
Solving the Signorini Problemon the Basis ofDomain Decomposition TechniquesJ. Sch�oberl�, LinzAbstractSolving the Signorini Problem on the Basis of Domain DecompositionTechniques. The �nite element discretization of the Signorini Problem leads to alarge scale constrained minimization problem. To improve the convergence rate of theprojection method preconditioning must be developed. To be e�ective, the relativecondition number of the system matrix with respect to the preconditioning matrix hasto be small, and the applications of the preconditioner as well as the projection ontothe set of feasible elements have to be fast computable. In this paper, we show howto construct and analyze such preconditioners on the basis of domain decompositiontechniques. The numerical results obtained for the Signorini problem as well as forplane elasticity problems con�rm the theoretical analysis quite well.AMS Subject Classi�cations: 73T05, 35J85, 65N55, 65F35, 65K10Key words: contact problem, variational inequality, domain decomposition, precon-ditioning. ZusammenfassungDie Au
�osung des Signorini Problems auf der Basis von Gebietszerlegungs-methoden. Die Finite Elemente Diskretisierung des Signorini-Problems f�uhrt zueinem restringierten Minimierungsproblem mit vielen Freiheitsgraden. Zur Verbes-serung der Konvergenzrate des Projektionsverfahren m�ussen Vorkonditionierungs-techniken entwickelt werden. Um e�zient zu sein, mu� die relative Konditionszahlder Systemmatrix in Bezug auf die Vorkonditionierungsmatrix klein sein, und dieAnwendungen der Vorkonditionierung als auch der Projektion in die zul�assige Mengem�ussen schnell berechenbar sein. In dieser Arbeit wird die Konstruktion und Analysesolcher Vorkonditionierer auf Gebietszerlegungsbasis dargestellt. Numerische Ergeb-nisse f�ur das Signorini Problem und Kontaktprobleme aus der ebenen Elastizit�atstimmen mit der theoretischen Analyse gut �uberein.�This research has been supported by the Austrian Science Foundation - 'Fonds zur F�orderung derwissenschaftlichen Forschung (FWF)' - under project grant P10643-TEC.1



1 IntroductionThe contact problem is an important problem in computational mechanics. An elastic bodyis deformed due to volume and surface forces, but the body should not penetrate a given,rigid obstacle. This leads to unilateral boundary conditions, called contact conditions. Werefer to [28], [7], [23], [22], [17] for mathematical modeling and analysis.In this paper we are interested in fast numerical algorithms for solving the �nite dimen-sional constrained minimization problem arising from the �nite element discretization ofthe Signorini problem or elastic contact problem [5], [8], [22], [10], [9], [17]. There are clas-sical iterative methods like point projection methods and point over-relaxation methods[8]. These methods su�er from slow convergence rates on �ne meshes. Multigrid methodshave been successfully applied to obstacle problems with inequality constraints in the wholedomain by [15], [25], [19], [20]. Domain decomposition methods for variational inequalitieshave been investigated in [31], [18], [1]. But these domain decomposition methods dif-fer from our method based on domain decomposition preconditioners. Boundary elementmethods have also been applied for contact problems in [27], [16], [30].For the sake of simplicity, we will consider the Signorini Problem for the Poisson equa-tion to develop and analyze the algorithms, but we also provide numerical results for thecontact problem in elasticity.For the Signorini problem, the unknown function u is restricted from below on theSignorini part �C of the boundary � = @
. In the classical form, the Signorini problemreads as follows: ��u = f in 
;u = 0 on �D;@u@n = 0 on �N ; (1)u � g; @u@n � 0; @u@n (u� g) = 0 on �C :The domain 
 is supposed to be bounded in Rd, d = 2 or 3 with a Lipschitz-continuousboundary @
 = �D [ �N [ �C such that meas(�D) 6= 0 and meas(�C) 6= 0.The �nite element discretization of the weak form of (1) leads to the �nite dimensionalConstrained Minimization Problem (CMP)Find u 2 K : J (u) = infv2K J (v) ; with J (v) := 12vTAv � fTv; (2)or to the equivalent variational inequalityFind u 2 K : uTA(v � u) � fT (v � u) 8v 2 K: (3)The mesh size is denoted by h, the total number of unknowns isN , the number of unknownson �C is NC . The solution u, the symmetric and positive de�nite (spd) system matrix A2



