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Abstract. In this concluding part of a series of papers on tetrahedral polynomial extension

operators, the existence of a polynomial extension operator in the Sobolev space H(div) is

proven constructively. Specifically, on any tetrahedron K, given a function w on the boundary

of K that is a polynomial on each face, the operator applied to w gives a polynomial of at

most the same degree in the tetrahedron. The trace of the normal component of the extension

coincides with w. Furthermore, the extension is continuous from H−1/2(∂K) into H(div, K).

1. Introduction

This is the final installment of our series of papers [6, 7] devoted to the construction of
polynomial extensions on any tetrahedron K. In Part I [6], we constructed an extension operator
from H1/2(∂K) into H1(K) that preserves polynomials (in the sense made precise there). In
Part II [7] we extended our techniques to develop an operator that extends appropriate tangential
vector fields on ∂K into H(curl ,K) and preserves polynomials in some sense. This part is
devoted to the construction of an H(div) polynomial extension operator. This operator extends
functions in H−1/2(∂K) into H(div,K) in such a way that if the function to be extended is a
polynomial on each face of K, then the extended function is also a polynomial of at most the
same degree on K. The overall technique employed here for constructing the extension operator
is similar to the previous two parts. However, there are some fresh ingredients that play an
important role, such as a commuting volumetric extension operator and an operator used in
proving the classical Poincaré lemma in differential geometry. The main result of this paper is
Theorem 7.1. The results of this series of papers can be succinctly represented in a commuting
diagram given at the end in (8.1). For the history of the polynomial extension problem and
contributions by many authors to it, we refer the reader to the introduction of Part I [6].

The construction of our H(div) extension will be guided, as in the previous cases [6, 7], by a
target commutativity property. Namely, the final extension operator Ediv

K should satisfy

(1.1) Ediv
K (curlτ v) = curl (Ecurl

K v),

for all v in the space of traces of H(curl ). Here Ecurl
K is the H(curl ) polynomial extension

operator we constructed in [7] and curlτ v denotes the surface curl of v. The subscript τ indicates
tangential components, and accordingly gradτ , curlτ , and divτ denote tangential gradient, curl,
and divergence, on the boundaries of suitable three dimensional domains. For details concerning
the definition of differential operators on nonsmooth manifolds, see [3, 4]. So as not to leave
any sign ambiguity, let us clarify that if φ is smooth function on K and n is the unit outward
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normal vector on ∂K, then

(1.2) curlτ (trcτ φ) = divτ (φ× n) = n · curlφ

on ∂K. Here trcτ denotes the tangential trace map. For smooth vector functions φ, the action
of trcτ is defined by

trcτ φ =
(
φ− (φ · n)n

)∣∣
∂K
.

In contrast, the normal trace operator is defined by

trcnφ = (φ · n)
∣∣
∂K
.

The extension Ediv
K we shall construct in this paper is a right inverse of trcn.

Additionally, our extension has a polynomial preservation property important in finite element
applications. To describe this property, let P`(D) denote the space of polynomials of degree
at most ` on any subset D of a Euclidean space (so it could be univariate or multivariate
polynomials). Further, let P `(D) denote the set of vector functions on D whose components are
in P`(D). Our extension operator Ediv

K : H−1/2(∂K) 7→H(div) is such that if w is a polynomial
of degree at most p on each of the faces of the tetrahedron K, then Ediv

K w is in P p(K). In
conforming finite element applications involving H(div,Ω), the discrete space restricted to an
element K is often P p(K). It could also be the so-called Raviart-Thomas space [12], defined by
Rp(K) = {qp + xrp : qp ∈ P P (K), rp ∈ Pp(K)} where x = (x, y, z)t is the coordinate vector.
Since

trcn(P p(K)) = trcn(Rp(K))

and Rp(K) ⊇ P p(K), our extension operator has polynomial preservation properties with re-
spect to both the choices, i.e.,

Ediv
K : trcn(P p(K)) 7→ P p(K) as well as Ediv

K : trcn(Rp(K)) 7→ Rp(K).

Hence we anticipate its utility in high order Raviart-Thomas finite elements as well as the high
order BDM method [2].

The organization of this paper is as follows. We start by establishing a stable decomposition
of the H(div) trace space into a regular part and a surface curl. For this we need an extension of
volume data with specific regularity properties. Therefore we will first construct such volumetric
extensions. These are generalizations of well known classical extensions [10, 13] and are therefore
independently interesting. We use them to establish the stable trace decomposition. Next, in
Section 3, we develop an H(div) extension from a plane as the first step towards constructing an
extension from the boundary of a tetrahedron. In the succeeding sections, we develop a sequence
of correction operators that will progressively help us solve a sequence of simpler problems of
increasing complexity, leading to the solution of the full polynomial extension problem from ∂K.
These simpler problems are the two-face problem (Section 4), the three face problem (Section 5)
and the four-face problem (Section 6). The main theorem is in Section 7, and we conclude in
Section 8. An appendix which collects all the proofs of technical lemmas is also included.

2. A decomposition of the trace space

In this section, we show that the trace space ofH(div) admit a stable decomposition consisting
of two components, one of which is regular, and the other is a surface curl. We begin by
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developing a volumetric extension which we will need in proving the existence of the stable
decomposition. Such extensions are also interesting in their own right.

2.1. Commuting extensions of volume data. The purpose of this subsection is to generalize
an old technique of [10] to obtain volumetric extensions. Volumetric extensions do not extend
traces, but rather extends functions defined on three dimensional domains to larger three di-
mensional domains. The generalization is aimed at obtaining some specific regularity properties
in the spaces

Hk(curl , D) = {v ∈H(curl , D) : curlv ∈Hk(D)}
Hk(div, D) = {v ∈H(div, D) : div v ∈ Hk(D)},

normed in the obvious way. We begin by giving commuting generalized reflection operators.

Proposition 2.1. Suppose D is an open bounded subset of the plane R2 with Lipschitz boundary.
For any ` > 0, consider the three dimensional domains S = (0, `) × D and S̃ = (−`, `) × D.
Then, for any integer k ≥ 1, there are volumetric extension operators Ĝgrad, Ĝcurl, Ĝdiv, and Ĝ1

extending functions on S to S̃ such that the diagram

(2.1)

Hk(S)
grad−−−−→ Hk−1(curl , S) curl−−−−→ Hk−1(div, S) div−−−−→ Hk−1(S)

yĜgrad

yĜcurl

yĜdiv

yĜ1

Hk(S̃)
grad−−−−→ Hk−1(curl , S̃) curl−−−−→ Hk−1(div, S̃) div−−−−→ Hk−1(S̃)

commutes. The operators are continuous as maps from and into the above indicated spaces.

Proof. Let u be a function in C∞(S) and αj be real numbers to be specified shortly. The
generalized reflection operator considered in [10, Lemma 3] is

Ĝ0u (x, y, z) =





u(x, y, z), if x > 0,
k∑

j=1

αj u(−x/j, y, z), if x ≤ 0.

For this proof, we need an additional operator

Ĝ1u (x, y, z) =





u(x, y, z), if x > 0,
k∑

j=1

−(
αj
j

)u(−x/j, y, z), if x ≤ 0.

Observe that if the αj ’s satisfy

(2.2)
k∑

j=1

αj
1

(−j)m = 1,

then

(2.3) lim
x→0
x>0

∂m

∂xm
Ĝ0u(x, y, z)− lim

x→0
x<0

∂m

∂xm
Ĝ0u(x, y, z) = 0.
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Considering (2.2) for m = 0, 1, . . . , k−1 as a linear system of k equations in the k unknowns αj ,
it is easy to see that there is a unique set of αj ’s that solves it. Thus (2.3) holds for all
m = 0, 1, . . . , k − 1, and consequently, by standard arguments, Ĝ0 extends to

(2.4) Ĝ0 : Hk(S) 7→ Hk(S̃)

as a continuous map. With the same choice of αi’s, we similarly also have that Ĝ1 extends to

(2.5) Ĝ1 : Hk−1(S) 7→ Hk−1(S̃)

as a continuous operator.
We define the required volumetric extensions for a scalar function u and a vector function v

with components v1, v2, v3 by

Ĝgradu = Ĝ0u, Ĝcurlv =




Ĝ1v1
Ĝ0v2
Ĝ0v3


 , Ĝdivv =




Ĝ0v1
Ĝ1v2
Ĝ1v3


 .

Using the obvious identities

(2.6) ∂x(Ĝ0u) = Ĝ1(∂xu),
∂y(Ĝiu) = Ĝi(∂yu), for i = 0 or 1,

∂z(Ĝiu) = Ĝi(∂zu), for i = 0 or 1,

we immediately verify that the above defined operators satisfy the commutativity properties
in (2.1).

To prove the continuity properties asserted in the proposition, first note that the required
continuity of Ĝ1 is already proved in (2.5). The continuity of Ĝdiv follows from the commutativity

div Ĝdivw = Ĝ1 divw

and the continuity of Ĝ1 as follows:

‖ div Ĝdivw‖
Hk−1(eS)

= ‖Ĝ1 divw‖
Hk−1(eS)

≤ C‖divw‖Hk−1(S).

The continuity of Ĝcurl follows from

curl Ĝcurlv = Ĝdivcurlv.

and the already established continuity of Ĝdiv. The continuity of Ĝgrad is the same as in (2.4). �

It is obvious from the above proof that one can consider domains more general than S̃. Indeed,
the proof holds for any S̃ that has reflectional symmetry about a plane. We now use this to
generalize the above result to a domain around the unit tetrahedron. Let K̂ denote the closed
unit tetrahedron with vertices â0 = (0, 0, 0), â1 = (1, 0, 0), â2 = (0, 1, 0), â3 = (0, 0, 1). Let
F̂i denote the face of K̂ opposite to âi. We want to find an operator that extends functions
defined outside K̂ into K̂ by combining reflections across the faces F̂1, F̂2, and F̂3. Of course,
mere addition of the reflections across each of these faces is insufficient because one application
of the generalized reflection across a face alters the values near the remaining faces. We must
combine the reflections more carefully.

We now do this for some specific domains we shall need later (although more general domains
can be handled equally well), which we describe first. They are convex enlargements of K̂
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defined separately for each index I in {i, ij, ijk}, where {i, j, k} is any permutation of {1, 2, 3}.
Let ãi,j = 2âj − âi and ãi,k = 2âk − âi. Define the enlarged domains

K̃i = conv(K̂, ãi,j , ãi,k,−âi),(2.7)

K̃ij = conv(K̃i, K̃j),(2.8)

K̃ijk = conv(K̃i, K̃j , K̃k).(2.9)

where conv(· · · ) denotes the convex hull of all its arguments. We want to construct an operator
extending functions on K̃I \ K̂ into K̂.

Proposition 2.2. For any integer k ≥ 1, and any I in {i, ij, ijk}, there are continuous volu-
metric extension operators

Ggrad : Hk(K̃I \ K̂) 7−→ Hk(K̃I) (Ggradu| eKI\K̂ = u),

Gcurl : Hk−1(curl , K̃I \ K̂) 7−→ Hk−1(curl , K̃I) (Gcurlv| eKI\K̂ = v),

Gdiv : Hk−1(div, K̃I \ K̂) 7−→ Hk−1(div, K̃I) (Gdivw| eKI\K̂ = w)

satisfying the commutativity properties in (2.1).

