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Low- and high-frequency acoustic resonances are computed numerically via a high-order
finite element code for a two-dimensional, two-element high lift configuration with a lead-
ing edge slat. Zero mean flow is assumed approximating the low Mach number situation
at aircraft landing and approach. To avoid unphysical reflections at the truncated domain
boundaries perfectly matched layer absorbing boundary conditions are implemented in
the form of the complex scaling method of atomic and molecular physics. It is shown
that two types of resonances exist: resonances of surface waves which scale with the
total airfoil length and longitudinal cavity-type resonances which scale with the slat cove
length. The latter depend strongly on the slat cove geometry and determine the peaks
in the frequency spectrum. All resonances are damped due to radiation losses but can
be excited by self-excited shear layers if the shear-layer frequency is close to a resonant
frequency resulting in increased tonal noise.

1. Introduction

Through technological progress, such as ultra high bypass ratio turbofan engines and
improved acoustical liners in the nacelle, aircraft engines of modern commercial airliners
have become significantly more quiet in the past four decades. With the efficient reduc-
tion of engine noise airframe noise has emerged as an ever more important component
of the overall aircraft noise especially during aircraft approach and landing when the
engines are at low power, cf. Crighton (1991). Experimental studies on both sides of
the Atlantic based on free flight tests of production aircraft, cf. Michel et al. (1998)
(various aircraft), Piet et al. (2002) (Airbus A340), Stoker et al. (2003) (Boeing 777), or
wind tunnel tests of scaled aircraft models, cf. for example Grosche et al. (1997) (Airbus
A340), Hayes et al. (1997) (DC 10), Davy et al. (2002) (Airbus A320/A321), Soderman
et al. (2002) (Bombardier CRJ-700), Oerlemans & Sijtsma (2004) (Airbus A340), Horne
et al. (2005) (Boeing 777), pinpointed high lift devices and landing gears as dominant
sources of airframe noise. In order to better understand the noise source mechanisms
and find ways to reduce the noise emission various aircraft components were investigated
in more detail by advanced experimental and computational tools. In addition to broad-
band noise strong tones were observed under certain operating conditions in many of
the above experiments. These tones were traced amongst others to the region around
the leading-edge slat and trailing-edge flap of the high lift configuration, cf. Dobrzynski
et al. (1998) (ALVAST high lift model), Khorrami et al. (2000) (high lift model), Olson
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et al. (2000) (high lift model), Dobrzynski et al. (2001) (Airbus A320 full scale wing)
or Dobrzynski & Pott-Pollenske (2001) (high lift model).

The above mentioned strong tones are highly undesirable because they cause a signif-
icant increase in perceived noise level. The occurrence of low- and high-frequency tones
under different operating conditions (for example different slat deflections) suggest the
presence of different source mechanisms generating the low- and high-frequency tones.
Using unsteady Reynolds averaged Navier—Stokes (URANS) simulations with a high spa-
tial resolution Khorrami et al. (2000) were able to prove their conjecture that self-excited
vortex shedding at the blunt trailing edge of the slat is the likely source for the tonal
peak in the acoustic spectra at high frequencies: for a 30° slat deflection they observed
vortex shedding from the slat trailing edge, the frequency of which was in close agreement,
with the tonal frequency measured in a corresponding experiment conducted at NASA
Langley Research Center. Simulations at 20° slat deflection showed no vortex shedding
which agreed with no tonal noise emission in the NASA Langley experiment. The vortex
shedding at the trailing edge of the slat has since been confirmed by experimental inves-
tigations of Olson et al. (2000) and Takeda et al. (2002). Singer et al. (2000) used the
URANS data of Khorrami et al. (2000) to compute the acoustic far field by an acoustic
analogy formulation based on the Ffowcs Williams-Hawkins equation.

