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Abstract

This paper analyzes two-level Schwarz methods for matrices arising from the p-
version finite element method on triangular and tetrahedral meshes. The coarse level
consists of the lowest order finite element space. On the fine level, we investigate sev-
eral decompositions with large or small overlap leading to optimal or close to optimal
condition numbers. The analysis is confirmed by numerical experiments for a simple
model problem and an elasticity problem on a complex geometry. High Order Finite
Element Method, Preconditioning.

1 Introduction
High order finite element methods (hp-FEM) and the closely related spectral element
method can lead to very high accuracy and are thus attracting increasing attention in many
fields of computational science and engineering. The monographs (SB91; BS94; Sch98;
KS99; SDR04; SSD03) on p- and hp-FEM as well as (GO77; Ors80; CHQZ86; BM92;
BM97; DFM02) on spectral and spectral element methods give a broad overview of theo-
retical and practical aspects of these high order methods.

As the problem size increases (due to small mesh-size h and high polynomial order p),
the solution of the arising linear system of equations becomes more and more the time-
dominating part. Here, iterative solvers can reduce the total simulation time. We consider
preconditioners that are based on domain decomposition methods (DW90; GO95; SBG96;
TW04; Qua99). In the setting of non-overlapping Schwarz methods (also known as sub-
structuring methods) the basic concept is to consider each each high order element (or, more
generally, patch of high order elements) as an individual subdomain. Such methods were
studied, for example, in (Man90; BCM91; Ain96a; Ain96b; Cas97; Bic97; GC98; SC01;
Mel02). For subdomain with tensor product structure arising typically in the spectral ele-
ment method, efficient preconditioners for the subdomain problems have been developed.
In connection with the spectral element method we note here the finite-difference precon-
ditioning in Gauß-Lobatto points (known as “Deville-Mund” preconditioner) and refer to
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(TW04, Chap. 7), (DFM02) for a more detailed discussion; in the context of the hp-FEM,
we mention the recent publications (KJ99; BSS04; BS05).

In the present work, we study overlapping Schwarz preconditioners with generous over-
lap on shape regular meshes consisting of triangles (in 2D) and tetrahedra (in 3D). The con-
dition numbers are shown to be bounded uniformly in the mesh size h and the polynomial
order p. To our knowledge, this is a new result for tetrahedral meshes and generalizes the
corresponding work (Pav94) for rectangles/hexahedra to the case of triangles/tetrahedra.
We remark that the optimality of the preconditioner has already been conjectured in (PC00)
based on numerical evidence. The main difference between the present work and (Pav94)
lies in the construction of an H1-stable operator that localizes a piecewise polynomial to
a patch. The key ingredients of (Pav94) are L2- and H1-stability properties (on spaces of
polynomials) of the tensor product Gauß-Lobatto interpolation operator. For tensorial ele-
ments these desirable properties follow from corresponding ones in 1D (see, e. g., (EM06,
Lemma 4.1) for a precise statement). For triangles and tetrahedra, an analogous H1-stable
interpolation operator is not known and our construction is therefore based on a local aver-
aging operator in the spirit of the Clément quasi-interpolant. Our local averaging operator
takes the form of an explicit decomposition of a global finite element function into a coarse
grid part and local contributions associated with the vertices, edges, faces, and elements of
the mesh. The idea of the construction has already been presented in (SMPZ05).

For the spectral element method, a complete theory of overlapping Schwarz methods
is available, covering both the case of generous and small overlap (see, e. g., (TW04,
Chap. 7.3), (DFM02)). The use of small overlap is well-established in spectral element
methods since one can motivate the choice of overlap and analyze its effect by means of
tensor product Gauß-Lobatto grids on each element; in contrast, corresponding tools do
not seem to be available at present for the hp-FEM based on non-tensorial elements such
as triangles and tetrahedra.

The rest of the paper is organized as follows: In Section 2 we state the problem and
formulate the main results. We prove the 2D case in Section 3 and extend the proof to
the 3D situation in Section 4. Finally, in Section 5 we give numerical results for several
versions of the analyzed preconditioners.

2 Definitions and Main Result
We consider the Poisson equation on the polyhedral domain Ω with homogeneous Dirichlet
boundary conditions on ΓD ⊂ ∂Ω, and Neumann boundary conditions on the remaining part
ΓN . With the subspace V := {v∈H1(Ω) : v = 0 on ΓD}, the bilinear-form A(·, ·) : V ×V →
R and the linear-form f (·) : V → R are defined as

A(u,v) =
∫

Ω

∇u ·∇vdx f (v) =
∫

Ω

f vdx;

the weak formulation reads:

find u ∈V such that A(u,v) = f (v) ∀v ∈V. (1)

We assume that the domain Ω is subdivided into straight-sided triangular or tetrahedral
elements. In general, constants in the estimates depend on the shape of the elements, but
they do not depend on the local mesh-size. We define

the set of vertices V = {V},
the set of edges E = {E},

the set of faces (3D only) F = {F},
the set of elements T = {T}.

2



We define the sets V f ,E f ,F f of free vertices, edges, and faces not completely contained in
the Dirichlet boundary. The high order finite element space is

Vp = {v ∈V : v|T ∈ Pp ∀T ∈T },

where Pp is the space of polynomials of total order ≤ p. As usual, we choose a basis
consisting of lowest order affine-linear functions associated with the vertices, and of edge-
based, face-based, and cell-based bubble functions. The Galerkin projection onto Vp leads
to a large system of linear equations, which shall be solved with the preconditioned conju-
gate gradient (PCG) iteration.

