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Abstract

Solving the Signorini Problem on the Basis of Domain Decomposition
Techniques. The finite element discretization of the Signorini Problem leads to a
large scale constrained minimization problem. To improve the convergence rate of the
projection method preconditioning must be developed. To be effective, the relative
condition number of the system matrix with respect to the preconditioning matrix has
to be small, and the applications of the preconditioner as well as the projection onto
the set of feasible elements have to be fast computable. In this paper, we show how
to construct and analyze such preconditioners on the basis of domain decomposition
techniques. The numerical results obtained for the Signorini problem as well as for
plane elasticity problems confirm the theoretical analysis quite well.

AMS Subject Classifications: 73T05, 35J85, 65N55, 65F35, 65K 10

Key words: contact problem, variational inequality, domain decomposition, precon-
ditioning.

Zusammenfassung

Die Auflésung des Signorini Problems auf der Basis von Gebietszerlegungs-
methoden. Die Finite Elemente Diskretisierung des Signorini-Problems fithrt zu
einem restringierten Minimierungsproblem mit vielen Freiheitsgraden. Zur Verbes-
serung der Konvergenzrate des Projektionsverfahren miissen Vorkonditionierungs-
techniken entwickelt werden. Um effizient zu sein, muf} die relative Konditionszahl
der Systemmatrix in Bezug auf die Vorkonditionierungsmatrix klein sein, und die
Anwendungen der Vorkonditionierung als auch der Projektion in die zulissige Menge
miissen schnell berechenbar sein. In dieser Arbeit wird die Konstruktion und Analyse
solcher Vorkonditionierer auf Gebietszerlegungsbasis dargestellt. Numerische Ergeb-
nisse fiir das Signorini Problem und Kontaktprobleme aus der ebenen Elastizitét
stimmen mit der theoretischen Analyse gut iiberein.

*This research has been supported by the Austrian Science Foundation - ’Fonds zur Forderung der
wissenschaftlichen Forschung (FWF)’ - under project grant P10643-TEC.



1 Introduction

The contact problem is an important problem in computational mechanics. An elastic body
is deformed due to volume and surface forces, but the body should not penetrate a given,
rigid obstacle. This leads to unilateral boundary conditions, called contact conditions. We
refer to [28], [7], [23], [22], [17] for mathematical modeling and analysis.

In this paper we are interested in fast numerical algorithms for solving the finite dimen-
sional constrained minimization problem arising from the finite element discretization of
the Signorini problem or elastic contact problem [5], [8], [22], [10], [9], [17]. There are clas-
sical iterative methods like point projection methods and point over-relaxation methods
[8]. These methods suffer from slow convergence rates on fine meshes. Multigrid methods
have been successfully applied to obstacle problems with inequality constraints in the whole
domain by [15], [25], [19], [20]. Domain decomposition methods for variational inequalities
have been investigated in [31], [18], [1]. But these domain decomposition methods dif-
fer from our method based on domain decomposition preconditioners. Boundary element
methods have also been applied for contact problems in [27], [16], [30].

For the sake of simplicity, we will consider the Signorini Problem for the Poisson equa-
tion to develop and analyze the algorithms, but we also provide numerical results for the
contact problem in elasticity.

For the Signorini problem, the unknown function u is restricted from below on the
Signorini part I'c of the boundary I' = 0€2. In the classical form, the Signorini problem
reads as follows:

—Au=f inQ,
u=0 onlIp,
@—0 onT (1)
871_ N
0 0
u>g, %ZO, %(u—g)zo on e,

The domain © is supposed to be bounded in R%, d = 2 or 3 with a Lipschitz-continuous
boundary 0Q = T'p UT y UT'¢ such that meas(I'p) # 0 and meas(T'¢) # 0.

The finite element discretization of the weak form of (1) leads to the finite dimensional
Constrained Minimization Problem (CMP)

1
Findue K: J(u)= ig}f;J (v), with J(v):= ivTAv — fT, (2)
or to the equivalent variational inequality
Findue K: uw'A(w—u)> ff(v—u) YveK. (3)

The mesh size is denoted by h, the total number of unknowns is NV, the number of unknowns
on ['c is Ng. The solution u, the symmetric and positive definite (spd) system matrix A



and the right-hand side vector f are split into contact boundary components (C) and inner
plus Neumann boundary components (I), i.e.

ue Ac  Acrt fe
=) = W) =5 L
The convex set of feasible functions K C V := R" is defined by

K={veV:v>gc}, (5)

where v > g¢ is meant component-wise.