In their paper Khorrami et al. (2000) raised the question as to whether a feedback
mechanism is operative in the gap between the slat and the main wing. This so-called
gap resonance was investigated by Tam & Pastouchenko (2001) and Agarwal & Morris
(2002) using a simple wall jet model. They conjectured that the shedding frequency
at the slat trailing edge might be regulated by an acoustic feedback loop: when the
shedding frequency matches one of the transverse resonance frequencies of the gap be-
tween the slat and the main wing, an intense tone is produced. Based on this feedback
loop Tam & Pastouchenko (2001) developed a simple formula for the gap tone frequency
as a function of gap height, local flow speed and the local speed of sound. For a finite
length plate above a semi-infinite wall Hein et al. (2004) showed that for zero flow the
one-dimensional gap resonances of Tam & Pastouchenko (2001) agree exactly with the
least damped two-dimensional resonances. The gap resonances are resonances of trans-
verse modes corresponding to the dominating modes in a simple two-mirror laser cavity.
However, the slat cove resembles more a shallow open cavity than a laser cavity, and in
a shallow cavity the longitudinal modes dominate, cf. Koch (2005). Probably this is the
reason why the frequencies computed via the simple acoustic feedback formula of Tam
& Pastouchenko (2001) differed markedly from the experimental results of Takeda et al.
(2002). Takeda et al. (2004) extended the wall jet model of Tam & Pastouchenko (2001)
to include the slat cove region using an idealised two-dimensional slat model. Performing
a systematic variation of slat overlap and gap their compressible URANS computations
indeed indicated a strong influence of the slat/wing geometry on the high-frequency
tones.

Contrary to the source mechanism of the high-frequency tones various source mech-
anisms have been proposed for the low-frequency tones, cf. Guo (1997); Olson et al.
(2001); Pott-Pollenske et al. (2003), albeit cavity shear tones within the slat cove are
the most likely source of the low-frequency tones as conjectured by Roger & Perennés
(2000) and Takeda et al. (2001). After the trailing-edge noise studies Khorrami et al.
(2002) extended their URANS plus far-field computations to the free shear layer origi-
nating at the slat cusp to investigate the low-frequency noise source. The fully turbulent
simulations of Khorrami et al. (2002) proved overly diffusive and required explicit forcing
of the shear layer to excite and maintain the large-scale structures. To circumvent the
excessive diffusive effects of the turbulence model they used an ad hoc zonal approach in
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later versions, cf. Khorrami et al. (2004). With this the shear layer became self-excited
and large-scale coherent structures, vortex merging and ejection of vortices through the
slat gap were observed and compared quite well with the accompaning experimental
studies of Jenkins et al. (2004). Qualitatively similar flow structures were found in the
experiments of Takeda et al. (2001) or Kaepernick et al. (2005) who investigated a swept
wing model. In their most recent paper Choudhari & Khorrami (2006) accounted for
the three-dimensionality of flow fluctuations and found considerable improvement in the
accuracy of the unsteady near-field solution. The eventual goal of their computational
simulations is a physics based prediction of the broadband slat noise sources.

The objective of the present paper is the computation of low- and high-frequency
acoustic resonances (also termed scattering frequencies) for a generic two-element high
lift system with a leading-edge slat. No account is taken of the underlying noise gener-
ation mechanisms of these tones and mean flow effects are neglected assuming that the
resonances depend only weakly on Mach number. However, it should be clearly pointed
out that the noise sources in the form of shear layers exist only if mean flow is present.
Hein et al. (2004) argued that acoustic resonances in the high lift system could provide
a viable mechanism for the selection of a particular frequency: if the resonances are near
any source frequency and are only weakly damped one can expect high noise levels and
enhanced airframe noise which should be discernible in unsteady CFD simulations. Hein
et al. (2005) computed the low-frequency resonances of a generic three-element high lift
configuration without flow and the computed resonances turned out to be very close to
the low-frequency tonal frequencies measured by Pott-Pollenske et al. (2003). Surpris-
ingly the resonant frequencies were practically independent of the slat cove geometry.
This meant that the low-frequency resonances cannot be resonances of the slat cove but
are resonances of surface waves. In the literature such surface waves are called Franz-
type creeping waves, cf. Uberall et al. (1977), which resonate when exactly n wavelengths
fit over the circumference of the whole high lift configuration. In Hein et al. (2005) we
proved the surface wave assertion by numerically computing the resonances of a circu-
lar cylinder without flow and compared the computed resonances with analytic results
of Morse & Ingard (1968) for the corresponding diffraction problem.