Proof. Consider the case I = 123. In this case the domain D = {(x, y, z) : |x|+ |y|+ |z| ≤ 1},
formed of eight tetrahedra, is contained in K̃I . Let D±x = {(x, y, z) ∈ D : ±x ≥ 0}, and define
D±y and D±z similarly. Recall the extension Ĝcurl defined in the proof of Proposition 2.1. It is
obtained by generalized reflections about the yz-plane. Hence it defines an operator extending
functions on D−x into D+x. To distinguish this extension from reflections about other faces, we
now call it Gcurl

x , i.e.,

Gcurl
x v(x, y, z) =

{
v(x, y, z) if (x, y, z) ∈ K̃I and x < 0,

Ĝcurlv(x, y, z) if (x, y, z) ∈ D+x.

Similarly, we define Gcurl
y and Gcurl

z using generalized reflections across the other faces. All these
maps have continuity properties in the Hk−1(curl , ·)-norm as in Proposition 2.1.

We now use these maps to obtain a continuous extension from K̃ \ K̂ into K̂. Let Rx, Ry,
and Rz denote the operations of restricting functions to D+x, D+y and D+z, respectively. Then
set

Gcurlu =





u, on K̃ \ K̂,
Gcurl
x Rxu+ Gcurl

y Ry(u− Gcurl
x Rxu)

+ Gcurl
z Rz(u− Gcurl

x Rxu− Gcurl
y Ry(u− Gcurl

x Rxu)),
on K̂.

We similarly define Ggrad and Gdiv. Then the claimed commutativity and continuity properties
follow.

The cases of the remaining I in {i, ij} are similar and simpler, so we omit the details. �

2.2. Regular decomposition of traces. The idea for decomposing the trace space ofH(div,Ω)
is easy to describe. Let Ω be a polyhedral domain with Lipschitz continuous boundary. If w is
in H(div,Ω), then it is well known that there is a stable decomposition

w = curlφ+ θ
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with φ in H(curl ,Ω) and θ in H1(Ω). Taking the normal trace, we find that

trcnw = n · curlφ+ n · θ
= curlτ (trcτ φ) + trcn θ.

Thus we have a decomposition

(2.10) H−1/2(∂Ω) = curlτ (X−1/2(∂Ω)) + trcn(H1(Ω))

where X−1/2(∂Ω) is the range of trcτ . Note that the results of [3] provide a characterization of
X−1/2(∂Ω) and in particular show that curlτ : X−1/2(∂Ω) 7→ H−1/2(∂Ω) is continuous. Hence
the decomposition in (2.10) is stable. We will use the decomposition (2.10) with Ω set to the
tetrahedron K.

In fact, it is possible to refine the decomposition (2.10) further and choose the argument of
curlτ to be more regular. First note that the trace space ofH(curl ,Ω) admits the decomposition

(2.11) X−1/2(∂Ω) = gradτ (H1/2(∂Ω)) + trcτ (H1(Ω)).

This was used in Part II [7]. Its proof is simple, once we use the well known regular decomposition
of H(curl ,Ω) that asserts that for any v in H(curl ,Ω), there is a unique ϕ in H1(Ω) and ψ
in H1(Ω) such that

v = gradϕ+ψ

is a stable decomposition. Taking trcτ , we obtain (2.11). Now, using (2.11) in (2.10) and
observing that curlτ gradτ = 0, we can revise (2.10) to

(2.12) H−1/2(∂Ω) = curlτ trcτ (H1(Ω)) + trcn(H1(Ω)).

The potential space trcτ (H1(Ω)) is now more regular than in (2.10). It is characterized in [3].
It is (strictly) contained in the space of square integrable tangential vector fields on ∂Ω whose
restrictions to each face Γ of the polyhedral boundary are in H1/2(Γ). Clearly this space is
more regular than the space X−1/2(∂Ω) in (2.10) which is contained only in a Sobolev space of
negative order.

One immediate use of the decomposition (2.12) is in defining a restriction operator onH−1/2(∂Ω).
If F is a face of the polyhedron ∂Ω, then decomposing any g in H−1/2(∂Ω) using (2.12) as
g = curlτ φ+ θ with φ in trcτ (H1(Ω)) and θ in trcn(H1(Ω)), the restrictions φ|F and θ|F make
sense, so the restriction operator

(2.13) RF g = curlτ (φ
∣∣
F

) + θ|F

is well defined and continuous on H−1/2(∂Ω).
Not withstanding the fact that (2.12) has a more regular potential than (2.10), in what

follows, we shall continue to work with (2.10). This is because X−1/2(∂Ω) can be normed by
a quotient norm inherited from H(curl ,Ω), as described in [7], while the natural norm that
makes trcτ H1(Ω) complete [3] seems to be a bit unwieldy for our purposes.

In constructing the extension operator, we shall use the above mentioned facts with Ω set to a
tetrahedron K. We first need to make precise the notion of traces that weakly vanish on a subset
S ⊆ ∂K. Let 〈·, ·〉 denote the duality pairing between H−1/2(∂K) and H1/2(∂K). Suppose S
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has positive boundary measure. Define

H1
0,S(K) = {ψ ∈ H1(K) : trcψ|S = 0},

H0,S(curl ) = {φ ∈H(curl ) : 〈n×ψ, trcτ φ〉 = 0 ∀ψ with components inH1
0,∂K\S(K)},

H0,S(div) = {w ∈H(div) : 〈ψ,n ·w〉 = 0 for all ψ ∈ H1
0,∂K\S(K)}.

Consider the case when S is composed of one or more faces of K. We adopt the notations in
the previous parts for faces and vertices of K. E.g., a0,a1,a2,a3 denote the vertices of K,
and Fi denote the face of K opposite to ai. So, we consider the situation when S is one of Fi,
Fij = Fi∪Fj , or Fijk = Fi∪Fj ∪Fk. Here and elsewhere the indices i, j, k, l are a permutation of
0,1,2,3. For all subscripts I in the set {i, ij, ijk}, define the following ranges of the trace maps:

H
1/2
0,I (∂K) = trc H1

0,FI
(K),

X
−1/2
0,I (∂K) = trcτ H0,FI (curl ),

H
−1/2
0,I (∂K) = trcnH0,FI (div).

We will often omit the argument ∂K when the space consists of functions defined on the whole
boundary ∂K. All these spaces are normed by quotient norms, e.g.,

(2.14) ‖ν‖
H
−1/2
0,I (∂K)

= inf
trcn(w)=ν

‖w‖H(div),

where the infimum runs over all w in H0,FI (div) such that trcnw = ν. The space H1/2
0,I (∂K) and

its restrictions to faces H1/2
0,I (Fl) featured in Part I [6]. The space X−1/2

0,I (∂K) was important
in Part II [7], where we also precisely defined the notion of its restrictions to a face Fl, denoted
there by X−1/2

0,I (Fl). In the current paper, we will need restrictions of elements in H
−1/2
0,I (∂K)

to Fl, where the restriction operation is defined as in (2.13). Abbreviating RFl to Rl, define

(2.15) H
−1/2
0,I (Fl) = Rl(H

−1/2
0,I (∂K)).

Also let

(2.16) H−1/2(Fl) = Rl(H−1/2(∂K)).

Remark 2.1. For a planar domain F , it is standard to denote by H−1/2(F ) the dual space of
H

1/2
0 (F ) ≡ {u ∈ H1/2(F ) : the extension by zero of u to R2 is in H1/2(R2)}. Hence it might

appear that the redefinition of H−1/2(F ) in (2.16) is a high abuse of notation. However, the
space H−1/2(Fl) in (2.16) coincides with the dual of H1/2

0 (Fl). This follows from well known
characterizations of H−1/2(∂K), for instance, a result in [4, pp. 43] shows that functions in the
dual of H1/2

0 (Fl) have continuous extensions into H1/2(∂K).

The following theorem gives the stable decompositions we will need in the analysis of poly-
nomial extensions.

Theorem 2.1. The spaces H−1/2
0,I (Fl) and H−1/2(Fl) admit the stable decompositions

H
−1/2
0,I (Fl) = curlτ X

−1/2
0,I (Fl) +H

1/2
0,I (Fl)

H−1/2(Fl) = curlτ X−1/2(Fl) +H1/2(Fl),

for all indices I in {i, ij, ijk}.



EXTENSION OPERATORS 8

Proof. Because of the previous discussion, we only need to prove the first decomposition. More-
over, it suffices to prove it for the “reference tetrahedron” K̂ introduced earlier, with the index
l = 0 and {i, j, k} a permutation of {1, 2, 3}. Let K̃I be as defined in (2.7)–(2.9) and let F̃I
denote the face of K̃I containing F̂0.

Given ν in H
−1/2
0,I (F̂0), there is a w in H0,FI (div, K̂) such that

Rl trcn(w) = ν, and

‖w‖H(div) ≤ C‖ν‖H−1/2
0,I (F̂0)

.(2.17)

Let w̃ denote the trivial extension of w from K̂ to K̃I , i.e., w̃ vanishes on K̃I \K and equals w
on K. It is easy to verify that w̃ is in H(div, K̃I).

We decompose w̃ by a continuous Helmholtz-Hodge type decomposition [8] applied on the
convex domain K̃I to get

(2.18) w̃ = curlφ+ θ

where φ is in H(curl , K̃I) and θ is in H1(K̃I). Now, since w̃ vanishes on K̃I \ K̂,

curlφ
∣∣ eKI\K̂ = −θ| eKI\K̂ ∈H1(K̃I \ K̂).

Hence φ is in H1(curl , K̃I \ K̂). Applying the volumetric extension of Proposition 2.2 with
k = 1, we obtain an extension φ′ of φ from K̃I \ K̂ to all K̃I with the property that curlφ′ is
in H1(K̃I). Thus

(2.19) w̃ = curlφ′′ + θ′′

where φ′′ = φ− φ′ and θ′′ = curlφ′ + θ. Clearly, φ′′ is in H(curl , K̃I) and θ′′ is in H1(K̃I).
Moreover, both φ′′ and θ′′ vanish on K̃I \ K̂.

Finally, applying the normal trace operator to (2.19) we obtain

trcn w̃ = curlτ trcτ φ′′ + trcn θ′′.

Observe that since all components of θ′′ vanish on K̃I \ K̂,

(trcn θ′′)
∣∣ eFI,l ∈ H1/2(F̃I) and supp( (trcn θ′′)

∣∣ eFI ) ⊆ F̂0.