To solve the finite dimensional constrained minimization problem, the projection method
is applied. This method is not very popular in practice, because its convergence rate is
very slow on fine meshes, unless good preconditioning is applied. The goal of this paper is
to present preconditioning techniques satisfying the following properties:

e The relative condition number of A with respect to C' is small,
e the operation C' ! x v is fast executable,
e the projection P with respect to the C' energy norm onto K is fast computable,

with the spd preconditioning matrix C'. Multi-level preconditioners as well as domain
decomposition (DD) preconditioners have been developed for satisfying the first two re-
quirements quite well. The basic concept of Dirichlet DD is the approximative decoupling
of the global FE space into inner and extended boundary subspaces. The projection in-
volves only the boundary subspace. To implement this projection, the dual problem is
introduced. This enables us to use well-known boundary preconditioners. To avoid two
cascaded iterations until convergence, we analyze also the truncated version by means of
the Bramble-Pasciak transformation, introduced in [3]. If the underlying components are
optimal and a uniformly refined mesh is used, then the complexity is of optimal order for
the two as well as three dimensional case. We will combine our algorithms also with nested
and adaptive concepts and study the behavior by means of numerical examples.

The rest of the paper is organized as follows. The projection algorithm and its approxi-
mative version are presented in Section 2. Convergence in the energy norm is proved. The
concepts of additive DD preconditioning is shortly repeated in Section 3. In Section 4, both
concepts are combined to develop an optimal preconditioner for the projection algorithm.
The truncated variant is analyzed in Section 5. Finally, numerical results are presented in
Section 6.

2 The Projection Method

The finite dimensional CMP (2) can be solved by the projection method which reads as:



Algorithm 1 (Projection Method)

Choose an arbitrary initial guess u' € K.
Fork=1,2,... do

uktl = P (ub 4+ rC1(f = Au)).

In Algorithm 1, C'is the symmetric and positive definite (spd) preconditioning matrix. We
assume the spectral equivalence inequalities

aC<A<aC (6)

in the sense of Euclidean inner product, with the positive spectral equivalence constants «
and @. In general, these bounds depend on the mesh parameter h. If they are independent
of h and the operation C~! x v is fast executable (i.e. via O(N) arithmetical operations),
then we call the preconditioner C' asymptotically optimal. Asymptotically optimal pre-
conditioners can be constructed by multi-level techniques as well as by multi-level - DD
techniques, see Section 3.

We assume, that the real, positive relaxation parameter 7 is chosen such that 7 < 1/@.
The operator P is the projection onto K with respect to the energy norm induced by the
spd preconditioning matrix C"

P:weV - Pw)eK: [Pw)—wl|c<l]v—w|e YveK. (7)

It is straightforward to show that u* converges to its limit u in C-energy norm with
convergence factor 1 — 7« (see, e.g., [9]). A convergence rate estimation in A-energy norm
is necessary for the composite algorithm in Section 5. However, it was not available from
the literature. It could not be shown that u* converges monotonically to v in A-norm, but
the main theorem of this section provides a monotone decay of the quadratic functional .J,
and it estimates the convergence rate p.

For our application, the exact projection P is too expensive to compute, and so it is
replaced by an approximative projection P. This leads us to the approximative projection
method:

Algorithm 2 (Approximative Projection Method)

Choose an arbitrary u' € K.
For k=1,2,... do

i =k 4+ rC(f = Aub),
uktl = ]S(ﬂk)

The following theorem estimates the convergence rate of the approximative projection
method, which also includes the exact projection method with pp = 0.



Theorem 1 (Energy convergence rate estimate)
Let u* be the sequence generated by Algorithm 2. The relaxation parameter 7 is chosen

in the interval (0,1/a]. The approximative projection P fulfills
1P(a") — a* 17 < ppllu® — @"|I% + (1 = pp) [|P(a") — @°|1Z, (8)
with pp € [0,1). Then the estimate
T < pJ(uf) + (1= p) T (u) (9)
holds for every k € N with the convergence rate

p=1-"(1=pp) (10)

The error in A-energy norm is bounded by
=M < 2047 (T(u') = T (w)) | (11)

Proof: First, we reduce the approximative projection to the case of an exact projection.
We use 77 1C — A > 0, the definition of @* and (8) to obtain

1
T < T+l - R

1 _ 1 -
= ol = — =+ ()
1 N . . 1 .
< o (pplluh = @2+ (1= pp) | PG) — 7 2) = Sl — @ + ()

1 _
Sl =+ T )| + prd(u),

= (1= ) [P — - o

Due to the convexity of K, there holds

1P(a*) = @*lle < |1 Pyux (@) = @[l (12)
with the projection Py, 1 (@") onto the straight line [u, u*]. This reduces the problem to
the plane spanned by (u,u*, 7). From the sketch below the next estimates are obvious:




| Prus () — @[ — Jlu® — a*[|3
= (P (%) = @, P (@) = u¥) = (@ = ub, Py (@) — o)

