
A Saddle Point Variational Formulation forProjection{Regularized Parameter Identi�cation 1Barbara Kaltenbacher and Joachim Sch�oberlAbstract. This paper is concerned with the ill-posed problem of identifying a pa-rameter in an elliptic equation and its solution applying regularization by projection. Asthe theory has shown, the ansatz fuctions for the parameter have to be su�ciently smooth.In this paper we show that these | for a practical implementation unrealistic | smooth-ness assumptions can be circumvented by reformulating the problem under considerationas a mixed variational equation. We prove convergence as the discretization gets �ner inthe noise free case and convergence as the data noise level � goes to zero in the case ofnoisy data, as well as convergence rates under additional smoothness conditions.Key words. mixed �nite elements, parameter identi�cation, regularizationAMS(MOS) Subject Classi�cations: 35R30, 65N30, 65J15, 65J20, 76S051 IntroductionParameter identi�cation problems play an important role in many applications in scienceand industry. Here we consider the problem of identifying a distributed parameter a = a(x)in the PDE �5 (a5 u) = f in 
u = g on @
 (1)from measurements u� of u, which models e.g. the inverse groundwater �ltration problemof reconstructing the di�usitivity a of a sediment from measurements of the piezometrichead u in the steady state case (see [1] for further applications of (1)). Here 
 is a twodimensional convex domain with Lipschitz boundary, f 2 L2(
), and g 2 H 32 (
). We willassume that both this mathematical model and the given data correspond to a physicallymeaningful setting such that a solution ay to the unperturbed parameter identi�cationproblem exists. If a is known on the boundary @
 and 4u is bounded away from zerothen by the basic theory for hyperbolic BVPs (see, e.g., [2]), a is uniquely determined onall of 
 by (1).For any given a 2 L1(
) bounded away from zero, the BVP (1) has a unique weaksolution u 2 H1(
); the relation between a and u is obviously nonlinear. On the otherhand the inverse problem of identifying the values of a from value (but not derivative)measurements of u is obviously ill-posed due to the required data di�erentiation, as alreadythe one dimensional case shows (cf. e.g., Section 1.6 in [8]) (cf. [1], [17] for the higherdimensional case) i.e., arbitrarily small noise in the measured data, with some noise level1Supported by the Austrian Science Foundation `Fonds zur F�orderung der wissenschaftlichen Forschung'in the Special Research Program SFB F013 and under grant T7-TEC1



� in ku� � ukL2(
) = � ; (2)can lead to arbitrarily large pointwise deviations in the solution a. Therefore one has toapply some regularization method (cf. e.g. [8], [11], [19], [21], [23], [24], [26]) in order toobtain a reasonable reconstruction.It is a characteristic feature of ill-posed problems that any solution method converges(if at all) in general arbitrarily slowly and convergence rates can only be obtained under so-called source wise representation conditions on on the di�erence between an exact solutionay and an initial guess a0 used in the approximation method. For a linear ill-posed equationA(a� a0) = r (3)they read as ay � a0 2 R((A�A)�) (4)for some positive exponent �; Since the forward operator A and its adjoint A� are typi-cally smoothing, (4) can usually be interpreted as additional smoothness (and boundary)conditions.Here we consider regularization by projection (cf. [7], [8], [9], [10], [12], [16], [22]), thatis based on the stabilizing e�ect of \coarse" discretization. For its convergence analysis thechoice of the ansatz functions for the searched for parameter a plays a crucial role: Theyshould be contained in the range of the smoothing operator A�. In the present parameteridenti�cation problem this essentially means that they have to be in H1+2m(
) (wherem 2 f0; 1g is the degree of smoothness up to which the parameter a is supposed to beidenti�ed) and ful�ll certain (unpleasant) boundary conditions. These are requirementsthat would make an implemetation with e.g. �nite elements extremely complicated.Now, an important application of mixed �nite elements is the weakening of smoothnessconditions when solving higher order partial di�erential equations. A simple example isthe biharmonic equation (cf. example 3.7 in [3], as well as [20] and [5]). (Note that this isa well-posed problem, though.)In this paper we show that also this idea can also be successfully applied to our lin-earized (ill-posed!) parameter identi�cation problem. In fact, a reformulation as a saddlepoint problem makes it possible to preserve the theoretical convergence results of [16] in adiscretization with the usual hat functions.The basic ideas of our reconstruction method are as follows: First of all we rewrite thenonlinear problem of identifying a in (1) as a linear one for a� a0, with some �xed a0:�5 (a0 5 (u� u0)) = 5((a� a0)5 uy) in 
u� u0 = 0 on @
 ; (5)where u0 solves �5 (a0 5 u0) = f in 
u0 = g on @
 : (6)2