This paper is concerned with the analysis of additive Schwarz preconditioning. The
basic method is defined by the following space splitting. In Section 5 we will consider
several cheaper versions resulting from our analysis. The coarse subspace is the global
lowest order space

V0 := {v ∈V : v|T ∈ P1 ∀T ∈T }.
For each inner vertex we define the vertex patch

ωV =
⋃

T∈T :V∈T

T

and the vertex subspace
VV = {v ∈Vp : v = 0 in Ω\ωV}.

For vertices V not lying on the Neumann boundary, this definition coincides with Vp ∩
H1

0 (ωV ). The additive Schwarz preconditioning operator C−1 : V ∗
p →Vp is defined by

C−1d = w0 + ∑
V∈V

wV

with w0 ∈V0 such that
A(w0,v) = 〈d,v〉 ∀v ∈V0,

and wV ∈VV satisfies
A(wV ,v) = 〈d,v〉 ∀v ∈VV .

This method is very simple to implement for the p-version method using a hierarchical
basis. The low-order block requires the inversion of the submatrix according to the vertex
basis functions. The high order blocks are block-Jacobi steps, where the blocks contain all
vertex, edge, face, and cell unknowns associated with mesh entities containing the vertex
V .

The rate of convergence of the PCG iteration can be bounded by means of the spectral
bounds for the quadratic forms associated with the system matrix and the preconditioning
matrix. The main result of this paper is to prove optimal results for the spectral bounds:

THEOREM 2.1 The constants λ1 and λ2 of the spectral bounds

λ1 〈Cu,u〉 ≤ A(u,u)≤ λ2 〈Cu,u〉 ∀u ∈Vp

are independent of the mesh-size h and the polynomial order p.

The proof is based on the additive Schwarz theory, which allows us to express the C-
form by means of the space decomposition:

〈Cu,u〉= inf
u=u0+∑V uV
u0∈V0,uV ∈VV

‖u0‖2
A +∑‖uV‖2

A.

The existence of a constant λ2 that is independent of h and p follows a standard argument
(known as “coloring argument”) since maxV∈V card{V ′ ∈ V |ωV ′ ∩ωV 6= /0} is bounded
by a constant that depends solely on the shape regularity of the mesh. In the core part of
this paper, we construct an explicit and stable decomposition of u into subspace functions.
Section 3 introduces the decomposition for the case of triangles, in Section 4 we prove the
results for tetrahedra.
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3 Subspace splitting for triangles
In this section, we give the proof of Theorem 2.1 for triangles. The case of tetrahedra is
postponed to Section 4.

The strategy of the proof is the following: First, we subtract a coarse grid function
to eliminate the h-dependence. By stepwise elimination, the remaining function is then
split into sums of vertex-based, edge-based and inner functions. For each partial sum, we
give the stability estimate. This stronger result contains Theorem 2.1, since we can choose
corresponding vertices for the edge and inner contributions (see also Section 5).

3.1 Coarse grid contribution
In the first step, we subtract a coarse grid function:

LEMMA 3.1 For any u ∈Vp there exists a decomposition

u = u0 +u1 (2)

such that u0 ∈V0 and

‖u0‖2
A +‖∇u1‖2

L2
+‖h−1u1‖2

L2
� ‖u‖2

A.

Proof. We choose u0 = Πhu, where Πh is the Clément-operator (Cle75). The norm bounds
are exactly the continuity and approximation properties of this operator. �

From now on, u1 denotes the second term in the decomposition (2).

3.2 Vertex contributions
In the second step, we subtract functions uV to eliminate vertex values. Since vertex inter-
polation is not a bounded operator in H1, we cannot use it. Instead, we construct a new
averaging operator mapping into a larger space.

In the following, let V be a vertex not on the Dirichlet boundary ΓD, and let ϕV be the
piecewise linear basis function associated with this vertex. Furthermore, for s ∈ [0,1] we
define the level sets

γV (s) := {y ∈ ωV : ϕV (y) = s},

and write γV (x) := γV (ϕV (x)) for x ∈ ωV . For internal vertices V, the level set γV (0) coin-
cides with the boundary ∂ωV (cf. Figure 1). The space of functions being constant on these
sets reads

SV := {w ∈ L2(ωV ) : w|γV (s) = const, s ∈ [0,1] a. e.};

its finite dimensional counterpart is

SV,p := SV ∩Vp = span{1,ϕV , ...,ϕ p
V}.

We introduce the spider averaging operator(
Π

V v
)
(x) :=

1
|γV (x)|

∫
γV (x)

v(y)dy, forv ∈ L2(ωV ).

To satisfy homogeneous boundary conditions, we add a correction term as follows (see
Figure 2) (

Π
V
0 v

)
(x) :=

(
Π

V v
)
(x)− (ΠV v)|γV (0)(1−ϕV (x)).

LEMMA 3.2 The averaging operators fulfill the following algebraic properties

(i)
Π

VVp = SV,p,
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Figure 2: Construction of ΠV
0

(ii)
Π

V
0 Vp = SV,p∩VV ,

(iii) if u is continuous at V , then

(ΠV u)(V ) = Π
V
0 u(V ) = u(V ).

The proof follows immediately from the definitions.

We denote the distance to the vertex V and the minimal distance to any vertex in V by

rV (x) := |x−V | and rV (x) := min
V∈V

rV (x).

LEMMA 3.3 The averaging operators satisfy the following norm estimates

(i)
‖Π

V u‖L2(ωV ) � ‖u‖L2(ωV )

(ii)
‖∇Π

V u‖L2(ωV ) � ‖∇u‖L2(ωV )

(iii)
‖r−1

V {u−Π
V u}‖L2(ωV ) � ‖∇u‖L2(ωV )

(iv)
‖∇{ϕV u−Π

V
0 u}‖L2(ωV ) � ‖∇u‖L2(ωV )

(v)
‖r−1

V {ϕV u−Π
V
0 u}‖L2(ωV ) � ‖∇u‖L2(ωV )

Proof. We parametrize the patch ωV by

FV : γV (0)× [0,1]→ ωV : (y,s) 7→ y+ s(V − y).