and the right-hand side vector f are split into contact boundary components (C) and innerplus Neumann boundary components (I), i.e.u =  uCuI ! ; A =  AC ACIAIC AI ! ; f =  fCfI ! : (4)The convex set of feasible functions K � V := RN is de�ned byK = fv 2 V : vC � gCg ; (5)where vC � gC is meant component-wise.To solve the �nite dimensional constrained minimization problem, the projection methodis applied. This method is not very popular in practice, because its convergence rate isvery slow on �ne meshes, unless good preconditioning is applied. The goal of this paper isto present preconditioning techniques satisfying the following properties:� The relative condition number of A with respect to C is small,� the operation C�1 � v is fast executable,� the projection P with respect to the C energy norm onto K is fast computable,with the spd preconditioning matrix C. Multi-level preconditioners as well as domaindecomposition (DD) preconditioners have been developed for satisfying the �rst two re-quirements quite well. The basic concept of Dirichlet DD is the approximative decouplingof the global FE space into inner and extended boundary subspaces. The projection in-volves only the boundary subspace. To implement this projection, the dual problem isintroduced. This enables us to use well-known boundary preconditioners. To avoid twocascaded iterations until convergence, we analyze also the truncated version by means ofthe Bramble-Pasciak transformation, introduced in [3]. If the underlying components areoptimal and a uniformly re�ned mesh is used, then the complexity is of optimal order forthe two as well as three dimensional case. We will combine our algorithms also with nestedand adaptive concepts and study the behavior by means of numerical examples.The rest of the paper is organized as follows. The projection algorithm and its approxi-mative version are presented in Section 2. Convergence in the energy norm is proved. Theconcepts of additive DD preconditioning is shortly repeated in Section 3. In Section 4, bothconcepts are combined to develop an optimal preconditioner for the projection algorithm.The truncated variant is analyzed in Section 5. Finally, numerical results are presented inSection 6.2 The Projection MethodThe �nite dimensional CMP (2) can be solved by the projection method which reads as:3



Algorithm 1 (Projection Method)Choose an arbitrary initial guess u1 2 K.For k = 1; 2; : : : douk+1 = P �uk + �C�1 �f � Auk��.In Algorithm 1, C is the symmetric and positive de�nite (spd) preconditioning matrix. Weassume the spectral equivalence inequalities�C � A � �C (6)in the sense of Euclidean inner product, with the positive spectral equivalence constants �and �. In general, these bounds depend on the mesh parameter h. If they are independentof h and the operation C�1 � v is fast executable (i.e. via O(N) arithmetical operations),then we call the preconditioner C asymptotically optimal. Asymptotically optimal pre-conditioners can be constructed by multi-level techniques as well as by multi-level - DDtechniques, see Section 3.We assume, that the real, positive relaxation parameter � is chosen such that � � 1=�.The operator P is the projection onto K with respect to the energy norm induced by thespd preconditioning matrix C:P : w 2 V ! P (w) 2 K : kP (w)� wkC � kv � wkC; 8v 2 K: (7)It is straightforward to show that uk converges to its limit u in C-energy norm withconvergence factor 1� �� (see, e.g., [9]). A convergence rate estimation in A-energy normis necessary for the composite algorithm in Section 5. However, it was not available fromthe literature. It could not be shown that uk converges monotonically to u in A-norm, butthe main theorem of this section provides a monotone decay of the quadratic functional J ,and it estimates the convergence rate �.For our application, the exact projection P is too expensive to compute, and so it isreplaced by an approximative projection ~P . This leads us to the approximative projectionmethod:Algorithm 2 (Approximative Projection Method)Choose an arbitrary u1 2 K.For k = 1; 2; : : : do~uk = uk + �C�1 �f � Auk�,uk+1 = ~P (~uk).The following theorem estimates the convergence rate of the approximative projectionmethod, which also includes the exact projection method with �P = 0.
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Theorem 1 (Energy convergence rate estimate)Let uk be the sequence generated by Algorithm 2. The relaxation parameter � is chosenin the interval (0; 1=�]. The approximative projection ~P ful�llsk ~P (~uk)� ~ukk2C � �Pkuk � ~ukk2C + (1� �P ) kP (~uk)� ~ukk2C ; (8)with �P 2 [0; 1). Then the estimateJ(uk+1) � �J(uk) + (1� �) J(u) (9)holds for every k 2 N with the convergence rate� = 1� ��2 (1� �P ): (10)The error in A-energy norm is bounded byku� ukk2A � 2�k�1 �J(u1)� J(u)� : (11)Proof: First, we reduce the approximative projection to the case of an exact projection.We use ��1C � A � 0, the de�nition of ~uk and (8) to obtainJ(uk+1) � J(uk+1) + 12kuk+1 � ukk21� C�A= 12� kuk+1 � ~ukk2C � 12� kuk � ~ukk2C + J(uk)� 12� ��Pkuk � ~ukk2C + (1� �P )kP (~uk)� ~ukk2C�� 12� kuk � ~ukk2C + J(uk)= (1� �P ) � 12� kP (~uk)� ~ukk2C � 12� kuk � ~ukk2C + J(uk)�+ �PJ(uk):Due to the convexity of K, there holdskP (~uk)� ~ukkC � kP[u;uk](~uk)� ~ukkC ; (12)with the projection P[u;uk](~uk) onto the straight line [u; uk]. This reduces the problem tothe plane spanned by (u; uk; ~u). From the sketch below the next estimates are obvious:
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kP[u;uk](~uk)� ~ukk2C � kuk � ~ukk2C= �P[u;uk](~uk)� ~uk; P[u;uk](~uk)� uk�C � �~uk � uk; P[u;uk](~uk)� uk�C� � �~uk � uk; P[u;uk](~uk)� uk�C= �max(0;min((~uk � uk; u� uk)C ; (~uk � uk; u� uk)2Cku� ukk2C )) : (13)Using the de�nition of ~uk, the variational speci�cation (3) of the solution u and the spectralbound �, we get �~uk � uk; u� uk�C = �(f � Auk)T (u� uk)= �(f � Au)T (u� uk) + �ku� ukk2A� ��ku� ukk2C : (14)Combining (12), (13), (14) and using �� � 1, we getkP (~uk)� ~ukk2C � kuk � ~ukk2C� �maxn0;minn(~uk � uk; u� uk)C ; ��(~uk � uk; u� uk)Coo= ��� �~uk � uk; u� uk�C :Now, using the last inequality, we continue to estimate the energy functional J(uk+1):J(uk+1) � (1� �P ) ���2 (~uk � uk; u� uk)C + J(uk)�+ �PJ(uk)= (1� �P ) ����2 (f � Auk)T (u� uk) + J(uk)�+ �PJ(uk)= (1� �P ) ��1� ��2 � J(uk) + ��2 J(u)� ��4 ku� ukk2A�+ �PJ(uk)� �1� ��2 (1� �P )� J(uk) + ��2 (1� �P )J(u)= �J(uk) + (1� �)J(u):We use this result to estimate the error in A-energy norm byku� ukk2A = 2�J(uk)� J(u)� (Au� f)T (uk � u)�� 2 �J(uk)� J(u)� � 2�k�1 �J(u1)� J(u)� : (15)For practical computation we need a computable estimate for the iteration error. Weget the same error estimator as for iterative methods for linear systems.6



