
POLYNOMIAL EXTENSION OPERATORS. PART II

LESZEK DEMKOWICZ, JAYADEEP GOPALAKRISHNAN, AND JOACHIM SCHÖBERL

Abstract. Consider the tangential trace of a vector polynomial on the surface of a tetra-

hedron. We construct an extension operator that extends such a trace function into a

polynomial on the tetrahedron. This operator can be continuously extended to the trace

space of H(curl ). Furthermore, it satisfies a commutativity property with an extension

operator we constructed in Part I of this series. Such extensions are a fundamental ingre-

dient of high order finite element analysis.

1. Introduction

This is the second in the series of papers devoted to constructing polynomial preserving
continuous extension operators for Sobolev spaces satisfying the commuting diagram

(1.1)

H1/2(∂K)
gradτ−−−−→ trcτ (H(curl ))

curlτ−−−−→ trcn(H(div))
yE

grad

K

yE
curl
K

yE
div
K

H1(K)
grad−−−−→ H(curl )

curl−−−−→ H(div),

where K is a tetrahedron, H1(K), H(curl ) and H(div) are the standard Sobolev spaces
on K, and the trace operators are

trcτ φ =
(
φ− (φ · n)n

)∣∣
∂K
, (tangential trace),

trcnφ = (φ · n)
∣∣
∂K
, (normal trace),

with n denoting the outward unit normal on ∂K. The first polynomial extension operator

in (1.1), namely E
grad
K , was constructed in Part I [7]. The current part is devoted to the

construction of E
curl
K . The differential operators gradτ u and curlτ in (1.1) denote the surface

gradient and surface curl, respectively (see, e.g. [4] for definitions of differential operators
on non-smooth polyhedral surfaces).

There are many applications in the analysis of high order finite elements for such an ex-

tension operator. Perhaps the most important one is in proving an approximation estimate
for hp finite element spaces. Indeed, an approximation theory for high order H(curl ) finite
element spaces has been developed in [6] under the conjecture that such an extension op-

erator exists. To describe one of the results there, suppose T is a tetrahedral finite element
mesh of a polyhedral domain Ω, and let Vhp = {v ∈ H(curl,Ω) : v|K is a polynomial of
degree at most pK for all mesh elements K in T}. For any tetrahedron K, let ρK denote

the diameter of the largest ball contained in K and let hK denote the length of the longest
edge of K. In finite element analysis, it is typical to assume that meshes are “shape reg-
ular”, i.e., assume that there is a fixed positive constant γ such that maxK∈T hK/ρK < γ

2000 Mathematics Subject Classification. 46E35, 46E39, 65N30, 47H60, 11C08, 31B10.

Key words and phrases. Sobolev, polynomial, extension, tangential, normal, trace,
This work was supported in part by the National Science Foundation under grants 0713833, 0619080, the

Johann Radon Institute for Computational and Applied Mathematics (RICAM), and the FWF-Start-Project

Y-192 “hp-FEM”.
1



EXTENSION OPERATORS 2

for all meshes under consideration. In this situation, [6, Corollary 2] implies that, if an
H(curl ) polynomial extension exists, then there is a constant C depending only on γ such
that

(1.2) inf
vhp∈Vhp

‖v − vhp‖H(curl ) ≤ C
∑

K∈T

hr+1
K

ln pK

pr
K

(
|v|2Hr(K) + |curl v|2Hr(K)

)1/2

for any r > 1/2. Thus, as a consequence of our construction of E
curl
K , the approximation

estimate (1.2) and other similar estimates in [6] are finally proved. The extension operator

is important also in the analysis of spectral mixed methods (see remarks at the end of [10]
for the need for an H(curl ) extension). Polynomial extensions also play an important role
in the construction of good shape functions and preconditioning [17].

We will keep the same notation as in Part I (summarized in [7, § 1.5]) and employ
the same overall technique developed there (summarized in [7, § 1.4]) for constructing the
H(curl ) extension operator. In particular, we start with a primary extension operator,

and then design suitable face, edge, and vertex correction operators to arrive at the total
extension operator. The construction of both the primary and correction operators will
be motivated by the need to satisfy the commutativity property in (1.1). For example, to

obtain an expression for the H(curl ) primary extension of v, denoted by E
curlv, we took

the expression for E
gradu from [7], differentiated it, expressed the result in terms of gradτ u,

and then substituted gradτ u by v. Clearly, this will guarantee the commutativity property
E

curl gradτ u = gradE
gradu. Such computations motivated the expressions for face and edge

corrections as well. The final H(curl ) polynomial extension operator and its properties are
given in Theorem 7.1.

Although we apply the same overall technique as in the H1 case considered in Part I [7]

of this series, a major difference between theH(curl ) case and the H1 case is that the trace
space of the former is more complicated. Only recently has the trace space of H(curl ) on
polyhedral domains been fully characterized in terms of certain Sobolev spaces of negative

index [4, 5]. In order to circumvent estimating negative norms, we proceed by first develop-
ing a new technical tool, namely a decomposition of the trace space, which when combined
with commutativity, reduces the problem of norm bounds for the extension to Sobolev

norms of positive index only. This seems to simplify the analysis considerably. Another
new technique we introduce in this paper is proving a norm estimate for primary extensions
in fractional Sobolev norms directly using Peetre’s K-functional and interpolation theory.