and uy is unperturbed data, i.e., the solution of the BVP (1) with the exact searched-forparameter a = ay, and inserting a smoothed version of the noisy data on the right-handside. The (still ill-posed!) resulting linear problem is then regularized by projecting it ontoa �nite-dimensional space. This projection can be reformulated as a mixed variationalproblem. By considering weak solutions of the occurring BVP we arrive at a formulationthat requires relatively weak smoothness assumptions on its variables: We show that con-tiuous piecewise linear ansatz functions yield a discrete inf-sup-condition. On this basis wethen can prove convergence of the so-de�ned regularized approximations to ay as the noiselevel and an appropriately chosen noise-dependent mesh size goes to zero. Under additionalsmoothness assumptions also convergence rates can be proven. Our numerical experimentswhich we did using the FE-package FEPP that had been developped at the SFB F013 inLinz (see [18]), con�rm these theoretical results and show the good performance of theproposed method.Among the literature on the inverse groundwater �ltration problem (that the authorsdo not attempt to cite in a complete way,) there are some papers which we wolud like topoint out since these also strongly rely on some kind of weak formulation of the direct prob-lem: Vainikko [25] combines the weak formulation of a BVP similar to (5) with Tikhonovregularization. In Chavent et al. [4], duality principles are applied to a (Tikhonov typeregularized version of) (5) to obtain a still weaker notion of solution and its numericalapproximation is, like here, based on mixed �nite elements. What the authors consider themain new point in the present paper, is the use of regularization solely by �nite dimensionalprojection, without using additional regularizing terms (as they appear, e.g., in Tikhonovregularization) and therefore possibly more natural and problem-adapted.In the following we will use the notation c or C, for positive constants (independent ofthe noise level and any mesh size) that are typically (or have to be su�ciently) "small" or"large" respectively; they can have di�erent values whenever they appear in the text, butthey are introduced in such a way that no confusion should occur.2 Reformulation as a Linear Problem, Data Molli�-cation, and Regularization by Projection2.1 Reformulation as a Linear ProblemAs already mentioned, we rewrite (1) to (5), which, if uy in the right hand side of the �rstline of (5) would be known, could be seen as a linear equation�As = �rfor the di�erence s = a� a0 between the searched-for parameter a and the initial guess a0,where �r = u� u0 and �A is the linear operator that maps s to the solution z of�5 (a0 5 z) = 5(s5 uy) in 
z = 0 on @
 : (7)3



Here the exact data uy turns up, which we do not know, though. Instead we use ourmeasured data u� and replace uy in (5) by a smoothed version u�sm of u� such that5(s5u�sm)is well-de�ned in an appropriate function space. This yields the linear problemAs = r� (8)with perturbed operator A = A(u�) and noisy right-hand side r�. Here A maps s to thesolution z of �5 (a0 5 z) = 5(s5 u�sm) in 
z = 0 on @
 : (9)whose data r� = u�sm � u0 (10)can be seen as noisy version of the "exact" right hand side r := u�sm�D�1a0 Day(u�sm�uy)�u0,(where for an a 2 L1(
) bounded away from zero, Da is the di�erential operator Da :H10 (
)! H�1(
), � 7! �5 (a5 �),) that would give the exact parameter ay:A(ay � a0) = r :It is not later than at this point that we have to con�ne ourselves to appropriatefunction spaces X, Y | preferably Hilbert spaces | on which the operator A : X ! Y iswell-de�ned. The choice of Y = L2(
)is already �xed by the fact that the degree of accuracy in the measurements is given interms of this topology (note that we cannot measure derivatives but only values of u). SinceAs according to (9) with 5u�sm 2 L1(
) is well-de�ned and in L2(
) for any s 2 L2(
)as long as a0 2 L1(
) with a0(x) � a > 0 a:e:;(which we assume to hold in the following,) we can chooseX = Hm0 (
) (11)for some m � 0 | we will use m 2 f0; 1g. Since a higher degree of smoothness in thepreimage space makes the inverse problem more ill-posed, this can be seen as a possiblefurther advantage of the reformulation (8), (9) as compared to (1), where one would haveneeded at least L1-parameters a in order to obtain a well-de�ned forward operator a 7! u,and therefore, to work in a Hilbert space setting, X = Hm(
) with m > 1.2.2 Data Molli�cationThe data smoothing, that is already part of the regularization of our ill-posed parameteridenti�cation problem, is done by applying some smoothing operator �sm (e.g. a Cl�ementoperator, cf. [6], [3]) to u�, u�sm := �smu� ;4