Hence ϑ ≡ trcn θ′′|F̂0
is in H

1/2
0,I (F̂0). Similarly, since φ′′ vanishes on K̃I \ K̂, the restriction of

the tangential trace trcτ φ′′ to F̂0, denoted by ϕ, is in X−1/2
0,I (F̂0). Hence

ν = Rl trcn(w) = curlτ ϕ+ ϑ

is the required decomposition. Its stability follows from the continuity of all the intermediate
steps, including the stability of the decomposition (2.18), the continuity of the volumetric ex-
tension φ 7→ φ′ (Proposition 2.2), the continuity of the lifting in (2.17), and the continuity of
the trace maps. �
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3. Primary extension operator

By “primary extensions” we mean, as in Parts I and II [6, 7], extensions of data specified on a
planar surface. The construction of such extensions forms the first step in designing polynomial
extensions of data from piecewise planar manifolds like the boundary of a tetrahedron. Define
the primary extension for the H(div) case by

(3.1) Edivw = 2
∫ 1

0

∫ 1−t

0



s
t
−1


w(x+ sz, y + tz) ds dt,

for all smooth functions w(x, y).
We will now rewrite this expression using the affine coordinates of the tetrahedron. This

will help generalize the expression to yield an extension from any face of a general tetrahedron.
Let λi denote the affine (or barycentric coordinates) of a general tetrahedron K. As in Parts I
and II [6, 7], for any permutation {i, j, k, l} of {0, 1, 2, 3}, we define the subtriangle

Tl(ri, rj , rk) = {x ∈ Fl : λFl` (x) ≥ r` for ` = i, j, and k},
where λFlm ≡ λm|Fl (for m = i, j, or k) are the barycentric coordinates of the face Fl. Now
consider the expression in (3.1) as an extension into the “reference tetrahedron” K̂ with vertices
â0 = (0, 0, 0), â1 = (1, 0, 0), â2 = (0, 1, 0), â3 = (0, 0, 1) from the face F̂3 opposite to â3. Trans-
forming (3.1) by the variable change x′ = x+ sz, y′ = y + tz and using barycentric coordinates,
we have

Edivw =
2
z2

∫ x+z

x

∫ x+y+z−x′

y




(x′ − x)/z
(y′ − y)/z
−1


w(x′, y′) dx′ dy′

=
1

|F̂3|λ2
3

∫∫

T3(λ0,λ1,λ2)



λ̃1

λ̃2

−1


w(s) ds.

Here and elsewhere, while λ` denotes the barycentric coordinates of the tetrahedron under
consideration, the symbol λ̃` denotes a barycentric coordinate of the region of integration under
consideration. The subtriangles that form our regions of integration are always considered as
having their node enumeration inherited from the parent triangle. So, in the above formula,
{λ̃0, λ̃1, λ̃2} are the barycentric coordinates of T3(λ0, λ1, λ2). Now observe that the vector part
of the integrand can be rewritten as



λ̃1

λ̃2

−1


 = λ̃1(gradλ2 × gradλ3) + λ̃2(gradλ3 × gradλ1)− (gradλ1 × gradλ2)

=
2∑

i=0

−λ̃i(gradλiu1 × gradλiu2),

where u denotes addition mod 3. The last identity was arrived at by expressing gradλ3 in
terms of the gradients of λ0, λ1, and λ2.

Motivated by the above rearrangement, we define the primary extension into a general tetra-
hedron K from one of its face, say Fl, using affine coordinates. Unlike the H1 and H(curl )
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cases, we now need to track orientation. Let ai,aj ,ak,al be the vertices of K where, as usual,
{i, j, k, l} is a permutation of {0, 1, 2, 3}. We say that “(i, j, k) is positively oriented with respect
to l” if the vertices ai, aj , and ak, in that order, form a counterclockwise enumeration of the
vertices of the face Fl, when looking from the vertex al (see Figure 1). Define

(3.2) Ediv
l w =

1
|Fl|λ2

l

∫∫

Tl(λi,λj ,λk)

−
∑

σ∈S(l)

λ̃σ1 (gradλσ2 × gradλσ3)w(s) ds

Here, for any index l, we denote by S(l) the set of (three) cyclic permutations of the remaining
three indices i, j, k ordered so that they are positively oriented with respect to l. The above sum
thus runs over all such cyclic permutations σ in S(l). In the summand, the three components
of σ are denoted by σ1, σ2, σ3. The symmetries are clearly evident from (3.2): The region of
integration T (λi, λj , λk) is unchanged with respect to even or odd permutations of i, j, k, while
the integrand is antisymmetric under odd permutations of i, j, k. Note that when K = K̂, l = 3,
and (i, j, k) = (0, 1, 2), the expression in (3.2) coincides with that in (3.1). The properties of the
operator Ediv

l are collected in the next theorem.

Theorem 3.1 (Primary extension). The operator Ediv
l has the following properties:

(1) curl (Ecurl
l v) = Ediv

l (curlτ v) for all v in X−1/2(Fl).
(2) Ediv

l is a continuous map from H1/2(Fl) into H1(K).
(3) Ediv

l is a continuous map from H−1/2(Fl) into H(div).
(4) The tangential trace of Ediv

l w on Fl equals w for all in H−1/2(Fl).
(5) If w is in Pp(Fl), then Ediv

l w is in P p(K).

Proof. Proof of (1): Let v(x, y) = (v1, v2)t be a smooth function on the reference tetrahedron K̂.
Recalling the expression for Ecurl on K̂ from [7], namely

Ecurlv = 2
∫ 1

0

∫ 1−t

0




1 0
0 1
s t


v(x+ sz, y + tz) ds dt

and computing its curl, we have

curl (Ecurlv) = 2
∫ 1

0

∫ 1−t

0
curl




1 0
0 1
s t


v(x+ sz, y + tz) ds dt

= 2
∫ 1

0

∫ 1−t

0



s(∂2v1 − ∂1v2)(x+ sz, y + tz)
t(∂2v1 − ∂1v2)(x+ sz, y + tz)
(∂1v2 − ∂2v1)(x+ sz, y + tz)


 ds dt,

Since curlτ v = ∂2v1−∂1v2 on the z = 0 face (see (1.2)), the above expression equals Ediv(curlτ v).
Thus, by mapping, the commutativity property curl (Ecurlv) = Ediv(curlτ v) holds for all smooth
functions on any tetrahedron K. To complete by a density argument, first note that since D(K̄)
is dense in H(curl ,K), smooth functions are dense in the space of traces of H(curl ). Thus,
for any v in X−1/2(Fl), taking an approximating sequence of smooth functions vn,

‖Ediv(curlτ vn)‖H(div) = ‖curl (Ecurlvn)‖H(div), by commutativity for smooth vn,

= ‖curl (Ecurlvn)‖L2(K)

≤ C‖vn‖X−1/2(Fl)
, by [7, Theorem 3.1],
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we find that the operator Ediv extends continuously to all curlτ X−1/2(Fl) and the commutativity
property holds there.

Proof of (2): This is a direct consequence of [7, Lemma 3.1] applied to each component of the
extension.

Proof of (3): This follows from item (2) and commutativity. Indeed, given any w in H−1/2(Fl),
decomposing it by Theorem 2.1 as w = curlτ v + θ with θ in H1/2(Fl) and v in X−1/2(Fl) we
have

‖Ediv
l w‖H(div) = ‖Ediv

l (curlτ v + θ)‖H(div)

= ‖curl (Ecurlv) + Ediv
l θ‖H(div), by item (1),

≤ ‖v‖X−1/2(Fl)
+ ‖Ediv

l θ‖H(div), by [7, Theorem 3.1],

≤ ‖v‖X−1/2(Fl)
+ ‖θ‖H1/2(Fl)

, by item (2),

≤ C‖w‖H−1/2(Fl)
, by Theorem 2.1.

Proof of (4): On the reference element, setting z = 0 in (3.1), it is obvious that

trcn(Edivw) = w

for all smooth functions w. The general statement follows by mapping and density of smooth
functions [8] in H(div).

Proof of (5): Since polynomial spaces are invariant under affine transformations, it suffices
to prove the statement for the extension on the reference tetrahedron given in (3.1). If w is in
Pp(Fl), then c0 + c1s+ c2t)w(s(x+ z), t(x+ z)) is a polynomial of degree at most p in x, y and z.
Clearly, after the integration in (3.1), which is over s and t, we continue to have a polynomial
of degree at most p in x, y, z. �

Remark 3.1. We had considered the operator Ediv previously in [6, Appendix B] in order to
present a technique of norm estimation using the Fourier transform (the expression there can
be brought to (3.1) by a change of variable). In particular, item (3) of Theorem 3.1 can also be
proved using such techniques.

4. Face corrections

Consider the normal trace of a function in H0,Fi(div) on the union of Fi and one other face,
say Fl ∪Fi. The extension of such a trace must have vanishing normal component on Fi. Hence
before we solve the full extension problem from ∂K, it is natural to consider the following two-
face problem: Given w in H−1/2

0,i (Fl) on Fl (which by definition is the normal trace on Fl of some
function in H0,Fi(div)), construct a polynomial extension of w from Fl into K such that the
normal trace of the extension vanishes on Fi.

Our approach to solve the two-face problem is by constructing a “face correction” operator.
Suppose w is a smooth function defined on the x-y face (denoted by F̂3, or just F̂ ) of the reference
tetrahedron K̂. We first extend it into K̂ by the primary extension to obtain Edivw. We need
an extension that has zero normal trace on the y-z face (F̂1). To this end, we develop a face
correction operator Ediv

F̂1
that does not alter the normal trace on F̂ but is such that Edivw−Ediv

F̂1
w
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has the zero normal trace on F̂1. Define

(4.1) Ediv
F̂1
w =

1
x+ z

∫ 1

0

∫ 1−t

0




2sz + (1− s)x
−t(x+ z)
(1− 3s)z


w(s(x+ z), t(x+ z) + y) ds dt.

We will comment on the derivation of this formula later (Remark 4.1).
Before we discuss the properties of this operator, it will be convenient to state its generalization

to any tetrahedron K using affine coordinates. To arrive at the generalization, let us rewrite (4.1)
using the change of variable x′ = s(x+ z), y′ = t(x+ z) + y as

Ediv
F̂1
w =

1
(x+ z)3

∫ x+z

0

∫ x+y+z−x′

y
Θ w(x′, y′) dy′ dx′.

where Θ ≡ Θ(x′, y′, x, y, z) is the vector kernel in (4.1) rewritten in the new variables. Let
(λ0, λ1, λ2, λ3) be the affine coordinates of (x, y, z). Observe that the region of integration above
can be expressed as T3(0, λ0, λ2). Let λ̃0, λ̃1, λ̃2 denote the affine coordinates of the integration
region T3(0, λ0, λ2) considered with its node enumeration inherited from F̂3. Then, simplifying Θ,

Θ = −2sz



−1
0
1


− t(x+ z)




0
1
0


− (s− 1)



x
0
z




= 2λ̃1λ3(gradλ0 × gradλ2)− λ̃2(λ1 + λ3)(gradλ3 × gradλ1)

− (λ̃1 − 1)
(
λ1(gradλ2 × gradλ3)− λ3(gradλ1 × gradλ2)

)

= 2λ̃1λ3(gradλ0 × gradλ2)− λ̃2(λ1 + λ3)(gradλ3 × gradλ1)

+ (λ̃0 + λ̃2) gradλ2 × (λ1 gradλ3 − λ3 gradλ1)

= 2λ̃1λ3(gradλ0 × gradλ2) + (λ̃0 gradλ2)× (λ1 gradλ3 − λ3 gradλ1)

− λ̃2

(
− λ1(gradλ3 × gradλ0) + λ3(gradλ1 × gradλ0)

)

= 2λ̃1λ3(gradλ0 × gradλ2)− (λ̃2 gradλ0 − λ̃0 gradλ2)× (λ1 gradλ3 − λ3 gradλ1).