Corollary 1The sequence uk is generated by Algorithm 1 or by Algorithm 2. Then the iteration erroris bounded by ku� uk+1k2A � �1� �(uk+1 � uk)T (2f � Auk � Auk+1); (16)with � from (10).Proof: From (15), we get ku� ukk2A � 2(J(uk)� J(u));and by Theorem 1, we have(1� �)(J(uk+1)� J(u)) � �(J(uk)� J(uk+1))= �2(uk+1 � uk)T (2f � Auk � Auk+1);that completes the proof.3 Domain Decomposition PreconditioningIn this section we present the approximative additive domain decomposition (DD) precon-ditioner introduced in [13]. The domain decomposition strategy provides us with a splittingof the FE - space V into inner (VI) and extended coupling boundary ( eVC) subspaces, whichis useful for parallel computing. In our application the coupling boundary is replaced bythe contact boundary. By combination with multi-level techniques we gain asymptoticallyoptimal preconditioners.We recall the splitting of V into the boundary subspace VC and inner subspace VI givenin (4). These two subspaces are far away from being orthogonal with respect to energynorm. To get an idea about orthogonality we have to go back to the Sobolev space H1 (
).The two subspaces H10 (
) and the space of the harmonic functions are orthogonal withrespect to the H1-half norm. The space VI is an approximation to H10 (
). To approximatethe harmonic subspace one takes eVC := fEvC : vC 2 VCg ;where E = (IC ; ETI )T is a computable operator which approximates the discrete harmonicextension of a given boundary function. E is bounded by cE in the sense ofkEvCkA � cE infw2VwC=vC kwkA = cEkvCkSCwith the Boundary-Schur-Complement SC = AC � ACIA�1I AIC .7



Note, the best extension operator (cE = 1) would be the solution of the Dirichletproblem with given boundary values vC . But we need a fast executable extension operatorwith small constant cE.On both sub-spaces VI and ~VC we need spd preconditioners CI and CC , respectively,for which we assume the spectral inequalities�CCC � ETAE � �CCC and �ICI � AI � �ICI :Because ETAE is spectrally equivalent (with constants 1 and c2E) to the Schur complementSC , we call CC Schur complement preconditioner.Using these components, we can de�ne the approximative additive domain decomposi-tion preconditioner byC�1 =  IC 0EI II ! C�1C 00 C�1I ! IC ETI0 II ! ; (17)for which the spectral inequalities �C � A � �Chold with the constants� = �1�q1� c�2E �minf�C ; �Ig and � = �1 +q1� c�2E �max f�C ; �Ig :If the components E, CI and CC are asymptotically optimal, then the preconditioner Cis as well. For the inner preconditioner a symmetric multigrid preconditioner [2], [21]may be used. For 2D, the transformation to the hierarchical basis [34] gives simple Schurcomplement preconditioners [13], [29] and extension operators [14], which are optimal upto logarithmic factors. Optimal components for 2D and 3D are constructed by multi-leveltechniques [4], see [32] for the Schur complement preconditioner and [26] for the extensionoperator. In [11] additional smoothing improves the extension constant cE.All these components have optimal arithmetic complexity, i.e. the operations E, ETand C�1I need O(N) operations, while the application of C�1C needs O(NC) operationsonly. The precise analysis of the overall operator C is given in [13], [6]. In [12] it is shown,how a symmetric multiplicative Schwarz preconditioner �ts into the framework of additiveSchwarz preconditioners.4 The Projection Method with DD PreconditioningIn this section we will apply the DD preconditioner for the projection method. The �rsttwo requirements, namely condition numbers independent of h and fast execution of thepreconditioning operation are ful�lled for this preconditioner. To construct the projectionwe use the basis transformation matrixT =  IC 0EI II ! (18)8