Other new aspects in the H(curl ) arena not seen in the H1 case include symmetrization
of integrals defining the extensions to obtain expressions invariant under relevant covariant
transformations.

We begin by describing the decomposition of trace space using regular functions (Sec-
tion 2). Then we study the primary extension from a plane (Section 3). The primary ex-
tension will then be corrected using face and edge correction operators given in Sections 4

and 5. The complete solution to the H(curl ) polynomial extension on a tetrahedron is
given in Section 7. Appendix A contains proofs of all technical lemmas.

2. A characterization of the trace space

For smooth vector functions φ, we denote their tangential and normal traces on ∂K by

trcτ φ =
(
φ− (φ · n)n

)∣∣
∂K
,

trcnφ = (φ · n)
∣∣
∂K
,
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where n denote the outward unit normal on ∂K. It is well known that the operators
trcτ and n × trcτ extend continuously to H(curl ) and that their ranges are subspaces

of H−1/2(∂K) [1, 4, 9]. Letting 〈·, ·〉 denote the duality pairing between H−1/2(∂K) and

H1/2(∂K), define H0,S(curl ) for any subset S of ∂K of positive measure by

H0,S(curl ) = {φ ∈H(curl ) : 〈n× trcτ φ, ψ〉 = 0 for all ψ ∈H1
∂K\S(K)},

where H1
∂K\S(K) denotes the subspace of functions in H1(K) whose tangential traces

vanish on ∂K \ S. In addition, we shorten H0,∂K(curl ) to simply H0(curl ).
We shall need the trace spaces of H0,S(curl ) when S is composed of one or more faces

of K. Let Fij = Fi ∪ Fj and Fijk = Fi ∪ Fj ∪ Fk. We define the spaces by the range of the

trace map:

(2.1)
X−1/2 = trcτ H(curl ), X

−1/2
0,i = trcτ H0,Fi(curl ),

X
−1/2
0,ij = trcτ H0,Fij (curl ), X

−1/2
0,ijk = trcτ H0,Fijk

(curl ).

The above spacesX
−1/2
0,I , for all subscripts I in the set {i, ij, ijk}, are subspaces ofH−1/2(∂K).

The precise subspace topology of X−1/2 in H−1/2(∂K) is given in [4]. One could attempt

to use their techniques to characterize the subspace topologies of allX
−1/2
0,I , but for our pur-

poses it seems better to proceed by endowing all the sets in (2.1) with a natural quotient
topology defined by

(2.2) ‖v‖
X−1/2 := inf

trcτ (φ)=v
‖φ‖H(curl ),

where the infimum runs over all φ in H(curl ) satisfying trcτ (φ) = v. Standard arguments

then prove the following facts: Under the quotient norm in (2.2), the space X−1/2 is

complete and the subsets X
−1/2
0,I are closed. Furthermore, there is a linear continuous

lifting operator E :X−1/2 7→H(curl ) satisfying

(2.3) EX
−1/2
0,I ⊆H0,FI

(curl ), trcτ (Ev) = v, ‖Ev‖H(curl ) = ‖v‖
X−1/2 ,

for all v ∈ X−1/2. We need to find an extension operator like E, but one that has the

additional polynomial preservation property.
We shall now characterize the H(curl ) trace spaces using Sobolev spaces of positive

index, namely H1/2(∂K), and H
1/2
τ := trcτ H

1(K). The space H
1/2
τ is characterized in

terms of the H1/2-norm of faces in [4], but we will simply work with the natural norm
‖ϑ‖

H
1/2
τ

defined to be the infimum of ‖φ‖H(curl ) over all φ ∈H1(K) for which trcτ φ = ϑ.

The idea for our characterization of the trace space is best revealed for the first space

in (2.1), as we see next.

Proposition 2.1. The space X−1/2 admits the following stable decomposition:

X−1/2 = gradτ H
1/2(∂K) + H1/2

τ .

Proof. Consider any function v in X−1/2 and its lifting Ev defined in (2.3). Since K

is convex, by the well known Helmholtz-Hodge decomposition for H(curl ) (see e.g. [9,
Corollary I.3.4] or [13]), there is a ϕ ∈ H1(K) and ψ ∈H1(K) such that

(2.4) Ev = gradϕ+ψ.

Applying the tangential trace operator to this decomposition, we obtain the required de-
composition:

v = gradτ (ϕ|∂K) + trcτ (ψ).
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Its stability follows from the continuity of the trace maps. Indeed, there are positive con-
stants C1 and C2 such that

‖ϕ‖H1/2(∂K) + ‖ trcτ ψ‖H
1/2
τ

≤ C1

(
‖ϕ‖H1(K) + ‖ψ‖H1(K)

)

≤ C2 ‖Ev‖H(curl ) = C2 ‖v‖X−1/2 ,

where we have also used the stability of the decomposition in (2.4). �

Although the trace spaces in (2.1) were defined on the whole boundary ∂K, by virtue
of Proposition 2.1, we can now speak of its restrictions on faces. Indeed, it is well known
that the restriction to a face Fl is a continuous operation from H1/2(∂K) into H1/2(Fl).