This motivates the definition below of the operator Ediv
Fi,l

generalizing Ediv
F̂1

.
Returning to the two-face problem on Fi ∪ Fl of the general tetrahedron K mentioned in the

beginning of this section, suppose w is a given smooth function on Fl. Define the face correction
by

(4.2)

Ediv
Fi,l
w = (gradλk × gradλj)

λl
|Fl| (λi + λl)3

∫∫

Tl(0,λj ,λk)

λ̃i(s)w(s) ds

− (λl gradλi − λi gradλl)
2|Fl| (λi + λl)3

×
∫∫

Tl(0,λj ,λk)

(λ̃j gradλk − λ̃k gradλj)w(s) ds

for any indices (i, j, k) that are positively oriented with respect to l (in the sense defined in the
previous section). Note that the above expression is antisymmetric under transpositions of any
two of indices i, j, k. For negatively oriented (i, j, k), the face correction is defined to be the
above expression with opposite sign. From the discussion in the previous paragraph, it is clear
that the expression in (4.2) coincides with (4.1) when K = K̂, (i, l) = (1, 3), and (j, k) = (0, 2).
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The boundedness of this map is stated in the next lemma. The proof of all lemmas are in
Appendix A.

Lemma 4.1. Ediv
Fi,l

extends to a continuous linear operator from H
1/2
0,i (Fl) into H(div).

With the help of the face correction operator, we can now give an extension operator that
solves the two-face problem. It is defined by

(4.3) Ediv
i,l w = Ediv

l w − Ediv
Fi,l
w,

Recall that a similar extension for the H(curl ) case, denoted by Ecurl
i,l , was defined in [7]. There

is a commutativity property involving Ecurl
i,l and Ediv

i,l . In order to prove it, we will borrow a
homotopy operator from differential geometry [1] (typically used in proving the Poincaré lemma),
defined by

(4.4) Kav = (x− a)⊥
∫ 1

0
t v(t(x− a) + a) dt

where (
x
y

)⊥
=
(
y
−x

)
.

Here v(x, y) is a smooth function defined on F̂ and a is any point in F̂ or ∂F̂ . The utility of such
operators in the context of high order finite elements is already known [5, 9, 11]. In particular,
it is well known that the identity

(4.5) curlτ (Kaw) = w

holds for smooth functions w, and by density for a larger class of functions [9]. In other words,
Ka is a right inverse of curlτ .

Remark 4.1. In fact we used Ka in the very derivation of the expression for the face correc-
tion (4.1). In the H(curl ) case [7], we were able to derive the face correction Ecurl

F̂1
motivated

by the commutativity property

Ecurl
F̂1

(gradτ u) = grad(Egrad

F̂1
u).

In fact, we could guess the form of Ecurl
F̂1

by just computing the right hand side and expressing it
terms of gradτ u alone. For theH(div) case, we are again motivated by the target commutativity
property

(4.6) Ediv
F̂1

(curlτ v) = curl (Ecurl
F̂1
v).

However, our attempts at a similar elementary approach in the H(div) case succumbed to the
savagery of the calculations required, hence the entrance of Ka. Observe that if (4.6) holds,
then by (4.5), we must have

Ediv
F̂1
w = curlEcurl

F̂1
Kaw.

By simplifying the right hand side, we get an expression for Ediv
F̂1
w. These simplifications are

tedious and we do not display them here, but some of them reappear disguised in the proof of
the commutativity in the next proposition.
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The next proposition collects and proves all the properties of Ediv
i,l that we shall need. We

will use the following lemma in the proof of the proposition. The proof of the lemma is in
Appendix A.

Lemma 4.2. Suppose fxyz(s, t) is a smooth function of s, t, x, y, and z that is homogeneous of
degree minus one, i.e.,

fxyz
(s
r
,
t

r

)
=

1
r
fxyz(s, t).

Then for all smooth functions w(s, t), we have the following two identities:
∫ 1

0

∫∫

F̂

fxyz(s, t)w(rs(x+ z), rt(x+ z) + y) r ds dt dr(4.7)

=
∫∫

F̂

1− s− t
s+ t

fxyz(s, t) w(s(x+ z), t(x+ z) + y) ds dt,

∫ 1

0

∫∫

F̂

fxyz(s, t)w(rs(x+ y + z), rt(x+ y + z)) r ds dt dr(4.8)

=
∫∫

F̂

1− s− t
s+ t

fxyz(s, t) w(s(x+ y + z), t(x+ y + z)) ds dt.

Proposition 4.1. The following statements hold for Ediv
i,l :

(1) Commutativity: Ediv
i,l curlτ v = curl (Ecurl

i,l v) for all v ∈X−1/2
0,i (Fl).

(2) Continuity: Ediv
i,l is a continuous operator from H

−1/2
0,i (Fl) into H(div).

(3) Extension property: For all v in X−1/2
0,i (Fl),

Ri trcn(Ediv
i,l w) = 0 and Rl trcn(Ediv

i,l w) = w,

where R` is the restriction to F` defined previously (2.13)–(2.15).
(4) Polynomial preservation: If w is in Pp(Fl), then Ediv

i,l w is in P p(K).

Proof. Proof of (1): Because of the commutativity property for the primary extension established
in Theorem 3.1, it suffices to prove that

(4.9) Ediv
Fi,l

(curlτ v) = curl (Ecurl
Fi,l
v), for all v ∈X−1/2

0,i (Fl),

where Ecurl
Fi,l

is the face correction defined in [7]. Let v be in X−1/2
0,i (Fl). Using the stable trace

decomposition of [7], there is a ϕ in H
1/2
0,i (Fl) and ψ in H1/2

0,i (Fl) such that

(4.10) v = gradτ ϕ+ψ.

Recall that we have proved in [7] that

(4.11) Ecurl
Fi,l

(gradτ ϕ) = grad(Egrad
Fi,l

ϕ), for all ϕ ∈ H1/2
0,i (Fl).

Hence, substituting (4.10) into (4.9), we find that the proof of (4.9) will be finished if we prove
that

(4.12) Ediv
Fi,l

(curlτ ψ) = curl (Ecurl
Fi,l
ψ), for all ψ ∈H1/2

0,i (Fl).
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In fact, by density, we only need to prove the above identity for all infinitely differentiable ψ on
Fl that vanish on a neighborhood of the edge Ejk connecting vertices aj and ak.

Moving to the reference tetrahedron K̂, let ψ be a smooth function on F̂ that vanishes in
a neighborhood of the y-axis. Then w = curlτ ψ also vanishes in the same neighborhood. We
need to prove that

(4.13) Ediv
F̂1
w = curl (Ecurl

F̂1
ψ),

where Ecurl
F̂1

is the face correction on K̂ given in [7], namely

(4.14) Ecurl
F̂
v =

∫ 1

0

∫ 1−t

0




(3s− 1)z 3zt
0 2z

2zs+ x(1− s) 2zt− xt


 v(s(x+ z), y + t(x+ z))

x+ z
ds dt.

We first make the observation that in order to prove (4.13) it is enough to prove that

(4.15) Ediv
F̂1
w = curl (Ecurl

F̂1
Kaw)

holds for all points a = (0, β, 0) on the y-axis with 0 ≤ β ≤ 1. This is because

curlτ (ψ −Kaw) = curlτ ψ − curlτ Kaw = 0

by (4.5), which implies that there is a φ such that gradτ φ = ψ−Kaw. Moreover, since a is on
the y-axis, from the definition of Ka in (4.4), it is clear that the tangential component ψ−Kaw
vanishes on the y-axis. Hence φ can be chosen such that it vanishes on the y-axis. Consequently,
once we have proven (4.15), we have

Ediv
F̂1

curlτ ψ = curl (Ecurl
F̂1
Kaw)

= curl (Ecurl
F̂1

(ψ − gradτ φ))

= curl (Ecurl
F̂1
ψ)− curl (gradE

grad

F̂1
φ) by (4.11)

= curl (Ecurl
F̂1
ψ),

and (4.13) follows.
Therefore, let us now prove that (4.15) holds. Setting a = (α, β) in the x-y plane and

calculating using (4.14), we have

Ecurl
F̂
K(α,β)w =

1
x+ z

∫∫

F̂




(3s− 1)z 3zt
0 2z

2zs+ x(1− s) 2zt− xt



∫ 1

0

(
y + t(x+ z)− β
−s(x+ z) + α

)
r

w(r(s(x+ z)− α) + α, r(y + t(x+ z)− β) + β) dr ds dt.

Putting α = 0 and simplifying, we have

(4.16) Ecurl
F̂
K(0,β)w =

1
x+ z

∫∫

F̂

∫ 1

0

(
(y − β)p+ (x+ z)q

)
w̃β(x, y, z, r, s, t) r dr ds dt,

where w̃β(x, y, z, r, s, t) = w(rs(x+ z), r(y + t(x+ z)− β) + β),

p =




(3s− 1)z
0

x(1− s) + 2zs


 , q =



−zt
−2sz
xt


 .
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Next, we must compute the curl of the right hand side of (4.16):

curlEcurl
F̂
K(0,β)w =

∫∫

F̂

∫ 1

0

(
(y − β)

(
(curlp)w̃β + p× grad(w̃β)

x+ z
− p× w̃β grad(

1
x+ z

)
)

+
w̃β
x+ z



x(1 + s) + 4zs
−zt(x+ z)
−z(3s− 1)


− q × grad(w̃β)

)
r dr ds dt,(4.17)

where the gradient is with respect to x, y, and z. This gradient can be expressed alternately (by
chain rule) in terms of s and t derivatives as

(4.18) grad w̃β =
1

x+ z



s t
0 1
s t



(
∂sw(rs(x+ z), r(y + t(x+ z)− β) + β)
∂tw(rs(x+ z), r(y + t(x+ z)− β) + β)

)
.

We substitute (4.18) in (4.17). We do not display the resulting lengthy expression, but let us
denote it by f(x, y, z, β), i.e.,

f(x, y, z, β) ≡ [curlEcurl
F̂
K(0,β)w](x, y, z).

Before proceeding with further simplifications of f , let us make an observation. If β′ 6= β is
another number in [0, 1], then

(4.19) f(x, y, z, β) = f(x, y, z, β′).

This is because by (4.5), curlτ (K(0,β)w−K(0,β′)w) = 0, so we know that K(0,β)w−K(0,β′)w =
gradτ φ

′ for some φ′ that vanishes along the y-axis. Then, a consequence of (4.11) is that

curl
(
Ecurl
F̂1

(K(0,β)w −K(0,β′)w)
)

= curl
(
Ecurl
F̂1

gradτ φ
′) = curl (gradE

grad

F̂1
φ) = 0,

or in other words, (4.19) holds.
By virtue of (4.19), in order to prove that (4.15) holds for all a = (0, β), it suffices to show

that (4.15) holds with some choice of β that makes simplifications convenient. We will select
β = y (carefully noting that we must substitute β = y only after the derivatives in the definition
of f have been computed). Then, a number of terms in (4.17) with y − β as a factor vanish.
After some simplifications, setting w̃ ≡ (w̃β)|β=y ≡ w(rs(x+ z), rt(x+ z) + y), we have

f =
∫∫

F̂

∫ 1

0

rw̃

x+ z



x(1 + s) + 4zs
−zt(x+ z)
−z(3s− 1)


−



−2zs2 −(2zs+ x)t

(x+ z)st (x+ z)t2

2zs2 (2s− 1)zt


 r(gradst w̃)

x+ z
dr ds dt.