such that ku�sm � uykL2(
) � C�ku�sm � uykH10 (
) � Cp�k 5 u�smkL1 � Ck�smkL2(
)!L2(
) � C (12)holds.This can, e.g., be achieved by a Cl�ement operator on a grid with appropriately chosenmesh size: Given a regular triangulation �sm with mesh size hsm of 
 one can, by localaveraging, de�ne an operator �sm projecting onto the space Uh of piecewise linear functionson this triangulation, such that k�smkHp0 (
)!Hp0 (
) � C (13)kI � �smkHq0 (
)!Hp0 (
) � Chq�psm (14)(I � �sm)uh = 0 8uh 2 Uh (15)for p 2 f0; 1g, p � q � 2.By the inverse inequalities kuhkH10 (
) � Ch�1smkuhkL2(
)k 5 uhkL1(
) � Ch�2smkuhkL2(
)for uh 2 Uh, and using a further projection ~� : H2(
) \W 1;1(
) ! Uh (e.g., pointwiseinterpolation) that satis�es k~�kW 1;1(
)!W 1;1(
) � CkI � ~�kH2(
)!L2(
) � Ch2sm ;one therefore hasku�sm � uykL2(
) � k�sm(u� � uy)kL2(
) + k(I � �sm)uykL2(
)� C(� + h2smkuykH2(
))k(u�sm � uy)kH10 (
) � Ch�1smj�sm(u� � uy)jL2(
) + k(I � �sm)uykH10 (
)� Ch�1sm(� + h2smkuykH2(
)) (16)k 5 u�smkL1(
) = k 5 �sm(u� � uy) +5�sm(I � ~�)uy +5~�uykL1(
)� C(h�2smku� � uykL2(
) + h�2smk�sm(I � ~�)uykL2(
) + k~�uykW 1;1(
)� Ch�2sm(� + h2smkuykH2(
)\W 1;1(
)) ;so that under the assumption thatuy 2 H2(
) \W 1;1(
) ; (17)and with the choice hsm � p� (18)we have (12). 5



2.3 Regularization by ProjectionFor an implementation, any regularization method has to be discretized. On the otherhand, discretization, i.e., projection on a �nite-dimensional space itself can have a regular-izing e�ect: Finite dimensional problems | though they might be ill-conditioned | arealways well-posed in the sense of stable dependence of the bestapproximate solution on thedata. As the convergence analysis of projection methods for ill-posed problems | see e.g.Section 3.3 in [8] | has shown, there are good reasons for using regularization by projec-tion in image space rather than in preimage space. Given a family of �nite dimensionalnested subspaces whose union is dense in R(A)Y1 � Y2 � Y3 � : : : [n2INYn = R(A)we consider, instead of As = r (19)the projected equations PYnAs = PYnr(here and in the following PZ denotes the orthogonal projection onto some linear spaceZ) and take their bestapproximate solutions, i.e., the minimizers sn of the constrainedminimization problems 12 ksk2 = min!PYnAs = PYnr (20)as approximations for the exact solution sy = Ayb of (19), that minimizes12 ksk2 = min!As = r (21)With some basis f n1 ; : : : ;  nd(n)g of Yn, sn can be rewritten as the (unique) solution of the(d(n)-dimensional) problemhAs;  nj i = hr;  nj i j 2 f1; : : : ; d(n)gs 2 spanfA� 1; : : : ; A� kgor as the linear combination sn = d(n)Xj=1 �jA� nj (22)whose coe�cients solve the linear systemM� = �with Mi;j = hA� i; A� ji ; �i = hA� i; ri :6