On the other hand the slat cove acts like a shallow cavity and the corresponding
resonances should scale with the length of the slat cove between slat hook and main
wing. To test this hypothesis we investigated first the resonances of an extended model
problem, namely a circular cylinder with a rectangular cutout, finding that the cavity
resonances dominate at high frequencies. Similarly, the slat cove resonances dominate
at higher frequencies albeit not as distinctly as for the model problem due to the more
complicated geometry and the cavity being open between slat and main wing which
causes higher damping. But even weakly damped resonances can be excited by self-
excited shear layers and these resonances determine the lobes in the far-field radiation
pattern.

The outline of the paper is as follows. After a brief summary of the solution method in
Section 2 the different physical character of surface wave resonances and cavity resonances
is demonstrated for the simple model problem of a circular cylinder with a rectangular
cutout in Section 3. In Section 4 acoustic resonances are computed for a generic two-
element high lift configuration with a leading-edge slat only. The influence of slat cove
parameters on the resonances is investigated in Section 5 and a short conclusion completes
the paper.
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2. Governing Equation and PML Boundary Condition

The equation governing acoustic disturbances in a medium with zero mean flow is
the wave equation. Due to the large spanwise extent of the slat system the high lift
configuration can be treated as two-dimensional. In the following all lengths will be
nondimensionalised with a characteristic reference length I7, ;, velocities with the ambient
speed of sound cfj, densities with the ambient density pfj, and pressures with pgcgz.
Here the asterisk superscript denotes a dimensional quantity. Assuming periodic time
dependence exp(—iw*t*), where w* is the circular frequency, the wave equation can be
reduced to the Helmholtz equation

A¢(z,y) + K*¢(z,y) =0 (2.1)

for the (nondimensional) velocity potential ¢(z,y). A = 8%/0z* + 6%/0y? is the two-
dimensional Laplacian in (nondimensional) Cartesian coordinates z,y and K = w*l;,:/cj
denotes the dimensionless frequency, with K /27 being the Helmholtz number, cf. Helmholtz
(1954). The time-independent dimensionless disturbance velocity and pressure are then
given by v(z,y) = V¢ and p(z,y) = iK¢, respectively. In addition to the Neumann
boundary condition ¢/dn = 0 on solid walls a radiation condition has to be imposed at
infinity. For scattering problems with real K > 0 the standard radiation condition due
to Sommerfeld is

lim 7!/2 (@ - iK¢) =0 (2.2)

r—oo or - ’
which has to be satisfied uniformly in all directions. In the following we shall consider
(2.1) as an eigenvalue equation, and the eigenvalues K? will correspond to complex fre-
quencies K with Im(K) < 0. In this case Sommerfeld’s radiation condition is no longer a
valid characterisation of outgoing waves. Alternative formulations of the radiation condi-
tion also valid for Im(K) < 0 include complex coordinate stretching (or complex rescal-
ing) studied in Reed & Simon (1978), the pole condition suggested by Frank Schmidt as
discussed in Hohage et al. (2003a), Hohage et al. (2003b), series representations, and
integral representations.

Numerical computations are necessarily conducted on truncated domains. Without
nonreflecting or absorbing boundary conditions at the finite grid boundaries, which ap-
proximate the radiation condition at infinity, unphysical reflections at the latter often
cause large errors. After Bérenger (1994) introduced his perfectly matched layer (PML)
absorbing boundary condition it quickly became the method of choice in computational
electrodynamics as well as acoustics, see for example the recent review by Hu (2004).
Modelling a physically absorbing layer in Cartesian coordinates Bérenger (1994) added
fictitious damping terms in his split-field Maxwell equations with the remarkable prop-
erty that no reflections are generated at the interface for all frequencies and angles of
wave incidence. It was soon recognised that Bérenger’s PML formulation is equivalent to
a complex coordinate stretching, cf. Chew & Weedon (1994), which can be interpreted
as an analytic continuation of the governing equations into a complex spatial domain,
see Chew et al. (1997); Collino & Monk (1998); Lassas & Somersalo (1998). This can
easily be implemented into existing finite difference or finite element codes, and PML
formulations in 3D Cartesian, cylindrical or spherical coordinates soon became available.
For example, in polar coordinates one introduces instead of r the complex variable

plr,w)=r+ ga(r). (2.3)

The damping function o(r) is usually expressed in power form, cf. Hu (2004), smoothly
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FIGURE 1. Generic three-element high lift configuration of Pott-Pollenske et al. (2003) at
landing approach with annular PML.

starting at the PML interface r = rpyr., €.g.