The last term above, when integrated by parts on F̂ , equals

∫ 1

0

∫∫

F̂

−rw̃
x+ z



−6zs− x
3t(x+ z)
6zs− z


 dr ds dt+

∫ 1

0

∫

∂F̂

rw̃

x+ z



−2zs2 −(2zs+ x)t

(x+ z)st (x+ z)t2

2zs2 (2s− 1)zt


νF̂ dµ dr,

where νF̂ is the outward unit normal on the boundary of F̂ in the x-y plane. Let us denote the
last term involving the integral over the boundary of F̂ by g. This term can be split into three
terms each involving an integral over one of the three edges of F̂ . But only the contribution
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from the hypotenuse Ĥ survives. This surviving integral can be transformed via a change of
variable as follows:

g =
∫ 1

0

∫

Ĥ

rw̃

x+ z



−2zs2 −(2zs+ x)t

(x+ z)st (x+ z)t2

2zs2 (2s− 1)zt



(

1
1

)
dµ dr,

=
∫ 1

0

∫ 1

0



−2zµ− x(1− µ)
(x+ z)(1− µ)
2zµ− z(1− µ)


 w̃ r dµ dr

=
∫ 1

0

∫ r

0



−2zs′ − x(r − s′)

(x+ z)(r − s′)
2zs′ − z(r − s′)


 w̃

ds′

r
dr (s′ = rµ)

=
∫ 1

0

∫ 1−t

0

1
(s+ t)(x+ z)



−2sz − tx
t(x+ z)
(2s− t)z


 w̃ ds dt (s = s′, t = r − s′).

Substituting this back into the expression for f , we notice that it now only remains to simplify
the triple integrals to double integrals. This is achieved through Lemma 4.2.

Applying Lemma 4.2 to each component of the triple integrals, we find that the simplification
of f(x, y, z, β) with β = y now reads as

f =
−1
x+ z

∫ 1

0

∫ 1−t

0

1− s− t
s+ t



s(x− 2z)
t(x+ z)

3zs


w(s(x+ z), t(x+ z) + y)

+
1

s+ t



−2sz − tx
t(x+ z)
(2s− t)z


w(s(x+ z), t(x+ z) + y) ds dt.

Combining the terms above, we obtain the expression for the face correction in (4.1), i.e.,
f = Ediv

F̂1
w. Summarizing, we have thus proved (4.15), from which (4.13) follows, which in turn

proves the required commutativity property.
Proof of (2): To prove the continuity, first decompose any w in H−1/2

0,i (Fl) using Theorem 2.1
as

w = curlτ v + θ

for some v in X−1/2
0,i (Fl) and θ in H

1/2
0,i (Fl). Then,

‖Ediv
i,l w‖H(div) = ‖curl (Ecurl

i,l v) + Ediv
i,l θ‖H(div), by commutativity,

≤ C
(
‖v‖

X
−1/2
0,i (Fl)

+ ‖θ‖
H

1/2
0,i (Fl)

)
, by [7, Prop. 4.1] and Lemma 4.1,

≤ C‖w‖
H
−1/2
0,i (Fl)

, by Theorem 2.1.

Proof of (3): First, consider the expression for the primary extension in affine coordinates,
namely (3.2). When calculating its normal component on Fi, since ni is parallel to gradλi,
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among the three summands involving cyclic permutations of (i, j, k), only one survives. Further-
more, since λi = 0 on face Fi we have

trcn(Ediv
l )
∣∣
Fi

=
1

|Fl|λ2
l

∫∫

Tl(0,λj ,λk)

−ni · λ̃i (gradλj × gradλk)w(s) ds.(4.20)

Next, observe that in the expression for the face correction (4.2), setting λi = 0 we have

trcn(Ediv
Fi,l
w)
∣∣
Fi

= ni · (gradλk × gradλj)
1

|Fl|λ2
l

∫∫

Tl(0,λj ,λk)

λ̃i(s)w(s) ds.(4.21)

Note that the term involving the Whitney form λi gradλl − λl gradλi in (4.2) does not con-
tribute above as its cross product with ni is zero on Fi. Subtracting (4.21) from (4.20) we
obtain

Ri trcn(Ediv
i,l w) = 0.

The second assertion on the normal trace on Fl is also easy to see using the affine coordinate
expression (4.2). On the face Fl, since λl = 0, the first term in (4.2) drops off. The second also
vanishes when calculating normal trace as nl × (λi gradλl − λl gradλi) = 0 on Fl. In other
words,

trcn(Ediv
Fi,l

)
∣∣
Fl

= 0.

Hence, by Theorem 3.1(4), we have Rl trcn(Ediv
i,l w) = w.

Proof of (4): It is enough to prove the polynomial preservation property on the reference ele-
ment. Hence let w(x, y) be in Pp(F̂ ). We already know that Edivw is in Pp(Kr) by Theorem 3.1.
Hence we only need to prove that Ediv

F̂1
w is in Pp(K̂). We proceed considering three cases:

Case of constants: If w(x, y) is a constant κ, then by (4.1),

Ediv
F̂1
w =

κ

x+ z

∫ 1

0

∫ 1−t

0




2sz + (1− s)x
−t(x+ z)
(1− 3s)z


 ds dt =

κ

x+ z




(x+ z)/3
−(x+ z)/6

0


 ,

which is a constant vector.
Case of one variable dependence: Suppose p > 0 and w(x, y) = qp(y) for some polynomial qp

in one variable y. Writing

qp(y) =
p∑

n=0

cny
n,

and using the binomial expansion, we find that there is a polynomial rp−1(y, z) of degree at most
p− 1 such that

qp(y + tη) =
p∑

n=0

cn(y + tz)n =
p∑

n=0

cn
(
yn + (n− 1)yn−1(tη) + . . .

)

= qp(y) + (tη) rp−1(y, tη),

or, in other words,

w(s(x+ z), y + t(x+ z)) = qp(y) + t(x+ z) rp−1(y, t(x+ z)).
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Observing that qp(y) is a quantity independent of the integration variables s and t, we find that

Ediv
F̂1
w = qp(y)Ediv

F̂1
(1) +

1
x+ z

∫ 1

0

∫ 1−t

0




2sz + (1− s)x
−t(x+ z)
(1− 3s)z


 t(x+ z) rp−1(y, t(x+ z)).

Canceling the common factor x+z from the last integral, we conclude that it gives a polynomial
of degree at most p in x, y, and z. The first term on the right hand side is a constant by the
previous case. Hence Ediv

F̂1
w is in Pp(K̂).

The general case: Any w in Pp(F̂ ) can be rewritten as

w(x, y) = qp(y) + xvp−1(x, y)

for some polynomial qp(y) of degree at most p in y and some vp−1 ∈ Pp−1(F̂ ). Then

Ediv
F̂1
w = Ediv

F̂1
(qp(y)) + Ediv

F̂1
(xvp−1(x, y))

Referring to (4.1), we find that the last term is an integral whose integrand has a factor s(x+ z)
which cancels with the denominator x + z in (4.1). Hence after integration with respect to s

and t, it gives a polynomial of degree at most p in x, y and z. The first term, namely Ediv
F̂1
qp, is

also in Pp(K̂) because of the previous case. �

5. Edge corrections

In the previous section we saw how to solve the two-face problem. This section is devoted to
constructing an extension operator that solves the three-face problem, which is the next inter-
mediate step towards solving the total extension problem. To describe the three-face problem,
consider a polynomial r on K whose normal trace w ≡ trcn(r) is zero on two faces Fi ∪ Fj .
Given the values of w on a third face Fl, the three-face problem is to find a extension (Ediv

ij,lw)
of w into K which is a polynomial of degree not more than r and whose normal trace coincides
with w on Fi ∪ Fj ∪ Fl. Of course, the extension operator must also extend continuously to the
appropriate infinite dimensional Sobolev space.

We will solve the three-face problem using an edge correction operator. On the reference
element K̂, the edge correction operator is

(5.1) Ediv
Ê
w =

∫ 1

0

∫ 1−t

0




2x(s− 1) + 3xt− ys− zs
−xt+ 2y(t− 1) + 3ys− zt

z(3(s+ t)− 2)


 w(s(x+ y + z), t(x+ y + z))

x+ y + z
ds dt.

Here Ê ≡ Ê03 denotes the edge of K̂ along the z-axis. This expression is derived using Ka and
the target commutativity property curl (Ecurl

Ê
v) = Ediv

Ê
(curlτ v) as motivation (where Ecurl

Ê
is

the H(curl )-edge correction operator defined in [7]).
As in previous sections, we now generalize this edge correction to an operator on any tetra-

hedron K using affine coordinates. To rewrite (5.1) using the barycentric coordinates λi of
(x, y, z) with respect to K̂, we first observe that the region of integration can be transformed
into Tl(0, 0, λ0) by the variable change x′ = s(x+y+z), y′ = t(x+y+z). Furthermore, denoting
the kernel by Φ, we can rewrite it using the barycentric coordinates λ̃0, λ̃1, λ̃2 of the subtriangle
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Tl(0, 0, λi) as

Φ ≡




2x(s− 1) + 3xt− ys− zs
−xt+ 2y(t− 1) + 3ys− zt

z(3(s+ t)− 2)




=
(
2λ1(1− λ̃1) + (λ2 + λ3)λ̃1 − 3λ1λ̃2

)
gradλ3 × gradλ2

+
(
(λ1 + λ3)λ̃2 + (2λ2(1− λ̃2)− 3λ2λ̃1)

)
gradλ1 × gradλ3

+ λ3(2− 3(λ̃1 + λ̃2)) gradλ2 × gradλ1.

Either by manipulating the above expression in affine coordinates, or by direct verification, we
can show that

Φ = (λ2 gradλ1 − λ1 gradλ2)× (λ̃0 gradλ3)

− (λ3 gradλ1 − λ1 gradλ3)× (λ̃2 gradλ0 + λ̃0 gradλ2)

+ (λ3 gradλ2 − λ2 gradλ3)× (λ̃1 gradλ0 + λ̃0 gradλ1).

As a result, we obtain the following general edge correction operator for the edge Eil connecting
vertices ai and al of a general tetrahedron K when the indices (i, j, k) are, as before, positively
oriented with respect to l:

(5.2)

Ediv
Eil,l

w =
λk gradλj − λj gradλk

2|Fl|(1− λi)3
×

∫∫

Tl(0,0,λi)

(λ̃i gradλl) w(s) ds

− λl gradλj − λj gradλl
2|Fl|(1− λi)3

×
∫∫

Tl(0,0,λi)

(λ̃k gradλi + λ̃i gradλk) w(s) ds

+
λl gradλk − λk gradλl

2|Fl|(1− λi)3
×

∫∫

Tl(0,0,λi)

(λ̃j gradλi + λ̃i gradλj) w(s) ds.

For negatively oriented indices, the correction operator is defined with the sign reversed. With
this correction operator, we can provide the solution for the three-face problem through the
following extension operator:

(5.3) Ediv
ij,l = Ediv

l − Ediv
Fi,l
− Ediv

Fj ,l
+ Ediv

Ekl,l
.

As in the case of the face correction, to analyze the continuity of this operator, we must first
establish a continuity property in a positive order Sobolev space, as stated in the next lemma
(proved in Appendix A).

Lemma 5.1. Ediv
ij,l is a continuous operator from H

1/2
0,ij(Fl) into H(div).

That Ediv
ij,l indeed solves the three-face problem is the result of the next proposition.

Proposition 5.1. The following holds for the above defined Ediv
ij,l:

(1) Commutativity: Ediv
ij,l(curlτ v) = curl (Ecurl

ij,l v) for all v ∈X−1/2
0,ij (Fl).