and express the solution u by u = T û. Therefore, û is the solution of the CMPinfv̂2K̂ Ĵ(v̂)with K̂ = T�1K and Ĵ(v̂) = J(T v̂) = 12 v̂T T TAT| {z }Â v̂ � fTT| {z }f̂T v̂:If C is a preconditioner for A, then also Ĉ = T TCT is one for Â with the same bounds.For the DD-preconditioner (17), the transformed Ĉ has the block diagonal structureĈ =  CC 00 CI ! :Because vI can be chosen arbitrarily in a linear space, the set K̂ reduces to K:K̂ = T�1K = ( IC 0�EI II ! vCvI ! : vC � g) = K:Now, we apply the projection method to the transformed system:ûk+1 = P̂ �ûk + �Ĉ�1 �f̂ � Âûk�� :Using the original quantities A, u and f this iteration can be rewritten asuk+1 = T P̂ hT�1uk + �Ĉ�1T T �Auk � f�i = T P̂ ~uk: (19)The projection involves only boundary components, which are decoupled from the innercomponents by the inner product induced by Ĉ. Therefore it can be applied just on theboundary, the inner components stay unchanged. Applying the projection means to solvethe problem FinduC � gC : kuC � ~ukCk2CC = infvC�gC kvC � ~ukCk2CC : (20)This CMP can be solved by the projection method with Euclidean inner product andpointwise projection uk;i+1C = P �uk;iC + �2CC �~ukC � uk;iC �� : (21)In DD, we need a fast implementation of the action C�1C �v. That is ensured by the multi-level Schur complement preconditioner mentioned above. However, for this choice, theoperation CC�v cannot be performed explicitly. By dualizing the boundary CMP (20) weget the operator CC into the computable direction. We rewrite the Kuhn Tucker conditionsfor the CMP, and arrive at the equivalent complementary problem [8]CCuC + p = CC ~ukC;uC � g; p � 0; pT (uC � g) = 0:9



After de�ning v := uC � g and exchanging primal and dual variables one can writeC�1C (�p) + (�v) = g � ~ukC;(�p) � 0; (�v) � 0; vTp = 0:Now this complementary problem can be rewritten as a CMP in the dual variables asminq�0 12qTC�1C q � qT �g � ~ukC� : (22)After calculating p by the projection method, one gets uC by uC = ~ukC � C�1C p. Nowwe can state the whole algorithm developed so far:Algorithm 3 (Inner-outer projection algorithm)u0 = 0for k = 0; 1; 2; :::wk = C�1(f � Auk)~uk = uk + �wkp0 = 0for i = 0; 1; 2; :::pi+1 = P �pi + �2 �g � ~uk � C�1C pi��uk+1 = ~uk+1 � EC�1C p1The computational e�ort is noco+nonici, with the iteration numbers no and ni for outerand inner iterations and the costs per iteration step co and ci, respectively. The number ofouter iterations no is optimal O(1), ni is O(�(CC)), which is O(h�1) for two as well as threedimensional problems. The costs in the outer iteration are optimalO(N), and the costs perinner iteration are O(NC). The drawback of Algorithm 3 is the inner iteration, which hasto be performed until some convergence criterion is ful�lled. To overcome this disadvantagewe look for a better initial value p0 and perform just a �xed number of iterations. We willanalyze this truncated version in the next section by means of the Augmented Lagrangianformulation.5 Augmented Lagrangian FormulationThe dualization of the large CMP (2) givesminq2RNC : q�0 12qTITCA�1ICq � qTITC �A�1f + ICg� ; (23)where IC is the injection of RNC into RN . This functional and its derivative are notfast computable, because both need the inverse of A. Using the Augmented Lagrangian10