Splitting the patch into elements, and applying elementwise transformation rules, one
proves ∫

ωV

∣∣ f (x)
∣∣dx ' hV

∫ 1

0

∫
γV (0)

∣∣ f (FV (y,s))
∣∣(1− s)dyds,

where hV := diam{ωV}.
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(i) Using γV (FV (y,s)) = γV (s) together with standard inequalities we derive

‖Π
V u‖2

L2(ωV ) ' hV

∫ 1

0

∫
γV (0)

∣∣(ΠV u)(FV (y,s))
∣∣2 (1− s)dyds

= hV

∫ 1

0

∫
γV (0)

∣∣∣ 1
|γV (s)|

∫
γV (s)

u(x)dx
∣∣∣2

(1− s)dyds

≤ hV

∫ 1

0

∫
γV (0)

1
|γV (s)|

∫
γV (s)

u2(x)dx (1− s)dyds

= hV

∫ 1

0

∫
γV (0)

1
|γV (0)|

∫
γV (0)

u2(FV (x,s))dx (1− s)dyds

= hV

∫ 1

0

∫
γV (0)

u2(FV (x,s))dx (1− s)ds

'
∫

ωV

u2(x)dx.

(ii) To verify the estimate for the H1-semi-norm, we rewrite the pointwise gradient:

(∇Π
V u)(x) = ∇

(
1

|γV (x)|

∫
γV (x)

u(y)dy
)

= ∇

(
1

|γV (0)|

∫
γV (0)

u(FV (y,ϕV (x))dy
)

=
1

|γV (0)|

∫
|γV (0)|

d (u◦FV )
ds

(y,ϕV (x))∇ϕV (x)dy

=
1

|γV (0)|

∫
|γV (0)|

(∇u)
(
FV (y,ϕV (x))

)
· (V − y)∇ϕV (x)dy.

Forming the absolute values allows us to estimate

|∇Π
V u|(x) ≤ 1

|γV (0)|

∫
γV (0)

∣∣(∇u)(FV (y,ϕV (x)))
∣∣|V − y||∇ϕV |dx

� 1
|γV (0)|

∫
γV (0)

∣∣(∇u)(FV (y,ϕV (x)))
∣∣hV h−1

V dy

=
1

|γV (x)|

∫
γV (x)

|(∇u)(y)|dy

= (ΠV |∇u|)(x).

The rest follows from the L2-estimate (i) applied to |∇u|.

(iii) On the manifold γV (0) there holds the Poincaré inequality∫
γV (0)

∣∣∣u(x)− 1
|γV (0)|

∫
γV (0)

u(y)dy
∣∣∣2

dx � h2
V

∫
γV (0)

|∇u|2 dx.
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Using rV (x)' (1−ϕV (x))hV we derive∫
ωV

1
r2
V

(
u−Π

V u
)2 dx

' hV

∫ 1

0

∫
γV (0)

1
r2
V

(
u(FV (y,s))− 1

|γV (0)|

∫
γV (0)

u(FV (x,s))dx
)2

(1− s)dyds

� hV

∫ 1

0

∫
γV (0)

h2
V

r2
V

∣∣∇yu(FV (y,s))
∣∣2 (1− s)dyds

' hV

∫ 1

0

∫
γV (0)

1
(1− s)2

∣∣∣(∇u)(FV (y,s))
∂FV

∂y

∣∣∣2
(1− s)dyds

= hV

∫ 1

0

∫
γV (0)

∣∣(∇u)(FV (y,s))
∣∣2 (1− s)dyds

' ‖∇u‖2
L2(ωV ).

(iv) Since ϕV 1 = ΠV
0 1, we can subtract the mean value u := 1

|ωV |
∫

ωV
u(x)dx:

‖∇{ϕV u−Π
V
0 u}‖= ‖∇{ϕV (u−u)−Π

V
0 (u− ū)}‖

≤ ‖∇
{

ϕV (u− ū)
}
‖+‖∇Π

V (u− ū)−Π
V (u− ū)|γV (0)∇(1−ϕV )‖

� ‖(∇ϕV )(u− ū)‖+‖ϕV ∇u‖+‖∇u‖+
∣∣∣ΠV (u− ū)|γV (0)

∣∣∣‖∇ϕV‖

� h−1‖u− ū‖+‖∇u‖
� ‖∇u‖.

We have used (ii) and the trace inequality for∣∣∣ΠV (u− ū)|γV (0)

∣∣∣ =
1

|γV (0)|

∣∣∣∣∫
γV (0)

u− ū dx
∣∣∣∣≤

≤ |γV (0)|−1/2 ‖u− ū‖L2(γV (0)) � ‖∇(u− ū)‖+h−1‖u− ū‖.
(3)

(v) We finally prove ‖r−1
V {ϕV u−ΠV

0 u}‖L2(ωV ) � ‖∇u‖L2(ωV ). From the definition of rV ,

we get ∥∥ 1
rV

{ϕV u−Π
V
0 u}

∥∥' ∥∥ 1
rV
{ϕV u−Π

V
0 u}

∥∥+ ∑
V ′∈ωV \{V}

∥∥ 1
rV ′

{ϕV u−Π
V
0 u}

∥∥.