S — (ﬂk — Uk, P[u’uk}(ﬂk) — uk)c

Sk ok kY2
—max{O,min{(&k—uk,u—uk)c,(u T u)c}} (13)

lu = w2

Using the definition of @, the variational specification (3) of the solution u and the spectral
bound «, we get
(ﬂk —uf u— uk)c = 7(f — AuM)" (u — ")
= 7(f = Au)"(u—u") + 7w - uF;
> rafu—uf. (14)
Combining (12), (13), (14) and using 7a < 1, we get

|P(a*) — a*|12 — [lu* — a*[[2
< —max {U, min {(ﬂk —uf u—uF)e, ra(if —uF u — uk)c}}
L “k ok .k
= —Ta (u u® u—u )c'
Now, using the last inequality, we continue to estimate the energy functional J(u**1):

Ty < (1= pp) [—%(ak ik u— e+ T+ pp (k)

= (1= pe) [< T = A 0= )+ T @) + ()
= (=) [(1-5) ) + T = = o] + pra ()
< 1= -] T+ = pr) ()

We use this result to estimate the error in A-energy norm by
=% = 2(J (") = J(u) = (Au— f)" (u* =)
< 2 (T = J(w) < 2087 (J(ut) = J(u)). (15)

O

For practical computation we need a computable estimate for the iteration error. We
get the same error estimator as for iterative methods for linear systems.

6



Corollary 1
The sequence u* is generated by Algorithm 1 or by Algorithm 2. Then the iteration error
is bounded by

||U o uk+1||124 S Lp(uk—i—l . uk)T(2f . Auk . Auk+1), (16)

1—
with p from (10).
Proof:  From (15), we get

lu = w*% < 2(7(u*) = T (w),
and by Theorem 1, we have

(1= p) (T () = J(u)) < p(J(u*) = T (u*1))
_ g(ukJrl _ uk)T(Qf Ak — AukJrl),

that completes the proof. O

3 Domain Decomposition Preconditioning

In this section we present the approximative additive domain decomposition (DD) precon-
ditioner introduced in [13]. The domain decomposition strategy provides us with a splitting
of the FE - space V into inner (V;) and extended coupling boundary (Vi) subspaces, which
is useful for parallel computing. In our application the coupling boundary is replaced by
the contact boundary. By combination with multi-level techniques we gain asymptotically
optimal preconditioners.

We recall the splitting of V' into the boundary subspace V- and inner subspace V7 given
in (4). These two subspaces are far away from being orthogonal with respect to energy
norm. To get an idea about orthogonality we have to go back to the Sobolev space H' (€2).
The two subspaces H{ () and the space of the harmonic functions are orthogonal with
respect to the H'-half norm. The space V7 is an approximation to H] (€2). To approximate
the harmonic subspace one takes

‘70 = {EUC Vo € Vc},

where E = (I, ET)" is a computable operator which approximates the discrete harmonic
extension of a given boundary function. E' is bounded by cg in the sense of

[Evella <ep inf [[w|la = cplluclse
wo=vo

with the Boundary-Schur-Complement S¢ = A — Agr A7 Afe.



Note, the best extension operator (¢g = 1) would be the solution of the Dirichlet
problem with given boundary values vs. But we need a fast executable extension operator
with small constant cg.

On both sub-spaces V7 and Vi we need spd preconditioners C; and Cg, respectively,
for which we assume the spectral inequalities

QCCC S ETAE S accc and QIC] S A[ S a]C].

Because ET AE is spectrally equivalent (with constants 1 and ¢%) to the Schur complement,
Sc, we call C'c Schur complement preconditioner.

Using these components, we can define the approximative additive domain decomposi-
tion preconditioner by

4 (Ic 0 czto0 Io ET
¢ _<E1 11>< 0o Ct 0 Ir )’ (17)

for which the spectral inequalities
aC < A<aC

hold with the constants

= (1 —y/1— 0;32> min{ac,;} and @@= <1 +4/1— 0}_32> max {qc, a} .

If the components E, C; and C¢ are asymptotically optimal, then the preconditioner C
is as well. For the inner preconditioner a symmetric multigrid preconditioner [2], [21]
may be used. For 2D, the transformation to the hierarchical basis [34] gives simple Schur
complement preconditioners [13], [29] and extension operators [14], which are optimal up
to logarithmic factors. Optimal components for 2D and 3D are constructed by multi-level
techniques [4], see [32] for the Schur complement preconditioner and [26] for the extension
operator. In [11] additional smoothing improves the extension constant cg.

All these components have optimal arithmetic complexity, i.e. the operations E, ET
and C;' need O(N) operations, while the application of Cz' needs O(N¢) operations
only. The precise analysis of the overall operator C' is given in [13], [6]. In [12] it is shown,
how a symmetric multiplicative Schwarz preconditioner fits into the framework of additive
Schwarz preconditioners.

