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Abstract

In this paper, a uniformly elliptic second order boundary value problem in 2D is dis-
cretized by the p-version of the finite element method. An inexact Dirichlet-Dirichlet domain
decomposition pre-conditioner for the system of linear algebraic equations is investigated. The
ingredients of such a pre-conditioner are an pre-conditioner for the Schur complement, an pre-
conditioner for the sub-domains and an extension operator operating from the edges of the
elements into their interior. Using methods of multi-resolution analysis, we propose a new
method in order to compute the extension efficiently. We prove that this type of extension
is optimal, i.e. the H1(Ω)-norm of the extended function is bounded by the H0.5(∂Ω)-norm
of the given function. Numerical experiments show the optimal performance of the described
extension.

1 Introduction

We investigate the following boundary value problem. Let Ω ⊂ Rd, d = 2, 3 be a domain which
can be decomposed into elements Rs. Find u ∈ Ĥ1

0 (Ω) = {u ∈ H1(Ω), u = 0 on Γ1}, Γ1 ∩ Γ2 = ∅,
Γ1 ∪ Γ2 ⊂ ∂Ω such that

a4(u, v) :=
∫

Ω

∇u · ∇v =
∫

Ω

fv +
∫

Γ2

f1v := 〈f, v〉+ 〈f1, v〉Γ2 (1.1)

holds for all v ∈ Ĥ1
0 (Ω). Problem (1.1) will be discretized by means of the p-version of the finite

element method using quadrilateral (d = 2) or hexahedral (d = 3) elements. Let Rd = (−1, 1)d

be the reference element and Φs : Rd → Rs be the mapping to the element Rs. We define the
finite element space M := {u ∈ Ĥ1

0 (Ω), u |Rs
= ũ(Φ−1

s (x, y)), ũ ∈ Qp}, where Qp is the space of all
polynomials of maximal degree p in each variable. Let (ζ1, . . . , ζN ) be a basis forM. The Galerkin
projection of (1.1) onto M leads to the linear system of algebraic finite element equations

Au = f, where A = [a∆(ζj , ζi)]
N
i,j=1 , f

p
= [〈f, ζi〉+ 〈f1, ζi〉Γ2 ]

N
i=1 . (1.2)

Using the vector u, an approximation uh of the exact solution u of (1.1) can be built by the usual
finite element isomorphism. The error uh−u tends to zero in a suitably chosen norm, if the mesh-
size parameter h of the element Rs tends to zero. Therefore for the practical implementation of
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such algorithms, it is important to choose a discretization parameter h as small as possible in order
to obtain a sufficiently accurate approximation uh to the exact solution u. Then, the dimension n
of the vector u ∈ RN will be nearly proportional to h−d, where d is the dimension of the domain
in which the partial differential equation is solved. Using finite elements of low order (h-version of
the FEM), the corresponding system matrix A is a sparse matrix and is positive definite for elliptic
problems. More precisely, the number of nonzero elements is of order N . For d > 1, the matrix A
has a banded-like structure. For todays computers, it is no problem to store such a sparse matrix
of dimensions up to some millions.
Instead of the h-version of the finite element method, collocation methods, [26], and finite elements
of high order (p-version), see e.g. [36] and the references therein, have become more popular for
twenty years. For the h-version of the FEM, the polynomial degree p of the shape functions on the
elements is kept constant and the mesh-size h is decreased. This is in contrast to the the p-version
of the FEM in which the polynomial degree p is increased and the mesh-size h is kept constant.
The advantage of the p-version in comparison to the h-version is that the approximate solution up

converges faster to the exact solution u, if u is sufficiently smooth. For example, for the potential
equation −4u = f with u analytic, the error in the H1-Sobolev norm fulfills ‖ u− up ‖1≤ Ce−rp

(with some constant r > 0 independent of p) in contrast to the algebraic convergence order of the
h-version with ‖ u − uh ‖1≤ Ch. Thus, the dimension of the FEM ansatz space can be reduced
while obtaining an approximate solution with the same accuracy as in the h-version of the FEM.
Both ideas, mesh refinement and increasing the polynomial degree, can be combined. This is called
the hp-version of the FEM.
In both cases, h- and p-version of the FEM, the stiffness matrix is usually ill-conditioned. Therefore,
efficient pre-conditioning techniques are required in order to solve (1.2).
Pre-conditioners for (1.2) can be built by sub-structuring techniques (DD-methods). We refer to
[31], [10], [11], [29], [12], [32], [13], [30], in the case of the h-version of the FEM and to [17], [3], [2],
[25], [23], [24], [27] for the p-version of the FEM. From the algebraic point of view, the symmetric
positive definite (spd) stiffness matrix A is splitted into

A =
[
A11 A12

A21 A22

]
=
[
I A12A−1

22

0 I

] [
S 0
0 A22

] [
I 0

A−1
22 A21 I

]
(1.3)

with the Schur-complement S = A11 −A12A−1
22 A21. Then, the pre-conditioner

C =
[
I −ET

0 I

] [
CS 0
0 C22

] [
I 0
−E I

]
(1.4)

is introduced. The following result has been proved in [29], [30], [19], [34] and is the key in order
to analyze the preconditioner C.

Lemma 1.1 Let CS and C22 be spd pre-conditioners for S and A22, i.e.

(CSv, v) ≤ (Sv, v) ≤ CS (CSv, v) ∀v,
cI (C22v, v) ≤ (A22v, v) ≤ CI (C22v, v) ∀v.

Moreover, let (
A
[
I
E

]
g,

[
I
E

]
g

)
≤ c2E

(
CSg, g

)
∀g.

Then, the inequalities
c (Cv, v) ≤ (Av, v) ≤ C (Cv, v) ∀v

hold with c = 1
2(CS(1+c2

E)−1)
min{1, cI} and C = 2 max{c2E , CI}.
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In the p-version of FEM, the splitting of the matrix A is naturally given by a splitting of the ansatz
functions. Let nv, ne, nf , and ni be the number of vertices not belonging to Γ1, number of edges
not belonging to Γ1, number of faces not belonging to Γ1 (for d = 3 only) and number of elements,
respectively. To each vertex corresponds 1, to each edge correspond p− 1, to each face correspond
(p−1)2 and to each element correspond (p−1)d, d = 2, 3, basis functions. Thus, the dimension of the
ansatz space isN = nv+(p−1)ne+(p−1)2ni for d = 2 andN = nv+(p−1)ne+(p−1)2nf +(p−1)3ni

for d = 3.
For d = 2, we define the functions ζ1, . . . , ζnv

as the usual piecewise bilinear hat functions. The
functions ζnv+(j−1)(p−1)+1, . . . , ζnv+j(p−1) correspond to the edge ej of the mesh, and vanish on all
other edges, i.e. satisfy the condition ζnv+(j−1)(p−1)+k−1 |el

= δj,lpk, where pk is a polynomial of
degree p, k = 2, . . . , p. The support of an edge function is formed by those two elements, which have
this edge ej in common. The remaining basis functions are interior bubble functions consisting of a
support containing one element only. For d = 3, the functions are analogously defined, in addition
to the vertex, edge, and interior functions, we have so called face bubble functions associated to a
face of the mesh. Now, the basis functions ζi are divided into three (four for d = 3) groups,

• the vertex functions,

• the edge bubble functions,

• face bubble functions, (for d = 3 only),

• the interior bubbles.