It is quite straightforward to see that the so de�ned approximations are just the orthogonalprojections of the exact solution onto the �nite-dimensional spaces A�Yn and thereforeconverge to sy as n!1.From the representation (22) it can be seen that the ansatz functions for sn have to bein the image of Yn under A�. Since the adjoint of the operator A as de�ned in subsection2.1 is given by A� = (�4)�m 5 u�sm � 5 ~ (23)where �4 : H10 (
) \H2(
)! L2(
), � 7! �4 �), m 2 f0; 1g, and ~ solves�5 (a0 5 ~ ) =  in 
~ = 0 on @
 ; (24)this means that they have to be in H1+2m(
) and satisfy quite complicated boundary con-ditions. Given a basis f n1 ; : : : ;  nd(n)g, the functions A� nj can theoretically be computedexplicitely (as it was done for the one-dimensional case in [16]) or numericaly, which, assoon as 
 is a general domain with more complicated geometry becomes much too expen-sive for a practical implementation, though. In order to avoid this, we will study a weakerformulation of (21):3 A Mixed Formulation. Convergence AnalysisUsing the weak formulation in the de�nition of the operator A, we can rewrite (21) as12 ksk2X = min!R
 s5 u�sm5 q dx = � R
 a0 5 r5 q dx 8q 2 H10 :With the de�nitions a(s; t) := hs; tiXb(s; q) := R
 s5 u�sm5 q dxg(q) := � R
 a0 5 r5 q dx (25)this formally leads to the variational equationa(s; t) + b(t; p) = 0 8t 2 Vb(s; q) = g(q) 8q 2 Q (26)for the primal and dual variables s 2 V := X ; p 2 Q ;respectively. If we de�neQ := H10 (
)Q kvkQ := k 5 u�sm5 vkH�m(
) :7



obviously the bilinear forms a and b are bounded, a is V -elliptic and b satis�es the contin-uous inf-sup condition infp2Q sups2V b(s; p)kskV kpkQ � 1 :The latter relation, especially its �nite-dimensional counterpart, plays an important rolein the stability and convergence analysis of the discretized mixed variational problem (26).As stated in the next lemma, with an appropriate choice of the �nite dimensional subspacesVh; Qh de�ning the discretization, it can be shown to hold:Lemma 1. Let �V , �Q be regular triangulations of 
 with mesh size hV , hQ, respectively,with �Q � �V ^ �sm � �V ; (27)where �sm is the triangulation used for the data molli�cation, let Vh consist of the union ofthe continuous piecewise linear elements with homogenuous Dirichlet boundary condition on@
, with the element bubbles on �V and let Qh be the continuous piecewise linear elementsvanishing on @
. Then there exists a constant c independent of the noise level and of themesh sizes hsm; hv; hQ such that infp2Qh sups2Vh b(s; p)kskV kpkQ � c :Proof. The proof is based on the standard technique (cf. [3]) of deriving the discrete inf-sup condition from the continuous one by using an appropriate Fortin-projector � suchthat k�kV!V � Cb(s� �s; qh) = 0 8qh 2 Qh ; s 2 V : (28)This is achieved by the decomposition� = �2(I � �1) + �1 ;where �1 is a Cl�ement operator on Vh and �2 is a projection on the element bubbles suchthat for any s 2 V k�2kL2(
)!Hm0 � Ch�m (29)ZT (s� �2s) dx = 0 8T 2 �V (30)Indeed, using (29) and the properties (13), (14) of the Cl�ement operator, we obtain uniformboundedness of �. Moreover, since due to our conditions (27) on the triangulations, forany qh 2 Qh, 5u�sm5 qh is constant on each T 2 �V , we have, by (30),b(s� �2s; qh) = XT2�V ZT (s� �2s)5 u�sm5 qh dx = 0 ;8



