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Abstract. This paper is concerned with the ill-posed problem of identifying a pa-
rameter in an elliptic equation and its solution applying regularization by projection. As
the theory has shown, the ansatz fuctions for the parameter have to be sufficiently smooth.
In this paper we show that these — for a practical implementation unrealistic — smooth-
ness assumptions can be circumvented by reformulating the problem under consideration
as a mixed variational equation. We prove convergence as the discretization gets finer in
the noise free case and convergence as the data noise level § goes to zero in the case of
noisy data, as well as convergence rates under additional smoothness conditions.
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1 Introduction

Parameter identification problems play an important role in many applications in science
and industry. Here we consider the problem of identifying a distributed parameter a = a(z)
in the PDE
—vievu) = f in (1)
u = g on 0f2

from measurements u’ of u, which models e.g. the inverse groundwater filtration problem
of reconstructing the diffusitivity a of a sediment from measurements of the piezometric
head u in the steady state case (see [1] for further applications of (1)). Here €2 is a two
dimensional convex domain with Lipschitz boundary, f € L2(Q), and g € H2 (). We will
assume that both this mathematical model and the given data correspond to a physically
meaningful setting such that a solution a' to the unperturbed parameter identification
problem exists. If a is known on the boundary 02 and Au is bounded away from zero
then by the basic theory for hyperbolic BVPs (see, e.g., [2]), a is uniquely determined on
all of Q by (1).

For any given a € L*°(Q2) bounded away from zero, the BVP (1) has a unique weak
solution u € H'(Q); the relation between a and u is obviously nonlinear. On the other
hand the inverse problem of identifying the values of a from value (but not derivative)
measurements of u is obviously ill-posed due to the required data differentiation, as already
the one dimensional case shows (cf. e.g., Section 1.6 in [8]) (cf. [1], [17] for the higher
dimensional case) i.e., arbitrarily small noise in the measured data, with some noise level
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0 in
l® — ull ooy = 5 2)
can lead to arbitrarily large pointwise deviations in the solution a. Therefore one has to
apply some regularization method (cf. e.g. [8], [11], [19], [21], [23], [24], [26]) in order to
obtain a reasonable reconstruction.
It is a characteristic feature of ill-posed problems that any solution method converges
(if at all) in general arbitrarily slowly and convergence rates can only be obtained under so-
called source wise representation conditions on on the difference between an exact solution
a' and an initial guess ay used in the approximation method. For a linear ill-posed equation

Ala —ag) =T (3)

they read as
a' —ayg € R((A*A)Y) (4)

for some positive exponent v; Since the forward operator A and its adjoint A* are typi-
cally smoothing, (4) can usually be interpreted as additional smoothness (and boundary)
conditions.

Here we consider regularization by projection (cf. [7], [8], [9], [10], [12], [16], [22]), that
is based on the stabilizing effect of “coarse” discretization. For its convergence analysis the
choice of the ansatz functions for the searched for parameter a plays a crucial role: They
should be contained in the range of the smoothing operator A*. In the present parameter
identification problem this essentially means that they have to be in H'*?"(Q) (where
m € {0,1} is the degree of smoothness up to which the parameter a is supposed to be
identified) and fulfill certain (unpleasant) boundary conditions. These are requirements
that would make an implemetation with e.g. finite elements extremely complicated.

Now, an important application of mixed finite elements is the weakening of smoothness
conditions when solving higher order partial differential equations. A simple example is
the biharmonic equation (cf. example 3.7 in [3], as well as [20] and [5]). (Note that this is
a well-posed problem, though.)

In this paper we show that also this idea can also be successfully applied to our lin-
earized (ill-posed!) parameter identification problem. In fact, a reformulation as a saddle
point problem makes it possible to preserve the theoretical convergence results of [16] in a
discretization with the usual hat functions.