Corresponding to the division of the shape functions, the matrix Ad is splitted into the blocks

A2 =

 Av Av,e Av,i

Ae,v Ae Ae,i

Ai,v Ai,e Ai

 , or A3 =


Av Av,e Av,f Av,i

Ae,v Ae Ae,f Ae,i

Af,v Af,e Af Af,i

Ai,v Ai,e Ai,f Ai

 ,
where the indices v, e, f and i denote the blocks corresponding to the vertex, edge bubble, face
bubble and interior bubble functions for d = 2 and d = 3, respectively.
For d = 2, the simpler matrix

C =

 Av 0 0
0 Ae Ae,i

0 Ai,e Ai

 , (1.5)

is investigated. It has been proved in [3] that the condition number κ(C−1A2) grows as 1 +
log p. Therefore, the vertex unknowns can be determined separately. Pre-conditioners for Av are
multi-grid methods, [21], or BPX-pre-conditioners, [37], [14]. Computing the other unknowns, we
factorize the remaining 2 by 2 block[

Ae Ae,i

Ai,e Ai

]
=
[
I Ae,iA−1

i

0 I

] [
S 0
0 Ai

] [
I 0

A−1
i Ai,e I

]
(1.6)

with the Schur-complement S = Ae −Ae,iA−1
i Ai,e.

For d = 3, we follow an approach of [27]. An elimination of the matrix Ai gives[
Af Af,i

Ai,f Ai

]
=
[
I Af,iA−1

i

0 I

] [
S 0
0 Ai

] [
I 0

A−1
i Ai,f I

]
(1.7)

with the Schur-complement S = Af −Af,iA−1
i Ai,f for the last two blocks of A3. The coupling of

the face and interior unknowns to the block of the vertex and edge unknowns is more difficult. In
[27], the coupling is removed by a second extension operator.
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For d = 2, 3, the matrix Ai is a block diagonal matrix, each block ARs corresponds to one element
Rs, i.e.

Ai = blockdiag[ARs
]ni
s=1. (1.8)

Therefore, in order to compute the interior unknowns, we have to solve a Dirichlet problem on
each quadrilateral or hexehadron. The edge unknowns are computed via the Schur-complement
S. Due to Lemma 1.1, an inexact DD-pre-conditioner for (1) includes a pre-conditioner for Ai, a
pre-conditioner for the Schur-complement S and an extension operator E operating from the edges
of the quadrilateral/faces of the hexahedron into its interior in order to replace the matrix A−1

i Ai,e

or A−1
i Ai,f by a matrix −E .

In [25], Jensen/Korneev have proved the following result which allows us to restrict ourselves to the
case of the reference element in order to derive pre-conditioners for Ai, S and to find the extension
operator E .

Lemma 1.2 Let ∂Rs ∈ C(t), t ≥ 2, s = 1, . . . , ni, where C(t) denotes the class of all boundaries
which consist of a finite number of t times continuously differentiable curves and the angles of
these curves at their intersection points on ∂Rs are distinct from 0 and 2π. Let Ã be the result
of assembling the element stiffness matrices on the reference element R2 = [−1, 1]2 instead of the
element stiffness matrix corresponding to the element Rs. Then, κ(Ã−1A) = O(1).

In [23], [24] and [25], two pre-conditioners for the Schur-complement are proposed. The pre-
conditioners use basis transformations from the integrated Legendre polynomials to the Chebyshev
polynomials or a Lagrange basis. Another pre-conditioning techniques can be found in [1], [18].
Moreover, an approach using multi-resolution bases for the Schur-complement in 3D, [27], can be
applied to the 2D case as well.
For the interior solver, several pre-conditioners Ci are developed in [25], [6], [9], [28], [7] for d = 2
and in [9] for d = 3. The condition number of C−1

i Ai is bounded independent of the polynomial
degree, [8]. The operation C−1

i w requires O(pd) operations. All pre-conditioners use interpretations
of the matrix ARd

as an h-version FEM discretization matrix of a degenerated elliptic problem,
published in [6].
In order to replace A−1

i Ai,e in (1.6) or A−1
i Ai,f in (1.7), an efficient extension operator E↔ E is

required, cf. Lemma 1.1. Given a polynomial g ∈ Pp on one edge(face) of Rd, find a polynomial
u ∈ (Qp) with

‖ u ‖H1(Rd)≤ cE ‖ g ‖H0.5(∂Rd) ∀g ∈ Pp (1.9)

under the constraint u = g on ∂Rd, where the constant cE is independent of the polynomial degree
p. Usually, the system

Aiu = −Ai,eg or Aiu = −Ai,fg (1.10)

can be treated by a preconditioned Chebyshev iteration with the pre-conditioner Ci for Ai, see
e.g. [27]. Since this operation is required in each pre-conditioning step, cf. (1.3), the system solve
(1.10) is too expensive. In the case of the h-version of the FEM, i.e. the function g is a piecewise
linear function, Nepomnyaschikh, [20], [34], derived several techniques in order to develop such an
extension operator without the solution of (1.10). For the p-version of the FEM, a pioneering work
is done by [3]. The practical and efficient implementation of this extension operator in certain
polynomial bases, i.e. integrated Legendre polynomials, has been an open question.
This paper is dedicated to the development of fast solvers for the system (1.2) arising from the
discretization by the p-version of the FEM. Efficient tools are Domain Decomposition methods.
We mainly focus on one ingredient of the inexact Domain Decomposition pre-conditioner, the
extension operator. On the one hand, we will prove the estimate (1.9). On the other hand, we will
show that this extension can be computed in O(pd) operations. Moreover, we will show that this
technique can be extended to tensor product discretizations of the h-version of the finite element
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method as well. Our technique uses a basis for the given function g in (1.9) which is stable in
L2 and H1. With methods of multi-resolution analysis, cf. [16], [15], [35] for the h-version of the
FEM, and [9] for the p-version of the FEM, such bases can be determined.
The paper is organized as follows. Section 2 deals with purely algebraic investigations. The
assumptions are required in order to replace −A−1

22 A21 in (1.3) by a proper matrix E are analyzed.
In section 3, the model problem in order to derive the extension operator is introduced. Then,
this algebraic approach is used for the general definition of extension operators. In section 4, some
examples of extension operators for the h- and the p-version of the FEM in 2D and 3D are given.
In section 5, we show the numerical performance of the proposed extension operators.
Throughout this paper, the notation g is used for vectors of the Euklidian space, where the cor-
responding function g(x) =

∑n
j=1 gjφj(x) is denoted by g. We write g ↔ g. Moreover, let

I = (−1, 1). The parameter p denotes the polynomial degree and Pp and Qp denote the space of
all polynomials of degree p in one and two variables. Pp,00 denotes the subspace of Pp satisfying
q(±1) = 0.

2 Premilinaries from Linear Algebra

In this section, we prove some auxiliary results from Linear Algebra.