(2) Continuity: Ediv
ij,l extends to a continuous operator from H

−1/2
0,ij (Fl) into H(div).
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(3) Extension property: For all w ∈ H−1/2
0,ij (Fl),

Ri trcn(Ediv
ij,lw) = 0, Rj trcn(Ediv

ij,lw) = 0, Rl trcn(Ecurl
ij,l w) = w.

(4) Polynomial preservation: If w is in Pp(Fl), then Ediv
ji,lw is in P p(K).

Proof. Proof of (1): As in the beginning of the proof of Proposition 4.1(1), we first use (i) the
commutativity properties of the primary extension (Theorem 3.1(1)) and the face correction
(Proposition 4.1(1)), (ii) the commutativity property

Ecurl
Fi,l

(gradτ ϕ) = grad(Egrad
Fi,l

ϕ) for all ϕ ∈ H1/2
0,ij(Fl),

proven in [7], and (iii) the stable decomposition

v = gradτ ϕ+ψ, with ϕ ∈ H1/2
0,ij(Fl), ψ ∈H1/2

0,ij(Fl),

also proved in [7], to conclude that it is enough to prove that Ediv
Fi,l

satisfies

(5.4) Ediv
Ekl,l

(curlτ ψ) = curl (Ecurl
Ekl,l

ψ)

for all smooth ψ that vanishes in a neighborhood of the edges Eik and Ejk.
We shall again use Ka, now with a set to the origin. Moving to the reference tetrahedron,

we make the second observation that it is enough to prove that

(5.5) Ediv
Ê
w = curlEcurl

Ê
K(0,0)w

for all smooth w that vanishes in a neighborhood of the x and y-axes. That (5.5) implies (5.4)
is proved by the same type of argument as in the proof of Proposition 4.1 (see (4.15)) so we do
not repeat. Let us now prove (5.5).

Recall the expression for Ecurl
Ê

from [7]. It can be rewritten as

Ecurl
Ê
v =

∫∫

F̂




(3s− 1)z 3zt
3zs z(3t− 1)

x(1− s)− ys+ 2zs −xt+ y(1− t) + 2zt


 v(s(x+ y + z), t(x+ y + z))

x+ y + z
ds dt.

Setting v = K(0,0)w and simplifying, we have

Ecurl
Ê
K(0,0)w =

∫∫

F̂

∫ 1

0



−tz
sz

xt− ys


w(rs(x+ y + z), rt(x+ y + z)) r dr ds dt.

We must now compute the curl of this expression. Let p = (−tz, sz, xt − ys)t and w̃(s, t) ≡
w(rs(x+ y + z), rt(x+ y + z)). Then using

curl (w̃p) = w̃ curlp− p× grad w̃

and transforming the x, y, z-derivatives to s, t derivatives via

gradw(rs(x+ y + z), rt(x+ y + z)) =
1

x+ y + z



s t
s t
s t


gradst w̃(s, t),



EXTENSION OPERATORS 22

(where gradst w̃ is a column vector with the s and t derivatives of w̃ as its two components) we
find that

curlEcurl
Ê
K(0,0)w =

∫∫

F̂

∫ 1

0

(
− p× grad w̃ + w̃ curlp

)
r dr ds dt

=
∫∫

F̂

∫ 1

0




(xt− ys− zs) s (xt− ys− zs) t
(ys− xt− zt) s (ys− xt− zt) t
z (s+ t) s z (s+ t) t


 r gradst w̃

x+ y + z
dr ds dt

−
∫∫

F̂

∫ 1

0




2s
2t
0


 w̃ r ds dt dr.

Integrating by parts the first term on the right hand side above,

curlEcurl
Ê
K(0,0)w =

∫ 1

0

∫

∂F̂




(xt− ys− zs) s (xt− ys− zs) t
(ys− xt− zt) s (ys− xt− zt) t
z (s+ t) s z (s+ t) t


νF̂ (µ)

r w̃

x+ y + z
dµ dr

+
∫ 1

0

∫∫

F̂



ys− xt+ zs
xt− ys+ zt
−z(s+ t)


 3r w̃
x+ y + z

ds dt dr −
∫ 1

0

∫∫

F̂




2s
2t
0


 w̃ r ds dt dr.

In the integral over the boundary ∂F̂ , only the part along the hypotenuse survives. We then
use a variable change and transform this surviving integral as in the proof of Proposition 4.1(1).
We also combine the last two integrals into one. Thus,

curlEcurl
Ê
K(0,0)w =

∫ 1

0

∫∫

F̂



−x(3t+ 2s) + ys+ zs
xt− y(3s+ 2t) + zt
−3 z(s+ t)


 r w̃

x+ y + z
ds dt dr

+
∫∫

F̂



xt− ys− zs
−xt+ ys− zt

z(s+ t)


 w(s(x+ y + z), t(x+ y + z))

(s+ t)(x+ y + z)
ds dt

Finally, we apply Lemma 4.2 to simplify the triple integral into a double integral by homogeneity.
The result is

curlEcurl
Ê
K(0,0)w =

=
∫∫

F̂

(1− s− t
s+ t

)


−x(3t+ 2s) + ys+ zs
xt− y(3s+ 2t) + zt
−3 z(s+ t)


 w(s(x+ y + z), t(x+ y + z))

x+ y + z
ds dt

+
∫∫

F̂

1
s+ t



xt− ys− zs
−xt+ ys− zt

z(s+ t)


 w(s(x+ y + z), t(x+ y + z))

x+ y + z
ds dt.

=
∫∫

F̂

−1
s+ t




(s+ t)
(
2x(1− s)− 3xt+ ys+ zs

)

(s+ t)
(
xt+ 2y(1− t)− 3ys+ zt

)

z(s+ t)(2− 3(s+ t))


 w(s(x+ y + z), t(x+ y + z))

x+ y + z
ds dt,
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which is the same as Ediv
Ê
w. This proves (5.5) and consequently the required commutativity

property.
Proof of (2): The idea is the same as that of the proof of the commutativity of the two-face

extension. We decompose any w in H−1/2
0,ij (Fl) using Theorem 2.1 as w = curlτ v+ θ for some v

in X−1/2
0,ji (Fl) and θ in H

1/2
0,ij(Fl). Then,

‖Ediv
ij,lw‖H(div) = ‖curl (Ecurl

ij,l v) + Ediv
ij,lθ‖H(div), by commutativity,

≤ C
(
‖v‖

X
−1/2
0,ij (Fl)

+ ‖θ‖
H

1/2
0,ij(Fl)

)
, by [7, Prop. 5.1] and Lemma 5.1,

≤ C‖w‖
H
−1/2
0,ij (Fl)

, by Theorem 2.1.

Proof of (3): To prove that

(5.6) Ri trcn(Ediv
ij,lw) = 0,

we consider the expression for the edge correction Ediv
Ekl,l

. This expression can be obtained
from (5.2) either by a cyclic permutation of (i, j, k) (preserving the positive orientation) or by
interchanging i and k in (5.2) and then switching signs:

(5.7)

Ediv
Ekl,l

w =− λi gradλj − λj gradλi
2|Fl|(1− λk)3

×
∫∫

Tl(0,0,λk)

(λ̃k gradλl) w(s) ds

+
λl gradλj − λj gradλl

2|Fl|(1− λk)3
×

∫∫

Tl(0,0,λk)

(λ̃i gradλk + λ̃k gradλi) w(s) ds

− λl gradλi − λi gradλl
2|Fl|(1− λk)3

×
∫∫

Tl(0,0,λk)

(λ̃j gradλk + λ̃k gradλj) w(s) ds

Also note that from (4.2), by transposition of i, j followed by a change of sign, we have

(5.8)

Ediv
Fj ,l

w = − (gradλk × gradλi)
λl

|Fl|(λi + λl)3

∫∫

Tl(0,λi,λk)

λ̃j(s)w(s) ds

+
(λl gradλj − λj gradλl)

2|Fl|(λj + λl)3
×
∫∫

Tl(0,λi,λk)

(λ̃i gradλk − λ̃k gradλi)w(s) ds.

If ni is the outward unit normal on the face Fi, then since

λi = 0, λi + λj = 1− λk, and ni × (λi gradλm − λm gradλi)
∣∣
Fi

= 0,

we find from (5.7) and (5.8) that

trcn(Ediv
Ekl,l

w)
∣∣
Fi

= ni ·
λl gradλj − λj gradλl

2|Fl|(1− λk)3
×

∫∫

Tl(0,0,λk)

(λ̃i gradλk + λ̃k gradλi) w(s) ds

= trcn(Ediv
Fj ,l

w)
∣∣
Fi

This together with the extension properties of the two-face extension operator (Proposition 4.1(3))
proves (5.6).
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To prove the next identity, namely Rj trcn(Ediv
ij,lw) = 0, we use the same type of arguments to

get

trcn(Ediv
Ekl,l

w)
∣∣
Fj

= −nj ·
λl gradλi − λi gradλl

2|Fl|(1− λk)3
×
∫∫

Tl(0,0,λk)

(λ̃j gradλk + λ̃k gradλj) w(s) ds

= trcn(Ediv
Fi,l

)
∣∣
Fj
, by (4.2).

The identity follows by using Proposition 4.1(3) again.
To prove the last identity Rl trcn(Ediv

ij,lw) = w, we only need to observe that the face correc-
tions, written out in (5.8) and (4.2), and the edge correction in (5.7) have vanishing normal
components on Fl. The identity then follows from the extension property of the primary exten-
sion as given in Theorem 3.1(4).

Proof of (4): Any w in Pp(F̂ ) can be expressed as κ+xup−1 + yvp−1 for some constant κ and
some polynomials up−1 and vp−1 of degree at most p− 1,

Ediv
Ê
w = Ediv

Ê
κ+ Ediv

Ê
(xup−1) + Ediv

Ê
(yvp−1).

The last two terms give polynomials because the denominator x+ y + z in (5.1) is canceled off
by a factor of either s(x+ y + z) or t(x+ y + z). For the remaining term Ediv

Ê
κ, we have

Ediv
Ê
κ =

κ

x+ y + z

∫ 1

0

∫ 1−t

0




2x(1− s)− 3xt+ ys+ zs
xt+ 2y(1− t)− 3ys+ zt

z(2− 3(s+ t))


 ds dt

=
κ

x+ y + z




(x+ y + z)/6
(x+ y + z)/6

0


 ,

which is a constant vector. Hence the result follows. �

6. Vertex corrections

In this section, as the last intermediate step towards solving the tetrahedral H(div) polyno-
mial extension problem, we consider the four-face problem: Given a polynomial w of zero mean
on any face Fl, find an extending polynomial whose normal traces on all other faces are zero.
As in the previous cases, the extension should not increase the degree and must be extendable
continuously to the appropriate Sobolev space of traces, namely the trace space H

−1/2
0,ijk (Fl).

Roughly speaking, a function w in H−1/2
0,ijk (Fl) is the normal trace on Fl of a function in H(div)

which has zero normal traces on the remaining faces. When solving the four-face problem, we
are seeking an extension operator that extends such w to a function that continues to have
vanishing normal trace on the remaining three faces.