which, by the representation I � � = (I � �2)(I � �1) also yields the second equality in(28). Now the discrete inf-sup condition follows immediately from (28) viainfp2Qh sups2Vh b(s; p)kskV kpkQ � infp2Q sups2V b(�s; p)k�skV kpkQ � 1C infp2Q sups2V b(s; p)kskV kpkQ : 2Assuming that (4uy)(x) � �� < 0 a:e (31)we get the following relation between the anisotrope norm kkQ and the L2-norm on Qh:Lemma 2. Let (31) hold and assume that� � Ch�1smh�2Q (� + h2smkuykH2(
)) (32)with some su�ciently large constant C. Then there exists a constant C independent of �and the mesh sizes such thatkqhkQ � chmQ kqhkL2(
) 8qh 2 Qh :Proof. Observe thatk 5 u�sm5 qhkH�m(
) = supq2Hm0 (
) R
5u�sm5 qh q dxkqkHm0 (
) � R
5u�sm5 qh qh dxkqhkHs0(
) :Integration by parts givesR
5u�sm5 qh qh dx = R
5qh5 uy qh dx+ R
5(u�sm � uy)5 qh qh dx= � R
 qh 5 (qh5 uy)| {z }=5qh5uy qh+(qh)24uy dx+ R
5(u�sm � uy)5 qh qh dxand thereforeZ
5u�sm5 qh qh dx � 12(�kqhk2L2(
) � ku�sm � uykH10 (
)k 5 qhkL1(
)kqhkL2(
))Now if the constant C in (32) is larger than the product of the constants C appearing in(16) and in the inverse inequalityk 5 qhkL1(
) � Ch�2Q kqhkL2(
)then this (together with one more inverse inequalitykqhkH10 (
) � Ch�1Q kqhkL2(
)for the case m = 1) immediately yields the assertion.9



2To apply regularization by projection, we use an a priori (especially independently ofthe data) �xed sequence (� lQ)l2IN of triangulations of 
 with strictly monotonically but nottoo fast decreasing mesh size hlQ 1 < hl�1QhQl � C 8l 2 INde�ning the discretization of the dual spaces Qh, i.e., the projection spaces. A secondsequence of triangulations of 
, (� lV )l2IN, results from an also a priori �xed re�nement ofthe � lQ such that � lQ � � lV ^ hlQ � (hlV )
 8l 2 IN (33)for some appropriately chosen exponent 0 < 
 � 12 to be speci�ed later, and de�nes thediscretization for the data molli�cation and the primal spaces Vh. Choosing the indexl� = l�(�) such that hl��1V � Cp� � hl�V ; (34)we set �Q := � l�Q ; �V := �sm := � l�V ;and de�ne the molli�cation as described in subsection 2.2, and the spaces Vh, Qh as inLemma 1. Note that by (34) we have (18) and therefore (12), and that (up to someconstants having to be su�ciently small) also (32) follows.On the basis of this discretization and by Lemma 1, the following method is well-de�ned and, as we will show in the remainder of this section, gives a stable and convergentapproximation of sy:Method 1. Let sh be given by the primal part of a solution to the �nite-dimensional mixedvariational problem a(sh; th) + b(th; ph) = 0 8th 2 Vhb(sh; qh) = g�(qh) 8qh 2 Qh: (35)(Note that the dual part ph of a solution to (35) is not necessarily unique.) Here the thebilinear forms a, b are as de�ned in (25); the linear functional g�, given by (25) with rreplaced by the noisy data r�,g�(qh) := � Z
 a0 5 r� 5 qh dx ;is bounded, but not uniformly bounded as hQ ! 0, which re
ects the ill-posedness of theunderlying problem.For �xed �nite noise level and mesh sizes this gives in fact a stable reconstructionmethod: 10