Lemma 2.1 Let

K =
[
K11 K12

K21 K22

]
be a symmetric positive definite matrix. Moreover let x =

[
g
u

]
. The matrix S = K11 −

K12K
−1
22 K21 denotes the Schur-complement. Then, the solution x∗ =

[
g
u∗

]
of K22u = −K21g is

the optimal solution of

(Kx, x) → min
u
, where x =

[
g
u

]
. (2.1)

This solution satisfies (
Sg, g

)
= (Kx∗, x∗) . (2.2)

Proof: Linear Algebra.2
Let us assume that

C =
[
C11 C12

CT
12 C22

]
is a spd pre-conditioner for the matrix K, i.e.

c1 (Cx, x) ≤ (Kx, x) ≤ c2 (Cx, x) ∀x. (2.3)

We investigate the optimization problem

(Cx, x) → min
u
, x =

[
g
u

]
. (2.4)

The next lemma gives a relation between the solutions of the optimization problems (2.1) and
(2.4).
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Lemma 2.2 Let x0 =
[
g
u0

]
be the optimal solution of (2.4) and let x∗ be the optimal solution

of (2.1). Then, we have (
Kx0, x0

)
≤ c2
c1

(Kx∗, x∗) .

The constants c1 and c2 are the constants of the spectral equivalence relations (2.3).

Proof: Using (2.3), one easily concludes(
Kx0, x0

)
≤ c2

(
Cx0, x0

)
. (2.5)

Since x0 is the optimal solution of (2.4), we have(
Cx0, x0

)
≤ (Cx∗, x∗) . (2.6)

Using (2.3) again, one derives
(Cx∗, x∗) ≤ c−1

1 (Kx∗, x∗) . (2.7)

Combining (2.5), (2.6) and (2.7), the assertion follows. 2

Corollary 2.3 Let x0 be the optimal solution of (2.4). Then, we have

c2
c1

(
Sg, g

)
≥
(
Kx0, x0

)
(2.8)

for all g ∈ Rn.

In the following, let us assume that the matrix K has tensor product structure: Let

Ai =
[
αi aT

i

ai Ai,0

]
∈ Rm×m, i = 1, 2, Ai,0 ∈ Rm−1×m−1

and Bi ∈ Rn×n be symmetric positive definite matrices. Moreover, let

K = A1 ⊗B1 +A2 ⊗B2 =
[

α1B1 + α2B2 aT
1 ⊗B1 + aT

2 ⊗B2

a1 ⊗B1 + a2 ⊗B2 A1,0 ⊗B1 +A2,0 ⊗B2

]
∈ Rmn×mn. (2.9)

Assume further that D1 and D2 are pre-conditioners for B1 and B2 satisfying the spectral equiv-
alence relations

c1,i (Div, v) ≤ (Biv, v) ≤ c2,i (Div, v) ∀v, i = 1, 2. (2.10)

For the matrix K, we define the pre-conditioner

C = A1 ⊗D1 +A2 ⊗D2 =
[

α1D1 + α2D2 aT
1 ⊗D1 + aT

2 ⊗D2

a1 ⊗D1 + a2 ⊗D2 A1,0 ⊗D1 +A2,0 ⊗D2

]
∈ Rmn×mn. (2.11)

Proposition 2.4 Let C be defined via (2.11). Then,

min{c1,1, c1,2} (Cv, v) ≤ (Kv, v) ≤ max{c2,1, c2,2} (Cv, v) ∀v.

Proof: The proof is trivial. 2

Theorem 2.5 Let K and C be defined via (2.9) and (2.11). Moreover, let us assume that the
matrices Di satisfy relations (2.10). Let

û = −(A1,0 ⊗D1 +A2,0 ⊗D2)−1(a1 ⊗D1 + a2 ⊗D2)g. (2.12)

Then, (
K

[
g
û

]
,

[
g
û

])
≤ max{c2,1, c2,2}

min{c1,1, c1,2}
(
Sg, g

)
, ∀g ∈ Rm.
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Proof: Use Corollary 2.3. By Proposition 2.4, the assertion follows immediately. 2

In the next lemma, we consider the special case that D1 and D2 are diagonal matrices, i.e.

D1 = diag
[
d
(1)
j

]n
j=1

and D2 = diag
[
d
(2)
j

]n
j=1

. (2.13)

Then, the solution of (2.12) can easily be computed by solving n (m− 1)× (m− 1) linear systems
with linear combinations of the matrices A1,0 and A2,0.

Lemma 2.6 Let û be defined via (2.12), where D1 and D2 are defined via (2.13). Then, û =[
û

(1)
1 , û

(2)
1 , . . . , û

(n)
1 , û

(1)
2 , . . . , û

(n)
m−1

]T
, where

û(j) = −gj(d
(1)
j A1,0 + d

(2)
j A2,0)−1(d(1)

j a1 + d
(2)
j a2) ∈ Rm−1, j = 1, . . . , n.

Proof: We investigate the auxiliary problem

ũ = −(D1 ⊗A1,0 +D2 ⊗A2,0)−1(D1 ⊗ a1 +D2 ⊗ a2)g.

The matrix C̃22 = D1 ⊗A1,0 +D2 ⊗A2,0 is a block diagonal matrix, i.e.

C̃22 = blockdiag
[
d
(1)
i A1,0 + d

(2)
i A2,0

]n
i=1

.

The inverse is given by

C̃−1
22 = blockdiag

[
(d(1)

i A1,0 + d
(2)
i A2,0)−1

]n
i=1

.

Moreover,
D1 ⊗ a1 +D2 ⊗ a2 = blockdiag

[
d
(1)
i a1 + d

(2)
i a2

]n
i=1

.

So,
ũ = −blockdiag

[
(d(1)

i A1,0 + d
(2)
i Ai,0)−1(d(1)

i a1 + d
(2)
i a2)gi

]n
i=1

.

Reordering the unknowns proves the assertion. 2

3 Application to extension operators

3.1 Extensions from one face or edge

We consider the following problem:

−4u = 0 in Ω = I × ω, (3.1)
u(1, y) = 0, u(−1, y) = g(y) on ω, (3.2)

u(x, y) = 0 on I × ∂ω. (3.3)

Problem (3.1)-(3.3) is the typical model problem for the harmonic extension of a function g on ω
into the interior of the domain Ω in the tensor product case. The weak formulation of (3.1)-(3.3)
is: Find u ∈ Hg(Ω) = {u = w + g, w ∈ H1

0 (Ω)} such that

a(u, v) =
∫

Ω

∇u · ∇v = 0, ∀v ∈ H1
0 (Ω) (3.4)
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holds. Problem (3.1)-(3.3) is solved approximately by a tensor product version of the Finite
Element Method (FEM). Let Ξ = {ξj(x)}m

j=1 be a basis for the discretization of the interval
(−1, 1) with ξj(±1) = 0 for j = 2, . . . ,m, ξ1(1) = 0 and ξ1(−1) = 1. Moreover, let X = {χj(y)}n

j=1

be a basis for the discretization of ω satisfying χj(∂ω) = 0. On Ω, we use the approximation space

V = span {φij(x, y)}m,n
i,j=1 , where φij(x, y) = ξi(x)χj(y).