We bound the first term as follows:∥∥ 1
rV
{ϕV u−Π

V
0 u}

∥∥
L2(ωV )

=
∥∥ 1

rV

{
(1− (1−ϕV ))u−Π

V u+(1−ϕV )(ΠV u)|γV (0)
}∥∥

=
∥∥ 1

rV

{
(u−Π

V u)− (1−ϕV )(u− ū)+(1−ϕV )
(
(ΠV u)|γV (0)− ū

)}∥∥
�

∥∥ 1
rV

(u−Π
V u)

∥∥+
∥∥1−ϕV

rV
(u− ū)

∥∥+
∥∥1−ϕV

rV

(
(ΠV u)|γV (0)− ū

)∥∥
� ‖∇u‖+h−1‖u− ū‖+h−1

∣∣∣(ΠV u)|γV (0)− ū
∣∣∣ |ωV |1/2

� ‖∇u‖L2(ωV )

We have used that (1−ϕV )/rV ' h−1, applied the Poincaré inequality on ωV , and once
again employed (3).
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Before treating the second term, we prove the following estimate on a triangle T :∫
T

1
(rV ′)2 v2 dx � ‖∇v‖2

L2(T ), (4)

for functions v vanishing on an edge E containing the vertex V ′. We transform to the
reference triangle T̂ = {(x1,x2) : 0 ≤ x2 ≤ x1 ≤ 1} and use Friedrichs’ inequality:

∫
T

1
(rV ′)2 v2 dx ' h2

1∫
0

x1∫
0

1
h2 x2

1
v2(x1,x2)dx2 dx1

�
1∫

0

x1∫
0

(
∂v
∂x2

)2
dx2 dx1 � ‖∇v‖2

L2(T )

Since the function v := ϕV u−ΠV
0 u vanishes on the boundary ∂ωV , inequality (4) can

be applied on each triangle T ⊂ ωV :∥∥ 1
rV ′

{ϕV u−Π
V
0 u}

∥∥
L2(ωV ) �

∥∥∇{ϕV u−Π
V
0 u}

∥∥
L2(ωV )

Using (iv) and summing over V ′, we get the desired estimate. Due to shape regularity this
sum is finite.

This finishes the proof of Lemma 3.3 �

The global spider vertex operator is

ΠV := ∑
V∈V f

Π
V
0 .

Obviously, u−ΠV u vanishes in any vertex V ∈ V f . These well-defined zero vertex values
are reflected by the following norm definition:

||| · |||2 := ‖∇ · ‖2
L2(Ω) +‖ 1

rV
· ‖2

L2(Ω) (5)

THEOREM 3.1 Let u1 be as in Lemma 3.1. Then, the decomposition

u1 = ∑
V∈V f

Π
V
0 u1 +u2 (6)

is stable in the sense of
∑

V∈V f

‖Π
V
0 u1‖2

A + |||u2|||2 � ‖u‖2
A. (7)

Proof. The vertex terms in equation (7) are bounded by

‖Π
V
0 u1‖2

A = ‖Π
V u1− (ΠV u1)|γV (0)(1−ϕV )‖2

A

≤ ‖∇Π
V u1‖2

L2(ωV ) +
∣∣(ΠV u1)|γV (0)

∣∣2 ‖1−ϕV‖2
A

� ‖∇u1‖2
L2(ωV ) +h−2

V ‖u1‖2
L2(ωV ).

We have used that ‖1−ϕV‖A ' 1. Summing up all terms, one obtains

∑
V∈V f

‖Π
V
0 u1‖2

A � ‖∇u1‖2
L2(Ω) +‖h−1u1‖2

L2(Ω) � ‖u‖2
A.
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To bound the second term, we compare with the partition of unity provided by the hat
functions: ∣∣∣∣∣∣∣∣∣u1− ∑

V∈V f

Π
V
0 u1

∣∣∣∣∣∣∣∣∣2
=

∣∣∣∣∣∣∣∣∣ ∑
V∈VD

ϕV u1 + ∑
V∈V f

(ϕV u1−Π
V
0 u1)

∣∣∣∣∣∣∣∣∣2

� ∑
V∈VD

|||ϕV u1|||2 + ∑
V∈V f

|||(ϕV u1−Π
V
0 u1)|||2

For V ∈ VD, the function u1 vanishes on (at least) one edge of the patch ωV . Hence, using
ideas as in the proof of Lemma 3.3, part (iii) we get ‖ 1

rV
ϕV u1‖L2(ωV ) � ‖∇(ϕV u1)‖L2(ωV ).

Furthermore, since each element K of the patch ωV has an edge on which ϕV u1 vanishes,
we may employ (4) and reason as in the proof of Lemma 3.3, part (v) to obtain

|||ϕV u1|||2 � ‖∇(ϕV u1)‖2
L2(ωV ) � ‖∇u1‖2

L2(ωV );

here, the last estimate follows again from the fact that u1 vanishes on an edge in ωV . �
For the rest of this section, u2 denotes the second term in the decomposition (6).

3.3 Edge contributions
As seen in the last subsection, the remaining function u2 vanishes in all vertices. We now
introduce an edge-based interpolation operator to carry the decomposition further, such that
the remaining function, u3, contributes only to the inner basis functions of each element.

Therefore we need a lifting operator which extends edge functions to the whole tri-
angle preserving the polynomial order. Such operators were introduced in Babuška et al.
(BCM91), and later simplified and extended to 3D by Muñoz-Sola (Mun97). The lifting on
the reference element T R with vertices (−1,0), (1,0), (0,1) and edges ER

1 := (−1,1)×{0},
ER

2 , ER
3 reads:

(R1w)(x1,x2) :=
1

2x2

∫ x1+x2

x1−x2

w(s)ds,

for w ∈ L1([−1,1]). The modification by Muñoz-Sola preserving zero boundary values on
the edges ER

2 and ER
3 is

(Rw)(x1,x2) := (1− x1− x2)(1+ x1− x2)
(
R1

w
1− x2

1

)
(x1,x2).