_f oo (r- T'PML)ﬂa T>TPML
olr) = { 0, r <rpmr. (2:4)

For a positive (real) damping coefficient o9 > 0 and constant S > 1 outgoing waves
will decay exponentially in the PML. In numerical computations the PML can therefore
be truncated at rparr, + dpayrr as shown schematically in figure 1 for a typical high lift
configuration with a leading-edge slat with deflection §; and a trailing-edge flap with
deflection dy. Here dparr, denotes the width of the PML, and instead of enforcing (2.2)
a Dirichlet boundary condition can be imposed at the outer edge of the PML, cf. Collino
& Monk (1998). The error due to artificial reflections at this truncated outer edge of the
PML is small if o9 and dpysy, are chosen properly.

For scattering problems w is a prescribed (real) constant and therefore can be absorbed
into the damping coefficient gg. Then the above PML formulation is practically iden-
tical with the complezx scaling method of atomic and molecular physics, cf. the recent
survey by Moiseyev (1998) or the monograph by Hislop & Sigal (1996). For resonance
problems w is part of the solution and the PML formulation (2.3) would result in a non-
linear eigenvalue problem with much larger coefficient matrices when solving the problem
numerically. Consequently, for the numerical computation of resonances in unbounded
space it is advantageous to use the complex scaling method, i.e. (2.3) without w, see for
example Hein et al. (2004). Then the damping coefficient is no longer constant but has
to be adjusted to the relevant frequency domain.

As mentioned before, the above PML formulation can be easily implemented into exist-
ing finite element codes. For the present paper we use the high-order finite element code
NGSolve of Joachim Schéberl. Before proceeding with the computation of resonances in
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FIGURE 2. Finite element grids for {/d = 0.5 cavity with A =0.3. (a) annular PML with
remrn =1 and dpy = 1, (b) rectangular PML with zpyp = +1, YpPML = 0.5 and dpy = 1.
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FIGURE 3. Comparison of resonances in two-dimensional rectangular cavity with {/d = 0.5
obtained via spectral collocation method of Koch (2005)(o symmetric, A antisymmetric in z)
and via finite element method (x) using mesh of figure 2a with PML parameters oo = 5, 8 =1,
but differing FE polynomial order p: (a) p = 2 (Nagog = 721), (b) p = 12 (Ngoy = 9217).

open domains with more complicated boundaries we validated our finite element code by
comparing the results for a two-dimensional rectangular open cavity {/d = 0.5 with the
resonances computed by Koch (2005) which were verified with the classical semi-analytic
results of Tam (1976). For this example we chose the reference length I, ; to be the cavity
length I* such that Il = 1. d = 2 is then the depth of the cavity for our chosen test exam-
ple. For y > 0 we apply an annular PML with rpy = 1 and dpar = 1 and generate
a triangulated macro mesh with maximum mesh size A = 0.3 using the net generating
code NETGEN of Schoberl (1997), cf. figure 2a. Near the singular exit corners of the
cavity the grid was refined locally. The computed resonant frequencies are depicted in
figure 3. The open symbols correspond to the results computed by Koch (2005) via the
multi-domain spectral collocation method and the cross symbols represent our present
results obtained for the mesh of figure 2a via the finite element code NGSolve. This
comparison constitutes a severe test for both computations: in the collocation method a
strong formulation with C' continuity across the rectangular domain boundaries is em-
ployed in conjunction with a rectangular PML, and the eigenvalue problem is solved by
a standard EVP solver. The variational formulation of the finite element code requires
only C° continuity across the triangular mesh elements and utilises an annular PML
together with a shifted Arnoldi algorithm. Keeping the same mesh, i.e. A = 0.3, we
vary the order p of the FE polynomial on a triangular element, and hence the number
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(b)

FIGURE 4. (a) Solid circular cylinder and (b) circular cylinder with a two-dimensional
rectangular cavity enclosed by annular PML.

of degrees of freedom Ng.s. Figure 3a shows the spectrum using p = 2 while figure 3b
shows the resonant frequencies for p = 12. It is quite apparent that for the coarse mesh
of figure 2a a high order finite element code is a necessity. Practically identical results
were obtained using the rectangular PML shown in figure 2b.