technique, we can change it into something computable. Indeed, adding some convexfunction in v and q the minimum of which in v equals 0 for every �xed q, we obtain theCMP infq2RNC : q�0v2RN 12kAv + ICq � fk2C�1�A�1 + 12qTITCA�1ICq � qTITC �A�1f + ICg� ; (24)where C is some properly scaled spd preconditioner for A such that C�1 � A�1 is spd aswell, i.e. C < A. The CMP (24) is obviously equivalent to (23), and it can be handledeasier than (23), as we will see later on.5.1 The Bramble Pasciak TransformationLet us consider now the symmetric, but inde�nite system A ICITC 0 ! up ! =  fg ! ; (25)arising, e.g., from the weak formulation of the Dirichlet boundary conditions as equalityconstraints to the energy functional (see, e.g., [9]). In [3], it is shown how to change (25)into an spd system provided that some preconditioner C for A is available such that0 < A� C � �A (26)holds with some � 2 (0; 1). C may be one of the DD preconditioners (see Section 3) witha proper scaling factor. Multiplying (25) from the left by the matrices A� C 00 I ! I 0ITC �I ! C�1 00 I ! ; (27)we arrive at the spd system AU = F (28)withA =  AC�1A� A (AC�1 � I) ICITC (C�1A� I) ITCC�1IC ! ; U =  up ! ; F =  (AC�1 � I) fITCC�1f � g ! : (29)In [3], the third multiplication is not applied explicitly. However, it is hidden in the innerproduct. The main result in [3] was the proof of the spectral equivalence of A to the blockdiagonal matrix  A� C 00 ITCA�1IC ! ;with the spectral equivalence constants� = �1 + �=2 +q� + �2=4��1 and � = (1 +p�)=(1� �):11



If we replace the Schur complement ITCA�1IC by the Schur complement ITCC�1IC , then weget some additional factors into the spectral equivalence constants. The following theoremprovides a direct estimation:Theorem 2Let C be a preconditioner to A ful�lling (26). Then the block diagonal matrixC =  11��(A� C) 00 ITCC�1IC ! (30)is spectrally equivalent to the block matrix A, de�ned in (29), with spectral equivalenceconstants � = 1�p� and � = 1 +p�: (31)Proof: First we show that the inequality(A� C)C�1A � 11� �(A� C) (32)is valid. Indeed, because the matrices involved are spd, the spectral radius �(C�1A) isequal to the Rayleigh quotient. Therefore, we can write:maxu2RNu6=0 ((A� C)C�1Au; u)((A� C)u; u) = maxu2RNu6=0 (C�1Au; u)A�C(u; u)A�C = �(C�1A) =maxu2RNu6=0 (Au; u)(Cu; u) = maxu2RNu6=0 (Au; u)(Au; u)� ((A� C)u; u) � 11� �:The last estimate follows directly from (26). Further, we will use below the inequality2(u; v) � "kuk2 + "�1kvk2; 8" > 0; (33)which is a consequence of the Cauchy-Schwarz inequality and Young's inequality 2ab �"a2 + "�1b2 8a; b 2 R; 8" > 0.Let us now derive the upper bound � in the spectral equivalence inequalities. Usinginequalities (32) and (33), we can now estimate(AU ;U) == ((A� C)C�1Au; u) + 2((A� C)u; ICp)C�1 + (C�1ICp; ICp)� ((A� C)C�1Au; u) + "�1k(A� C)uk2C�1 + "kICpk2C�1 + (C�1ICp; ICp)= ((A� C)C�1Au; u) + "�1((A� C)C�1(A� C)u; u) + (1 + ") (C�1ICp; ICp)= (1 + "�1) ((A� C)C�1Au; u)� "�1((A� C)u; u) + (1 + ") (C�1ICp; ICp)� h(1 + "�1)(1� �)�1 � "�1i ((A� C)u; u) + (1 + ") (C�1ICp; ICp)= h(1 + "�1)(1� �)�1 � "�1i (1� �) � 11� �(A� C)u; u�+ (1 + ") (C�1ICp; ICp):12



Now we choose " = p� as the positive solution of the equationh(1 + "�1)(1� �)�1 � "�1i (1� �) = (1 + ");that proves the upper bound 1 +p�.For the lower bound, we use again the inequalities (33) and (32) with " 2 (0; 1) inadvance:(AU ;U) �� ((A� C)C�1Au; u)� "�1((A� C)C�1(A� C)u; u) + (1� ") (C�1ICp; ICp)= (1� "�1) ((A� C)C�1Au; u) + "�1((A� C)u; u) + (1� ") (C�1ICp; ICp)� h(1� "�1)(1� �)�1 + "�1i (1� �) � 11� �(A� C)u; u)�+ (1� ") (C�1ICp; ICp):Note that we have used the fact 1� "�1 < 0 for " 2 (0; 1). Indeed, we �nd that " = p� 2(0; 1) is again the positive solution of the equilibration equationh(1� "�1)(1� �)�1 + "�1i (1� �) = (1� "):Therefore, we obtain the left-hand side of the spectral equivalence inequalities:(AU ;U) � (1�p�) (CU ;U) :Let us �nally reformulate Theorem 2 for an unscaled preconditioner C satisfying theusual spectral equivalence inequalities
C < A � 
C;with positive spectral equivalence constants 
 < �min(C�1A) and 
 � �max(C�1A). Thenthe rescaled preconditioner Ĉ = 
C obviously ful�lls (26) with � = 1�
=
. Now Theorem2 immediately shows that the block matrixA = 0@ 
�1AC�1A� A �
�1AC�1 � I�ICITC �
�1C�1A� I� 
�1ITCC�1IC 1A (34)is spectrally equivalent to the preconditionerC =  
=
(A� 
C) 00 
�1ITCC�1IC ! (35)with the spectral equivalence constants� = 1�q1� 
=
 and � = 1 +q1� 
=
: (36)Note that � � 2 and � > 0:5
=
. Therefore, the relative condition number �(C�1A) :=�max(C�1A)=�min(C�1A) of the block system is less than four times as worse as the relativecondition number �(C�1A) of A and C, i.e. �(C�1A) � 4�(C�1A). The upper bound 2 for� provides a simple choice of the relaxation parameter needed in the Richardson iteration.13