In order to satisfy the boundary condition (3.2), the functions φ1j , 1 ≤ j ≤ n are defined, i.e. we
assume that g(y) =

∑n
j=1 gjφ1(−1, y) with the given coefficients gj .

The Galerkin projection of problem (3.4) onto the space V leads to the following problem: Find
u =

∑n
j=1 gjφ1j +

∑m
i=2

∑n
j=1 uijφij such that

a(u, φij) = 0, ∀i = 2, . . . ,m, j = 1, . . . , n. (3.5)

Introducing the matrices

K22 =
[
a(φij , φlk)m,n;m,n

i=2,j=1;l=2,k=1

]
,

K21 = KT
12 =

[
a(φij , φ1k)m,n;n

i=2,j=1;k=1

]
,

K11 =
[
a(φ1j , φ1k)n

k;j=1

]
,

problem (3.5) is equivalent to solve the system of linear algebraic equations

K22u = −K21g (3.6)

with u = [u21, . . . , umn]T and g = [g1, . . . , gn]T .
We are not interested in solving the problem (3.5), (3.6) exactly, we only try to find a vector u
satisfying the inequality

(Kx, x) ≤ c2E
(
Sg, g

)
∀g (3.7)

under the constraint x =
[
g
u

]
. The constant cE should not depend on the discretization param-

eter. In the case of the h-Version of the FEM, several techniques in order to construct a vector
u↔ u satisfying (3.7) are given in [34], where the system (3.6) has not to be solved.
By the usual FEM-isomorphism, one has

(Kx, x) =| u |2H1(Ω) with x =
[
g
u

]
↔ u (3.8)

between the vector x =
[
g
u

]
and the corresponding function u. Due to (3.2) and the Poincare-

Friedrichs inequality, the H1-seminorm is equivalent to the H1-norm. Thus, one obtains c−2
Ω ‖

u ‖2H1(Ω)≤ (Kx, x) ≤‖ u ‖2H1(Ω) for all u, where the constant cΩ depends on the domain Ω only.
Concerning a relation between the function g and the vector g, the following assumption is required.

Assumption 3.1 Let us assume that for every g ∈ spanX there exists a function u such that

‖ u ‖H1(Ω)≤ cH ‖ g ‖H0.5(∂Ω), (3.9)

under the constraints u(−1, y) = g(y), u(1, y) = 0, u(x, ∂ω) = 0, where the constant c does not
depend on the discretization parameter.
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Then, the following result can be proved.

Lemma 3.2 Let us assume that Assumption 3.1 is satisfied and that ∂Ω is Lipschitz continuous.
Let g =

∑n
j=1 gjφj and g = [gj ]

n
j=1. Then, we have the norm equivalence relation

c2T ‖ g ‖2H0.5(∂Ω)≤
(
Sg, g

)
≤ c2H ‖ g ‖2H0.5(∂Ω), (3.10)

where the constant cH is the constant in (3.9) and cT is the constant from the trace theorem.

Proof: The proof is similar to the arguments in order to derive formula (3.12.) in [25]. By Lemma
2.1, we have (

Sg, g
)

= min
u

(Ku, u) , where x =
[
g
u

]
.

Let u∗ ↔ x∗ =
[
g
u∗

]
be the optimal solution of this minimization problem. Thus, by the trace

theorem,
c2T ‖ g ‖2H0.5(∂Ω)≤‖ u

∗ ‖2H1(Ω)= (Kx∗, x∗) =
(
Sg, g

)
.

Moreover, let u0 ↔ x0 =
[
g
u0

]
be the extension of Assumption 3.1. Then,

(
Sg, g

)
≤
(
Kx0, x0

)
=‖ u0 ‖2H1(Ω)≤ c2H ‖ g ‖2H0.5(∂Ω),

which proves the lemma. 2

This lemma is important in order to derive a pre-conditioner for the Schur-complement embed-
ded in the Domain Decomposition pre-conditioner (1.4). Using this norm equivalence, most pre-
conditioners for S can be constructed by finding a stable basis in H0.5(∂Ω). Moreover, we are able

to define
√(

Sg, g
)

as an equivalent norm on H0.5(∂Ω).
Now, we want to apply the theory of the preceeding section in order to derive an extension operator
satisfying relation (3.7). The main point are the relations (3.10) and (3.8) between the shape
functions u ∈ V and vectors of the Euklidian space x ∈ RN .

Lemma 3.3 Let C be a pre-conditioner for K satisfying the spectral equivalence relations (2.3).

Let u = −C−1
22 C

T
12g. Then, the extension x =

[
g
u

]
↔ u satisfies

‖ u ‖2H1(Ω)≤
c2
c1
c2Ωc

2
H ‖ g ‖2H0.5(∂Ω) . (3.11)

Proof: Use relations (3.10), (3.8), Theorem 2.5 and Poincare-Friedrichs inequality. 2

The case of the extension operator −C−1
22 K21, where C22 is a pre-conditioner forK22, is investigated

in [19]. Then, it is not possible to prove (Ku, u) ≤ c
(
Sg, g

)
, where the constant c depends only on

the condition number of C−1
22 K22. In [19], an additional assumption concerning the preconditioned

Schur-complement is required. The reason is that a pre-conditioner is considered for K22, i.e.
the corresponding Dirichlet problem only. Here, we consider a pre-conditioner for K, i.e. the
corresponding Neumann problem.
In order to define an extension operator, we use a technique which is similar to the multi-level
decomposition technique derived in [20]. In the space Y = spanX, a stable basis is used.
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Assumption 3.4 Let us assume that there exists a basis Ψ = {ψj}n
j=1 in the space Y which is

stable in L2(ω) and H1(ω), i.e. for any function g =
∑n

j=1 g̃jψj(y) the norm equivalence relations

c1,1

n∑
j=1

d
(1)
j g̃2

j ≤ ‖ g ‖2L2(ω)≤ c2,1

n∑
j=1

d
(1)
j g̃2

j , (3.12)

c1,2

n∑
j=1

d
(2)
j g̃2

j ≤ ‖ g ‖2H1(ω)≤ c2,2

n∑
j=1

d
(2)
j g̃2

j (3.13)

hold with some numbers d(i)
j > 0, j = 1, . . . , n, i = 1, 2. The constants ci,j, i, j = 1, 2 do not

depend on the discretization parameter n.

The computation of the nearly discrete harmonic extension of the function g(y) =
∑n

j=1 gjχj(y)
consists of three steps:

Algorithm 3.5 1. Transform the function g into the basis Ψ = {ψj}n
j=1, i.e.

g(y) =
n∑

j=1

g̃jψj(y).

2. For j = 1, . . . , n, let u∗j be the solution of the problem

‖ uj ‖H1(Ω) → min
fi

, where

uj(x, y) = ψj(y)

(
ξ1(x) +

m∑
i=2

ξi(x)fi

)
.

Put

u(x, y) =
n∑

j=1

g̃ju
∗
j (x, y). (3.14)

3. Transform u(x, y) =
∑n

j=1 g̃juj(x, y) into the basis {φij(x, y)}i,j.