3. Resonances for a cylinder with a rectangular cutout

After validating our finite element code NGSolve we investigated the resonances of a
simple model problem namely a rigid circular cylinder with a rectangular cavity carved
out on one side of the cylinder as depicted in figure 4b. This way we hope to get a deeper
insight into the physics behind the resonances of a high lift configuration. For this model
problem the natural choice for the reference length I, 7 is the diameter D* of the cylinder,
ie. Kp =w*D*/cf. Without the cavity, cf. figure 4a, only resonances of surface waves
are possible as demonstrated by Hein et al. (2005). By introducing a rectangular cavity of
depth d and length [, which we use to model a slat cove, cavity resonances are added which
modify these surface wave resonances. Varying the parameters /D and [/d the cavity
resonances can be changed in a wide range while the surface wave resonances remain
almost constant. For our results, shown in figure 5 and discussed in the following, we
chose I/D =1/6 and [/d = 2.

The complex resonances of the surface waves computed for the solid cylinder of figure
4a are depicted by the solid dots in figure 5a. The classical solution for the pressure
ps(r, ) of an acoustic wave scattered by an infinite rigid cylinder of radius R = D/2 can
be written down explicitly, cf. Morse & Ingard (1968) p.400ff,

S i TR
() = = 2 (2= o) " LD ) cos(r) (1)

Here ¢ is measured from the direction of the incoming plane wave with amplitude p;
and propagating in z direction, d,¢ is Kronecker’s delta, k = w*/c} is the wavenumber,
J,, is the n'* order Bessel function and HT(LI) is the n'* order Hankel function of the

first kind. Complex resonances (also called scattering frequencies) occur at the zeros

!
of HY (2) = 0 (so-called n'* Franz zero) which can be computed easily via Newton —
Raphson iteration. The first ten zeros (n = 1,...,10) computed this way are marked by
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FIGURE 5. (a) Surface wave resonances for a solid circular cylinder: e numerical resonances,

O first ten zeros of H,(LI)’(z) = 0 in (3.1). (b) Resonances for a circular cylinder with a
two-dimensional rectangular cavity with /D = 1/6, l/d = 2: o, A symmetric and antisym-
metric resonances, ® surface wave resonances replotted from figure 5a, x, + symmetric and
antisymmetric cavity resonances replotted from figure 5c. (c¢) Cavity resonances for /D = 1/6,
l/d = 2: x, + symmetric and antisymmetric resonances for cavity on cylinder, O resonances
of Koch (2005) for cavity in half plane.
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FIGURE 6. Circular cylinder with a two-dimensional rectangular cavity enclosed by
rectangular PML.

the diamond symbols in figure 5a and agree very well with our numerically computed
resonances. In our numerical computation we considered only the half cylinder for z > 0
with Dirichlet or Neumann conditions imposed at the plane z = 0. Due to symmetry the
resonances for the Dirichlet and Neumann problem are equal, i.e. the plotted resonances
are double resonances.

In electromagnetic scattering theory the frequency region when the dimensions of the
scattering object are comparable to the wavelength is called resonance region, and the
frequently used canonical model of a perfectly conducting circular cylinder is very similar
to our above acoustical model. For this model Heyman & Felsen (1983) demonstrated the
connection between creeping waves and complex resonances. In particular they showed
that the complex resonances can be identified by two indices (m,n), where n marks the
angular harmonics and m is associated with the creeping waves. In figure 5a mainly the
m = 1 branch is shown with the first ten zeros n = 1,...,10 marked by the diamond
symbols, whereas the resonances of the m = 2 branch are highly damped and therefore
not so important in our acoustical problem.