Theorem 1. Let (31), (32) hold, let, for some u� 2 L2(
) with (2), (u�;i)i2IN be a sequenceof data converging to u� in L2(
), and let (sih)i2IN be de�ned by (35) with the respectivedata u�;i inserted for u� whenever it appears.Then the sih converge to sh in X = V as i!1.Proof. Without loss of generality we can assume that the L2-di�erence between the u�;iand u� is so small that the respective triangulations � iQ, � iV , � ism as de�ned above coincidewith �Q, �V , �sm, so that the discretization is independent of i. Then the di�erences(dih; eih) := (sih � sh; pih � ph) are in Vh �Qh and solve the following mixed problem:a(dih; th) + b(th; eih) = [b� bi](th; pih) 8th 2 Vhb(dih; qh) = [b� bi](sih; qh) + [g� � g�;i](qh) 8qh 2 Qh: (36)Here we assume for technical reasons but w.l.o.g. that the dual solutions pih are those withminimal norm. By the boundedness, ellipticity, and the discrete inf-sup condition for a, bwe obtain (cf., e.g., Theorem 4.6 in[13]) the estimatesksihkV � 2c supqh2Qh g�(qh)kqhkQ� 2c ka0kL1(
)(ku�;ismkH10 (
) + ku0kH10 (
)) supqh2Qh kqhkH10(
)kqhkQ� Ch�(1+m)QkpihkQ � 2c2 supqh2Qh g�(qh)kqhkQ � Ch�(1+m)Q ; (37)where we have used Lemma 2. The same argument, applied to (36) yieldskdihkV � supth2Vh [b� bi](th; pih)kthkV + 2c supqh2Qh [b� bi](sih; qh) + [g� � g�;i](qh)kqhkQ : (38)For any th 2 Vh, qh 2 Qh[b� bi](th; qh) = R
 th5 (u�sm � u�;ism)5 qh dx� kthkLn(
)ku�sm � u�;ismkH10 (
)k 5 qhkL 2nn�2 (
)� Ch�1smh�2Q j loghV jm=2kthkV kqhkQku�;i � u�kL2(
) ;where we have set n := 2 if m = 0 and n =1 if m = 1, applied the inverse inequality (cf.,e.g., [13]) kthkL1(
) � CqloghV kthkH10 (
) ;and used the boundedness of the data smoothing operator acting from L2(
) into itself(see the last line in (12)). Similarly we get[g��g�;i](qh) � ka0kL1(
)ku�sm�u�;ismkH10 (
)kqhkH10 (
) � Ch�1smh�(1+m)Q kqhkQku�;i�u�kL2(
) :Inserting this and (37) into (38), we obtainkdihkV � Ch�1smh�(3+m)Q j loghV jm=2ku�;i � u�kL2(
)and therefore convergence of dih to zero in V as i!1.11



2In the following theorem we formulate our main result, concerning the convergence ofthe regularized aprroximations ah := a0 + sh (39)to a solution ay of the parameter identi�cation problem (1), as the noise level and theappropriately chosen mesh sizes go to zero:Theorem 2. Let (31), (32), and 5uy 2 L1hold and let, in (33), 
 � 12 if m = 0, 
 < 12 if m = 1.Then (39) with (35), and the data molli�cation as well as the discretization as describedin subsection 2.2 and after Lemma 2, de�nes a regularization method for our parameteridenti�cation problem, i.e., for any noisy data u� with (2)ah = ah(u�; �)! ay in X as � ! 0 :Proof. �s = ay � a0 is the primal part of a solution of�a(�s; t) + �b(t; �p) = 0 8t 2 �V�b(�s; q) = �g(q) 8q 2 �Q; (40)where �a(s; t) := hs; tiX�b(s; q) := R
 s5 uy5 q dx�g(q) := � R
 a0 5 �r5 q dx ;�V := X ; �Q := H10(
) �Q ; kvk �Q := k 5 uy5 vkH�m(
) ;and �r = uy � u0. Indeed, since �a and �b are bounded and satisfy �V -ellipticity and inf-sup-condition, respectively, and also �g is bounded:�g(q) = � Z
 a0 5 uy5 q dx+ Z
 a0 5 u0 5 q dx| {z }=R
 ay5uy5q dx � ka0 � aykX kqk �Q ;(40) is solvable. From (35) and (40) we can now conclude that for any pair (~sh; ~ph) 2 Vh�Qha(sh � ~sh; th) + b(th; ph � ~ph) = �a(�s� ~sh; th) + �b(th; �p� ~ph) 8th 2 Vhb(sh � ~sh; qh) = �b(�s� ~sh; qh) + [g� � �g](qh) 8qh 2 Qh: (41)The standard estimate for solutions of mixed variational problems that we have alreadyused in the proof of Theorem 1 (cf. e.g. Theorem 4.6 in [13]) now, together with theellipticity of a and Lemma 1 yieldsksh � ~shk � supth2Vh �a(�s� ~sh; th) + �b(th; �p� ~ph)kthkV + 2c supqh2Qh �b(�s� ~sh; qh) + [g� � �g](qh)kqhkQ ;12