The basic ideas of our reconstruction method are as follows: First of all we rewrite the
nonlinear problem of identifying a in (1) as a linear one for a — ag, with some fixed ag:

~ V(v @=-wu) = vie-a)vae) nQ (%)
u—1uy = 0 on 0N ,
where ug solves
—Vi(wvu) = f in (6)

Uy = g on 0f2 .



and u' is unperturbed data, i.e., the solution of the BVP (1) with the exact searched-for
parameter ¢ = a', and inserting a smoothed version of the noisy data on the right-hand
side. The (still ill-posed!) resulting linear problem is then regularized by projecting it onto
a finite-dimensional space. This projection can be reformulated as a mixed variational
problem. By considering weak solutions of the occurring BVP we arrive at a formulation
that requires relatively weak smoothness assumptions on its variables: We show that con-
tiuous piecewise linear ansatz functions yield a discrete inf-sup-condition. On this basis we
then can prove convergence of the so-defined regularized approximations to a' as the noise
level and an appropriately chosen noise-dependent mesh size goes to zero. Under additional
smoothness assumptions also convergence rates can be proven. Our numerical experiments
which we did using the FE-package FEPP that had been developped at the SFB F013 in
Linz (see [18]), confirm these theoretical results and show the good performance of the
proposed method.

Among the literature on the inverse groundwater filtration problem (that the authors
do not attempt to cite in a complete way,) there are some papers which we wolud like to
point out since these also strongly rely on some kind of weak formulation of the direct prob-
lem: Vainikko [25] combines the weak formulation of a BVP similar to (5) with Tikhonov
regularization. In Chavent et al. [4], duality principles are applied to a (Tikhonov type
regularized version of) (5) to obtain a still weaker notion of solution and its numerical
approximation is, like here, based on mixed finite elements. What the authors consider the
main new point in the present paper, is the use of regularization solely by finite dimensional
projection, without using additional regularizing terms (as they appear, e.g., in Tikhonov
regularization) and therefore possibly more natural and problem-adapted.

In the following we will use the notation ¢ or C|, for positive constants (independent of
the noise level and any mesh size) that are typically (or have to be sufficiently) ”small” or
"large” respectively; they can have different values whenever they appear in the text, but
they are introduced in such a way that no confusion should occur.

2 Reformulation as a Linear Problem, Data Mollifi-
cation, and Regularization by Projection

2.1 Reformulation as a Linear Problem

As already mentioned, we rewrite (1) to (5), which, if u in the right hand side of the first
line of (5) would be known, could be seen as a linear equation

As =7

for the difference s = a — ag between the searched-for parameter a and the initial guess ay,
where 7 = u — ug and A is the linear operator that maps s to the solution z of

~V(wvz) = visvu) in 2 (7)
z =0 on 02 .



Here the exact data u! turns up, which we do not know, though. Instead we use our
measured data u® and replace u' in (5) by a smoothed version u?,, of u® such that 5/ (ss7u2,,)
is well-defined in an appropriate function space. This yields the linear problem

As=1° (8)

with perturbed operator A = A(u’) and noisy right-hand side r°. Here A maps s to the
solution z of

~V(wvz) = visve,) inQ (9)
z = 0 on 0f) .
whose data
=l — g (10)

can be seen as noisy version of the "exact” right hand side r := vl — D, 1Dyt (ud,, —u') —uq,
(where for an a € L*°(Q) bounded away from zero, D, is the differential operator D, :
H}(Q) = H'(Q), ¢ = — v (a v ¢),) that would give the exact parameter a':

Ala" —ag) =1 .

It is not later than at this point that we have to confine ourselves to appropriate
function spaces X, Y — preferably Hilbert spaces — on which the operator A : X — Y is
well-defined. The choice of

Y = L*(Q)

is already fixed by the fact that the degree of accuracy in the measurements is given in
terms of this topology (note that we cannot measure derivatives but only values of u). Since
As according to (9) with yu?, € L>(Q) is well-defined and in L%(Q) for any s € L?(Q)
as long as

ag € L(Q) with ag(xz) > a >0 a.e.,

(which we assume to hold in the following,) we can choose
X = Hp(©) (1)

for some m > 0 — we will use m € {0,1}. Since a higher degree of smoothness in the
preimage space makes the inverse problem more ill-posed, this can be seen as a possible
further advantage of the reformulation (8), (9) as compared to (1), where one would have
needed at least L°°-parameters a in order to obtain a well-defined forward operator a — u,
and therefore, to work in a Hilbert space setting, X = H™(Q) with m > 1.