To solve the four face problem, we need a vertex correction operator. Define the vertex
correction for l-th vertex by

(6.1) Ediv
Vl
w =

∑

m∈{i,j,k}

∑

σ∈S(m)

λσ1(gradλσ2 × gradλσ3)
|Fl|

∫∫

Fl

λ̃m(s)w(s) ds.
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Figure 1. Positively oriented cycles of indices

To solve the four face problem, we need a vertex correction operator. Let i, j, k, l be usual
vertex indices of a general tetrahedron. For every index i, let S(i) denote the set of (three)
cyclic permutations of the remaining three indices j, k, l ordered so that they are positively
oriented with respect to i (see Figure 1). Define the vertex correction for l-th vertex by

(6.1) Ediv
Vl

w = 2
∑

m∈{i,j,k}

∑

σ∈S(m)

λσ1(grad λσ2 × gradλσ3)
∫∫

Fl

λ̃m(s)w(s) ds.

The extension that solves the four-face problem can now be given by

(6.2) Ediv
ijk,lv = Ediv

l v − Ediv
Vl

v −
∑

m∈{i,j,k}

(
Ediv

Fm,lv − Ediv
Eml,l

v
)
,

where, we have assumed that (i, j, k) is positively oriented with respect to l, as before.

Proposition 6.1. The operator Ediv
ijk,l satisfies the following:

(1) Commutativity: Ediv
ijk,l(curlτ v) = curl (Ecurl

ijk,lv) for all v ∈ X
−1/2
0,ijk (Fl).

(2) Continuity: Ediv
ijk,l is a continuous map from H

−1/2
0,ijk (Fl) into H(div).

(3) Extension property: For all w ∈ H
−1/2
0,ijk (Fl), we have

Rl trcn(Ediv
ijk,lw) = w,

Ri trcn(Ediv
ijk,lw) = Rj trcn(Ediv

ijk,lw) = Rk trcn(Ediv
ijk,lw) = 0.

(4) Polynomial preservation: Suppose w is in Pp(Fl), then Ediv
ijk,lw is in Pp(K).

Proof. Proof of (1): First, we observe that it is enough to prove that

(6.3) Ediv
Vl

(curlτ ψ) = curl (Ecurl
Vl

ψ)

for all smooth ψ that is compactly supported in Fl. This follows by the same type of
arguments detailed in beginning of the proof of Proposition 4.1(1). The only differences now
are that we should use the commutativity and stable decomposition properties appropriate
for this case, namely, the commutativity property

Ecurl
Vl

(gradτ ϕ) = grad(Egrad
Vl

ϕ) for all ϕ ∈ H
1/2
0,ijk(Fl),

proven in [7], and the stable decomposition

v = gradτ ϕ + ψ, with ϕ ∈ H
1/2
0,ijk(Fl), ψ ∈ H

1/2
0,ijk(Fl),

also proven in [7].
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The extension that solves the four-face problem can now be given by

(6.2) Ediv
ijk,lv = Ediv

l v − Ediv
Vl
v −

∑

m∈{i,j,k}

(
Ediv
Fm,lv − Ediv

Eml,l
v
)
,

where, as usual, we have assumed that (i, j, k) is positively oriented with respect to l.

Proposition 6.1. The operator Ediv
ijk,l satisfies the following:

(1) Commutativity: Ediv
ijk,l(curlτ v) = curl (Ecurl

ijk,lv) for all v ∈X−1/2
0,ijk (Fl).

(2) Continuity: Ediv
ijk,l is a continuous map from H

−1/2
0,ijk (Fl) into H(div).

(3) Extension property: For all w ∈ H−1/2
0,ijk (Fl), we have

Rl trcn(Ediv
ijk,lw) = w,

Ri trcn(Ediv
ijk,lw) = Rj trcn(Ediv

ijk,lw) = Rk trcn(Ediv
ijk,lw) = 0.

(4) Polynomial preservation: Suppose w is in Pp(Fl), then Ediv
ijk,lw is in Pp(K).

Proof. Proof of (1): First, we observe that it is enough to prove that

(6.3) Ediv
Vl

(curlτ ψ) = curl (Ecurl
Vl
ψ)

for all smooth ψ that is compactly supported in Fl. This follows by the same type of arguments
detailed in beginning of the proof of Proposition 4.1(1). The only differences now are that we
should use the commutativity and stable decomposition properties appropriate for this case,
namely, the commutativity property

Ecurl
Vl

(gradτ ϕ) = grad(Egrad
Vl

ϕ) for all ϕ ∈ H1/2
0,ijk(Fl),

proven in [7], and the stable decomposition

v = gradτ ϕ+ψ, with ϕ ∈ H1/2
0,ijk(Fl), ψ ∈H1/2

0,ijk(Fl),

also proven in [7].
To prove (6.3), it will be convenient to go to the reference tetrahedron K̂. Setting l = 3 and

(i, j, k) = (1, 2, 0) in (6.1), we find the expression for the vertex correction on K̂ corresponding
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to the vertex â3 ≡ V̂ . Simplifications are facilitated by the identity

(6.4) x− â1 =
∑

σ∈S(1)

−λσ1(gradλσ2 × gradλσ3), for all x ∈ K̂.

Using also two other similar identities associated to vertices â0 and â2, we have

Ediv
V̂
w = 2

∫ 1

0

∫ 1−s

0

(
− s



x− 1
y
z


− t




x
y − 1
z


−



x
y
z


 (1− s− t)

)
w(s) ds

= 2
∫ 1

0

∫ 1−s

0



s− x
t− y
−z


w(s, t) ds dt.(6.5)

Recalling the expression for the H(curl ) vertex correction [7] and computing the curl,

curl (Ecurl
V̂
ψ) = curl

∫∫

F̂



−z 0
0 −z

x− z y − t


ψ ds dt (by the expression in [7])

= 2
∫∫

F̂



ψ2

−ψ1

0


 ds dt (where (ψ1, ψ2)t ≡ ψ)

= 2
∫∫

F̂



−s ∂sψ2

t ∂tψ1

0


 ds dt (by integration by parts)

= 2
∫∫

F̂



s (∂tψ1 − ∂sψ2)
t (∂tψ1 − ∂sψ2)

0


 ds dt (because ψ1 and ψ2 are zero on ∂F̂ ).

Note that curlτ ψ has zero mean on Fl. This is simply because curlτ ψ = n · curlw for some
smooth function w on K whose normal trace on Fijk vanishes, and curlw is divergence free.
Hence,

curl (Ecurl
V̂
ψ) = 2

∫∫

F̂



s− x
t− y
−z


 curlτ ψ ds dt as the mean of curlτ ψ is 0

= Ediv
V̂

(curlτ ψ) by (6.5).

This proves the commutativity property.
Proof of (2): The continuity of the vertex correction operator from the positive order Sobolev

space H
1/2
0,ijk(Fl) into H(div) is obvious. Hence, decomposing any given w in H

−1/2
0,ijk (Fl) by

Theorem 2.1 as w = curlτ v + ϑ for some v in X−1/2
0,ijk (Fl) and ϑ in H

1/2
0,ijk(Fl), we have

‖Ediv
ijk,lw‖H(div) = ‖curl (Ediv

ijk,lv) + Ediv
ijk,lϑ‖H(div), by commutativity

≤ C
(
‖v‖

X
−1/2
0,ijk (Fl)

+ ‖ϑ‖
H

1/2
0,ijk(Fl)

)
, by [7],

≤ C‖w‖
H
−1/2
0,ijk (Fl)

, by the decomposition’s stability.
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Proof of (3): First, note that all the correction operators in (6.2) have zero normal trace on
Fl. This follows from Propositions 4.1 and 5.1 for the face and edge correction. The vertex
correction also has zero normal trace. This is most easily seen from (6.5), recalling the fact
that all w in H

−1/2
0,ijk (Fl) have zero mean. Hence the nonzero trace contribution comes from the

primary extension, i.e.,

Rl trcn(Ediv
ijk,lw) = Rl trcn(Ediv

l w) = w

by Theorem 3.1.
Next, consider the trace on face Fi. Rewriting (6.2) as

(6.6) Ediv
ijk,lw = Ediv

i,l w − (Ediv
Fj ,l

w − Ediv
Ekl,l

w)− (Ediv
Fk,l

w − Ediv
Ejl,l

w) + (Ediv
Eil,l

w − Ediv
Vl
w),

observe that the first three terms on the right hand side has vanishing normal traces on Fi.
Indeed,

trcn(Ediv
i,l w)

∣∣
Fl

= 0, by Proposition 4.1(3), and

trcn(Ediv
Ekl,l

w − Ediv
Fj ,l

w)|Fi = trcn(Ediv
i,l w − Ediv

j,l w)|Fi = 0, by Propositions 4.1(3) and 5.1(3),

and similarly for the third term. For the fourth term in (6.6), let us first calculate the normal
trace of the edge correction on Fi by substituting λi = 0 in (5.2). We can omit terms orthogonal
to gradλi as the outward normal ni is parallel to gradλi. Thus,

trcn(Ediv
Eil,l

w)|Fi = ni ·
(
λk gradλj × gradλl − λj gradλk × gradλl
−λl gradλj × gradλk + λj gradλl × gradλk

+λl gradλk × gradλj − λk gradλl × gradλj
) 1

2|Fl|

∫∫

Fl

λ̃iw ds

= 2ni ·
∑

σ∈S(i)

λσ1 (gradλσ2 × gradλσ3)
1

2|Fl|

∫∫

Fl

λ̃iw ds

Now, consider the summands in (6.1). The normal component on Fi of the summands for
m = j, k vanish (this may be readily seen using an identity like (6.4) which also holds on any
tetrahedron, with a minor modification). Hence the sum reduces to simply the m = i summand,
so

trcn(Ediv
Eil,l

w)|Fi = trcn(Ediv
Vl
w)|Fi .

This proves that

(6.7) Ri trcn(Ediv
ijk,lw) = 0.

Since Ediv
ijk,lw is unchanged under a cyclic permutation of (i, j, k), we conclude that (6.7) implies

that Rj trcn(Ediv
ijk,lw) and Rk trcn(Ediv

ijk,lw) also vanish.

Proof of (4): For the p = 0 case, note that the only constant polynomial in H−1/2
0,ijk (Fl) is zero.

In this case, Ediv
ijk,lw is obviously zero. The result is obvious also for p > 0, because the vertex

correction is always linear. �
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7. The main result

Now we are in a position to construct an H(div)-polynomial extension that extends traces
given on the whole boundary of a general tetrahedron.

Let w be any function in the trace space ofH(div) on ∂K, i.e., w ∈ H−1/2(∂K). We construct
the extension as in the H1 and H(curl ) cases [6, 7]. Define

Vi = Ediv
i w,

Vj = Ediv
i,j wj , where wj = Rj(w − trcn Vi),

Vk = Ediv
ij,kwk, where wk = Rk(w − trcn Vi − trcn Vj),

Vl = Ediv
ijk,lwl, where wl = Rl(w − trcn Vi − trcn Vj − trcn Vk).

Here Ri is the restriction to face Fi defined earlier (see (2.13)), and the extensions Ediv
i , Ediv

i,j ,
Ediv
ij,k, and Ecurl

ijk,l are as exhibited in (3.2), (4.3), (5.3), and (6.2), respectively. The total extension
operator is then defined by

(7.1) Ediv
K w = Vi + Vj + Vk + Vl.

With the help of the previously established results and the one additional lemma below, we can
prove the required properties of this operator.