Moreover, letting H1/2(Fl) denote the space of tangential vector functions on Fl whose two

components are inH1/2(Fl), the restriction operator is also a continuous map fromH
1/2
τ into

H1/2(Fl) (this follows, e.g., from the characterization of H
1/2
τ in terms of standard Sobolev

spaces found in [4]). Therefore, given any v ∈X−1/2, decomposing it by Proposition 2.1 as
v = gradτ ϕ+ψ we can define the restriction operator Rl by

(2.5) Rlv = gradτ (ϕ
∣∣
Fl

) + (ψ
∣∣
Fl

).

Clearly, Rl coincides with the usual restriction operator when applied to smooth v. More-
oever, by the stability of the decomposition, Rl is a continuous map from X−1/2 into
gradτ H

1/2(Fl) +H1/2(Fl). We define the trace spaces on one face as the range of this

restriction operator:

(2.6) X−1/2(Fl) = RlX
−1/2, ‖v‖

X−1/2(Fl)
:= inf

Rlw=v
‖w‖

X−1/2 ,

where the infimum runs over all w in X−1/2 satisfying Rlw = v. The space X−1/2(Fl) is

complete under the above norm and the subsets X
−1/2
0,I (Fl) = RlX

−1/2
0,I are closed. It is

easy to verify that Rl has a continuous right inverse Ll :X−1/2(Fl) 7→X−1/2 satisfying

(2.7) LlX
−1/2
0,I (Fl) ⊆X−1/2

0,I , ‖Llv‖X−1/2 = ‖v‖
X−1/2(Fl)

, RlLlv = v,

for all v in X−1/2(Fl).
We will now show that these trace spaces on the face Fl can be characterized using

subspaces of H1/2(Fl) with zero boundary conditions. Recall the definitions of H
1/2
0,I (Fl) for

I ∈ {i, ij, ijk} from Part I [7]:

H
1/2
0,i (Fl) = H1/2(Fl) ∩ L2

1/λi
(Fl)

H
1/2
0,ij(Fl) = H1/2(Fl) ∩ L2

1/λi
(Fl) ∩ L2

1/λj
(Fl)

H
1/2
0,ijk(Fl) = H1/2(Fl) ∩ L2

1/λi
(Fl) ∩ L2

1/λj
(Fl) ∩ L2

1/λk
(Fl).

Here L2
1/λi

(Fl) is the Lebesgue space with weight 1/λi, so clearly, the functions in H
1/2
0,I (Fl)

vanish weakly on certain parts of the boundary ∂Fl. Also, let H
1/2
0,I (Fl) denote the set of

tangential vector functions on Fl whose two components are in H
1/2
0,I (Fl). Then we have

the following theorem (where, like everywhere else in this paper, the indices i, j, k, l are a

permutation of 0, 1, 2, 3).
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Theorem 2.1. The spaces X−1/2(Fl) and X
−1/2
0,I (Fl) of traces on Fl for all I in {i, ij, ijk}

admit the stable decompositions

X−1/2(Fl) = gradτ H
1/2(Fl) +H1/2(Fl),

X
−1/2
0,I (Fl) = gradτ H

1/2
0,I (Fl) +H

1/2
0,I (Fl).

Proof. The first decomposition follows immediately from Proposition 2.1 (by restricting

to Fl), so let us prove the second. Let v be any function in X
−1/2
0,I (Fl) and

(2.8) φ = E(Llv),

where E and Ll are as in (2.3) and (2.7), respectively. Then, by the above mentioned

properties of these operators, φ is in H0,FI
(curl ,K).

We need now to expand the domain K. Let ãi be the reflection of the vertex ai within
the plane containing Fl, about the line containing aj and ak. Then, depending on I in

{i, ij, ijk}, define F̃I,l by

F̃i,l = conv(Fl, ãi), F̃ij,l = conv(Fl, ãi, ãj), F̃ijk,l = conv(Fl, ãi, ãj , ãk),

where conv denotes convex hull. The expanded domain is defined by K̃I = conv(F̃I,l,al)

al

ak ai

aj

ãj

ãi

KK̃ij

Fl

F̃ij,l

Figure 1. Notations in the proof of Theorem 2.1

(this domain, for the case I = ij is illustrated in Fig. 1). It is easy to prove that the trivial
extension of φ defined by

φ̃ =

{
φ on K,

0 on K̃I \K,
is in H0,FI

(curl , K̃I).
Next, we borrow a technique found in [3, Lemma 2.2] (see also [15, Proposition 5.1] and

other related references mentioned there). We start by decomposing φ̃ using the Helmholtz-

Hodge decomposition on the convex domain K̃I to get

(2.9) φ̃ = gradϕ+ψ, with ϕ ∈ H1(K̃I), ψ ∈H1(K̃I).

Observe that since φ̃ vanishes on K̃I \ K, the gradient of ϕ must coincide with ψ there.
Hence

ϕ
∣∣

eKI\K
∈ H2(K̃I \K).

Therefore, there exists an H2-extension (see, e.g. [18, Theorem VI.3.5, pp. 181], or our

volume extension constructions in [8]) of ϕ to all K̃I , which we denote by ϕ′. Then

(2.10) φ̃ = gradϕ′′ +ψ′′, with ϕ′′ = ϕ− ϕ′, ψ′′ = gradϕ′ +ψ.

