(2i + 2j − 1)(2i + 2j − 3)(2i + 2j − 4)
p2i+1

j−2 (y)

+
2(j − 1)(j − 2)(6i + 2j − 3)

(2i + 2j − 1)(2i + 2j − 2)(2i + 2j − 3)(2i + 2j − 5)
p2i+1

j−3 (y)

− 2(j − 1)(j − 2)(j − 3)

(2i + 2j − 2)(2i + 2j − 3)(2i + 2j − 4)(2i + 2j − 5)
p2i+1

j−4 (y). (A.3)
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Lemma A.1. Let M3 be defined via (A.1). Then,

m
(3)
jj = 4i+1 2(2i + j + 1)(2i + j)(2i + j − 1)

(2i + 2j + 2)(2i + 2j + 1)(2i + 2j)(2i + 2j − 1)(2i + 2j − 2)
,

m
(3)
j,j−1 = 4i+1 2(2i− 2j + 1)(2i + j)(2i + j − 1)

(2i + 2j + 1)(2i + 2j)(2i + 2j − 1)(2i + 2j − 2)(2i + 2j − 3)
,

m
(3)
j,j−2 = −4i+1 12i(j − 1)(2i + j − 1)

(2i + 2j)(2i + 2j − 1)(2i + 2j − 2)(2i + 2j − 3)(2i + 2j − 4)
,

m
(3)
j,j−3 = 4i+1 2(j − 1)(j − 2)(6i + 2j − 3)

(2i + 2j − 1)(2i + 2j − 2)(2i + 2j − 3)(2i + 2j − 4)(2i + 2j − 5)
,

m
(3)
j,j−4 = −4i+1 2(j − 1)(j − 2)(j − 3)

(2i + 2j − 2)(2i + 2j − 3)(2i + 2j − 4)(2i + 2j − 5)(2i + 2j − 6)
.

Proof. The assertion follows from (A.3) and (2.7).

Finally, the structure of the nonzero entries of the matrices M1 to M8:
Let

(a)n = a(a + 1) · . . . · (a + n− 1).

• Matrix M1:

m
(1,i)
j,j−1 = −4i 2(j2 + 2ji− 4j − 3 + 5i− 2i2)

(2i + 2j − 6)5
, (A.4)

m
(1,i)
jj = 4i 2(2i− 3)(2i + j − 3)

(2i + 2j − 5)5
, m

(1,i)
j,j−2 = −4i 2(2i− 3)(j − 1)

(2i + 2j − 7)5
,

m
(1,i)
j,j−3 = 4i (j − 1)(j − 2)

(2i + 2j − 8)5
, m

(1,i)
j,j+1 = 4i (2i + j − 3)(2i + j − 2)

(2i + 2j − 4)5
.

• Matrix M2:

m
(2)
jj = 4i 4(i− 2)(4i2 − 8i + 2ji− 2j + 3 + j2)

(2i + 2j − 4)5
,

m
(2)
j,j−1 = 4i 2(j − 3 + 2i)(2j2 + 2ji− 3j − 10i + 4 + 4i2)

(2i + 2j − 5)5
,

m
(2)
j,j−2 = −4i 2(2i + j − 4)2(j − 1)

(2i + 2j − 6)5
, (A.5)

m
(2)
j,j+1 = −4i 2(j + 1)(2j2 − 5j + 6ji− 16i + 6 + 8i2)

(2i + 2j − 3)5
,

m
(2)
j,j+2 = 4i 2(2i + j − 1)(j + 1)(j + 2)

(2i + 2j − 2)5
.

• Matrix M4:

m
(4)
jj = 22i+3 3j4 + 12ij3 − 2j2i− 3j2 + 20i2j2 − 6ij + 16i3j − 4i2j + 8i4 − 2i2 + 2i− 8i3

(2i + 2j − 2)5
,

m
(4)
j+2,j = m

(4)
j,j+2 = 22i+2 (j)2(2i + j − 1)2

(2i + 2j)5
, (A.6)

m
(4)
j+1,j = m

(4)
j,j+1 = −22i+3 (4i2 + 4ij + 2j2 + 2j − 1)(2 + j)(2i + j + 1)

(2i + 2j − 1)5
.
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• Matrix M5:

m
(5)
jj = 4i (2i + j − 4)4

(2i + 2j − 4)5
, m

(5)
j,j+1 = −4i+1 (j + 1)(2i + j − 3)3

(2i + 2j − 3)5
,

m
(5)
j,j+2 = 4i 6(j + 1)2(2i + j − 2)2

(2i + 2j − 2)5
, m

(5)
j,j+3 = −4i+1 6(j + 1)3(2i + j − 1)

(2i + 2j − 1)5
,

m
(5)
j,j+4 = 4i 6(j + 1)4

(2i + 2j)5
. (A.7)

• Matrix M6:

m
(6)
jj = 4i 4(2i + j − 1)(2j2 + 2ij − j + 4i2 − 6i)

(2i + 2j − 3)5
,(A.8)

m
(6)
j,j+1 = 4i 8(2i + j − 1)2(j + 1)

(2i + 2j − 2)5
, m

(6)
j+1,j = 4i 8i(j2 + 2ij + 2− 6i + 4i2)

(2i + 2j − 2)5
,

m
(6)
j+2,j = −4i 4(j + 1)(2j2 + j + 6ij + 8i2 − 4i)

(2i + 2j − 1)5
, m

(6)
j+3,j = 4i 4(j + 1)2(2i + j)

(2i + 2j)5
.