For an arbitrary triangle T = FT (T R) containing the edge E = FT (ER
1 ), its transformed

version reads
RT w := R

[
w◦FT

]
◦F−1

T .

The Sobolev space H1/2
00 (E) on an edge E = [VE,1,VE,2] is defined by its corresponding

norm
‖w‖2

H1/2
00 (E)

:= ‖w‖2
H1/2(E) +

∫
E

1
rVE

w2 ds,

with
rVE := min{rVE,1 ,rVE,2}.

LEMMA 3.4 The Muñoz-Sola lifting operator RT satisfies:

(i) RT maps polynomials w ∈ Pp
0 (E) := {v ∈ Pp(E) : v = 0 in VE,1,VE,2} into {v ∈

Pp(T ) : v = 0 on ∂T \E}.

(ii) RT is bounded in the sense

‖RT w‖H1(T ) � ‖w‖
H1/2

00 (E)
.
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The proof follows from (BCM91) and (Mun97).

We call ωE := ωVE,1 ∩ωVE,2 the edge patch. We define an edge-based interpolation
operator as follows:

Π
E
0 : {v ∈Vp : v = 0 in V }→ H1

0 (ωE)∩Vp,

(ΠE
0 u)|T := RT trE u.

(8)

LEMMA 3.5 The edge-based interpolation operator ΠE
0 defined in (8) is bounded in the

||| · |||-norm:
‖∇Π

E
0 u‖L2(ωE ) � |||u|||ωE

Proof. First, we apply Lemma 3.4 on a single triangle T ⊂ ωE :

‖∇Π
E
0 u‖2

L2(T ) = ‖∇RT trE u‖2
L2(T )

� ‖ trE u‖2
H1/2(E) +

∫
E

1
rVE

(trE u)2 ds.

For the first term, the trace theorem can be applied.
The second term, the weighted L2-norm on the edge, can be bounded by a weighted

norm on the triangle. We transform to the reference triangle,∫
E

1
rVE

u2 ds =
∫

ER
1

1
rVER

1

(u◦FT )2 ds,

and write uR := u ◦FT . Due to symmetry, we consider only the right half of the edge ER
1 ,

where rER
1

= 1
1−x1

, and finally apply a trace inequality:

∫ 1

0

1
1− x1

uR(x1,0)2 dx1 �

�
∫ 1

0

1
1− x1

∫ 1−x1

0
(1− x1)

[
∂uR

∂x2

]2
+

1
1− x1

[uR]2 dx2 dx1

� |||uR|||2T R ' |||u|||2T .

�
This leads us immediately to

THEOREM 3.2 Let u2 be as in Theorem 3.1. Then, the decomposition

u2 = ∑
E∈E f

Π
E
0 u2 +u3 (9)

satisfies u3 = 0 on
⋃

E∈E f
E and is bounded in the sense of

∑
E∈E f

‖∇Π
E
0 u2‖2

L2
+‖∇u3‖2

L2
� |||u2|||2. (10)

3.4 Main result
Proof of Theorem 2.1 for the case of triangles. Summarizing the last subsections, we
have

u1 = u−Πhu, u2 = u1− ∑
V∈V f

Π
V
0 u1, u3 = u2− ∑

E∈E f

Π
E
0 u2,

and the decomposition

u = Πhu+ ∑
V∈V f

Π
V
0 u1 + ∑

E∈E f

Π
E
0 u2 + ∑

T∈T

u3|T . (11)
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is stable in the ‖ · ‖A-norm.
For every edge E or triangle T , we can find a vertex V such that the contribution ΠE

0 u2
or u3|T is an element of the space VV . Since for each vertex only finitely many terms appear,
we can use the triangle inequality and finally arrive at the desired spectral bound

〈Cu,u〉= inf
u=u0+∑V uV
u0∈V0,uV ∈VV

‖u0‖2
A +∑

V
‖uV‖2

A � 〈Au,u〉 .

�

4 Subspace splitting for tetrahedra
Most of the proof for the 3D case follows the strategy pursued in Section 3. The only
principal difference is the edge interpolation operator, which shall be treated in more detail.

4.1 Coarse and vertex contributions
We define the level surfaces of the vertex hat basis functions

ΓV (x) := {y : ϕV (y) = ϕV (x)}.

As in 2D, we first subtract the coarse grid Clément quasi-interpolant Πhu (cf. Lemma 3.1)

u1 = u−Πhu,

and secondly the multi-dimensional vertex interpolant to obtain

u2 = u1−ΠV u1,

where the definitions of ΠV , ΠV
0 , ΠV are the same as in Section 3, only the level set lines

γV are replaced by the level surfaces ΓV . With the same arguments, one easily shows that

∑
v∈V f

‖Π
V
0 u1‖2

A +‖∇u2‖2
L2

+‖r−1
V u2‖2

L2
� ‖u‖2

A. (12)

4.2 Edge contributions
Let F := {(s, t) : s≥ 0, t ≥ 0,s+ t ≤ 1} be the reference triangle in Figure 3. For (s, t) ∈ F ,
we define the level lines

γE(s, t) := {x : ϕVE,1(x) = s and ϕVE,2(x) = t},

and write
γE(x) := γE(ϕVE,1(x),ϕVE,2(x))

for the level line corresponding to a point x in the edge-patch ωE , see Figure 4.
Define the space of constant functions on these level lines,

SE := {v : v|γE (x) = const}

and its polynomial subspace SE,p := SE ∩Vp. The edge averaging operator into SE reads

(
Π

Ev
)
(x) :=

1
|γE(x)|

∫
γE (x)

v(y)dy.