2.2 Data Mollification

The data smoothing, that is already part of the regularization of our ill-posed parameter
identification problem, is done by applying some smoothing operator I, (e.g. a Clément

operator, cf. [6], [3]) to u’,
5 5

Ugy, = gpu® |



such that

[l —ull| 120y < C6
o _ 1
||usm u ||H&(Q) S C\/g (12)
|7 | oo < C
Tem || 2@y 120 < C

holds.

This can, e.g., be achieved by a Clément operator on a grid with appropriately chosen
mesh size: Given a regular triangulation 74, with mesh size hy,, of {1 one can, by local
averaging, define an operator Iy, projecting onto the space U}, of piecewise linear functions
on this triangulation, such that

Ml (@) m2@) < C (13)
11 = M|l 53 )—mp(0) < Ol (14)
(I - Hsm)uh =0 VYu, €U, (15)

forpe {0,1},p< g <2
By the inverse inequalities

lunll m3ie) < Chan llunll 220

|7 unll 20y < Chin llunll 120

for u, € Uy, and using a further projection T : H2(Q) N W1*(Q) — U, (e.g., pointwise
interpolation) that satisfies

||1:[||W~1,oo(9)—>wlﬁoo(n) < C
T =T m2ysr20) < Ch2

sm

one therefore has

0

[ugm — ulll 22(0) Mo (1 = wh)[[ r2() + (T = Tam) || 22(0)

<
< CO+ M llulll o)

< Chip Mg (u® —u?) o) + [(1 = Wym) ' || 110
< Chyh (0 + b2, [uf]] o)

= ||V Ham (v’ = ut) + VT (I = Tl + 710t | o)
< Clhpllu® = ull| r2g) + b Mem (I — Mul || 20y + [ Tuf[[ w1000
<

o gt

| 7 || Lo ()

m

Chign (8 + hy [[uf | m2(@)nwe )
so that under the assumption that
ut € H*(Q)nWh>(Q) , (17)
and with the choice
D ~ V6 (18)

we have (12).



2.3 Regularization by Projection

For an implementation, any regularization method has to be discretized. On the other
hand, discretization, i.e., projection on a finite-dimensional space itself can have a regular-
izing effect: Finite dimensional problems — though they might be ill-conditioned — are
always well-posed in the sense of stable dependence of the bestapproximate solution on the
data. As the convergence analysis of projection methods for ill-posed problems — see e.g.
Section 3.3 in [8] — has shown, there are good reasons for using regularization by projec-
tion in image space rather than in preimage space. Given a family of finite dimensional
nested subspaces whose union is dense in R(A)

ViCY,CYsC... |J Ya=R(A)
nelN

we consider, instead of

As=r (19)

the projected equations
PYHAS = PYnT

(here and in the following P; denotes the orthogonal projection onto some linear space
Z) and take their bestapproximate solutions, i.e., the minimizers s, of the constrained
minimization problems

z|Is[|”> = min!

PYnAS = Pyn’l“ (20)
as approximations for the exact solution st = A'h of (19), that minimizes
115]|? = min!
2
As=r (21)
With some basis {¢7, ..., 9, } of Yy, s, can be rewritten as the (unique) solution of the
(d(n)-dimensional) problem
(As. 7)) = (r.47)  je{l,....dn)}
s € span{A*, ..., A%y}
or as the linear combination o)
d(n
Sn =Y 0 AT (22)
j=1

whose coefficients solve the linear system
Moa=p

with
M;j = (A", A%y) . B = (A", 1) .