4 The Projection Method with DD Preconditioning

In this section we will apply the DD preconditioner for the projection method. The first
two requirements, namely condition numbers independent of A and fast execution of the
preconditioning operation are fulfilled for this preconditioner. To construct the projection
we use the basis transformation matrix

T:(IE(; g) (18)

8



and express the solution u by u = T'u. Therefore, u is the solution of the CMP
inf J(0)
bek
with K = T~'K and o . s
0) = ) = =0 0 — 0.
e~

If C' is a preconditioner for A, then also C' = TTQ’T is one for A with the same bounds.
For the DD-preconditioner (17), the transformed C' has the block diagonal structure

. (Cc 0
o= (G o)

Because vy can be chosen arbitrarily in a linear space, the set K reduces to K:

S I 0 v
e C c . _
KT K_{(_EI [I)(w).vczg}_;f

Now, we apply the projection method to the transformed system:
Wt = P (iF 4 O (f - Adt)).
Using the original quantities A, u and f this iteration can be rewritten as
W = TP [T7h 4+ 70T (Auk - f)| = TPa*. (19)

The projection involves only boundary components, which are decoupled from the inner
components by the inner product induced by C. Therefore it can be applied just on the
boundary, the inner components stay unchanged. Applying the projection means to solve
the problem
Findue > go @ |Juc — &g, = inf |loe — gz, . (20)
’ ve>9c ’

This CMP can be solved by the projection method with Euclidean inner product and
pointwise projection ‘ . .
ubtt = p (u]é’Z + 1C¢ (ﬂ’é — ulé’z)) : (21)

In DD, we need a fast implementation of the action C5' x v. That is ensured by the multi-
level Schur complement preconditioner mentioned above. However, for this choice, the
operation Co X v cannot be performed explicitly. By dualizing the boundary CMP (20) we
get the operator C'¢ into the computable direction. We rewrite the Kuhn Tucker conditions
for the CMP, and arrive at the equivalent complementary problem [8]

Couc +p = Ceiik,
uc>g, p<0, p' (uc—g) = 0.

9



After defining v := uc — ¢ and exchanging primal and dual variables one can write

Co' (=p) + (-v) = g— g,
(=p) >0, (—v) <0, v'p = 0.

Now this complementary problem can be rewritten as a CMP in the dual variables as
N A T ~J;
min 5¢° Cog =g (g—U)- (22)

After calculating p by the projection method, one gets uc by ue = @k — C5'p. Now
we can state the whole algorithm developed so far:

Algorithm 3 (Inner-outer projection algorithm)

u’ =0
for k=10,1,2,...
wh = C71(f — Aub)
ak = ukb + Twk
P’ =0
fori=20,1,2,
pi+1 _p (pi T+ (g gk _ Célpi))
uk+1 — ,&k+1 o anlpoo

The computational effort is n,c,+nyn;c;, with the iteration numbers n, and n; for outer
and inner iterations and the costs per iteration step c, and ¢;, respectively. The number of
outer iterations n, is optimal O(1), n; is O(k(C¢)), which is O(h™!) for two as well as three
dimensional problems. The costs in the outer iteration are optimal O(N), and the costs per
inner iteration are O(N¢). The drawback of Algorithm 3 is the inner iteration, which has
to be performed until some convergence criterion is fulfilled. To overcome this disadvantage
we look for a better initial value p® and perform just a fixed number of iterations. We will
analyze this truncated version in the next section by means of the Augmented Lagrangian
formulation.

5 Augmented Lagrangian Formulation

The dualization of the large CMP (2) gives

1
min = —q'ZEA  Teq — " TL (Aflf + Icg) , (23)
geRN¢c :¢<0

where Zo is the injection of RN¢ into R™. This functional and its derivative are not
fast computable, because both need the inverse of A. Using the Augmented Lagrangian

10



technique, we can change it into something computable. Indeed, adding some convex

function in v and ¢ the minimum of which in v equals 0 for every fixed ¢, we obtain the
CMP

) 1 1 _ _
inf  SAv+Teqg— fllEas+ 50" TEAT Teq — "I (A7 f+ Teg) . (24)
qERNC :¢<0 2 2

veRN

where C is some properly scaled spd preconditioner for A such that C~' — A~! is spd as
well, i.e. C < A. The CMP (24) is obviously equivalent to (23), and it can be handled
easier than (23), as we will see later on.