We introduce the following real numbers, vectors and matrices: Let

α1 = 〈ξ1, ξ1〉I , a1 = [〈ξ1, ξj〉I ]mj=2 , A1,0 = [〈ξi, ξj〉I ]mi,j=2 ,

α2 = 〈Dξ1, Dξ1〉I , a2 = [〈Dξ1, Dξj〉I ]mj=2 , A2,0 = [〈Dξi, Dξj〉I ]mi,j=2 ,

B2 = [〈χi, χj〉ω]ni,j=1 , B1 = [〈Dχi, Dχj〉ω]ni,j=1 , (3.15)

BΨ
2 = [〈ψi, ψj〉ω]ni,j=1 , BΨ

1 = [〈Dψi, Dψj〉ω]ni,j=1 ,

A1 =
[
α1 aT

1

a1 A1,0

]
and A2 =

[
α2 aT

2

a1 A2,0

]
,

where 〈·, ·〉Ω denotes the L2(Ω)-scalar product and Du is the gradient of u. Then, in the basis
{ξi(x)ψj(y)}i,j ,

KΨ =
[
KΨ

11 KΨ
12

KΨ
21 KΨ

22

]
=
[

α1B
Ψ
1 + α2B

Ψ
2 aT

1 ⊗BΨ
1 + aT

2 ⊗BΨ
2

a1 ⊗BΨ
1 + a2 ⊗BΨ

2 A1,0 ⊗BΨ
1 +A2,0 ⊗BΨ

2

]
. (3.16)

The subscript Ψ denotes that the basis Ψ instead of X is used in y-direction. Now, we are able to
prove the following theorem.

10



Theorem 3.6 Let us assume that Assumptions 3.1 and 3.4 are satisfied. Let u be the extension
described in Algorithm 3.5, i.e. u = Eg. Then,

‖ u ‖2H1(Ω)≤ c2Hc
2
Ω

max{c2,1, c2,2}
min{c1,1, c1,2}

‖ g ‖2H0.5(∂Ω)

with the constants in (3.12), (3.13) and (3.9).

Proof: Let
D1 = diag

[
d
(1)
j

]n
j=1

and D2 = diag
[
d
(2)
j

]n
j=1

with the constants d(i)
j defined in (3.12) and (3.13). Then, for all v ↔ v(y) =

∑
vjψj(y),

c1,i (Div, v) ≤
(
BΨ

i v, v
)
≤ c2,i (Div, v) ∀v, i = 1, 2 (3.17)

follows from (3.12) and (3.13). Hence, the relations (2.10) are satisfied. By Theorem 2.5, one
obtains (

KΨ

[
g
û

]
,

[
g
û

])
≤ max{c2,1, c2,2}

min{c1,1, c1,2}
(
SΨg, g

)
. (3.18)

Then, using the arguments of Lemma 3.3 (Assumption 3.1), i.e.
[
g
û

]
↔ u, g ↔ g, the assertion

follows. 2

Hence, an optimal extension can be computed by the technique described in Algorithm 3.5. In
order to compute the extension efficiently, the following remarks are useful:

Remark 3.7 • In 1., one basis change from the basis X to the basis Ψ has to be done, in 3.,
n basis changes from the Ψ to the basis X have to be done.

• 2. means from the algebraic point of view the system solve û = −C22C21g. This can be done
by solving systems with linear combinations of the matrices A1,0 and A2,0, cf. Lemma 2.6.
The matrices A1,0 and A2,0 are the 1D mass and 1D stiffness matrix with respect to the basis
Ψ.

Usually, the extension operator E ↔ E is embedded in a domain decomposition pre-conditioner Ĉ
for K, cf. (1.3),

Ĉ−1 =
[
I 0
E I

] [
Ŝ−1 0
0 C−1

22

] [
I ET

0 I

]
, (3.19)

where Ŝ is a pre-conditioner for the Schur-complement and C22 is a pre-conditioner for K22. The
basis Ψ is stable in H1(ω) and L2(ω). Thus, for all g(y) =

∑n
j=1 g̃jψj(y), we have

c1,1

n∑
j=1

d
(1)
j g̃2

j ≤ ‖ g ‖2L2(ω)≤ c2,1

n∑
j=1

d
(1)
j g̃2

j ,

c1,2

n∑
j=1

d
(2)
j g̃2

j ≤ ‖ g ‖2H1(ω)≤ c2,2

n∑
j=1

d
(2)
j g̃2

j .

By the K-method of interpolation, cf. [27], it follows that this basis is stable in H0.5(ω), too:

cS
√
c1,1c1,2

n∑
j=1

√
d
(1)
j d

(2)
j g̃2

j ≤‖ g ‖2H0.5(ω)≤ CS
√
c2,2c2,1

n∑
j=1

√
d
(1)
j d

(2)
j g̃2

j , (3.20)
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where cS and CS are some constants independent of the parameter n. Hence, in the basis Ψ, we
can apply the diagonal matrix (D1D2)0.5 as pre-conditioner for the Schur-complement SΨ. Let W
be the basis transformation matrix between the bases Ψ and X, i.e. Ψ = XW . Then, we introduce
Ŝ−1 = W (D1D2)−0.5WT as pre-conditioner for S.
For C−1

22 , we use the pre-conditioner

C−1
22 = (I ⊗W )(A1,0 ⊗D1 +A2,0 ⊗D2)−1(IT ⊗WT ) (3.21)

and the extension operator is of the form

E = −C−1
22 C21 = −(I ⊗W )(A1,0 ⊗D1 +A2,0 ⊗D2)−1(a1 ⊗D1 + a2 ⊗D2)W−1. (3.22)

Inserting this into (3.19), a simple computation gives the final pre-conditioner

Ĉ−1 =
[
W 0
0 (I ⊗W )

] [
I 0
T I

] [
(D1D2)−0.5 0

0 D

] [
I TT

0 I

] [
WT 0
0 (I ⊗WT )

]
with D = (A1,0 ⊗D1 + A2,0 ⊗D2)−1 and T = −(A1,0 ⊗D1 + A2,0 ⊗D2)−1(a1 ⊗D1 + a2 ⊗D2).
Thus, if this pre-conditioner is used, the basis change X → Ψ is not necessary.

Lemma 3.8 The condition number estimate

c1

(
Ĉv, v

)
≤ (Kv, v) ≤ c2

(
Ĉv, v

)
∀v

is valid with c1 = 1
2

min{c1,1,c1,2}
max{c2,1,c2,2} ·min

{
c1,1, c1,2, c

2
T cS

√
c1,1, c1,2

}
and

c2 = 2max{c2,1,c2,2}
min{c1,1,c1,2} ·max

{
c2,1, c2,2, c

2
HCS

√
c2,1, c2,2

}
.

Proof: We apply Lemma 1.1. By Theorem 3.6, the extension operator satisfies the estimate(
K

[
I
E

]
g,

[
I
E

]
g

)
≤ c2E

(
Sg, g

)
∀g (3.23)

with c2E = 2max{c2,1,c2,2}
min{c1,1,c1,2} . Due to (3.17), cf. Proposition 2.4, the matrix A1,0 ⊗D1 + A2,0 ⊗D2 is

a pre-conditioner for A1,0 ⊗BΨ
1 +A2,0 ⊗BΨ

2 with

min{c1,1, c1,2} (A1,0 ⊗D1 +A2,0 ⊗D2v, v) ≤
(
A1,0 ⊗BΨ

1 +A2,0 ⊗BΨ
2 v, v

)(
A1,0 ⊗BΨ

1 +A2,0 ⊗BΨ
2 v, v

)
≤ max{c2,1, c2,2} (A1,0 ⊗D1 +A2,0 ⊗D2v, v) ∀v.