If the rectangular cavity is added to the cylinder, as sketched in figure 4b, the double
resonances of figure 5a split into symmetric and antisymmetric surface wave resonances
as depicted by the open circles and triangles respectively in figure 5b. The weakly
damped symmetric and antisymmetric resonances correspond to cavity resonances. To
demonstrate this more clearly we surrounded the cavity with a rectangular PML, as
sketched in figure 6, and computed the corresponding resonances. This way surface
wave resonances are excluded. Again imposing Neumann or Dirichlet conditions at the
symmetry plane 2z = 0 we obtained the symmetric and antisymmetric cavity resonances
marked by the cross and plus symbols respectively in figure 5¢c. For comparison we
replotted the resonances of Koch (2005) for a rectangular cavity in a half plane in figure
5c¢ by the open square symbols. Again the longitudinal resonances are the least damped
resonances for this shallow cavity with {/d = 2 and of the longitudinal cavity resonances
only the fundamental resonance shows a noticeable influence of the cylinder curvature.

In figure 5 the dash-dotted lines indicate where we patched together two overlapping
spectra computed with different PML and Arnoldi shift parameters, i.e. o9 = 8 for
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FIGURE 7. Finite element grid of two-element high lift configuration with slat angle d;, = 26°,
slat overlap os = 0.018, slat gap g = 0.0217 and rectangular PML (shaded region).

Re(Kp/2m) < 6, and o9 = 4 for Re(Kp/2mr) > 6. For the annular PML we used
rpymr = 0.7 and for the rectangular PML of figure 6 we chose 2337, = 0.3, yp1if, = 0.7.
In both cases the PML thickness was dpysr, = 0.5. The order p of the FE polynomial was
taken to be p = 10, and the maximal mesh size A in the above computations was A = 0.1.
The resonances near the negative imaginary axis are the discrete approximations of the
continuous spectrum and should be disregarded for our present investigation.

From figure 5b we conclude that the resonances of a circular cylinder with a two-
dimensional shallow rectangular cavity consist of two types: resonances of the surface
waves and longitudinal cavity resonances with the longitudinal cavity resonances being
the least damped resonances. A sequence of resonances with imaginary part tending to 0
has to be expected since there exist trapped rays between the side walls of the rectangular
cavity. This was conjectured early by Lax & Phillips (1967). For a review of rigorous
results on the distribution of resonances we refer to Zworski (1999).

4. Resonances for an airfoil with leading-edge slat

With the insight gained from the model problem we proceed now with the computation
of the acoustic resonances of a two-element high lift configuration consisting of the main
airfoil and a leading-edge slat as depicted in figure 7 corresponding to the three-element
geometry investigated experimentally by Pott-Pollenske et al. (2003) with a retracted
flap. For our baseline configuration we chose a slat angle §; = 26°, a slat overlap
o = —0.018 and a slat gap g = 0.0217 (see figure 14 for the definition of the slat
parameters). Now the reference length 7, 7 is taken to be the chord length I of the clean
wing with the slat stowed (cruise condition), cf. figure 1. Then K = w*I*/c¢} and figure
7 shows a typical grid with maximal mesh size A = 0.1. To keep the degrees of freedom
as low as possible in our finite element computation we used a rectangular PML and
refined the grid locally in the slat cove and around the two airfoils.

Following the approach taken for our model problem we solve the high lift configuration
first with a retracted slat in order to obtain the surface wave resonances of the high lift
configuration in cruise condition. To avoid the weakly damped whistling tones from the
gap between the retracted slat and the main wing, as observed in figure 6 of Hein et al.
(2005), we eliminate this gap by smoothing the contour (in experiments this is often
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FIGURE 8. Surface wave resonances (o) for high lift configuration with retracted slat (clean
wing) and rectangular PML: dpyr = 0.5, A = 0.1, p = 12. The overlapping spectra are
patched together at the dash-dotted lines.

done with clay). The corresponding surface wave resonances are depicted in figure 8 up
to Re(K/2m = 20). For this we patched together the spectrum from three overlapping
spectra with different oo (and Arnoldi shifts) as indicated in figure 8. In our finite
element computation we used the polynomial order p = 12. Without the symmetry of
our model problem the double resonances of the circular cylinder in figure 5a split into
two distinct branches starting with a dipole-like eigenfunction similar to the one shown
by Hein et al. (2005) for the symmetric NACA0012 profile. A few of the higher surface
wave eigenfunctions corresponding to the resonances marked (a) to (e) in figure 8 are
depicted in figure 9.