5.1 The Bramble Pasciak Transformation

Let us consider now the symmetric, but indefinite system

<IA§ If)(ﬁ):(ﬁ)’ (25)

arising, e.g., from the weak formulation of the Dirichlet boundary conditions as equality
constraints to the energy functional (see, e.g., [9]). In [3], it is shown how to change (25)
into an spd system provided that some preconditioner C' for A is available such that

0<A—C<aA (26)

holds with some a € (0,1). C' may be one of the DD preconditioners (see Section 3) with
a proper scaling factor. Multiplying (25) from the left by the matrices

() S5 T) )

we arrive at the spd system

AU =F (28)
with

[ ACT'A-A (AC'-DT (u (Act=Df

In [3], the third multiplication is not applied explicitly. However, it is hidden in the inner
product. The main result in [3] was the proof of the spectral equivalence of A to the block

diagonal matrix
A-C 0
0 IgA_ll'C ’

with the spectral equivalence constants

g:<1+a/2+«/a+a2/4>_1 and @@= (1++a)/(1-a).

11



If we replace the Schur complement ZL A~1Z¢ by the Schur complement ZLC ~1Z, then we
get some additional factors into the spectral equivalence constants. The following theorem
provides a direct estimation:

Theorem 2
Let C be a preconditioner to A fulfilling (26). Then the block diagonal matrix

c— ( ﬁ(f(l]— C) Igco—lzc ) (30)

is spectrally equivalent to the block matrix A, defined in (29), with spectral equivalence
constants

a=1—+a and a=1+ . (31)

Proof: First we show that the inequality

(A-0)0 'A< (A-C) (32)

11—«

is valid. Indeed, because the matrices involved are spd, the spectral radius p(C~'A) is
equal to the Rayleigh quotient. Therefore, we can write:

_ -1 -1
T ((A—-C)C~"Au, u) e (C~'Au,u)a ¢ (O 1A =
uerN (A= C)u,u) werN (u,u)a—c
A (Au, u) A (Au, u) < 1
X = X .
uerN (Cu,u) ueRN (Au,u) — (A = C)u,u) — 1 —«

The last estimate follows directly from (26). Further, we will use below the inequality
2(u,v) < el|ul|®* + & v||?, Ve >0, (33)

which is a consequence of the Cauchy-Schwarz inequality and Young’s inequality 2ab <
ca? +e719? Va,b € R, Ve > 0.

Let us now derive the upper bound @ in the spectral equivalence inequalities. Using
inequalities (32) and (33), we can now estimate

(AZ/{,Z/{)_
= (A=) Au,u) +2((A = C)u, Zep)e-1 + (C7 ' Iep, Iep)
< (A=) Au,u) + 7 (A = C)ullg— + el Zepl|t-1 + (C™'Zop, Tep)
= (A=) "Au,u) +e (A= C)C A = C)u,u) + (1 +¢) (C ' Tep, Iep)
= 1+ (A= O)0 " Au,u) — (A = C)u,u) + (1 +¢) (C™'Zep, Tep)
< [1+51 — o)™ =7 (A= C)u,u) + (1 +¢) (C™'Zep, Tep)

(

(1+e! 1—a)1—5’1] (1-«) <11

(4= C)u, u> + (1 42) (C Top, Top).

12



Now we choose ¢ = v/« as the positive solution of the equation
(A+e)(1—a) ' =] (1-a) = (1+2),

that proves the upper bound 1+ /«.
For the lower bound, we use again the inequalities (33) and (32) with ¢ € (0,1) in
advance:

(AU, U) >
> (A-C)O 'Au,u) — e (A - O)CHA - C)u,u) + (1 — &) (C 'Zep, Zep)

= (1-eHY(A-C)C " Au,u) + e ((A - O)u,u) + (1 — &) (C™'Zep, Iep)
> {(1 —e (1 —a)™ + 5_1] (1—-a) <i(14 — C)u, u)) + (1 —¢) (C™'Zep, Zep).

Note that we have used the fact 1 —e~' < 0 for € € (0,1). Indeed, we find that ¢ = \/a €
(0,1) is again the positive solution of the equilibration equation

(1= -a) T+ (1-a)=(1-¢).
Therefore, we obtain the left-hand side of the spectral equivalence inequalities:

([l
Let us finally reformulate Theorem 2 for an unscaled preconditioner C' satisfying the

usual spectral equivalence inequalities
7C < A<HC,

with positive spectral equivalence constants 7 < Amin(C'A) and 7 > Apax(C 1 A). Then

the rescaled preconditioner C' = vC obviously fulfills (26) with a = 1—~/7. Now Theorem
2 immediately shows that the block matrix

[ yracTta-a (y'ACc™' - 1) Ie
= Ig; (1_10_1A B [) 1—112;0—11'0

is spectrally equivalent to the preconditioner
_ [ 7/2(A=1C) 0
= (T e, )

with the spectral equivalence constants

a=1—4/1-7/7 and @a=1+/1-7/7. (36)

Note that @ < 2 and « > 0.57/7. Therefore, the relative condition number x(C~'A) :=
Amax(C7A) /Amin(C71A) of the block system is less than four times as worse as the relative
condition number k(C~'A) of A and C, i.e. kK(C™'A) < 4x(C~'A). The upper bound 2 for
a provides a simple choice of the relaxation parameter needed in the Richardson iteration.