Clearly, ϕ′′ is in H1(K̃I) and ψ′′ is in H1(K̃I). Moreover both ϕ′′ and ψ′′ vanish on K̃I \K.
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The required decomposition is now obtained by applying trcτ to (2.10). Indeed, combin-
ing the definition of φ in (2.8) with (2.10), we obtain

v = Rl trcτ (φ) = Rl trcτ (φ̃
∣∣
K

)

= gradτ (ϕ
′′
∣∣
Fl

) +Rl trcτ ψ
′′.(2.11)

Since ψ′′ is in H1(K̃I), its trace ψ′′
∣∣

eFI,l
is in (H1/2(F̃I,l))

3 and all three components of

this trace vanish on F̃I,l \ Fl. Moreover, since the tangential component of this trace on Fl

coincides with Rl trcτ ψ
′′, we conclude that the last term in (2.11) is inH

1/2
0,I (Fl). Moreover,

since ϕ′′ vanishes on K̃I\K, its trace appearing in (2.11) is inH
1/2
0,I (Fl). Thus the components

in the decomposition (2.11) are in the required spaces.
The stability of the decomposition (2.11) follows from the stability of the decomposi-

tion (2.9), the H2-continuity of the map ϕ 7→ ϕ′, the continuity of various trace maps, and

the continuity of the operators E and Ll. �

Remark 2.1. The decomposition of Theorem 2.1 has a regular part, namely H
1/2
0,I (Fl), and

a non-regular part, namely gradτ H
1/2
0,I (Fl) (which is generally only in H−1/2(Fl)). It is

important to note that the theorem lets us choose the regular part to be a vector function
with zero boundary conditions on all its components. Note also that the decomposition is

not an orthogonal decomposition in L2(Fl).

Remark 2.2. The decomposition of Theorem 2.1 gives an equivalent norm on the trace

space. E.g., from the results of [4, 5], it follows that the trace space X−1/2(Fl) coincides
with the space

H−1/2(curlτ , Fl) := {v ∈H−1/2(Fl) : curlτ v ∈ H−1/2(Fl)}

normed with ‖v‖
H−1/2(curlτ ,Fl)

:=
(
‖v‖2

H−1/2(Fl)
+ ‖ curlτ v‖2

H−1/2(Fl)

)1/2
where curlτ de-

notes the scalar surface curl. Then our results imply that for any v in X−1/2(Fl), if
v = gradτ ϕv +ψv denotes the decomposition given by Theorem 2.1, the norms

‖v‖
X−1/2(Fl)

, ‖v‖
H−1/2(curlτ ,Fl)

, and ‖ϕv‖H1/2(Fl)
+ ‖ψv‖H1/2(Fl)

,

are equivalent norms.

3. Primary extension operator

We first display the expression for theH(curl ) primary extension when the data function

v is smooth tangential vector function on the x-y plane (or the x-y face of the reference

tetrahedron K̂). The expression is

E
curlv (x, y, z) = 2

∫ 1

0

∫ 1−t

0




1 0
0 1

s t


v(x+ sz, y + tz) ds dt(3.1)

which by a change of variable can also be expressed as

E
curlv (x, y, z) =

2

z3

∫ x+z

x

∫ x+y+z−ex

y




z 0

0 z
x̃− x ỹ − y


v(x̃, ỹ) dỹ dx̃.(3.2)

We derived this expression motivated by the commutativity property we need, namely
gradE

gradu = E
curl gradτ u. Indeed, we took the expression for E

grad from [7], differen-

tiated it, expressed the result in terms of gradτ u, and then substituted gradτ u by v to
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obtain (3.1). (This calculation is implicit in the proof of Theorem 3.1(1) to be given shortly,
so we do not display it here.)

The above expression will give an extension operator on any other tetrahedron K once

we use the right affine mapping that maps vector functions on K̂ to K. As in the H1 case,
instead of exhibiting the mappings, we will simply give the general expressions in affine
coordinates. In order to bring out the symmetry in the expressions, we shall write a smooth

tangential vector function given on face Fl as

(3.3) v =
∑

m∈{i,j,k}

vm gradτ λm.

with three smooth components vm. Such a decomposition of v into component functions
vm is always possible, but is not unique. Indeed vm for all m in {i, j, k} coincides with one

function v̄ if and only if v is zero. With vm as in (3.3), we can now rewrite the primary
extension operator as follows:

E
curlv =

2

z3

∫ x+z

x

∫ x+y+z−ex

y




z 0
0 z

x̃− x ỹ − y




(
−1
−1

)
v0 +




z
0

x̃− x


 v1 +




0
z

ỹ − y


 v2 dỹ dx̃

=
2

λ2
3

∫∫

T3(λ0,λ1,λ2)

(
v0(−gradλ1 − gradλ2 − (λ̃1 + λ̃2)gradλ3)

+ v1(gradλ1 + λ̃1 gradλ3) + v2(gradλ2 + λ̃2 gradλ3)

)
dỹ dx̃,

=
2

λ2
3

∫∫

T3(λ0,λ1,λ2)