Furthermore, let rVE := min{rVE,1 ,rVE,2}, and rE(x) := dist{x,E}.

LEMMA 4.1 The edge-averaging operator satisfies

11
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(i)
Π

EVp = SE,p,

(ii)
(ΠEu)(x) = u(x), for x ∈ E, u continuous,

(iii)
‖∇Π

Eu‖L2(ωE ) � ‖∇u‖L2(ωE ),

(iv)
‖r−1

VE
Π

Eu‖L2(ωE ) � ‖r−1
V u‖L2(ωE ),

(v)
‖r−1

E (u−Π
Eu)‖L2(ωE ) � ‖∇u‖L2(ωE ),

where u ∈ H1(ωE).

The proof is analogous to the proofs of Lemma 3.2 and Lemma 3.3.

Next, the edge-interpolation operator is modified to satisfy zero boundary conditions
on ∂ωE . By the isomorphism

vF(s, t) := v|γE (s,t), for v ∈ SE , (13)

the function space SE can be identified with a space on the triangle F .

LEMMA 4.2 The isomorphism (13) fulfills the following equivalences for functions v∈ SE :

(i)
‖v‖L2(ωE ) ' h3/2 ‖r1/2

ER vF‖L2(F),

(ii)
‖∇v‖L2(ωE ) ' h1/2 ‖r1/2

ER ∇vF‖L2(F),

(iii)

‖r−1
VE

v‖L2(ωE ) ' h1/2
∥∥∥∥ r1/2

ER

rVER

vF

∥∥∥∥
L2(F)

,

(iv)
‖r−1

E v‖L2(ωE ) ' h1/2 ‖r−1/2
ER vF‖L2(F),

12



where

ER := {(s, t) ∈ F : s+ t = 1},

rER(s, t) := 1− s− t, and (rVER )−1 := 1
1−s + 1

1−t .

Proof. We parameterize the edge-patch ωE by

FE : γE(0,0)×F → ωE

(z,(s, t)) 7→ z+ s(VE,1− z)+ t(VE,2− z).

Note that functions v ∈ SE do not depend on the parameter z ∈ γE(0,0) and vF(s, t) =
(v ◦FE)(z,s, t) for any z ∈ γE(0,0). Equivalence (i) holds due to the transformation of the
integrals ∫

ωE

|v|2 dx ' h2
∫

γE (0,0)

∫ 1

0

∫ 1−s

0
|v◦FE |2(1− s− t)dt dsdz

' h3
∫

F
|vF |2 rER d(s, t).

Derivatives evaluate to ∂vF
∂ s = (∇v) · ∂FE

∂ s = (∇v) · (VE,1− z), and thus

|(∇v)◦FE | ' h−1|∇vF |.

Observing (i), we note that (ii) holds. The equivalences (iii) and (iv) follow from rVE ◦FE '
hrVER . �

We now modify the function

uF(s, t) := (ΠEu2)|γE (s,t) (14)

to obtain a function uF,00 which satisfies zero boundary conditions on the edges s = 0 and
t = 0, and coincides with uF on the edge s+ t = 1. This modification is done in such a way
that it is continuous in the weighted H1-norm.

First, we define the smoothing operator (cf. Figure 5)

(Ssv)(s, t) :=
∫ 1

0
v
(
s+

τ

2
(1− s− t), t

)
dτ.

Secondly, we modify the operator to obtain

(Ss,0v)(s, t) := (Ssv)(s, t)−
1− s− t

1− t
(Ssv)(0, t),

which vanishes on the edge s = 0.

LEMMA 4.3 The smoothing operator Ss,0 satisfies

Ss,0 : {v ∈ Pp : v(0,1) = v(1,0) = 0}→ {v ∈ Pp : v(1,0) = v(0, ·) = 0}

and the estimates∥∥r1/2
ER ∇(Ss,0v)

∥∥
L2(F) +

∥∥ r1/2
ER

rVER
(Ss,0v)

∥∥
L2(F) +

∥∥r−1/2
ER (Ss,0v− v)

∥∥
L2(F)

�
∥∥r1/2

ER ∇v
∥∥

L2(F) +
∥∥ r1/2

ER
rVER

v
∥∥

L2(F). (15)
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Proof. We start with the stated mapping properties of Ss,0. Let v be a polynomial vanishing
in (0,1) and (1,0). Then Ssv is again a polynomial, and Ssv = v on the edge s+t = 1; hence
Ssv(0,1) = v(0,1) = 0. Thus, the restriction to the edge s = 0 is a polynomial in t vanishing
at t = 1. Thus, the factor 1− t in the definition of Ss,0 cancels out, showing that Ss,0v is a
polynomial.

The stated bounds for Ss,0 are proved in 2 steps. In the first step, we prove the corre-
sponding estimates for the smoothing operator Ss. In the second step, we prove the esti-
mates for the difference Ss,0 −Ss. We start by observing that derivatives of Ssv depend on
derivatives of v, only:

∂ (Ssv)
∂ s

=
∫ 1

0
(∇v) ·

(
1− τ

2
,0

)
dτ,

∂ (Ssv)
∂ t

=
∫ 1

0
(∇v) ·

(
− τ

2
,1

)
dτ.

We also observe that on the averaging line ls,t := [(s, t);(s+ 1
2 (1− s− t), t)], we have

min
(s′,t ′)∈ls,t

rER ≤ max
(s′,t ′)∈ls,t

rER ≤ 2 min
(s′,t ′)∈ls,t

rER .

The bound for Ss in the weighted H1-semi norm then follows. The approximation property
corresponding to the weighted L2-norm follows from Friedrichs’ inequality applied on the
line ls,t .