and therefore, using the triangle inequalityk�s� shk � k�s� ~shk + ksh � ~shk� (3 + Cp�2
h�2Q )k�s� ~shk + Cp�h�(1+m)Q + supth2Vh �b(th; �p� ~ph)kthkV ; (42)where we have used the estimates�b(�s� ~sh; qh)=kqhkQ � k�s� ~shk(1 + k 5 (u�sm � uy)5 qhkH�m(
)=kqhkQ) ;k 5 (u�sm � uy)5 qhkL2(
) � k5 (u�sm � uy)kL2(
)k 5 qhkL1(
) ;k 5 (u�sm � uy)5 qhkH�1(
) � kidkH10(
)!L2=(1�2
)(
)k 5 (u�sm � uy)kL1=
(
)kqhkH10 (
)� C(k 5 (u�sm � uy)kL2(
))2
 kqhkH10 (
) ; if 
 < 12 ;[g� � �g](qh) � ka0kL1(
)ku�sm � uykH10 (
)kqhkH10 (
) ;(where we have used the interpolation inequality and (12) to obtain the fourth inequality,)as well as (12) and Lemma 2. Taking the in�mum over all ~sh 2 Vh we get convergence tozero of the �rst term on the right hand side of (42). The second term is, due to (33), (34),controlled by Cp�1�
(1+m), which, by our choice of 
, goes to zero as � ! 0. To estimatethe last term on the right hand side of (42) we set ~ph equal to the dual part �ph of a solution(�sh; �ph) to the semidiscrete version of (40)�a(�sh; t) + �b(t; �ph) = 0 8t 2 �V�b(�sh; qh) = �g(qh) 8qh 2 Qh;so that, by the fact that �sh is just the orthogonal projection of �s on �A�Qh, we getsupth2Vh �b(th; �p� �ph)kthkV = supth2Vh �a(�sh � �s; th)kthkV � k[I � P �A�Qh]�skX ;which, since �s 2 N( �A)? = R( �A�), and ShQ>0Qh = N( �A�)?, goes to zero as hQ ! 0. 2The following corollary contains a convergence rates result under a source condition (4)with � = 12 , i.e., under the assumption thatay � a0 = �A� (43)for some  2 Y . Due to (23) (with u�sm replaced by uy, (43) means that the di�erenceay � a0 is in H1+2m(
) and satis�es certain boundary conditions.Corollary 1. Let the conditions of Theorem 2 and additionally@
 2 C1+m ; 5a0 2 L1(
) ; 4uy 2 L2+m�(
) for some � > 013



as well as (43) hold, and let 
 be chosen as
 = 12(1 +m) :Then kah � aykX = O(�1=4)in both cases X = Hm0 (
), m = 0; 1.Proof. Condition (43) means that (�4)m�s = 5uy5 ~ (44)where ~ solves the second order BVP (24) with L2-right hand side  and is therefore inH2(
). On the other hand, the pair (�s; ~ ) solves the mixed variational problem (40) sothat we may set �p := ~ . Moreover, (44) implies that (�4)m�s 2 H1(
) and therefore�s 2 H1+m(
).Now we use the estimate (42) in the proof of Theorem 2 where this time we estimatethe last term bysupth2Vh �b(th; �p� ~ph)kthkV � 8><>: k 5 uykL1(
)k�p� ~phkH10 (
) if m = 0supth2Vh k5(th5uy))kL2(
)kthkH10(
) k�p� ~phkL2(
) if m = 1 :Taking the in�mum over all (~sh; ~ph) 2 Vh �Qh yieldsk�s� shk � C(hV k�skH1+m(
) +p�h�(1+m)Q + h1+mQ k�pkH2(
))� C(p� +p�1�
(1+m) +p�
(1+m)) ;which, by our choice of 
, yields the assertion. 2The suboptimality in the convergence rate | the optimal rate under a source condition(4) with � = 12 being O(p�) | has two reasons:Firstly the anisotropy in the (natural) dual norm leads to a loss of regularity, namely, byregularity theory for hyperbolic problems (cf., e.g., [2]) the lower estimate of kkQ by onlyan L2-norm cannot be improved to an estimate by an Hn-norm with n > 0, while on theother hand obviously an H1-norm is needed to estimate kkQ from above.Secondly, the low order of the ansatz functions in the approximation spaces, that is froma practical point of view hightly recommendable, leads to a saturation e�ect in someapproximation estimates. 14