2∑

m=0

(
vm −

2∑

ℓ=0

λ̃ℓvℓ

)
gradλm dỹ dx̃,(3.4)

where we have used the barycentric coordinates λi of the tetrahedron, and the barycentric

coordinates λ̃ℓ(s) of the region of integration T3(λ0, λ1, λ2). The symbol λ̃ℓ will generically

denote the barycentric coordinates of whatever region of integration is under consideration,

e.g., in the above, since the region is T3(λ0, λ1, λ2), they are λ̃1 = (x̃−x)/z, λ̃1 = (ỹ−y)/z,
and λ̃0 = 1 − λ̃1 − λ̃2. Note also that in the above, we have continued to use the notations
in [7], e.g., for any permutation {i, j, k, l} of {0, 1, 2, 3}, define Tl(ri, rj , rk) = {x ∈ Fl :

λFl
ℓ (x) ≥ rℓ for ℓ = i, j, and k}, where λFl

m ≡ λm|Fl
(for m = i, j, or k) are the barycentric

coordinates of Fl.
Generalizing the above, we obtain the expression for the primary extension operator on

a general tetrahedron K lifting from the face Fl:

(3.5) E
curl
l v (λi, λj , λk, λl) =

2

λ2
l

∫∫

Tl(λi,λj ,λk)

∑

m∈{i,j,k}

Dmv(s) gradλm ds

where

(3.6) Dmv(s) = vm(s) −
∑

ℓ∈{i,j,k}

λ̃ℓ(s) vℓ(s)

and λ̃ℓ(s), for ℓ in {i, j, k}, are the barycentric coordinate functions of the region of inte-
gration Tl(λi, λj , λk), considered with its node enumeration inherited from K. Since the
component representation in (3.3) is not unique, we must check that definitions like (3.6)

are not affected, inasmuch as two different representations of the same function does not
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yield different results. That this is indeed the case, is readily checked by verifying that
when we substitute vm = v̄ for all m in (3.6) and simplify, we do find Dmv to vanish.

We prove the properties of this primary extension operator in the next theorem. There

are two new ingredients worth noting in the proof of continuity of E
curl
l . The first is the

technique of proving continuity from H1/2(Fl) into H1(K̂) using Peetre’s K-functional.

(Note that this continuity only involves Sobolev norms of positive order.) The second is the
technique of using continuity on positive order Sobolev spaces to obtain continuity on the
trace space contained in the negative order Sobolev space H−1/2(Fl). (In [7, Appendix B],
we provided an alternate technique for proving the continuity using the Fourier transform.)

We display the K-functional technique in Appendix A while proving the following lemma.

Lemma 3.1. Let θ(x, y) be a smooth function on the unit triangle F̂ (including the boundary

∂F̂ ). Then the map Kθ defined for smooth functions u(x, y) on F̂ by

Kθu (x, y, z) =

∫ 1

0

∫ 1−t

0
θ(s, t) u(x+ sz, y + tz) ds dt,

satisfies

‖Kθu‖H1(K̂) ≤ Cθ‖u‖H1/2(F̂ ), for all u ∈ H1/2(F̂ ),

with some Cθ > 0 that depends only on ‖θ‖W 1
1 (F̂ ) and ‖θ‖L1(∂F̂ ).

The theorem on the primary extension will use this lemma. Before stating the theorem
we need more notation for vector polynomial spaces: The space of vector functions on any

domain D whose components are polynomials of degree at most p is denoted by P p(D) and
its subspace of homogeneous polynomials of degree p is denoted by P̄ p(D). The Nédélec
subspace (of the first kind) [14] of P p+1, denoted by Np(D), is defined by

Np(D) = {vp + rp+1 : vp ∈ P p(D), and rp+1 ∈ P̄ p+1(D) satisfies rp+1 · x = 0}.

It is easy to see that

(3.7) q ∈Np(D) if and only if q ∈ P p+1(D) and q · x ∈ Pp+1(D).

In these characterizations of Np(D), the vector x is the coordinate vector in the Euclidean
space in which D lies, so it can have two or three components.

Theorem 3.1. The primary extension operator E
curl
l has the following properties:

(1) grad(Egrad
l u) = E

curl
l (gradτ u) for all u in H1/2(Fl).

(2) E
curl
l is a continuous map from H1/2(Fl) into H1(K).

(3) E
curl
l is a continuous map from X−1/2(Fl) into H(curl,K).

(4) The tangential trace of E
curl
l v on Fl equals v for all v in X−1/2(Fl).

(5) If v is in P p(Fl), the extension E
curl
l v is in P p(K). If v is in the Nédélec space

Np(Fl), its extension E
curl
l v is in Np(K).

Proof. Proof of (1): It suffices to prove the commutativity on the reference tetrahedron K̂.

Consider a smooth function u(x, y) first. Recalling the expression for E
grad on K̂ from [7]
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and differentiating it, we have

gradE
gradu = 2grad

∫ 1

0

∫ 1−t

0
u(x+ sz, y + tz) ds dt

= 2

∫ 1

0

∫ 1−t

0




1 0

0 1
s t


gradτ u(x+ sz, y + tz) ds dt

= E
curl gradτ u.