6



It is quite straightforward to see that the so defined approximations are just the orthogonal
projections of the exact solution onto the finite-dimensional spaces A*Y,, and therefore
converge to s’ as n — oo.

From the representation (22) it can be seen that the ansatz functions for s, have to be
in the image of Y,, under A*. Since the adjoint of the operator A as defined in subsection
2.1 is given by

A = (=L)" T Uy, - VY (23)

where —A : HH(Q) N H2(Q) — L*(Q), ¢ — — A ¢), m € {0,1}, and 1) solves

—V(CLOVW = v in {2 (24)
v = 0 on 0f2 ,

this means that they have to be in H'™?™(Q) and satisfy quite complicated boundary con-
ditions. Given a basis {¢7, ... ,wg(n)}, the functions A*¢7 can theoretically be computed
explicitely (as it was done for the one-dimensional case in [16]) or numericaly, which, as
soon as {2 is a general domain with more complicated geometry becomes much too expen-
sive for a practical implementation, though. In order to avoid this, we will study a weaker
formulation of (21):

3 A Mixed Formulation. Convergence Analysis

Using the weak formulation in the definition of the operator A, we can rewrite (21) as

%||s||2X = min!
Josvul, vVadr = —[qanvrvqdr Vg€ H .
With the definitions
Cl(S,t) = <S:t>X
b(s,q) = Jo5V Uy, Vqdr (25)
9(@) = —JoaoVrvqds

this formally leads to the variational equation

a(s,t) + b(t,p) = 0 VieV (26)
b(s, q) = g(q) VgeQ
for the primal and dual variables
seV=X, peq,
respectively. If we define
Q=" ol =1V v vllw-n

7



obviously the bilinear forms a and b are bounded, a is V-elliptic and b satisfies the contin-
uous inf-sup condition
b(s

inf sup _bs.p) >1

re@sev |Isllvipllq
The latter relation, especially its finite-dimensional counterpart, plays an important role
in the stability and convergence analysis of the discretized mixed variational problem (26).
As stated in the next lemma, with an appropriate choice of the finite dimensional subspaces
Vi, @y defining the discretization, it can be shown to hold:

Lemma 1. Let 1y, 7¢ be regular triangulations of 2 with mesh size hy, hg, respectively,
with
79 CTv A Tem C Tv (27)

where Ty, 1s the triangulation used for the data mollification, let Vi, consist of the union of
the continuous piecewise linear elements with homogenuous Dirichlet boundary condition on
0%), with the element bubbles on Ty and let QQp, be the continuous piecewise linear elements
vanishing on 0X). Then there exists a constant ¢ independent of the noise level and of the
mesh sizes hgpm, hy, hg such that

b(s, p)

inf sup ——— > ¢ .
re@n sev;, ||sllv(pllq

Proof. The proof is based on the standard technique (cf. [3]) of deriving the discrete inf-
sup condition from the continuous one by using an appropriate Fortin-projector II such

that
||y <C

b(s —TIs,qn) =0 Vg, €Qp, sV . (28)

This is achieved by the decomposition
H:HQ(I—H1)+H1 s

where I1; is a Clément operator on V}, and I, is a projection on the element bubbles such
that for any s € V

||H2||L2(Q)—>H6" <Ch™™ (29)
/(s —1Ilys)de = 0 VT €y (30)
T
Indeed, using (29) and the properties (13), (14) of the Clément operator, we obtain uniform

boundedness of II. Moreover, since due to our conditions (27) on the triangulations, for
any g, € Qn, Vul, </ qy is constant on each T € 7y, we have, by (30),

b(s_HQS;qh): Z /T(S_HQS)vugquh dx:oa

TeTy



which, by the representation I — IT = (I — II,)(I — II;) also yields the second equality in
(28). Now the discrete inf-sup condition follows immediately from (28) via

b b(11 1 b
inf sup & > inf sup ﬂ > — inf sup (s,p) .
r€Qnsev, [Isllvpllo = re@sev |Ts||viplle = CreQsev |IsllvIplle
]
Assuming that
(AUT)(x) < —k<0 a.e (31)

we get the following relation between the anisotrope norm ||| g and the L?-norm on Qp:

Lemma 2. Let (31) hold and assume that
k> Chonhg?(6 4 b2, | ut]| r2a)) (32)

with some sufficiently large constant C. Then there exists a constant C independent of §
and the mesh sizes such that

lanllq = chg llanll 2 Van € @ -

Proof. Observe that

Jo Vs, S an g dr _ fo Ul 7 an qn dx
|V e V @il r-m(y = sup = > =0 _
geHE (Q) gl () qnl| ms ()

Integration by parts gives

Jo VU 7 an an dx = [o Va0 7 Ut gy da + Jo 7 (ul,, — uT) 7 gn g dx
=—Jo & Vv UTZ dr + Jo 7 (UG, — u') v g g do

=varvul g,+(gn)2Aut

and therefore

1
/Qvutim Y qn dx > 5("5”%”%2(9) - ||U§m - UTHH(%(Q) | v qh||L°°(Q) ||Qh||L2(Q))

Now if the constant C in (32) is larger than the product of the constants C appearing in
(16) and in the inverse inequality

|7 anll o) < Chg’ llanll 120
then this (together with one more inverse inequality
lanll mi @) < Chg' llanll 12

for the case m = 1) immediately yields the assertion.

9



O

To apply regularization by projection, we use an a priori (especially independently of
the data) fixed sequence (7();en of triangulations of  with strictly monotonically but not
too fast decreasing mesh size th

hl—l
1<-%<C VieN
hQ!
defining the discretization of the dual spaces @y, i.e., the projection spaces. A second
sequence of triangulations of Q, ({);c, results from an also a priori fixed refinement of
the Té) such that

5CT A hg~(hi)" VIEN (33)

for some appropriately chosen exponent 0 < v < % to be specified later, and defines the
discretization for the data mollification and the primal spaces V}. Choosing the index
l, = 1.(6) such that

W=t > CVe > bk (34)

we set
L«

TQ = 7'8 y TV = Tem =TV
and define the mollification as described in subsection 2.2, and the spaces V},, )5 as in
Lemma 1. Note that by (34) we have (18) and therefore (12), and that (up to some
constants having to be sufficiently small) also (32) follows.

On the basis of this discretization and by Lemma 1, the following method is well-
defined and, as we will show in the remainder of this section, gives a stable and convergent
approximation of s':

Method 1. Let sy, be given by the primal part of a solution to the finite-dimensional mixed
variational problem

a(sh,th) + b(th,ph) = 0 vthEVh

b(Sh, qn) = 96(%) Vay € Q. (35)

(Note that the dual part p, of a solution to (35) is not necessarily unique.) Here the the
bilinear forms a, b are as defined in (25); the linear functional ¢°, given by (25) with r
replaced by the noisy data r?,

7’ (qn) = —/an vl g, dr,

is bounded, but not uniformly bounded as hg — 0, which reflects the ill-posedness of the
underlying problem.

For fixed finite noise level and mesh sizes this gives in fact a stable reconstruction
method:

10



Theorem 1. Let (31), (32) hold, let, for some u® € L?(Q)) with (2), (u*");en be a sequence
of data converging to u’ in L?(2), and let (i) be defined by (35) with the respective
data u inserted for u® whenever it appears.

Then the st converge to s, in X =V as i — oo.