Next, we compute the resonances in the slat cove of our baseline configuration with
extracted slat and slat angle §; = 26° excluding all surface wave resonances around the
whole wing. This can be achieved by surrounding the extracted slat by an annular PML
ending on the main wing as shown in figure 10 where a corresponding grid is depicted.
The resulting least damped resonances are shown in figure 11 together with three sample
eigenfunctions. Note that for these slat parameters the least damped resonances are not
the gap modes of Tam & Pastouchenko (2001) but modes which resemble longitudinal
cavity modes, cf. Koch (2005), with n nodal lines between slat hook and main wing.

Finally, we consider the high lift baseline configuration with the slat extracted at a
slat angle of §; = 26° as depicted in figure 7. Contrary to the clear separation of surface
wave resonances and cavity resonances in our model problem now the slat cove resonances
interact strongly with the surface wave resonances and we obtain the spectrum depicted
in figure 12. Again we patched together the spectrum from three overlapping spectra
with different oy as indicated in figure 12 by the dash-dotted lines. The resonances are
depicted by open circles. Also included are the surface wave resonances for the clean
wing of figure 8 by solid dot symbols and the slat cove resonances of figure 11 by the
star symbols. In general the resonances of the high lift configuration with extracted slat
have much lower radiation losses than the clean configuration, i.e. more noise is radiated
to the far field. Only for very low frequencies do the resonances follow the surface wave
resonances which are essentially independent of slat cove geometry. For a three-element
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FIGURE 9. Clean wing eigenfunctions (a),.. ., (e) corresponding to the five surface wave

resonances marked in figure 8.
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FIGURE 10. Finite element grid of slat cove with annular PML (shaded region).

high lift configuration Hein et al. (2005) showed that these low-frequency resonances
agree fairly well with the measured low-frequency tones of Pott-Pollenske et al. (2003)
even though their flap extended only over half the span and therefore three-dimensional
effects might be expected. For higher frequencies the highly damped slat cove resonances
of figure 11 determine the peaks in the spectrum which we marked by arrows in figure 12.
It is interesting to note that even the peak tone in the experiment of Pott-Pollenske et al.
(2003) seems to be near the first slat cove resonance marked by (a) in figure 12. The
eigenfunctions corresponding to the first five marked peaks (a), . .., (e) are shown in figure
13. In the cove region the eigenfunctions (c), (d) and (e) of figure 13 agree quite well with
the three slat cove eigenfunctions depicted in figure 11. Near Re(K/2m) = 13 the two
resonance branches seem to interchange similar to the z-symmetric and z-antisymmetric
resonances in figure 5b, but it is not clear what that means physically.

5. Variation of resonances with slat cove parameter changes

The traditional geometric parameters determining the aerodynamic performance of
leading edge slats are the slat angle 5, the slat overlap o, and the slat gap g, as sketched
in figure 14. Following Pott-Pollenske et al. (2003) we used in our baseline configuration
of the previous section the slat cove parameters 6, = 26°, o, = —0.018, and g, =
0.0217. Hein et al. (2005) varied these parameters for the generic three-element high
lift configuration of Pott-Pollenske et al. (2003) and found only negligible changes for
the low-frequency resonances up to Re(K/27w) = 5. In the following we investigate the
influence of the slat cove parameters on the high-frequency resonances by extending the
frequency range by a factor of four up to Re(K/27) = 20.

First we vary the slat angle §, keeping the slat overlap os = —0.018 and slat gap g, =
0.0217 fixed. The results for d; = 10°2,20° and 30° are shown in figure 15 complementing
figure 12 with §; = 26°. We increased the polynomial order up to p = 14 and p = 16 to
check the convergence of the resonances shown and eliminate spurious modes. However,
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FIGURE 11. Slat cove resonances (x) for high lift configuration with slat angle J, = 26°, slat
overlap os = 0.018, slat gap gs = 0.0217 and annular PML: dpayr = 0.5, 0o =1, A = 0.08 and
p = 12. The two overlaping spectra are patched together at the dash-dotted line.

with p = 16 we reached the limits of our computational facilities. Again, the peaks in
the spectrum are determined by the highly damped slat cove resonances marked by the
asterisks. At lower §,, cf. figure 15a, the slat cove resonances have lower damping at the
higher frequencies resulting in more distinct resonance peaks there. But in general the
slat cove resonances do not change much by varying ds from 10° to 30°.