Here we have viewed gradients as column vectors, so the matrix above multiplies gradτ u =

(∂xu, ∂yu)
t. Thus we have shown that the identity E

curl
l (gradτ u) = grad(Egrad

l u) holds for

all smooth functions u. Now, by [7, Theorem 2.1] (asserting the continuity of E
grad
l u on

H1/2(Fl)), we have

‖Ecurl
l gradτ u‖ = ‖gradE

grad
l u‖ ≤ C‖u‖H1/2(Fl)

.

Hence the operator E
curl
l extends continuously to the space gradH1/2(Fl), so the commu-

tativity property holds for all u ∈ H1/2(Fl).

Proof of (2): The continuity of E
curl on H1/2(F̂ ) follows by applying Lemma 3.1 to each

of the components of E
curlv in (3.1). Since the Jacobian of the covariant transformation

mapping functions on K̂ to K is bounded, the result follows for E
curl
l on any K.

Proof of (3): Given any v in X−1/2(Fl), decompose it using Theorem 2.1 to get

v = gradτ φ+ψ, with φ ∈ H1/2(Fl), ψ ∈H1/2(Fl).

Then

‖Ecurl
l v‖H(curl ) = ‖grad(Egrad

l φ) + E
curl
l ψ‖H(curl ), by item (1),

≤ ‖Egrad
l φ‖H1(K) + ‖Ecurl

l ψ‖H1(K),

≤ C
(
‖φ‖H1/2(Fl)

+ ‖ψ‖
H1/2(Fl)

)
, by item (2) and [7, Theorem 2.1],

≤ C‖v‖
X−1/2(Fl)

, by stability (Theorem 2.1).

Proof of (4): Set z = 0 in (3.1). Then the result is obvious for smooth functions v.

Because of the continuity of E
curl
l , the result follows for all functions in X−1/2(Fl).

Proof of (5): It suffices to prove the polynomial preservation properties for the expres-

sion (3.1) on the reference tetrahedron K̂ because the affine covariant mapping preserves
both the polynomial spaces P p(K) and Np(K) [14].

So, consider a v ∈ P p(F̂ ). Then, each of the components of the integrand defining the

extension E
curlv in (3.1) is a polynomial in x, y and z with coefficients depending on s and

t. Hence, after integrating over s and t, we continue to have a polynomial in x, y, and z of
degree at most p in x, y and z for each component.

Now suppose v ∈Np. Observe that


x
y
z


 · Ecurlv = 2

∫ 1

0

∫ 1−t

0

(
x y z

)



1 0
0 1
s t


v(x+ sz, y + tz) ds dt

= 2

∫ 1

0

∫ 1−t

0

(
x+ sz
y + tz

)
· v(x+ sz, y + tz) ds dt,

By (3.7), v · x is a polynomial of degree at most p + 1, hence the integrand in the last

integral is a polynomial in x+ sz and y + tz of degree at most p. Therefore, by repeating
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the argument of the previous paragraph, we find that x · Ecurlv is a polynomial of degree

at most p+ 1. Hence by (3.7), E
curlv is in Np. �

As in the H1 case described in [7], the next step is to solve the two-face problem, for
which we shall need a correction operator.

4. Face corrections

In general, the tangential traces of E
curl
l v are not zero on faces other than Fl even when

v is a smooth function that vanishes on ∂Fl. Therefore, we must add a face correction. The
face correction can be thought of as the solution to the H(curl ) two-face problem: This

problem concerns a polynomial v defined on Fl such that v · t|Ejk
= 0, where t is the unit

tangent vector along the edge Ejk. The problem is to find a polynomial extension with zero
tangential trace on the face Fi.

We begin, as before, with the case of the reference tetrahedron K̂. Suppose v is a
polynomial defined on the x-y face F̂ such that v · t|Ê02

= 0 where t is the unit tangent
vector along the edge. Then, we will first give an operator that maps v to a polynomial in

K̂ whose tangential trace on the x-y face vanishes, and whose tangential trace on the y-z
face coincides with that of the primary extension of v. Then subtracting this operator from
the primary extension, we can solve the two-face problem. Define the face correction by

(4.1)

E
curl
F̂1
v =

2z

x+ z

∫ 1

0

∫ 1−t

0



s t
0 1

s t


v(s(x+ z), y + t(x+ z)) ds dt

+
1

x+ z



−z
0
x




∫ 1

0

∫ 1−t

0

(
1 − s
−t

)
· v(s(x+ z), y + t(x+ z)) ds dt.

Before we give the properties of this correction operator, we briefly indicate how we
derived the above expression. As in the case of the primary extension, we obtained the

expression above by computing the gradient of the corresponding H1 operator, namely the

operator E
grad

F̂1
given in [7] and observing what is needed for satisfying a commutativity

property. Indeed, recalling the expression for E
grad

F̂1
u and differentiating,

gradE
grad

F̂1
u =

z

x+ z
gradE

gradu(0, y, x + z) + E
gradu(0, y, x + z)grad

(
z

x+ z

)

=
2z

x+ z

∫ 1

0

∫ 1−t

0



s t

0 1
s t


gradτ u(s(x+ z), y + t(x+ z)) ds dt

+
2

(x+ z)2



−z
0

x




∫ 1

0

∫ 1−t

0
u(s(x+ z), y + t(x+ z)) ds dt.(4.2)

Therefore, in order to verify the commutativity property E
curl
F̂1

(gradτ u) = grad(Egrad

F̂1
u),

we need to express the last term above in terms of gradτ u alone.