13



Lemma 1
The Schur complement ZLC~'Z of the DD - preconditioner (17) is exactly Cg'.

Proof: By multiplication.

5.2 The Approximative Augmented Projection Algorithm

The matrix of the quadratic term of the functional (24) with an unscaled preconditioner C
is exactly the matrix A in (34). The vector of the linear term is

_ 1*1140*1 —I)f
()

One can try to use the projection algorithm with inner product (35). We apply one
preconditioned Richardson step for the linear system AU = F, i.e.

U =u* +rCHF - AU.
With the notations

w' = C’fl(f — Au* — Icpk),

wr = Icwfj — (9 — Iguk),

ESEESI < N

the Richardson step simplifies to

()= () et )

The restrictions involve only the dual component p and the inner product matrix C decou-
ples the primal and the dual components, therefore the projection involves only the dual
component:
k+1 k+1 _ ~k(2 - 1|2
Find pe;” <02 ey = 9" llopr = infllg = 5"

By Theorem 1, it is enough to have an approximative projection fulfilling

k+1 k+1

It = BMIE o < prllp® = BMIE + + (1= pp)llped " = B8, - (38)

The approximative projection is implemented by applying n steps of the projection algo-
rithm with Euclidean inner product:

¢ = p
¢ = P(d+nC 0" - )
pk—l—l — qn‘

14



It is easily seen, that there is no need to compute ch;f explicitly. The condition number of
the Schur complement preconditioning operation C,' is O(h~!). By applying Theorem 1
to the inner iteration, we get the estimate

k+1 k+1

It = BM e < PP IP" = B*NE s + (1= o) lped " = 112
with the convergence rate p; = 1 — ch. The choice n > (ch)™! ensures inequality (38) with
the h-independent constant pp < e . Theorem 1 proves h-independent convergence rate

of the algorithm, which is summarized below.

Algorithm 4 (Approximative Augmented Projection Method)

u’ =g,p" =0
fork=01,2, ..
d¥ = f — Auf — Zep
wfj =Cdk
wy = Thwk — v(9. — Thux)
fortr=0ton—1
P ( b (C’C P+ Twk — Colphta ))
uFt = uk T w

To apply the algorithm, we have to choose some parameters, namely 7 and 7 as close
as possible fulfilling the spectral equivalence inequalities yC < A < 7 C, 7 is calculated
. —\ ! . . - —-1 .
via T = (1 +4/1— 1/7) , To is set as large as possible such that 7C," < I, and n is

proportional to the condition number of C¢, e.g. n = 2Multigridlevels

The iteration error can be estimated by Corollary 1, which leads us after some simple
calculations to

= w5+ llp = p*lle < e (wn, dims + 0F" = P wp)mse ] (39)

with a constant ¢ only depending on p and the spectral equivalence constants of the pre-
conditioner C'.

The complexity of Algorithm 4 is O(n,c, + n,n;c;). The costs per iteration step ¢, and
¢; are of optimal order, this means O(N) and O(N¢), respectively. The number of inner
iterations n; is O(h™!) for the two dimensional as well as three dimensional case. The
number of outer iterations n, is fixed for a given error ¢ with 0 < ¢ < 1. This gives the
complexity O((N + h™'N¢)Ine™"). On a regular refined mesh we have No = O(hN) and
therefore the complexity reduces to the optimal term O(N Ine™").

5.3 The multiplicative version

Algorithm 4 is an approximative additive Schwarz method with respect to the splitting

Vi =0 x RNe, Vo = RN x 0.
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It is well known for linear problems that the multiplicative method converges approxima-
tively twice as fast as its additive counterpart [24]. Table 2 below shows a similar behavior
for the Signorini problem.

With the approximative Projection P the multiplicative method is given by

k k [ ut
¢ one [roa(n)]
P = P, '

i k
W = uf 4 (T0)C ! f—A(pi‘H)].

Because A < C holds on both subspaces V; and V5, the relaxation parameters could be set
to 1. We see that the update for p**! is equal to the update given by the additive version.
The difference between u*+! and u*%}, calculated by one additive step from u* and p* can
be expressed by

_ 0 |
Uk+1 — UIXE%VI = (I 0) C 1./4 ( k k41 ) = _Eocl(pk+1 - pk) (40)

p—p ol

Now we can state the multiplicative algorithm, which is very similar to the inner-outer
projection algorithm (Algorithm 3), but the inner iteration is now finite:

Algorithm 5 (Approximative Multiplicative Augmented Projection Method)

u’=g,p°=0
for k=0,1,2, ...
dﬁ = f— AuF — Topt
wk — C—ldk
wy = Lhwy — v(g. — Thuy)
fori=0ton —