By BΨ
i = W−TBiW

−1, i = 1, 2, and (3.21), one concludes

min{c1,1, c1,2} (C22v, v) ≤ (K22v, v) ≤ max{c2,1, c2,2} (C22v, v) ∀v. (3.24)

By (3.20), and Lemma 3.2, for g(y) =
∑n

j=1 g̃jψj(y) we have

(
SΨg, g

)
≤ c2H ‖ g ‖2H0.5(ω)≤ c2HCS

√
c2,1c2,2

n∑
j=1

√
d
(1)
j d

(2)
j g̃2

j = c2HCS
√
c2,1c2,2

(
(D1D2)0.5g, g

)
.

The estimate c2T cS
√
c1,1c1,2

(
(D1D2)0.5g, g

)
≤
(
SΨg, g

)
can be proved in the same way. Trans-

forming back into the basis X, one obtains

c2T cS
√
c1,1c1,2

(
Ŝv, v

)
≤ (Sv, v) ≤ c2HCS

√
c2,1c2,2

(
Ŝv, v

)
∀v. (3.25)

Combining (3.23), (3.24), and (3.25) proves the assertion. 2
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3.2 The general case

In the last subsection, only an extension of a function living on one edge (in 2D) or face (in
3D) of the domain Ω has been investigated. This subsection deals with the general case of an
extension from ∂Ω into Ω. Usually, the boundary of Ω is splitted into several faces (edges in 2D)
ωi, i = 1, . . . , r, ∪r

i=1ωi = ∂Ω, ωi ∩ ωj = ∅ for i 6= j. On each ωi, a function gi with gi(∂ωi) = 0 is
given. Then, we consider the problem: Find u ∈ H1(Ω) such that

‖ u ‖2H1(Ω) ≤ c ‖ g ‖2H0.5(∂Ω),

u |ωi = gi = g |ωi , 1, . . . , r. (3.26)

This problem can be solved by the method described in the previous subsection (Algorithm 3.5).
Let ui be the extension of

ui |ωj
= giδij on ωj and ‖ ui ‖2H1(Ω)≤ ci ‖ gi ‖2H0.5(ωi)

. (3.27)

Then, we define u =
∑r

i=1 ui as the extension of the function g into Ω. Obviously, u |ωj
=∑r

i=1 ui |ωj
=
∑r

i=1 giδij = gj , i.e. condition (3.26) is fulfilled. Moreover, by the Cauchy-Schwarz
inequality and (3.27), we obtain

‖ u ‖2H1(Ω)=‖
r∑

j=1

uj ‖2H1(Ω) ≤ r
r∑

j=1

‖ uj ‖2H1(Ω)

≤ r

r∑
j=1

cj ‖ gj ‖2H0.5(ωj)
≤ rC(n) max

j=1,...,r
{cj}

r∑
j=1

‖ gj ‖2H0.5
00 (ωj)

≤ C(n)r max
j=1,...,r

{cj} ‖ g ‖2H0.5(∂Ω) .

In the last estimate, a relation between the norms ‖ · ‖2H0.5(ωj)
and ‖ · ‖2

H0.5
00 (ωj)

is required. In the
case of the p-version and h-version of the FEM in two dimensions , we have C(n) ∼ (1 + log n),
i.e. there is a logarithmic dependence on the discretization parameter. In the second norm, the
coupling between two neighbouring faces or edges ωi and ωj has no influence in the norm, whereas
an additional connectivity term is involved in the definition of the first norm.
So, with an optimal extension for problem (3.27), cf. Algorithm 3.5, an quasioptimal extension for
(3.26) can be computed.

4 Examples

In this section, several examples for extension operators of the type proposed in Algorithm 3.5 are
given. So, Assumption 3.4 has to be verified, i.e. a polynomial basis Ψ has to be derived which is
stable in H1(I) and L2(I). Using methods of multi-resolution analysis, [16], [15], [9], [35], such a
basis Ψ can be constructed in the case of h- and p-version of the FEM. We start with the p-version
of the FEM.

4.1 Extension operators for the p-version of the FEM

In this subsection, we describe a method deriving an extension operator E, i.e. u = Eg in matrix
representation, in the case of the p-version of the FEM. Usually, such an extension operator is
embedded in a Domain Decomposition pre-conditioner of Dirichlet-Dirichlet-type, cf. section 1, or
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[6]. The operator u = Eg will require O(p2) arithmetical operations in 2D and O(p3) arithmetical
operations in 3D, i.e. it is arithmetically optimal. Moreover the extension satisfies the estimate

(Kx, x) =
(
K

[
I
E

]
g,

[
I
E

]
g

)
≤ c

(
Sg, g

)
∀g ∈ Rm,

where c is independent of the polynomial degree p. A system solve K22u = −K21g is not required.
In sub-subsection 4.1.1 a method in order to construct stable polynomial bases in the spaces H1(I)
and L2(I) is shown. In sub-subsections 4.1.2 and 4.1.3, we derive the extension operators for the
2D and 3D case.

4.1.1 A stable polynomial basis of Pp,00 in H1(I) and L2(I)

In this sub-subsection, we propose a basis in Pp,00, which is stable in the spaces L2(I) and H1(I).
For i ∈ N, let `i(x) =

(
d
dx

)i
(x2 − 1)i be the i-th Legendre polynomial and let

ˆ̀
i(x) =

√
(2i− 3)(2i− 1)(2i+ 1)

2

∫ x

−1

`i−1(s) ds (4.1)

be the i-th integrated Legendre polynomial (i ≥ 2). Note that ˆ̀
i(±1) = 0. Thus, {ˆ̀i}p

i=2 is a basis
in the space Pp,00. Moreover, we introduce the 1D mass and 1D stiffness matrix with respect to
the basis {ˆ̀i}p

i=2, i.e.

L2,I =
[
〈ˆ̀j , ˆ̀i〉I

]p
i,j=2

and H1,I =
[
〈D ˆ̀

j , D ˆ̀
i〉I
]p

i,j=2
. (4.2)

In [8], we have proved that

L2,I =


1 0 −γ2 0
0 1 0 −γ3

−γ2 0 1 0 −γ4

...
. . .

0 . . . 0 −γp−2 0 1

 , (4.3)

∼


2 0 −1 0
0 2 0 −1
−1 0 2 0 −1
...

. . .
0 . . . −1 0 2

 .