Since such a situation will recur often in this paper, we now describe our approach to
handle this in some detail. To convert (4.2) into an expression depending on gradτ u alone,
recall that for the two-face correction, we only need the commutativity for functions u that

vanish along the edge on the y-axis. So we can apply the fundamental theorem of calculus
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x

y

z

0

(s(x + z), y + t(x + z))

u = 0

Figure 2. Integration paths symmetrizing the face correction E
curl
F̂1
v

and write

(4.3) u(s(x+ z), y + t(x+ z)) =

∫ s(x+z)

0

(
1

0

)
· gradτ u(r, y + t(x+ z)) dr.

Here we have chosen one of the many possible paths of integration. However, this choice

is not invariant under affine automorphisms of K̂ (that fix â1 and â3), because it can be
mapped into the path in

(4.4) u(s(x+ z), y + t(x+ z)) =

∫ s(x+z)

0

(
1
−1

)
· gradτ u(r, y + (s+ t)(x+ z) − r) dr.

Hence, we must replace u(s(x + z), y + t(x + z)) in (4.2) by the average of the right hand
sides of (4.3) and (4.4). (The paths in both the integrals are illustrated in Fig. 2, from

which the symmetry with respect to the interchange of the two vertices on the y-axis is
obvious.) After this replacement of u in (4.2), we have

gradE
grad

F̂1
u =

2z

x+ z

∫ 1

0

∫ 1−t

0



s t
0 1
s t


gradτ u(s(x+ z), y + t(x+ z)) ds dt

+
2

(x+ z)2



−z
0

x




∫ 1

0

∫ 1−t

0

1

2

∫ s(x+z)

0

(
1
0

)
· gradτ u(r, y + t(x+ z)) dr ds dt

+
2

(x+ z)2



−z
0
x




∫ 1

0

∫ 1−t

0

1

2

∫ s(x+z)

0

(
1

−1

)
· gradτ u(r, y + (s + t)(x+ z) − r) dr ds dt.

The last two terms above can be simplified so that the entire sum matches the expression
for E

curl
F̂1

(gradτ u) given by (4.1). The details are in the proof of the following lemma (in

Appendix A), which gives several symmetry preserving ways to rewrite integrals of a scalar
function in terms of its derivatives. This completes the discussion motivating the definition

of the face correction operator in (4.1). A rigorous proof of the required commutativity
property using the following lemma is in the proof of the succeeding proposition.

Lemma 4.1. Let u(s, t) be a smooth function on the unit triangle F̂ .
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s s s

t t t

0 0 0

(a) (b) (c)

Figure 3. Integration paths for (the proof of) Lemma 4.1.

(1) If u(0, t) = 0 then (integration along the two paths in Fig. 3(a) yields)

∫∫

F̂

u(s, t) ds dt =
1

2

∫∫

F̂

(
(1 − s)

∂u

∂s
+ (−t)∂u

∂t

)
ds dt.

(2) If u(s, 0) = 0 then (integration along the two paths in Fig. 3(b) yields)

∫∫

F̂

u(s, t) ds dt =
1

2

∫∫

F̂

(
(−s)∂u

∂s
+ (1 − t)

∂u

∂t

)
ds dt.

(3) If u(s, 1 − s) = 0 then (integration along the two paths in Fig. 3(c) yields)

∫∫

F̂

u(s, t) ds dt =
1

2

∫∫

F̂

(
(−s)∂u

∂s
+ (−t)∂u

∂t

)
ds dt.

Before we give the proposition detailing the properties involving our face correction, it will

be useful to generalize the expression (4.1) to a general tetrahedron K in affine coordinates.
To do this, we first split the given smooth tangential vector function v into components vm

as in (3.3). Then substituting

v =

(
−1
−1

)
v0 +

(
1
0

)
v1 +

(
0
1

)
v2

into the integrands in (4.1) and simplifying, we have

2z

x+ z



s t

0 1
s t


v =

2λ3

(λ1 + λ3)

(
Djv gradλj +Dkv gradλk

)
,

1

x+ z



−z
0

x




(
1 − s
−t

)
· v =

λ1 gradλ3 − λ3 gradλ1

(λ1 + λ3)3
D1v,
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where Dℓv is as in (3.6) but now with λ̃j(s) in (3.6) denoting the barycentric coordinates

of the current region of integration, namely that of T3(0, λ0, λ2). Thus (4.1) becomes

(4.5)

E
curl
F̂1
v =

λ1 gradλ3 − λ3 gradλ1

(λ1 + λ3)3

∫∫

T3(0,λ2,λ0)

D1v

+
2λ3

(λ1 + λ3)3

∫∫

T3(0,λ2,λ0)

(D0v gradλ0 +D2v gradλ2).

In generalizing this operator as an extension into a general tetrahedron K from face Fl, we

note that the region of integration becomes Tl(0, λj , λk) (and λ̃ℓ becomes the barycentric
coordinates of this region). Thus we have the following expression

(4.6)

E
curl
Fi,lv =

λi gradλl − λl gradλi

(λi + λl)3

∫∫

Tl(0,λj ,λk)

Div ds

+
2λl

(λi + λl)3

∑

m∈{j,k}

gradλm

∫∫

Tl(0,λj ,λk)

Dmv ds,

which coincides with the expression in (4.5) when (i, j, k) = (1, 2, 0). Clearly, if all the
components of v coincide with a single function (so that v vanishes), the result of this

extension is zero, so it is well defined. Note that this expression is symmetric with respect
to indices j and k.