• Matrix M7:

m
(7)
jj = 4i 8(4i2 + 2ij − 8i− 2j + 3 + j2)

(2i + 2j − 4)5
,

m
(7)
j+1,j = m

(7)
j,j+1 = 4i 4(2i− 3)(2i− 1)

(2i + 2j − 3)5
, (A.9)

m
(7)
j+2,j = m

(7)
j,j+2 = −4i 4(j + 1)(2i− 1 + j)

(2i + 2j − 2)5
.

• Matrix M8:

m
(8)
jj = 4i (2i + j − 3)2(2i− 2j − 5)

(2i + 2j − 5)5
, (A.10)

m
(8)
j+1,j = 4i (2i + j − 4)3

(2i + 2j − 4)5
, m

(8)
j,j+1 = −4i 6(2i + j − 3)(i− 2)(j + 1)

(2i + 2j − 4)5
,

m
(8)
j,j+2 = 4i (6i + 2j − 9)(j + 1)2

(2i + 2j − 3)5
, m

(8)
j,j+3 = −4i (j + 1)3

(2i + 2j − 2)5
.

The remaining matrix entries of M1 to M8 are zero.

A.2 Structure of the block K̂I,(A)

Now, the structure of the nonzero matrix entries of the block of the interior bubbles can be computed via
the following relations and (A.4) to (A.10):Z

4̂

∂φij

∂x

∂φkl

∂x
=

4

2i− 1
m

(7)
jl δikZ

4̂

∂φij

∂y

∂φkl

∂y
= δik

 
1

2i− 3
m

(7)
jl +

2m
(4)
j−1,l−1

(2i− 3)(2i− 1)(2i + 1)
−

m
(6)
j,l−1 + m

(6)
l,j−1

(2i− 3)(2i− 1)

!

+δi−2,k

 
−

m
(5)
j−1,l−1

(2i− 1)(2i− 3)(2i− 5)
+

m
(8)
j,l−1

(2i− 3)(2i− 5)

!
, i ≥ kZ

4̂

∂φij

∂y

∂φkl

∂y
=

Z
4̂

∂φkl

∂y

∂φij

∂y
, i < k,

Z
4̂

∂φi,j

∂x

∂φi−1,l

∂y
= 2

δi,k−1

2i− 1

 
m

(1,i+1)
j,l −

m
(3)
j,l−1

2i + 1

!
+ 2

δi−1,km
(2)
j,l−1

(2i− 1)(2i− 3)
,

where i, k ≥ 2, j, l ≥ 1.
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A.3 Structure of the blocks K̂IE,(A) and K̂IV,(A)

• The entries for the coupling block between the interior bubbles with the edge bubble functions on
edge e1 can be computed via the following relations and (A.4) to (A.10):Z

4̂

∂φij

∂x

∂φe1,l

∂x
=

4

2i− 1
m

(7)
j,0δil,Z

4̂

∂φij

∂x

∂φe1,k

∂y
= δi,k−1

2

2i− 1
m

(1)
0,j ,Z

4̂

∂φe1,i

∂y

∂φkl

∂y
= δi,k

1

2i− 3

 
m

(7)
0,l −

m
(6)
0,l−1

2i− 1

!
+ δi−2,k

m
(8)
0,l−1

(2i− 1)(2i + 1)
,

Z
4̂

∂φk,l

∂y

∂φe1,i

∂x
= δi,k−1

2

2i− 1

 
m

(1,i+1)
0,l −

m
(3)
0,l−1

2i + 1

!
+ δi−1,k

2m
(2)
0,l−1

(2i− 1)(2i− 3)
,

where i, k ≥ 2 and l, j ≥ 1.

• The entries for the coupling block between the interior bubbles with the edge bubble functions on
edge e2/3 can be computed via the following relations:Z
4̂

∂φij

∂y

∂φe2/3,l

∂x
= δi2

„Z 1

−1

(1− y)2p̂3
j (y)p̂0

l (y) dy − 1

3

Z 1

−1

(1− y)3p3
j−1(y)p̂0

l (y) dy

«
, (A.11)Z

4̂

∂φij

∂y

∂φe2/3,l

∂y
= −δi2

„
1

2

Z
4̂

∂φ2j

∂y

∂φe2/3,l

∂x
(A.12)

+
1

2

Z 1

−1

(1− y)2p̂3
j (y)p0

l−1(y) dy − 1

6

Z 1

−1

(1− y)3p3
j−1(y)p0

l−1(y) dy

«
,

+δi3

„
±1

6

Z 1

−1

(1− y)4p̂5
j (y)p0

l−1(y) dy ∓ 1

30

Z 1

−1

(1− y)5p5
j−1(y)p0

l−1(y) dy

«
.