Proof. Without loss of generality we can assume that the L2-difference between the %
and v is so small that the respective triangulations 74, 7{,, 7%, as defined above coincide
with 7g, 7y, Tem, so that the discretization is independent of . Then the differences
(di,ei) = (st — sp,ph — pn) are in Vj, X @, and solve the following mixed problem:

a(dy,th) + bltn,ey) = [b—0(th,p}) , Vin € Vi
b(dy, an) = [b—0(s},an) + 9" = 9”"l(an) Van € Qn.
Here we assume for technical reasons but w.l.o.g. that the dual solutions pi are those with

minimal norm. By the boundedness, ellipticity, and the discrete inf-sup condition for a, b
we obtain (cf., e.g., Theorem 4.6 in[13]) the estimates

(36)

: )
Isillv < 2supy,cq, ot lan]
' el gl (o)
< Ellaoll sy (sl o + llwoll my@) sPavea, Tt (37)
< chyttm
) 5 —(1+
Iphlo < 2 supco, L9 < Chy™*™ |

where we have used Lemma 2. The same argument, applied to (36) yields

; [b — 0'](th, P} [b—b](sh, qn) + [9° — ¢*")(an)
7
L, < 10— U ]h, Pp)
ld},||v < sup + 2¢ sup
thEVh [tnllv aneQn lanll @

(38)

For any t, € Vj,, qn € Qy,

b—b](than) = Jotn v (ul, —ull) 7 gy dz

120l o) 1l — udnll w2 || &7 QhHL%(Q)

Chignhg?og hy |2 |[tallv llanll @ [u® — ]| r2(ey

ININA

where we have set n := 2 if m = 0 and n = 0o if m = 1, applied the inverse inequality (cf.,

e.g., [13])
||th||L°°(Q) < C\/loghv||th||H01(Q) ,

and used the boundedness of the data smoothing operator acting from L?(Q) into itself
(see the last line in (12)). Similarly we get

9" =% (an) < Nlaol| ooy Ul =l | ity lanll gy < Chimhg"™ ™ llanll g lu® =] r2q -
Inserting this and (37) into (38), we obtain
Id [l < Chihhg™ ™ log hy ™2 [[u? — 1| 12(q)

and therefore convergence of di, to zero in V as i — ooc.

11
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In the following theorem we formulate our main result, concerning the convergence of
the regularized aprroximations
ap = ag + sp, (39)

to a solution a' of the parameter identification problem (1), as the noise level and the
appropriately chosen mesh sizes go to zero:

Theorem 2. Let (31), (32), and
vul e L*®
hold and let, in (33), v < % ifm=0,v< % if m=1.
Then (39) with (35), and the data mollification as well as the discretization as described

in subsection 2.2 and after Lemma 2, defines a reqularization method for our parameter
identification problem, i.e., for any noisy data u’ with (2)

ap = ap(u®,8) = a’ in X as§ =0 .

Proof. 5§ = a' — ag is the primal part of a solution of

a(s,t) + bt,p) = 0 VieV (40)
b(s, q) = glg) VqeQ,
where
@(Sat) = <Sat>X
b(s,q) = Josvulvqde
gl = —JoayVTVqdr,
_ _ Q
V=X, Q=H(Q)" ., |vlg:=Ivu volg-mo,

and 7 = ut — ug. Indeed, since @ and b are bounded and satisfy V-ellipticity and inf-sup-
condition, respectively, and also g is bounded:

i@) =~ [avu' vad+ [ avuvade < a—d|xlalq.

-~

:fQ atyuiq dz
(40) is solvable. From (35) and (40) we can now conclude that for any pair (55, pn) € VaxQp

(§ — Sp, th) + B(th,ﬁ — ﬁh) Vth eV,
(5= 8n,an) +[9° — g)(an)  Van € Qn.

a(sp = 3n,tn) + O(th,pn —Pn) =

b(sh — 5h, qn) = (41)

SR

The standard estimate for solutions of mixed variational problems that we have already
used in the proof of Theorem 1 (cf. e.g. Theorem 4.6 in [13]) now, together with the
ellipticity of @ and Lemma 1 yields

(5 = 3n,th) + b(th, P — Pn) | 2 b(5 = 3n,qn) + [9° — gl(an)

[sn — 3nll < sup + = sup ,
theVi [2allv € an€Qn lanll

12



and therefore, using the triangle inequality

IN

15 = Sall + l[sn = Sall

(3+CVE hgd) |5 — anll + CVEhg"™ + su
thGVh ||th||V

Is — sl N
Mnp=p) (42)