Moreover, an easy calculation shows, [25],

H1,I = diag
[
(2j − 3)(2j + 1)

2

]p

j=2

. (4.4)

Here and in the following, the relation A ∼ B means that c1 (Av, v) ≤ (Bv, v) ≤ c2 (Av, v) ∀v,
where the constants c1 and c2 do not depend on the polynomial degree p. Using a permutation P
of rows and columns, one obtains

L2,I ∼ PT

[
L2

L2

]
P and H1,I = PT

[
H1

H1

]
P, (4.5)
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where L2 is a tridiagonal matrix with 2’s on the main diagonal and −1’s on the first sub-diagonal.
Obviously, {ˆ̀i}p

i=2 is stable in H1(I). However, we are not able to prove that {ˆ̀i}p
i=2 is stable

in L2(I). In order to find a stable basis, we use interpretations of the matrices L2 and H1 as
discretization matrices on the unit interval (0, 1) using piecewise linear ansatz functions.
Let k ∈ N, n = 2k and p = 2n− 1. Moreover, let τi =

[
i
n ,

i+1
n

]
, i = 0, . . . , n− 1, be an equidistant

mesh on the interval [0, 1] and Θ = {θi}n−1
i=1 be the basis of the usual hat functions

θi(x) =

 nx− (i− 1) on τi−1

(i+ 1)− nx on τi
0 else

, i = 1, . . . , n− 1. (4.6)

We introduce the matrices

MΘ =
[∫ 1

−1

θi(x)θj(x)x2 dx
]n−1

i,j=1

and TΘ =
[∫ 1

−1

θ′i(x)θ
′
j(x) dx

]n−1

i,j=1

.

In [5], we have proved the following result.

Lemma 4.1 The spectral equivalence relations H1 ∼ n3MΘ and L2 = 1
nT

Θ are valid.

Concerning the weighted mass matrix MΘ and the unweighted stiffness matrix TΘ, it is known
from the wavelet theory, [9], that it can be constructed a multi-level basis in which MΘ and TΘ are
spectrally equivalent to diagonal matrices. Let J = (j, l), where 0 ≤ l ≤ k and j = 1, 3, 5, . . . , 2l−1,
card(J) = n− 1. The diagonal matrices

D1,0 = diag
[
22l
]
J=(j,l)

and D2,0 = diag
[
j22−2l

]
J=(j,l)

(4.7)

are introduced.

Theorem 4.2 There are multi-level bases Ψ̃ = {ψ̃J}J with Ψ̃ = ΘQ such that the matrices TΨ =
QTTΘQ and MΨ = QTMΘQ satisfy the spectral equivalence relations TΨ ∼ D1,0 and MΨ ∼ D2,0.
The transformation v = QTw can be performed in O(n) operations.

Examples for wavelets bases are given in [9].
Now, let

W = PT

[
Q 0
0 Q

]
, (4.8)

where P denotes the permutation matrix in (4.5) and Q denotes the fast wavelet transform in
Theorem 4.2.

Theorem 4.3 The matrices L2,I and H1,I satisfy the relations

L2,I ∼
1
n
W−T

[
D1,0 0

0 D1,0

]
W−1 and H1,I ∼ n3W−T

[
D2,0 0

0 D2,0

]
W−1. (4.9)

Proof: Using (4.5), Lemma 4.1 and Theorem 4.2, we have

L2,I ∼ PT

[
L2 0
0 L2

]
P =

PT

n

[
TΘ 0
0 TΘ

]
P

=
1
n
PT

[
Q−TTΨQ−1 0

0 Q−TTΨQ−1

]
P

∼ PT

n

[
Q−T 0
0 Q−T

] [
D1,0 0
0 D1,0

] [
Q−1 0
0 Q−1

]
P.
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Since P is a orthogonal matrix, the first assertion follows from (4.8). The second assertion can be
proved in the same way. 2

Via the matrix W (4.8), the basis

Ψ = [ψ1(x), . . . , ψp−1(x)] =
[
ˆ̀
2(x), . . . , ˆ̀p(x)

]
W (4.10)

is introduced.

Corollary 4.4 The basis Ψ is stable in L2(I) and H1(I). Moreover, the operation v = Ww can
be performed in O(p) arithmetical operations.

Thus, we have found an algorithm which transforms a function g(x) =
∑p

j=2 gj
ˆ̀
j(x) ∈ Pp,00 from

the basis of the integrated Legendre polynomials into the basis Ψ ⊂ Pp,00 which is stable in L2(I)
and H1(I) and requires O(p) operations.

4.1.2 The 2D case

We consider the discretization (3.5) of problem (3.1)-(3.3) in the case of the p-version of the
FEM with ω = (−1, 1), Ω = (−1, 1)2. We use the integrated Legendre polynomials (4.1) for the
discretization in x− and y− direction, i.e.

ξj(x) = ˆ̀
j(x), j = 2, . . . , p, ξ1(x) =

1− x

2
and

χj(y) = ˆ̀
j+1(y), j = 1, . . . , p− 1.

Using the notation (3.15), an easy calculation shows, cf. [25],

a1 = −

[√
5
12
,

√
7
60
, 0 . . . , 0

]T

, α1 = 2
3 , A1,0 = B2 = L2,I ,

a2 = −[0 . . . , 0]T , α2 = 1
2 , A2,0 = B1 = H1,I . (4.11)

We use Algorithm 3.5 in order to compute a nearly optimal discrete harmonic extension. Since
Corollary 4.4, the basis Ψ (4.10) is stable in L2(I) and H1(I). Thus, the assumptions of Theorem
3.6 are satisfied.
Written in vectors of the Euklidian space and matrices, the following operations have to be done
in the basis {ˆ̀i(x)ˆ̀j(y)}p

i=1,j=2. Let

D1 =
1
n

[
D1,0 0

0 D1,0

]
and D2 = n3

[
D2,0 0

0 D2,0

]
. (4.12)

Using Theorem 4.3, we have Bi ∼W−TDiW
−1, i = 1, 2. Thus, we set

C = A1 ⊗W−TD1W
−1 +A2 ⊗W−TD2W

−1.

Inserting relations (4.11), C−1
22 = (I ⊗ W )(L2,I ⊗ D1 + H1,I ⊗ D2)(I ⊗ WT ) and C21 = (I ⊗

W−T )(a1 ⊗D1)W−1, one concludes

u = −C−1
22 C21g = −(I ⊗W )(L2,I ⊗D1 +H1,I ⊗D2)−1(a1 ⊗D1)W−1g. (4.13)

Theorem 4.5 Let x =
[
g
u

]
↔ u be defined via (4.13). Then,

‖ u ‖H1((−1,1)2)≤ cHcE ‖ g ‖H0.5({−1}×(−1,1)) (4.14)

with c2E ≤ max{c2,1,c2,2}
min{c1,1,c1,2} . The computation of (4.13) requires O(p2) operations.
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Proof: We use Theorem 3.6. In [3], see also [4], it has been proved that for all ĝ ∈ Pp,00 there
exists a û ∈ Qp with