Lemma 1The Schur complement ITCC�1IC of the DD - preconditioner (17) is exactly C�1C .Proof: By multiplication.5.2 The Approximative Augmented Projection AlgorithmThe matrix of the quadratic term of the functional (24) with an unscaled preconditioner Cis exactly the matrix A in (34). The vector of the linear term isF =  �
�1AC�1 � I� f
�1ITCC�1f � g ! : (37)One can try to use the projection algorithm with inner product (35). We apply onepreconditioned Richardson step for the linear system AU = F , i.e.~Uk = Uk + �C�1 [F �AU ] :With the notations wku = C�1(f � Auk � ICpk);wkp = ICwku � 
(g � ITCuk);the Richardson step simpli�es to ~uk~pk ! =  ukpk !+ �  
�1wkuCCwkp ! :The restrictions involve only the dual component p and the inner product matrix C decou-ples the primal and the dual components, therefore the projection involves only the dualcomponent: Find pk+1ex � 0 : kpk+1ex � ~pkk2C�1C = infq�0 kq � ~pkk2C�1C :By Theorem 1, it is enough to have an approximative projection ful�llingkpk+1 � ~pkk2C�1C � �Pkpk � ~pkk2C�1C + (1� �P )kpk+1ex � ~pkk2C�1C : (38)The approximative projection is implemented by applying n steps of the projection algo-rithm with Euclidean inner product:q0 = pkqi+1 = P �qi + �2C�1C (~pk � qi)�pk+1 = qn: 14



It is easily seen, that there is no need to compute CCwkp explicitly. The condition number ofthe Schur complement preconditioning operation C�1C is O(h�1). By applying Theorem 1to the inner iteration, we get the estimatekpk+1 � ~pkk2C�1C � �ni kpk � ~pkk2C�1C + (1� �ni )kpk+1ex � ~pkk2C�1Cwith the convergence rate �i = 1� ch. The choice n � (ch)�1 ensures inequality (38) withthe h-independent constant �P � e�1. Theorem 1 proves h-independent convergence rateof the algorithm, which is summarized below.Algorithm 4 (Approximative Augmented Projection Method)u0 = g; p0 = 0for k = 0; 1; 2; :::dku = f � Auk � ICpkwku = C�1dkuwkp = ITCwku � 
(gc � ITCuk)for i = 0 to n� 1pk+ i+1n = P �pk+ in + �2 �C�1C pk + �wkp � C�1C pk+ in��uk+1 = uk + �
�1wkuTo apply the algorithm, we have to choose some parameters, namely 
 and 
 as closeas possible ful�lling the spectral equivalence inequalities 
 C � A � 
 C, � is calculatedvia � = �1 +q1� 
=
��1, �2 is set as large as possible such that �2C�1C � I, and n isproportional to the condition number of CC , e.g. n = 2Multigridlevels.The iteration error can be estimated by Corollary 1, which leads us after some simplecalculations toku� ukk2A + kp� pkk2C�1C � c h(wku; dku)RN + (pk+1 � pk; wkp)RNC i ; (39)with a constant c only depending on � and the spectral equivalence constants of the pre-conditioner C.The complexity of Algorithm 4 is O(noco + nonici). The costs per iteration step co andci are of optimal order, this means O(N) and O(NC), respectively. The number of inneriterations ni is O(h�1) for the two dimensional as well as three dimensional case. Thenumber of outer iterations no is �xed for a given error " with 0 < " < 1. This gives thecomplexity O((N + h�1NC) ln "�1). On a regular re�ned mesh we have NC = O(hN) andtherefore the complexity reduces to the optimal term O(N ln "�1).5.3 The multiplicative versionAlgorithm 4 is an approximative additive Schwarz method with respect to the splittingV1 = ; �RNC ; V2 = RN � ;:15