Y

A

where we have used the estimates

(5 = 3n,qn)/ |lanll @ < F=allA+ |7 (W, =) 7 anll-miey/llanll @)

|7 (ud,, —u') v wlley < IV (U — UT)HL?(Q) | 7 @nll (o)

1V (W, —u) Vanlla-1) < lid] gy ) 12/0-) () 17 (= uD) 210y G0l 120
< C(ll v(u _UT)HLQ D anll magey » iy < 5,

l9° — 9] (qn) < laol| oo 1ugn, — u ||H1 o llanll mo)

(where we have used the interpolation inequality and (12) to obtain the fourth inequality,)
as well as (12) and Lemma 2. Taking the infimum over all 5, € V}, we get convergence to
zero of the first term on the right hand side of (42). The second term is, due to (33), (34),

controlled by C\/_1 P , which, by our choice of v, goes to zero as 6 — 0. To estimate

the last term on the right hand side of (42) we set py, equal to the dual part p, of a solution
(5n, Pn) to the semidiscrete version of (40)

a(5n,t) 4+ b(t,pn) = 0 VteV
b(5n, qn) = glgn) Vau € Qn,

so that, by the fact that 3, is just the orthogonal projection of 5 on A*Q;, we get

b(th,p — P a(5, — 5.t
sup (h;p ph)ZSllp G(Sh S, h)

< | = P30, |5
eV ltnllv P A 7% | R — I 140, )50 x

which, since 5 € N(A)~ = R(A*), and Uy,50 @n = N(A*) ", goes to zero as hg — 0.

O

The following corollary contains a convergence rates result under a source condition (4)
with v = %, i.e., under the assumption that

—ap = A" (43)

for some 1 € Y. Due to (23) (with ul,, replaced by u', (43) means that the difference
al — ag is in H'*?™(Q) and satisfies certain boundary conditions.

Corollary 1. Let the conditions of Theorem 2 and additionally

0N e C™ | yag € L®(Q), Aul € L*™(Q) for some e > 0

13



as well as (43) hold, and let y be chosen as

1

TS0+ m)

Then
lan — a'|| x = O(s"/*)

in both cases X = HJ"(2), m =0, 1.

Proof. Condition (43) means that
(—2)"5 = vul v ¢ (44)

where 1) solves the second order BVP (24) with L?right hand side 1 and is therefore in
H?(Q). On the other hand, the pair (5,1)) solves the mixed variational problem (40) so
that we may set § := ¢). Moreover, (44) implies that (—A)™5 € H'(Q) and therefore
s € H™™(Q).

Now we use the estimate (42) in the proof of Theorem 2 where this time we estimate
the last term by

b(th, D — pn) | VUTHLM(Q)Hp_ﬁhHHé(Q) ifm=0
sup —————" < I vu))l 12q
thE€Vh ||th||V Supy, cv;,

o=l 2y ifm=1

t 1
H h”HO(Q)

Taking the infimum over all (3, pn) € Vi x @, yields

< Clhy||3] memy + VO™ + L™ |5 12 (o)
1—~(14+m 14+m
< OWa+ Ve T ety

15 = sall

which, by our choice of ~, yields the assertion.

O

The suboptimality in the convergence rate — the optimal rate under a source condition
(4) with v = £ being O(v/§) — has two reasons:
Firstly the anisotropy in the (natural) dual norm leads to a loss of regularity, namely, by
regularity theory for hyperbolic problems (cf., e.g., [2]) the lower estimate of ||| by only
an L?-norm cannot be improved to an estimate by an H"-norm with n > 0, while on the
other hand obviously an H'-norm is needed to estimate ||| from above.
Secondly, the low order of the ansatz functions in the approximation spaces, that is from
a practical point of view hightly recommendable, leads to a saturation effect in some
approximation estimates.
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4 Numerical Results

To illustrate the theoretical results of the foregoing section, we implemented the proposed
Method 1 on basis of the FE-package FEPP that has been developped at the SFB F013 in
Linz, and applied it to two different test problems in the following setting:
The domain €2 was chosen to be the unit square, the right hand side f and the boundary
conditions ¢ in (1) as
flz,y) =1, g(z,y):=0,

and the starting parameter aq as
ag:=1.