4 Numerical ResultsTo illustrate the theoretical results of the foregoing section, we implemented the proposedMethod 1 on basis of the FE-package FEPP that has been developped at the SFB F013 inLinz, and applied it to two di�erent test problems in the following setting:The domain 
 was chosen to be the unit square, the right hand side f and the boundaryconditions g in (1) as f(x; y) :� 1 ; g(x; y) :� 0 ;and the starting parameter a0 as a0 :� 1 :We de�ne two test examples by the exact solutionsa(x; y) := 1 + 1:6x(1� x)y(1� y) (45)a(x; y) := 1 + 6:4x(1� x)y(0:5� y)�[0;0:5](y) (46)which we will refer to as the "smooth" and the "non-smooth" case, respectively. The �rstexample is supposed to represent the situation with source condition as in Corollary 1,while in the second one obviously (43) does not hold and only the results of Theorem2 can be expected to hold. In preimage space X we con�ned ourselves to the H10 -norm(i.e., m = 1 in (11), Lemma 2, Theorem 2, and Corollary 1), considering this the moreinteresting case, especially for comparison with other solution methods for the parameteridenti�cation problem under consideration.Investigating �rst the noiseless case, where the smoothing procedure can be omit-ted, we duplicated the search for an optimal relationship between the mesh sizes hQand hV by comparing the resulting errors ksh � sykH10 for di�erent re�nement levels lQ=V(hQ=V � 2�lQ=V , so that dim(Q=Vl) = (2l�1 � 1)2, i.e., for l = 3; 4; 5; 6; 7; 8, dim(Q=Vl) =9; 225; 961; 3969; 16129; see Figure 4). In fact, for each �xed Q-level, the decay of theerror with growing V-level saturates at re�nement levels as proposed by the asymptoticshQ � (hV )
 (i.e. V-level � 1
 � Q-level, with 
 � 12 being smaller in the smooth than inthe non-smooth case. Plotting, still in the noiseless case, the develpoment of the error forgrowing Q-level (with optimal V-level) shows, as expected, a higher speed of convergencefor the smooth example, namely O(h2Q), than for the non-smooth one (see Figure 4).To de�ne the data smoothing operator �sm we used, for sake of simplicity, the interpo-lation operator �Int on an equidistant grid with grid points Nj. Assuming that pointwisedata measurements u�j for u(Nj) withmaxj ju�j � u(Nj)j � � (47)one easily sees that the �rst three inequalities in (12) hold and therefore the convergence(rate) results of Theorem 2 and Corollary 1 can be applied. The stability result Theorem 1remains valid if convergence of u�;i in L2 is replaced by L1-convergence. Note, that the15
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Figure 1: Optimal choice of hV = hsm for di�erent values of hQ in the noiseless case, forexample (45) (left) and (46) (right)
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Figure 2: Convergence speed as hQ ! 0 for smooth and non-smooth example, respectively(noiseless case)
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Figure 3: Error norms for di�erent noise levels in dependence of hQ, for smooth ((45), left)and non-smooth example ((46), right), respectively.assumption of L1-measurements (47) is | although theoretically of course stronger thanassuming L2-measurements (2) | just as natural in applications such as inverse ground-water �ltration and therefore not really restrictive.An observation of the error for for shrinking hQ (and hV , hsm chosen according to(33) with �xed 
 < 12), for several noise levels (see Figure 4) shows that | as usual inill-posed problem | the decay due to the reduction of the approximation error stops atsome \optimal regularization parameter" and then turns to some growth caused by thethen dominating propagated data noise.Optimally chosen Q-levels according to these curves as well as to the theoretical asymp-totics proposed in Theorem 2 and Corollary 1 yield error plots suggesting convergence as� ! 0, at a faster rate in the smooth than in the non-smooth example; in the smooth casethe predicted rate O(� 14 ) really seems to be obtained (see Figure 4).Finally, the left hand picture in Figure 4 shows our reconstruction from data with oneper cent noise, corresponding to example (45), with discretization according to Theorem 2and Corollary 1. The obtained approximation is obviously very close to the exact solution.For comparison, as shown in the right hand picture, due to the instability, a too �nediscretization choice, yields a bad reconstruction, even with less data noise.References[1] H.T. Banks, K. Kunisch, Estimation Techniques for Distributed Parameter Systems, Birkh�auser,Basel Boston Berlin, 1989. 17
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Figure 4: Convergence speed as � ! 0 for smooth and non-smooth example, respectively;quotient kah � ak=� 14 for example (45).

Figure 5: Reconstructions of example (45) with \correct" discretization choice (Q-level=3)and 1 per cent data noise (left) and with \wrong" discretization choice (Q-level=5) and0.3 per cent data noise (right).
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