Having thus proved the bounds for the operator Ss, we turn to considering the correction
Ss,0−Ss. The weighted H1-semi norm term for Ss,0−Ss is:∥∥∥r1/2

ER ∇

[ 1−s−t

1−t
(Ssv)(0, t)

]∥∥∥
L2(F)

≤
∥∥∥r1/2

ER

( −1

1−t
,

−s

(1−t)2

)
(Ssv)(0, t)

∥∥∥
L2(F)

+
∥∥∥r1/2

ER
1−s−t

1−t
∇(Ssv)(0, t)

∥∥∥
L2(F)

�
∥∥(1− t)−1/2(Ssv)(0, t)

∥∥
L2(F) +

∥∥(1− t)1/2 ∂ (Ssv)
∂ t

(0, t)
∥∥

L2(F)

=
∥∥(Ssv)(0, t)

∥∥
L2(0,1) +

∥∥(1− t)
∂ (Ssv)

∂ t
(0, t)

∥∥
L2(0,1);

Likewiwse, ‖
r1/2
ER

rVER

1−s−t
1−t (Ssv)(0, t)‖L2(F) and ‖r−1/2

ER
1−s−t

1−t (Ssv)(0, t)‖L2(F) are bounded by

these trace norms of Ssv. We now bound them by the right-hand side of (15). We start with
the L2-norm: ∫ 1

0
(Ssv)2(0, t)dt =

∫ 1

0

[∫ 1

0
v
(1− t

2
τ, t

)
dτ

]2
dt

≤
∫ 1

0

∫ 1

0
v2

(1− t
2

τ, t
)

dτ dt =
∫ 1

0

∫ 1−t
2

0
v2(s, t)

2
1− t

dsdt

�
∫

F

rER

r2
VE

v2(s, t)dsdt (16)

We have substituted s = 1−t
2 τ , and used that

s ≤ 1− t
2

implies
1

1− t
≤ 2

1− s− t
(1− t)2 ≤ 2

rER

r2
VE

.

Similarly, we can bound the weighted H1-norm on the edge by∫ 1

0
(1− t)2

[
∂ (Ssv)

∂ t
(0, t)

]2
dt =

∫ 1

0
(1− t)2

[∫ 1

0
(∇v) · (−τ/2,1)T dτ

]2
dt

�
∫ 1

0
(1− t)2

∫ 1

0

∣∣∣∇v
(1− t

2
τ, t

)∣∣∣2
dτdt �

∫ 1

0

∫ 1−t
2

0
(1− s− t)|∇v|2 dsdt.
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This concludes the proof. �

In the same manner, we define

(Stu)(s, t) :=
∫ 1

0
u
(
s, t +

τ

2
(1− s− t)

)
dτ,

and
(St,0)(x,y) := (StuF,0)(s, t)−

1− s− t
1− s

(StuF,0)(s,0).

These two smoothing operators allow us to define the function

uF,00 := St,0Ss,0uF

satisfying zero boundary values at both edges s = 0 and t = 0.
We define the edge interpolation operator by

(ΠE
0 u2)(x) := uF,00(ϕVE,1(x),ϕVE,2(x)). (17)

LEMMA 4.4 For a tetrahedron T of the triangulation let ET be the set of its edges. Then,
for

rE (x) := min
E∈E

rE(x)

there holds

‖r−1
E (v− ∑

E∈ET

Π
E
0 v)‖L2(T ) � ∑

E∈ET

‖∇v‖L2(ωE ) +‖r−1
V v‖L2(ωE ). (18)

Proof. For each E ∈ ET set TE := {x ∈ T |rE(x) = rE (x)} and note T = ∪E∈ET TE . Then

‖r−1
E (v− ∑

E∈ET

Π
E
0 v)‖L2(T ) ≤ ∑

E ′∈ET

‖r−1
E (v− ∑

E∈ET

Π
E
0 v)‖L2(TE′ )

≤ ∑
E ′∈ET

‖r−1
E ′ (v−Π

E ′
0 v)‖L2(TE′ )

+ ∑
E ′∈ET

‖r−1
E ′ ∑

E∈ET :E 6=E ′
Π

E
0 v‖L2(TE′ )

≤ ∑
E ′∈ET

‖r−1
E ′ (v−Π

E ′
0 v)‖L2(T ) + ∑

E∈ET

∑
E ′∈ET :E ′ 6=E

‖r−1
E ′ Π

E
0 v‖L2(T ). (19)

The first sum in (19) can be bounded by the right-hand side of (18) in view of Lemmas 4.1,
4.2, 4.3. For the second sum, we observe that each function ΠE

0 v vanishes on those two
faces of T which do not contain the edge E, and therefore it vanishes on all edges E ′ 6=
E. An embedding theorem then gives ‖r−1

E ′ ΠE
0 v‖L2(T ) � ‖∇ΠE

0 v‖L2(T ). Employing again
Lemmas 4.1, 4.2, 4.3, we see that the double sum in (19) can also be bounded by the
right-hand side of (18). �

Finally, we define the global edge interpolation operator

ΠE := ∑
E∈E f

Π
E
0 , (20)

where E f is the set of are all free edges, i. e., those which do not lie completely on the
Dirichlet boundary. We obtain

THEOREM 4.1 The decomposition

u2 = ∑
E∈E f

Π
E
0 u2 +u3 (21)

fulfills the stability estimate

∑
E∈E f

‖Π
E
0 u2‖2

A +‖∇u3‖2 +‖r−1
E u3‖2 � ‖∇u2‖2 +‖r−1

V u2‖2. (22)

Moreover, u3 = 0 on
⋃

E∈E f
E.