Lemma 7.1. The functions wj, wk, and wl defined above satisfy

‖wj‖H−1/2
0,i (Fj)

≤ C‖w‖H−1/2(∂K),

‖wk‖H−1/2
0,ij (Fk)

≤ C‖w‖H−1/2(∂K),

‖wl‖H−1/2
0,ijk (Fl)

≤ C‖w‖H−1/2(∂K).

Theorem 7.1. The operator Ediv
K in (7.1) has the following properties:

(1) Continuity: Ediv
K is a continuous operator from H−1/2(∂K) into H(div).

(2) Commutativity: curl (Ecurl
K v) = Ediv

K (curlτ v) for all tangential traces v of H(curl )-
functions, i.e., for all v in X−1/2(∂K).

(3) Extension property: The normal trace trcn(Ediv
K w) coincides with w, for all w in H−1/2(∂K).

(4) Polynomial preservation: If w is a function on ∂K such that on each face w|Fi is in
Pp(Fi), then the extension Ediv

K w is in P p(K). In addition, if the mean of w on ∂K is
zero, then the extension Ediv

K w is a divergence free polynomial in P p(K).

Proof. The proof follows by combining the previous results.
Proof of (1): The proof of continuity follows by combining the continuity of v 7→ wm for m =

j, k, l (Lemma 7.1), the continuity of the primary extension (Theorem 3.1), and the continuity
of the intermediate extension operators Ecurl

i,j (Proposition 4.1), Ecurl
ij,k (Proposition 5.1) and Ecurl

ijk,l

(Proposition 6.1).
Proof of (2): The proof of the commutativity property similarly follows because each of the

intermediate operators satisfy commutativity properties, by Propositions 4.1, 5.1, and 6.1.
Proof of (3): This follows from the extension properties of the primary, the two-face, the

three-face, and the four-face extensions.
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Proof of (4): The polynomial preservation property is obvious from the previously established
polynomial preservation properties of all the intermediate extensions. In addition, if w has zero
mean, then w = trcn(r) for some divergence free function r. There is a vector potential ψ such
that r = curlψ. Hence

div Ediv
K w = div Ediv

K (n · r) = div Ediv
K (n · curlψ)

= div Ediv
K (curlτ (trcτ ψ))

= div curl (Ecurl
K trcτ ψ) = 0,

hence the last assertion of the theorem. �

8. Conclusion

Combining the results of this paper with those of the previous two parts [6, 7], we conclude
that we have constructed continuous polynomial extension operators E

grad
K , Ecurl

K , Ediv
K on a

tetrahedron K such that the following diagram commutes:

(8.1)

H1/2(∂K)
gradτ−−−−→ X−1/2(∂K) curlτ−−−−→ H−1/2(∂K)

yEgrad
K

yEcurl
K

yEdiv
K

H1(K)
grad−−−−→ H(curl ) curl−−−−→ H(div).

Appendix A. Proofs of the lemmas

We prove all the lemmas stated in the previous sections, in the order in which they appeared.
We will need to use the continuity of certain operators discussed in [6]. Keeping the same
notation as in [6], recall the definitions

Aθ3u (y, z) = 2
∫ 1

0

∫ 1−s

0
θ(s, t) u(sz, y + tz) dt ds,(A.1)

Bθ
2u (z) = 2

∫ 1

0

∫ 1−s

0
θ(s, t)u(sz, tz) dt ds.(A.2)

Jθφ (x, y, z) = θ(x, y, z)φ(y, x+ z),(A.3)

Lθψ (x, y, z) = θ(x, y, z)ψ(x+ y + z),(A.4)

Proof of Lemma 4.1. First, we investigate the continuity of the face correction, using its
expression (4.1) for the reference tetrahedron. We find that it can be rewritten in terms of the
above operators as follows:

(A.5) Ediv
F̂1
w =



Jβ2 ◦Aθ113 w + Jβ1 ◦Aθ123 w

Jβ0 ◦Aθ213 w

Jβ1 ◦Aθ313 w




where
θ11 = s, θ12 =

1− s
2

, β0 = 1, β1 =
x

x+ z
,

θ21 = − t
2
, θ31 =

1− 3s
2

, β2 =
x

x+ z
.
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Now we use the continuity properties of Jβ and Aθ3 proved in [6]. Specifically, since all the βi’s
are in L∞(K̂), by [6, Lemma A.3],

Jβi : L2
z(F̂1) 7−→ L2(K̂)

is continuous. Additionally, computing the gradient of Jβi (as already done in [7, Appendix A]),
and applying [6, Lemma A.3] to each component, we find that

(A.6) Jβi : L2
1/z(F̂1) ∩H1

z (F̂1) 7−→ H1(K̂)

is continuous. By [6, Lemma A.1],

(A.7) Aθmn3 : L2
1/x(F̂3) 7−→ L2

1/z(F̂1) ∩H1
z (F̂1)

is continuous. Combining the continuity of the maps in (A.6) and (A.7), we get that each of the
composite operators in (A.5) of the form Jβm ◦ A

θij
3 is continuous from L2

1/x(F̂3) into H1(K̂).
Transferring the result to a general tetrahedron, we find that the operator

(A.8) Ediv
Fi,l

: L2
1/λi

(Fl) 7−→ H1(K)

is continuous. By Theorem 3.1(2) we know that

(A.9) Ediv
l : H1/2(Fl) 7−→ H1(K)

is continuous. Since H1/2
0,i (Fl) = H1/2(Fl) ∩ L1/λi(Fl), we obtain the continuity stated in the

lemma by combining (A.8) and (A.9). �

Proof of Lemma 4.2. We only prove the first identity (4.7) of the lemma, as the proof of the
second identity is similar. We begin from the left hand side of (4.7), applying the variable change
s′ = rs, t′ = rt. Let w̃ = w(rs(x+ z), rt(x+ z) + y) = w(s′(x+ z), t′(x+ z) + y). Then

∫ 1

0

∫∫

F̂

fxyz(s, t) w̃ r ds dt dr =
∫ 1

0

∫ r

0

∫ r−s′

0
fxyz

(s′
r
,
t′

r

)
w̃

dt′ ds′

r
dr

=
∫ 1

0

∫ r

0

∫ r−s′

0

1
r2
fxyz

(
s′, t′) w̃ dt′ ds′ dr (by homogeneity)

=
∫ 1

0

d

dr
(−1
r

)
∫ r

0

∫ r−s′

0
fxyz(s′, t′) w̃ dt′ ds′ dr

=
∫ 1

0

1
r

∂

∂r

∫ r

0

∫ r−s′

0
fxyz(s′, t′) w̃ dt′ ds′ dr (by integration by parts)

−
∫ 1

0

∫ 1−s′

0
fxyz(s′, t′) w̃ dt′ ds′ + lim

r→0

1
r

∫ r

0

∫ r−s′

0
fxyz(s′, t′) w̃ dt′ ds′.(A.10)
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Since fw̃ is a bounded (smooth) function, we immediately see that the last limit is zero. Carrying
the r derivative inside the integral in the first term above and simplifying,

∫ 1

0

1
r

∂

∂r

∫ r

0

∫ r−s′

0
fxyz(s′, t′) w̃ dt′ ds′ dr =

=
∫ 1

0

1
r

∫ r

0
fxyz(s′, r − s′)w(s′(x+ z), (r − s′)(x+ z) + y) ds′ dr

=
∫∫

F̂

fxyz(s, t)
s+ t

w(s(x+ z), t(x+ z) + y) ds dt,

where in the last step we have use the variable change s = s′, t = r − s′. Using these in (A.10)
we have
∫ 1

0

1
r

∂

∂r

∫ r

0

∫ r−s′

0
fxyz(s′, t′) w̃ dt′ ds′ dr =

=
∫∫

F̂

fxyz(s, t)
s+ t

w(s(x+ z), t(x+ z) + y) ds dt−
∫∫

F̂

fxyz(s, t)w(s(x+ z), t(x+ z) + y) ds dt,

thus finishing the proof of (4.7). �

Proof of Lemma 5.1. Let us rewrite the edge correction operator using the operators Lβ and
Bθ

2 of (A.2) and (A.4):

(A.11) Ediv
Ê

=



Lβ1 ◦Bθ11

2 + Lβ2 ◦Bθ12
2 + Lβ3 ◦Bθ13

2

Lβ1 ◦Bθ21
2 + Lβ2 ◦Bθ22

2 + Lβ3 ◦Bθ23
2

Lβ3 ◦Bθ31


 .

where

θ11 = s− 1 +
3t
2
, θ12 = −s

2
= θ13, β1 =

x

x+ y + z
, β2 =

y

x+ y + z
,

θ21 = − t
2

= θ23, θ31 =
3
2

(s+ t)− 1, β3 =
z

x+ y + z
.

By [6, Lemma A.4] applied to Lβm(·) and the components of gradLβm(·) (see [7, Appendix A]
where this is explicitly done), we find that

(A.12) Lβm : L2(Ê) ∩H1
z2(Ê) 7−→ H1(K̂)

is continuous. For the operators Bθij
2 , we have by [6, Lemma A.2],

Bθmn
2 : L2

1/x(F̂3) ∩ L2
1/y(F̂3) 7−→ L2(Ê03) ∩H1

z2(Ê03)

is continuous. Therefore, referring to (A.11), we conclude that Ediv
Ê

: L2
1/x(F̂ ) ∩ L2

1/y(F̂ ) 7→
H1(K̂) is continuous. In other words, on a general tetrahedron,

(A.13) Ediv
Ekl,l

: L2
1/λi

(Fl) ∩ L2
1/λj

(Fl) 7−→H1(K)

is continuous.
To complete the proof, the stated continuity of Ecurl

ij,l = Ecurl
l − Ecurl

Fi,l
− Ecurl

Fj ,l
+ Ecurl

Ekl,l
now

follows from (A.13), the continuity of the face corrections (Lemma 4.1) and the continuity of
the primary extension (Theorem 3.1(2)). �
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Proof of Lemma 7.1. There is a function vw in H(div) which satisfies

(A.14) trcn(vw) = w and ‖vw‖H(div) ≤ C‖w‖H−1/2(∂K).

Let us prove the first estimate of the lemma. By the definition of H−1/2
0,i (Fl) as in (2.15), the

restriction operator Rj is continuous from H
−1/2
0,i (∂K) onto H−1/2

0,i (Fl). Hence

‖wj‖H−1/2
0,i (Fl)

= ‖Rj(w − trcn Vi)‖H−1/2
0,i (Fl)

≤ C‖w − trcn Vi‖H−1/2
0,i (∂K)

= C inf
trcn(v)=w−trcn(Vi)

‖v‖H(div) by (2.14),

where the infimum runs over all v in H0,Fi(div,K) such that trcn(v) = w − trcn(Vi). Since
vw − Vi is in H0,Fi(div,K),

‖wj‖H−1/2
0,i (Fl)

≤ C‖vw − Vi‖H(div)(A.15)

≤ C‖w‖H−1/2(∂K) + ‖Ediv
i w‖H(div) by (A.14)

≤ C‖w‖H−1/2(∂K) by Theorem 3.1.

To prove the next estimate, we use similar arguments as above. In this case, we get, instead
of (A.15), that

‖wk‖H−1/2
0,ij (Fk)

≤ C‖vw − Vi − Vj‖H(div)

because vw − Vi − Vj is in H0,Fi∪Fj (div,K). The estimate is then proved as in the previous
case. The third estimate is also similarly proved. �
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