It is well known for linear problems that the multiplicative method converges approxima-tively twice as fast as its additive counterpart [24]. Table 2 below shows a similar behaviorfor the Signorini problem.With the approximative Projection ~P the multiplicative method is given by~pk = pk + (0 I) C�1 "F �A ukpk !# ;pk+1 = ~P (~pk);uk+1 = uk + (I 0) C�1 "F �A ukpk+1 !# :Because A � C holds on both subspaces V1 and V2, the relaxation parameters could be setto 1. We see that the update for pk+1 is equal to the update given by the additive version.The di�erence between uk+1 and uk+1ASM calculated by one additive step from uk and pk canbe expressed byuk+1 � uk+1ASM = (I 0) C�1A 0pk � pk+1 ! = 1
EC�1C (pk+1 � pk): (40)Now we can state the multiplicative algorithm, which is very similar to the inner-outerprojection algorithm (Algorithm 3), but the inner iteration is now �nite:Algorithm 5 (Approximative Multiplicative Augmented Projection Method)u0 = g; p0 = 0for k = 0; 1; 2; :::dku = f � Auk � ICpkwku = C�1dkuwkp = ITCwku � 
(gc � ITCuk)for i = 0 to n� 1pk+ i+1n = P �pk+ in + �2 �C�1C pk + wkp � C�1C pk+ in ��uk+1 = uk + 
�1 �wku + EC�1C (pk � pk+1)�6 Numerical ResultsTo give a numerical veri�cation of the theory, the algorithms above have been implementedand have been applied to equation (1) with 
 = (0; 1)2, �D = [0; 1]� f1g, �N = f0; 1g �(0; 1), �C = [0; 1]� f0g, with source term f = �1 and restriction g = �[0:25;0:75](x1).The numerical examples have been carried out within the C++ �nite element codeFE++ on a Sun Ultra 1 with 170 MHz. We used a sequence of hierarchically re�nedtriangular meshes for FE discretization. The level 5 mesh is drawn in Figure 1.16




C � A � 
C 
CI � C�1C � 
CIlevel N 
 
 NC 
C 
C2 9 0.969 1.458 3 0.649 3.8513 25 0.864 1.732 5 0.552 7.0314 81 0.814 1.863 9 0.500 13.0845 289 0.747 1.956 17 0.500 25.0776 1089 0.693 2.018 33 0.500 49.0557 4225 0.666 2.065 65 0.500 97.0358 16641 0.653 2.101 129 0.500 193.02Table 1: Preconditioner and eigenvalue boundsadditive multiplicative Ritz functionallevel N NC its time[s] its time[s] J(uh) J(uh)� J�2 9 3 73 0.08 26 0.05 - -3 25 5 91 0.22 36 0.13 0.9180 0.07144 81 9 84 0.47 31 0.27 0.8851 0.03855 289 17 80 1.38 29 0.86 0.8663 0.01976 1089 33 76 4.70 26 2.91 0.8566 0.01007 4225 65 75 18.5 23 10.5 0.8516 0.00508 16641 129 74 81.7 23 47.7 0.8491 0.0025Table 2: Algorithms 4 (additive) and 5 (multiplicative) and Ritz functionalAs preconditioner C, a symmetric, multiplicative DD preconditioner with a V-2-2 multi-grid cycle, a multi-level extension with 2 smoothing steps and a boundary multi-level pre-conditioner for the Schur complement has been used. The spectral equivalence constants 
and 
 as well as the eigenvalue bounds 
C and 
C for the matrix C�1C have been calculatedby the Lanczos method and are given in Table 1. Based on these calculations we havechosen a priori the bounds 
 = 0:65, 
 = 2:2, �2 = 2�level and n = 2level.We applied Algorithms 4 and 5 to reduce the squared error according to the estima-tor (39) by a factor of 10�8. The iteration numbers and the CPU times are shown in Table2. The iteration numbers are bounded by a constant, and the CPU times grow proportionalto the number of unknowns.In our example, the FE solution uh ful�lls the restrictions of the continuous problem.Therefore, the discretization error in energy norm may be estimated as ku� � uhk2 �0:5(J(uh)�J(u�)), where u� is the solution of the continuous problem in weak form. Table 2contains also the minima of the Ritz functional and the di�erences to the extrapolated limitJ� = 0:84657. The estimated error shows the expected convergence rate ku��uhk2 = O(h)for a solution u 2 H1:5(
).Next, we implemented a nested iterative scheme. On level 3 the problem was solved17