Proof. Theorem 4.1 follows from Lemmas 4.1, 4.3, and 4.4 using the argument of finite
summation. �
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Figure 6: Unstructured
mesh of the unit cube, Ex-
amples 1–4

Figure 7: Unstructured mesh of machine frame, Example 5

4.3 Main result
Proof of Theorem 2.1 for the case of tetrahedra. The interpolation on faces in 3D and
its analysis is structurally similar to the procedure in Section 3.3 for the edge interpola-
tion in 2D. One requires, for each face F and its face patch ωF , the face-lifting operator
ΠF

0 : H1/2
00 (F) → H1

0 (ωF) as given in (Mun97, Lemma 8) with the appropriate stability
properties. Then, we can set

u1 = u−Πhu, u2 = u1− ∑
V∈V f

Π
V
0 u1,

u3 = u2− ∑
E∈E f

Π
E
0 u2, u4 = u3− ∑

F∈F f

Π
F
0 u3,

where F f = {F ∈F : F 6⊂ ΓD}. As a consequence of the last subsections, the decomposi-
tion

u = Πhu+ ∑
V∈V f

Π
V
0 u1 + ∑

E∈E f

Π
E
0 u2 + ∑

F∈F f

Π
F
0 u3 + ∑

T∈T

u4|T (23)

is stable in the ‖ · ‖A-norm. �

5 Numerical results
In this section, we show numerical experiments to illustrate the theory elaborated in the
last sections and to get the absolute condition numbers hidden in the generic constants.
Furthermore, we study two more preconditioners and apply the method to an elasticity
problem on a complex geometry.

First, we consider the H1(Ω) inner product A(u,v) = (∇u,∇v)L2 +(u,v)L2 on the unit
cube Ω = (0,1)3, which is subdivided into 69 tetrahedra, see Figure 6. The polynomial
degree p ranges from 2 to 10. The condition numbers of the preconditioned systems are
computed by Lanczos’ method. In each of our examples, the inner unknowns are eliminated
by static condensation.

Example 1: The preconditioner is defined by the space decomposition with large over-
lap of Theorem 2.1:

V = V0 + ∑
V∈V

VV
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By Theorem 2.1, the condition number is independent of h and p. The computed numbers
are drawn in Figure 8, labeled ’overlapping V’. The memory requirement of this precondi-
tioner is considerable: For p = 10, the memory needed to store the local Cholesky factors
is about 4.4 times larger than the memory required for the global matrix.

In Section 2 we have introduced the space splitting into the coarse space V0 and the
vertex subspaces VV . However, our proof of Theorem 2.1 involves the finer splitting of a
function u into a coarse function, functions in the spider spaces SV , edge-, face-based and
inner functions. Other additive Schwarz preconditioners with uniform condition numbers
are induced by this finer splitting.

Example 2: We decompose the space into the coarse space, the p-dimensional spider-
vertex spaces SV,0 = span{ϕV , . . . ,ϕ p

V}, and the overlapping subspaces VE on the edge
patches:

V = V0 + ∑
V∈V

SV,0 + ∑
E∈E

VE

The arguments of the preceding sections show that the condition number is bounded uni-
formly in h and p. The computed values are drawn in Figure 8, labeled ’overlapping E,
spider V’. Storing the local factors is now about 80 percent of the memory for the global
matrix.

Example 3: The interpolation into the spider-vertex space SV,0 has two continuity
properties: It is bounded in the energy norm, and the interpolation rest satisfies an error
estimate in a weighted L2-norm, see Lemma 3.3 and equation (12). Now, we reduce the
p-dimensional vertex spaces to the spaces spanned by the low energy vertex functions ϕ l.e.

V
defined as solutions of

min
v∈SV,0,v(V )=1

‖v‖2
A.

These low energy functions can be approximately expressed by the standard vertex func-
tions via ϕ l.e.

V = f (ϕV ), where the polynomial f solves a weighted 1D problem and can be
given explicitly in terms of Jacobi polynomials, cf. (BPP06). The interpolation to the low
energy vertex space is uniformly bounded, too. However, the approximation estimate in
the weighted L2-norm depends on p. The preconditioner is now generated by

V = V0 + ∑
V∈V

span{ϕ
l.e.
V }+ ∑

E∈E

VE .

The computed values are drawn in Figure 8, labeled ’overlapping E, low energy V’, and
show a moderate growth in p. Low energy vertex basis functions obtained by orthogonal-
ization on the reference element have also been analyzed in (Bic97; SC01).

Example 4: We have also tested the preconditioner without additional vertex spaces,
i. e.,

V = V0 + ∑
E∈E

VE .

Since vertex values must be interpolated by the lowest order functions, the condition num-
ber is no longer bounded uniformly in p. The rapidly growing condition numbers are drawn
in Figure 9.

Example 5: We study an elasticity problem on the complex geometry of a machine
frame, cf. Figure 7. The frame is tightened by screws, which leads to Dirichlet boundary
conditions in the boreholes. We apply horizontal surface forces at the top of the pillars.
The remaining boundary is traction-free. The mesh consists of 45553 tetrahedra, some of
them curved. Figure 10 shows the computed von Mises stress in the machine frame. We
tested three different preconditioners, see Figure 11. The condition number of the spider
vertex preconditioner with the splitting as in Example 2 is proven to be uniformly bounded
by a constant. As in Example 3, the low-energy version shows only a small increase in the
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number of CG iterations. The ’non-overlapping’ preconditioner is a standard block Gauss-
Seidel smoother where the blocks correspond to the degrees of freedom (dof) of the gobal
lowest order spaces, the dofs associated with each edge, and those associated with each
face.

Figure 10: Computed von Mises stress in the machine frame, polynomial order p = 5,
geometry order 5
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