1
pk#jl _p (pk+% T+ (051pk + w;f _ 051pk+%>)
(

uk Tl = ok _'_771 wk + E051(pk _ pk+1))

6 Numerical Results

To give a numerical verification of the theory, the algorithms above have been implemented
and have been applied to equation (1) with Q = (0,1)?, T'p = [0,1] x {1}, Ty = {0,1} x
(0,1), T =[0,1] x {0}, with source term f = —1 and restriction g = x[0.25,0.75] (21)-

The numerical examples have been carried out within the C++ finite element code
FE++ on a Sun Ultra 1 with 170 MHz. We used a sequence of hierarchically refined
triangular meshes for FE discretization. The level 5 mesh is drawn in Figure 1.
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1C < A<7C 1. <CG' <7cl
level N ol ¥ Ne | v, Yo

2 9 0.969 | 1.458 | 3 |0.649 | 3.851
3 25 0.864 | 1.732 | 5 |0.552 | 7.031
4 81 0.814 | 1.863 | 9 | 0.500 | 13.084
5 289 | 0.747 | 1.956 | 17 | 0.500 | 25.077
6 1089 | 0.693 | 2.018 | 33 | 0.500 | 49.055
7 4225 | 0.666 | 2.065 | 65 | 0.500 | 97.035
8 16641 | 0.653 | 2.101 | 129 | 0.500 | 193.02

Table 1: Preconditioner and eigenvalue bounds

additive | multiplicative Ritz functional
level | N | Ng |its | time[s] | its | time[s] | J(up) | J(up) — J*
2 9 3 |73 0.08 |26 0.05

25 5 |91 0.22 | 36 0.13 0.9180 0.0714
81 9 |84 | 047 |31 0.27 0.8851 0.0385
289 17 | 80| 1.38 |29 0.86 0.8663 0.0197
1089 | 33 |76 | 4.70 | 26 291 0.8566 0.0100
4225 | 65 | 75| 185 |23 10.5 0.8516 0.0050
16641 | 129 | 74 | 81.7 | 23 47.7 0.8491 0.0025

0o~ O Ot i W

Table 2: Algorithms 4 (additive) and 5 (multiplicative) and Ritz functional

As preconditioner C', a symmetric, multiplicative DD preconditioner with a V-2-2 multi-
grid cycle, a multi-level extension with 2 smoothing steps and a boundary multi-level pre-
conditioner for the Schur complement has been used. The spectral equivalence constants
and 7y as well as the eigenvalue bounds v, and 7 for the matrix Cz' have been calculated
by the Lanczos method and are given in Table 1. Based on these calculations we have
chosen a priori the bounds v = 0.65, 7 = 2.2, 7, = 27/**/ and n = 2/evel,

We applied Algorithms 4 and 5 to reduce the squared error according to the estima-
tor (39) by a factor of 1078, The iteration numbers and the CPU times are shown in Table
2. The iteration numbers are bounded by a constant, and the CPU times grow proportional
to the number of unknowns.

In our example, the FE solution u, fulfills the restrictions of the continuous problem.
Therefore, the discretization error in emergy norm may be estimated as ||u* — u]|*> <
0.5(J (up)—J(u*)), where u* is the solution of the continuous problem in weak form. Table 2
contains also the minima of the Ritz functional and the differences to the extrapolated limit
J* = 0.84657. The estimated error shows the expected convergence rate ||u* —uy||* = O(h)
for a solution u € H'*(Q).

Next, we implemented a nested iterative scheme. On level 3 the problem was solved
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level N Ne | J(up) | J(up) — J* | solver time[sec] | total time][s]
3 25 5 | 0.9180 0.0714 0.11 0.12
4 81 9 | 0.8909 0.0443 0.13 0.17
Y 289 17 | 0.8706 0.0240 0.23 0.41
6 1089 33 | 0.8588 0.0122 0.58 1.25
7 4225 65 | 0.8527 0.0061 2.01 4.56
8 16641 | 129 | 0.8496 0.0030 8.42 18.5
9 66049 | 257 | 0.8481 0.0015 35.2 75.3
10 | 263169 | 513 | 0.8473 0.0007 144.2 305

Table 3: Nested iteration

nearly exactly. On the refined levels we used the prolongated approximative solution
of the previous level as initial guess and applied just a fixed number of three steps of the
multiplicative algorithm. The prolongation for the primal component u;, was done naturally
by linear interpolation. For the dual component p, which is a functional in H~'/?(I'¢), the
Ly(T'¢) representative in V},., was calculated and extended naturally. By the nested method
we got nearly the same upper bound for the error within the (accumulated) solver times
and total times, including mesh refinement, assembling and solving, shown in Table 3.