‖ û ‖H1(Ω)≤ cH ‖ ĝ ‖H0.5(∂Ω)

under the constraints û(−1, y) = ĝ(y), û(1, y) = 0 and û(x,±1) = 0. The constant does not depend
on the polynomial degree. Thus, the first assumption of Theorem 3.6, Assumption 3.1, is satisfied.
The second assumption follows from Corollary 4.4. This proves the first assertion.
Since the multiplication w = Qv requires O(p) operations, the cost of w = (I ⊗W )v is of order
p2. Due to (4.3) and (4.4), the matrix βL2,I + γH1,I is a block diagonal matrix of two tridiagonal
matrices after reordering the unknowns, β, γ ∈ R, β, γ > 0. Using Cholesky decomposition, the
cost of (βL2,I + γH1,I)−1v is O(p). For the operation (L2,I ⊗D1 +H1,I ⊗D2)−1(a1⊗D1)g, where
D1 and D2 are diagonal matrices, p−1 systems with a linear combination of the matrices L2,I and
H1,I have to be solved, cf. Lemma 2.6. So, the total cost is of order p2. For the operation W−1g,
an inverse wavelet transform is required, where W ∈ Rp−1×p−1. 2

4.1.3 The 3D case

This case is similar to the 2D case. We consider the discretization (3.5) of problem (3.1)-(3.3)
in the case of the p-version of the FEM with ω = (−1, 1)2, Ω = (−1, 1)3. We use the integrated
Legendre polynomials (4.1) for the discretization in x− and tensor products of integrated Legendre
polynomials for the discretization in ω, i.e. in y− direction. More precisely, let

ξj(x) = ˆ̀
j(x), j = 2, . . . , p, ξ1(x) =

1− x

2
and

χj(y) = ˆ̀
k(y1)ˆ̀l(y2), k, l = 2, . . . , p, j = (k − 2)(p− 1) + l − 1, y = (y1, y2).

We use the Algorithm 3.5 in order to compute a nearly optimal discrete harmonic extension.
Since Corollary 4.4, the basis Ψ (4.10) is stable in L2(I) and H1(I). Thus, the tensor product
basis Ψ × Ψ = {ψi(x)ψ(j(y)}p−1

i,j=1 is stable in L2(I × I) = L2(I) × L2(I) and H1(I × I) =
H1(I) × L2(I) + L2(I) × H1(I). Thus, the assumptions of Theorem 3.6 are satisfied and the
discrete harmonic extension can be computed. As in sub-subsection 4.1.2, a similar calculation
shows

u = −C−1
22 C21g = −(I ⊗W ⊗W )(L2,I ⊗D3 +H1,I ⊗D4)−1(a1 ⊗D3)(W−1 ⊗W−1)g, (4.15)

where D3 = D1⊗D2+D2⊗D1 and D4 = D1⊗D1, cf. (4.3), (4.4), (4.12) and (4.8). We summarize
the results in the following theorem.

Theorem 4.6 Let x =
[
g
u

]
↔ u be defined via (4.15). Then,

‖ u ‖H1((−1,1)3)≤ c ‖ g ‖H0.5(−1×(−1,1)2) .

The constant c is independent of the polynomial degree and the computation of u requires O(p3)
operations.

Proof: The proof is similar to the proof of Theorem 4.5. The existence of an optimal harmonic
extension has to be ensured, cf. [33] for the tetrahedral case and [27]. So, Assumption 3.1 is
satisfied. 2
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4.2 h-version of the FEM in 2D and 3D

We consider the discretization (3.5) of problem (3.1)-(3.3) in the case of the h-version of the FEM
with ω = (−1, 1), Ω = (−1, 1)2. Let k ∈ N, n = 2k+1 − 1, s = 2k.
Moreover, let τi =

[
i
s ,

i+1
s

]
, i = −s, . . . , s − 1, be an equidistant mesh on the interval I and

Θ = {θi}s−1
i=−s+1 be the basis of the usual hat functions (4.6). Then, we choose χj(y) = θj+s(y)

for j = −s + 1, . . . , s − 1. Moreover, let τ̃i, i = 1, . . . ,m be an arbitrary 1D finite element mesh
of (−1, 1). Then, Ξ is the basis of the usual hat functions according to the mesh τ̃i. We apply
Theorem 3.6.
It is known from the theory of multi-resolution bases, [16], [15], [35], that several wavelet bases on
the interval are stable in H1 and L2. Moreover, is has been shown in [20] that it exists a piecewise
linear harmonic extension u of the piecewise linear function g =

∑s−1
j=−s+1 gjθj into the interior of

the domain Ω. Hence, Assumption 3.1 is satisfied.
So, the assumptions of Theorem 3.6 are satisfied and the optimal extension can be computed via
Algorithm 3.5. For the computation of u, n systems of linear algebraic equations with a linear
combination Mj , j = 1 . . . , n, of the one dimensional mass matrix and one dimensional stiffness
matrix with respect to the basis Ξ have to be solved, cf. Remark 3.7. Since Ξ is the basis of
the usual hat-functions, the system matrices Mj are tridiagonal matrices. Thus, one system solve
requires O(m) operations and the total cost is O(mn).
The approach can be extended to the 3D-case, where ω in a surface in R3. For details concerning
the assumptions to ω, we refer to [22].

5 Numerical examples

In this section, we compute the smallest possible constant cE in (4.14) for the proposed extension
operators in the case of the p-version of the finite element method in two dimensions. In all
experiments, the wavelet basis described in [8] is used. Table 1 displays the quality of the extension
(4.13). Moreover, the best constants c1,1, c1,2, c2,1 and c2,2 in (3.12) and (3.13) are computed.
For all p, the constant c2E lies between 1.4 and 1.9 and is bounded by a constant independent

p 3 7 15 31 63 127
c2E in (4.14) 1.45 1.89 1.85 1.79 1.76 1.75

c1,1 0.22 0.20 0.18 0.17 0.17 0.16
c1,2 0.94 0.37 0.25 0.21 0.19 0.18
c2,1 2.23 2.35 2.39 2.41 2.42 2.43
c2,2 3.94 3.94 3.42 3.23 3.15 3.11

Table 1: Smallest possible constant of (3.16) for the p-version extension operator.

of p. The result is much better as we can expect from the estimate in Theorem 3.6, where
c2E = max{c2,1,c2,2}

min{c1,1,c1,2} ≈ 3
0.2 = 15. In this example, we have used explicitely given numbers for the

definition of the matrices D1 and D2, cf. relation (4.7).
In a second example, we use a better diagonal scaling for the matrices WTBiW in (4.12). We
replace the diagonal matrices D1 and D2 by the matrices Di = diag(WTBiW ), i = 1, 2, where
diag(U) denotes the diagonal part of the matrix U . These entries can explicitely be computed in
O(p) operations. Table 2 displays the constants cE , ci,j , i, j = 1, 2 if the matrices Di in (4.12) are
replaced by the matrices diag(WTBiW ). Now, the constants cE and c1,1, c2,1 and c2,2 are closer
to one. Thus, the second way in order to define the extension is better than the first one.
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p 3 7 15 31 63 127
c2E in (4.14) 1.00 1.13 1.26 1.34 1.37 1.39

c1,1 0.36 0.36 0.36 0.36 0.36 0.36
c1,2 1.00 0.33 0.25 0.21 0.19 0.18
c2,1 1.63 1.68 1.77 1.83 1.88 1.92
c2,2 1.00 1.96 2.16 2.27 2.35 2.40

Table 2: Smallest possible constant of (4.14) for the p-version extension operator with diagonal
scaled matrices.
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