Next we vary the slat overlap os; keeping the slat angle d; = 26° and the slat gap
gs = 0.0217 fixed. The resulting spectra for negative and posive slat overlaps are shown
in figure 16 complementing figure 12 with o, = —0.018. With increasing (positive)
overlap the slat cove resonances become more damped at higher frequencies smoothing
the correponding resonant peaks. Slat overlap seems to have a large influence on the slat
cove resonances.

Finally we vary the slat gap gs; keeping the slat angle §; = 26° and the slat overlap
0s = +0.005 fixed. We selected the positive slat overlap o, = +0.005 so that we could let
the slat gap g5 go to zero and thereby obtain a closed cavity for comparison even though
this case is of no interest for actual high lift configurations. The resulting spectra are
shown in figure 17. For g, = 0, cf. figure 17c, we see clearly how the slat cove resonances
dominate at higher frequencies and the slat cove resonance at Re(K/2m) =~ 17 agrees
almost exactly with the weakly damped resonance of the high lift system. From this we
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FIGURE 12. Resonances (o) for high lift configuration with slat angle §; = 26°, slat overlap
0s = —0.018, slat gap gs = 0.0217 and rectangular PML: dpaz = 0.5, A = 0.15 and p = 12.

Also included are the surface wave resonances () of the clean wing of figure 8 and the slat cove
resonances () of figure 11.

conclude that a cavity closed at the bottom has resonances with much lower damping than
a cavity with an opening at the cavity bottom. A high lift system has such an opening
between the trailing edge and the main wing and therefore shows higher damping than
our model problem of Section 3. However, the effect of mean flow through such an
opening still has to be assessed.

Summarising we can say that the low-frequency resonances are determined by the
surface-wave resonances which are practically independent of slat cove geometry. The
high-frequency peaks are determined by the longitudinal slat cove resonances which are
highly dependent on the slat cove geometry in particular the slat overlap and slat gap
but only to a lesser degree on the slat angle.

6. Conclusion

We computed acoustic resonances of a generic two-element high lift configuration with
a single leading edge slat. These resonances are highly damped by radiation losses to
infinity but could possibly be excited by unstable shear layers enhancing the response
near those resonant frequencies. For the computation of the resonances we neglected
mean flow effects assuming that mean flow is not important at the low Mach numbers
of aircraft landing and approach. However, for the exciting shear-layer sources mean
flow is essential. To avoid unphysical reflections at the truncated domain boundaries
we employed perfectly matched layer boundary conditions in the form of the complex
scaling method of atomic and molecular physics.

Introducing the simple model of a circular cylinder with a rectangular cutout we
demonstrated the existence of two distinct types of resonance: the first type of reso-
nance is due to surface waves and scales with the total circumference, i.e. the airfoil
length. The second type of resonance corresponds to longitudinal resonances in a cavity,
scales with the length of the cavity and dominates for our model problem. Similar types
of resonance are found for the high lift system albeit the cavity resonances are much
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FiGURE 13. High lift configuration eigenfunctions (a), ..., (e) corresponding to the five
resonances marked in figure 12.
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(negative) overlap

constant gap
line

constant overlap line

FIGURE 14. Slat cove parameters with §; = 10%,20°,26° (shaded baseline configuration) and

30°.

more damped due to the opening between the slat trailing edge and the main wing.
Nevertheless, these longitudinal cavity resonances seem to determine the spectral peaks.
Contrary to the transverse gap resonances of Tam & Pastouchenko (2001) and Agarwal
& Morris (2002) between the slat trailing edge and the main wing our longitudinal cavity
resonances are least damped near the frequencies of the longitudinal cavity resonances
of the slat cove between the slat hook and the main wing. Varying the slat parameters
we showed that the slat cove geometry, in particular the slat overlap and the slat gap,
have a strong influence on the resonances and therefore on the response of the high lift
system to shear-layer excitation. It is expected that the slat cove resonances also strongly
influence the radiated noise pattern.
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0s = 1+0.005, (c) os = +0.02.
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