Because of the singularities in the solution, an adaptive refined mesh has large ad-
vantages with respect to memory requirements and CPU time. For linear problems, the
residual error estimator [33] provides one upper and lower bound for the discretization er-
ror in energy norm. Without claiming to compute upper and lower bounds to the error, we
apply the residual error estimator to the Signorini problem. We compute for each element
T the element contribution

nr = hrllflor+05 > hellneVulelop+ > hellneVulip  (41)
Ec&(T)NE, EcE(T)NEN
where hr is the longest edge of the triangle T', hg is the length of the edge F, ng is the outer
normal to the edge, and [.|g denots the jump accross the edge. £(T) denotes the 3 edges of
an the triangle T', &, contains all inner edges of the triangulation and £y contains all edges
on I'y and all edges on ', on which not both nodes are in contact. All elements T fulfilling
nr > 0.5max, n, are marked for refinement. Mesh refinement is done by regular (red)
subdivison of marked elements plus forming the conforming (green) closure [33]. Irregular
refined elements are removed before further refinement takes place. We calculated the
‘error estimator’ n’> = Y. n% and compared it to the error bound J(uy) — J*. Again, we
used a nested solver with three iterations per level. Table 4 shows the results. Although
the time complexity is not O(N) anymore, the growing of CPU time is moderate. The
adaptive refined mesh at level 11 is given Figure 1.
As announced in the introduction, we have also numerical results for the plane elasticity
problem. For the first example, we set

Q=1[0,1] x [0.05,1.05], V= {v € [HI(Q)]2 : v =0on {0} x [0.05, 1.05]} ,
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level | N | No | J(up) | J(up) = J* | N(J(up) — J*) | n*/(J(up) — J*) | T[sec]
3 25 5 | 0.95503 0.10847 2.71 3.7 0.1
6 65 14 | 0.86489 0.01831 1.19 17.8 0.3
9 173 28 | 0.85287 | 0.00630 1.09 24.3 0.8
12 423 04 | 0.84889 0.00232 0.98 27.4 2.1
15 1087 | 94 | 0.84741 0.00084 0.91 28.8 5.8
18 2177 | 123 | 0.84700 0.00043 0.94 29.4 14.9
21 4441 | 183 | 0.84677 |  0.00020 0.87 30.7 32.0
24 | 8136 | 248 | 0.84668 0.00011 0.88 31.0 71.3
27 | 15275 | 336 | 0.84662 0.00005 0.83 31.9 152.3
30 | 26170 | 437 | 0.84660 0.00003 0.85 33.1 311.4

Table 4: Adaptive refinement

Figure 1: Uniform and adaptive grid with 289 and 311 Nodes, respectively
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level | N | N¢ J(up) J(up) — J(u) | total time[sec]

2 9 3 -0.0059705 1.23E-3 0.27
3 25 Y -0.0066809 5.25E-4 0.38
4 81 9 -0.0070115 1.94E-4 0.64
5 289 17 -0.0071444 6.10E-5 1.56
6 1089 | 33 -0.0071879 1.75E-5 5.13
7 4225 | 65 -0.0072006 4.8E-6 20.1
8 16641 | 129 | -0.0072041 1.3E-6 87.2
9 66049 | 257 | -0.0072051 3.0E-7 365.8
o0 ~ -0.0072054

Table 5: Nested iteration for elasticity problem

for the second one, we use the circle
Q= C((05,05),V05), V=[]

For both examples, we want to find the displacement field minimizing the functional
1
J(v) = 5/ [Qu le(v) >+ A (divv)Q] dx — /fTv dx
Q Q

over the set K = {v eV :z9+vy(x) >0 Vo € 00N}, with the linearized strain tensor
eij(v) = $(vij + vj;), the parameters A = ;=1 and the volume force f = (0,—0.2)7.

The corresponding bilinear form is continuous and, due to Korn’s inequalities, also el-
liptic modulo the rigid body motions. Therefore a block diagonal preconditioner consisting
of two copies of preconditioners for the Laplace equation can be used. We used two times
the DD - preconditioner for the Laplacian.

The injection of the boundary space into the global space is now replaced by the injec-
tion in normal direction. In the contact zone the normal direction is (0, —1).

We applied the nested multiplicative approximative algorithm with the parameters
A= 0.4, X\ = 4, and 12 iterations per level. For the first example, we got the discretization
errors shown in Table 5. We observe from Table 5, that the squared error ||u —uy||? < ch?,
which is the optimal convergence rate for smooth solutions. Therefore an uniformly refined
mesh leading to an assymtotically optimal algorithm can be used. We got similar results
for the second elasticity example. Both deformed bodies are drawn in Figure 2. For the
dual component p the Ly(T") representative is calculated. It is the normal traction, which
is also drawn in Figure 2.
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