We define two test examples by the exact solutions
a(z,y) =1+ 1.62(1 —2)y(l —y) (45)

a(z,y) =1+ 6.42(1 — 2)y(0.5 — y)X0,0.5](¥) (46)

which we will refer to as the "smooth” and the "non-smooth” case, respectively. The first
example is supposed to represent the situation with source condition as in Corollary 1,
while in the second one obviously (43) does not hold and only the results of Theorem
2 can be expected to hold. In preimage space X we confined ourselves to the H}-norm
(i.e., m = 1 in (11), Lemma 2, Theorem 2, and Corollary 1), considering this the more
interesting case, especially for comparison with other solution methods for the parameter
identification problem under consideration.

Investigating first the noiseless case, where the smoothing procedure can be omit-
ted, we duplicated the search for an optimal relationship between the mesh sizes hq
and hy by comparing the resulting errors ||s;, — ST||H5 for different refinement levels lg )y
(hgv ~ 27'/v, so that dim(Q/V;) = (271 = 1)%, i.e., for | = 3,4,5,6,7,8, dim(Q/V}) =
9,225,961, 3969, 16129; see Figure 4). In fact, for each fixed Q-level, the decay of the
error with growing V-level saturates at refinement levels as proposed by the asymptotics
hg ~ (hy)? (i.e. V-level ~ % Q-level, with 4 < £ being smaller in the smooth than in
the non-smooth case. Plotting, still in the noiseless case, the develpoment of the error for
growing Q-level (with optimal V-level) shows, as expected, a higher speed of convergence
for the smooth example, namely O(hé), than for the non-smooth one (see Figure 4).

To define the data smoothing operator Il,,, we used, for sake of simplicity, the interpo-
lation operator II;,,; on an equidistant grid with grid points /V;. Assuming that pointwise
data measurements ug for w(N;) with

max o] — u(N;)| < 5 (47)
J

one easily sees that the first three inequalities in (12) hold and therefore the convergence
(rate) results of Theorem 2 and Corollary 1 can be applied. The stability result Theorem 1
remains valid if convergence of u’ in L? is replaced by L*®-convergence. Note, that the

15
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Figure 1: Optimal choice of hy = hy,, for different values of hg in the noiseless case, for
example (45) (left) and (46) (right)
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Figure 2: Convergence speed as hg — 0 for smooth and non-smooth example, respectively
(noiseless case)
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Figure 3: Error norms for different noise levels in dependence of hg, for smooth ((45), left)
and non-smooth example ((46), right), respectively.

assumption of L>®-measurements (47) is — although theoretically of course stronger than
assuming L2-measurements (2) — just as natural in applications such as inverse ground-
water filtration and therefore not really restrictive.

An observation of the error for for shrinking hg (and hy, hs, chosen according to
(33) with fixed v < 3), for several noise levels (see Figure 4) shows that — as usual in
ill-posed problem — the decay due to the reduction of the approximation error stops at
some “optimal regularization parameter” and then turns to some growth caused by the
then dominating propagated data noise.

Optimally chosen Q-levels according to these curves as well as to the theoretical asymp-
totics proposed in Theorem 2 and Corollary 1 yield error plots suggesting convergence as
0 — 0, at a faster rate in the smooth than in the non-smooth example; in the smooth case
the predicted rate O(63) really seems to be obtained (see Figure 4).

Finally, the left hand picture in Figure 4 shows our reconstruction from data with one
per cent noise, corresponding to example (45), with discretization according to Theorem 2
and Corollary 1. The obtained approximation is obviously very close to the exact solution.
For comparison, as shown in the right hand picture, due to the instability, a too fine
discretization choice, yields a bad reconstruction, even with less data noise.
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