Moreover, Z
4̂

∂φij

∂x
∇φe2/3,lx =

»
0
0

–
.

In order to evaluate the remaining integrals, we explain the method for the first integral in (A.11):
The weight function is (1− y)2. So, we transform the functions p̂3

j (y) and p̂0
j (y) into the basis {p2

j}.
For p̂3

j (y), we can use relation (2.12), whereas p̂0
j (y) = 1

2j−1

`
p0

j (y)− p0
j−2(y)

´
by relation (2.10) .

Using (2.5) for α = 1, 2 and j − 3, . . . , j, we obtain an expression for p̂0
j (y) in the basis {p2

j}. Then,
by (2.7) with α = 2, the nonzero entries can easily be computed.

• The block of the interior bubbles with the vertex functions is zero, i.e. K̂IV,(A) = 0.

A.4 Edge block

Here, we have to distinguish between the edge bubble functions to the three edges e1, e2 and e3. Let

K̂E,(A) =

24 K̂e,11 K̂e,12 K̂e,13

K̂e,21 K̂e,22 K̂e,23

K̂e,31 K̂e,32 K̂e,33

35 .

• Block K̂e,11: The matrix entries can be computed viaZ
4̂

∂φe1,i

∂x

∂φe1,k

∂x
= δik

4i

(2i− 2)(2i− 1)
,Z

4̂

∂φe1,i

∂y

∂φe1,k

∂y
= δik

4i−1

(2i− 2)(2i− 3)
,Z

4̂

∂φe1,i

∂x

∂φe1,k

∂y
= δi,k−1

4i

(2i− 1)(2i− 1)
, i, k ≥ 2.
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• Blocks K̂e,1,2/3:

K̂e,1,2/3 =

»
U4,5 0
0 0

–
with the 4× 5 matrix

U4,5 = c

2664
4
3

− 4
5

4
15

− 4
105

0
− 16

15
32
45

− 32
105

8
105

− 8
945

0 0 0 0 0
0 0 0 0 0

3775∓ b

2664
− 8

3
8
5

− 8
15

8
105

0
8
5

0 0 0 0
− 8

15
0 0 0 0

8
105

0 0 0 0

3775 .

• Blocks K̂e,2/3,2/3: UseZ
4̂

∂φek,j

∂x

∂φek,l

∂x
=

4δjl

(2j − 3)(2j − 1)(2j + 1)
− 4δj+1,l

(2j − 3)(2j − 1)(2j + 1)(2j + 3)

− 2δj+2,l

(2j − 1)(2j + 1)(2j + 3)
+

(2j + 2)δj+3,l

(2j − 1)(2j + 1)(2j + 3)(2j + 5)
, 1 ≤ j ≤ l

and symmetry with respect to j and l, k = 2, 3. Furthermore,Z
4̂

∂φek,j

∂x

∂φe5−k,l

∂x
= −

Z
4̂

∂φek,j

∂x

∂φek,l

∂x
.

Moreover,Z
4̂

∂φe2/3,j

∂x

∂φek,l

∂y
= ∓1

2

Z
4̂

∂φe2/3,j

∂x

∂φek,l

∂x
± 1

2

Z 1

−1

(1− y)2p̂0
j (y)p0

l−1(y) dy,Z
4̂

∂φek,j

∂y

∂φek′ ,l

∂y
= −1

2

Z
4̂

∂φe2,j

∂x

∂φek′ ,l

∂y

−1

4

Z 1

−1

(1− y)2p0
j−1(y)p̂0

l (y) dy +
1 + δk,k′

6

Z 1

−1

(1− y)2p0
j−1(y)p0

l−1(y) dy,

where k, k′ ∈ {2, 3}, (j, l) ≥ 1.

A.5 Coupling betwwen edge block with Vertex block

A simple computation gives

K̂V,E,(A) =
ˆ

K̂V,E1,(A) K̂V,E2,(A) K̂V,E3,(A)

˜
,

where

K̂V,E1,(A) =
4b

3

24 1 0 . . . 0
−1 0 . . . 0

0 0 . . . 0

35+
c

3

24 −2 0 . . . 0
−2 0 . . . 0

4 0 . . . 0

35 ,

K̂V,E2,(A) =
a

15

24 10 −5 1 0 . . .
−10 5 −1 0 . . .

0 0 0 0 . . .

35+
b

15

24 0 0 0 0 . . .
−10 5 −1 0 . . .

10 −5 1 0 . . .

35
+

c

60

24 −10 5 −1 0 . . .
−10 5 −1 0 . . .

20 −10 2 0 . . .

35 ,

K̂V,E3,(A) =
a

15

24 −10 5 −1 0 . . .
10 −5 1 0 . . .
0 0 0 0 . . .

35+
b

15

24 10 −5 1 0 . . .
0 0 0 0 . . .

−10 5 −1 0 . . .

35
+

c

60

24 −10 5 −1 0 . . .
−10 5 −1 0 . . .

20 −10 2 0 . . .

35 .
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