level N NC J(uh) J(uh)� J� solver time[sec] total time[s]3 25 5 0.9180 0.0714 0.11 0.124 81 9 0.8909 0.0443 0.13 0.175 289 17 0.8706 0.0240 0.23 0.416 1089 33 0.8588 0.0122 0.58 1.257 4225 65 0.8527 0.0061 2.01 4.568 16641 129 0.8496 0.0030 8.42 18.59 66049 257 0.8481 0.0015 35.2 75.310 263169 513 0.8473 0.0007 144.2 305Table 3: Nested iterationnearly exactly. On the re�ned levels we used the prolongated approximative solutionof the previous level as initial guess and applied just a �xed number of three steps of themultiplicative algorithm. The prolongation for the primal component uh was done naturallyby linear interpolation. For the dual component p, which is a functional in H�1=2(�C), theL2(�C) representative in VhC was calculated and extended naturally. By the nested methodwe got nearly the same upper bound for the error within the (accumulated) solver timesand total times, including mesh re�nement, assembling and solving, shown in Table 3.Because of the singularities in the solution, an adaptive re�ned mesh has large ad-vantages with respect to memory requirements and CPU time. For linear problems, theresidual error estimator [33] provides one upper and lower bound for the discretization er-ror in energy norm. Without claiming to compute upper and lower bounds to the error, weapply the residual error estimator to the Signorini problem. We compute for each elementT the element contribution�2T = h2Tkfk20;T + 0:5 XE2E(T )\Eh hEk[nEruh]Ek20;E + XE2E(T )\EN hEknEruhk20;E; (41)where hT is the longest edge of the triangle T , hE is the length of the edge E, nE is the outernormal to the edge, and [:]E denots the jump accross the edge. E(T ) denotes the 3 edges ofan the triangle T , Eh contains all inner edges of the triangulation and EN contains all edgeson �N and all edges on �C , on which not both nodes are in contact. All elements T ful�lling�T � 0:5max� �� are marked for re�nement. Mesh re�nement is done by regular (red)subdivison of marked elements plus forming the conforming (green) closure [33]. Irregularre�ned elements are removed before further re�nement takes place. We calculated the'error estimator' �2 = PT �2T and compared it to the error bound J(uh) � J�. Again, weused a nested solver with three iterations per level. Table 4 shows the results. Althoughthe time complexity is not O(N) anymore, the growing of CPU time is moderate. Theadaptive re�ned mesh at level 11 is given Figure 1.As announced in the introduction, we have also numerical results for the plane elasticityproblem. For the �rst example, we set
 = [0; 1]� [0:05; 1:05]; V = �v 2 hH1(
)i2 : v = 0 on f0g � [0:05; 1:05]� ;18



level N NC J(uh) J(uh)� J� N(J(uh)� J�) �2=(J(uh)� J�) T[sec]3 25 5 0.95503 0.10847 2.71 3.7 0.16 65 14 0.86489 0.01831 1.19 17.8 0.39 173 28 0.85287 0.00630 1.09 24.3 0.812 423 54 0.84889 0.00232 0.98 27.4 2.115 1087 94 0.84741 0.00084 0.91 28.8 5.818 2177 123 0.84700 0.00043 0.94 29.4 14.921 4441 183 0.84677 0.00020 0.87 30.7 32.024 8136 248 0.84668 0.00011 0.88 31.0 71.327 15275 336 0.84662 0.00005 0.83 31.9 152.330 26170 437 0.84660 0.00003 0.85 33.1 311.4Table 4: Adaptive re�nement

Figure 1: Uniform and adaptive grid with 289 and 311 Nodes, respectively
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level N NC J(uh) J(uh)� gJ(u) total time[sec]2 9 3 -0.0059705 1.23E-3 0.273 25 5 -0.0066809 5.25E-4 0.384 81 9 -0.0070115 1.94E-4 0.645 289 17 -0.0071444 6.10E-5 1.566 1089 33 -0.0071879 1.75E-5 5.137 4225 65 -0.0072006 4.8E-6 20.18 16641 129 -0.0072041 1.3E-6 87.29 66049 257 -0.0072051 3.0E-7 365.81 � -0.0072054Table 5: Nested iteration for elasticity problemfor the second one, we use the circle
 = C((0:5; 0:5);p0:5); V = hH1(
)i2 :For both examples, we want to �nd the displacement �eld minimizing the functionalJ(v) = 12 Z
 h2� j"(v)j2 + � (divv)2i dx� Z
 fTv dxover the set K = fv 2 V : x2 + v2(x) � 0 8x 2 @
g, with the linearized strain tensor"ij(v) = 12(vi;j + vj;i), the parameters � = � = 1 and the volume force f = (0;�0:2)T .The corresponding bilinear form is continuous and, due to Korn's inequalities, also el-liptic modulo the rigid body motions. Therefore a block diagonal preconditioner consistingof two copies of preconditioners for the Laplace equation can be used. We used two timesthe DD - preconditioner for the Laplacian.The injection of the boundary space into the global space is now replaced by the injec-tion in normal direction. In the contact zone the normal direction is (0;�1).We applied the nested multiplicative approximative algorithm with the parameters� = 0:4, � = 4, and 12 iterations per level. For the �rst example, we got the discretizationerrors shown in Table 5. We observe from Table 5, that the squared error ku�uhk21 � ch2,which is the optimal convergence rate for smooth solutions. Therefore an uniformly re�nedmesh leading to an assymtotically optimal algorithm can be used. We got similar resultsfor the second elasticity example. Both deformed bodies are drawn in Figure 2. For thedual component p the L2(�) representative is calculated. It is the normal traction, whichis also drawn in Figure 2. AcknowledgementsI would like to thank Prof. Ulrich Langer for his inspiration to this work and for hisclear presentations of domain decomposition techniques. I am also very grateful to theanonymous referees for their valuable comments and suggestions which led to a substantialimprovement of the original paper. 20
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