Now we can solve the H(curl ) two-face problem mentioned in the beginning of this
section by subtracting the above operator from the primary extension. The operator that

solves the two-face problem is

(4.7) E
curl
i,l v = E

curl
l v − E

curl
Fi,lv.

The following continuity from a positive order Sobolev space is established in Appendix A:

Lemma 4.2. E
curl
i,l is a continuous map from H

1/2
0,i (Fl) into H(curl ).

Nonetheless, we need its continuity of E
curl
i,l from an H(curl ) trace space. This is proved

in the next proposition, where we also prove its other properties.

Proposition 4.1. The two face extension E
curl
i,l satisfies the following:

(1) Commutativity: E
curl
i,l gradτ u = grad(Egrad

i,l u) for all u ∈ H
1/2
0,i (Fl).

(2) Continuity: E
curl
i,l extends to a continuous operator from X

−1/2
0,i (Fl) into H(curl ).

(3) Extension property: For all v ∈X−1/2
0,i (Fl),

trcτ (E
curl
i,l v)

∣∣
Fi

= 0, trcτ (E
curl
i,l v)

∣∣
Fl

= v.

(4) Polynomial preservation: Suppose v ∈ P p(Fl) is such that v · t = 0 on the edge Ejk.

Then the extension E
curl
i,l v is in P p(K). If in addition v is in the Nédélec space

Np(Fl), then its extension E
curl
i,l v is in Np(K).

Proof. Proof of (1): It suffices to prove this identity for smooth functions u on Fl vanishing
on the edge where λi is zero. Indeed, once the identity is established for such functions, the

continuity of E
grad
i,l established in [7] implies that the operator E

curl
i,l extends continuously to

gradH
1/2
0,i (Fl) wherein the commutativity property holds (by a minor modification of the

argument in the proof of Theorem 3.1(1)). Furthermore, because of Theorem 3.1(1), we
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only need to prove that E
curl
Fi,l gradτ u = grad(Egrad

Fi,l
u). To prove this identity, we obviously

only need to prove its analogue on the reference tetrahedron K̂, namely

(4.8) E
curl
F̂1

(gradτ u) = grad(Egrad

F̂1
u).

Here E
grad

F̂1
is the corresponding operator given in [7] and u(x, y) is a smooth function

vanishing on the y-axis.
To prove (4.8), we start by computing the gradient on the right hand side of (4.8), which

we have already done in (4.2). To convert (4.2) into an expression depending on gradτ u

alone, we use Lemma 4.1. Applying Lemma 4.1(2) to the last term in (4.2) we get

2

(x+ z)2



−z
0
x




∫ 1

0

∫ 1−t

0
u(s(x+ z), y + t(x+ z)) ds dt

=
2

(x+ z)2



−z
0
x




∫ 1

0

∫ 1−t

0

1

2

(
(1 − s)

∂

∂s
− t

∂

∂t

)
u(s(x+ z), y + t(x+ z)) ds dt,

hence

gradE
grad

F̂1
u =

2z

x+ z

∫ 1

0

∫ 1−t

0



s t

0 1
s t


gradτ u(s(x+ z), y + t(x+ z)) ds dt

+
1

x+ z



−z
0

x




∫ 1

0

∫ 1−t

0

(
1 − s
−t

)
· gradτ u(s(x+ z), y + t(x+ z)) ds dt,

which is the same as E
curl
F̂1

(gradτ u).

Proof of (2): To prove the continuity estimate, apply Theorem 2.1 and decompose v as

v = gradτ φ+ψ, with φ ∈ H
1/2
0,i (Fl), and ψ ∈H1/2

0,i (Fl).

Then,

‖Ecurl
i,l v‖H(curl ) = ‖grad(Egrad

i,l φ) + E
curl
i,l ψ‖H(curl ), by commutativity,

≤ C

(
‖φ‖

H
1/2

0,i (Fl)
+ ‖ψ‖

H
1/2

0,i (Fl)

)
, by [7, Prop. 3.1] and Lemma 4.2,

≤ C‖v‖
X

−1/2

0,i (Fl)
, by Theorem 2.1.

Proof of (3): Since λi = 0 on Fi,

trcτ (E
curl
l v)|Fi =

2

λ2
l

∫∫

Tl(0,λj ,λk)

∑

m∈{i,j,k}

Dmv(s) gradτ λm ds, by (3.5),

trcτ (E
curl
Fi,lv)|Fi =

2λl

(λi + λl)3

∫∫

Tl(0,λj ,λk)

∑

m∈{j,k}

Dmv gradτ λm ds, by (4.6),

as trcτ (λi gradλl − λl gradλi)|Fi = 0. Therefore,

trcτ (Ecurl
i,l v)|Fi = trcτ (Ecurl

l v − E
curl
Fi,lv)|Fi = 0.

Proof of (4): As in the proof of Theorem 3.1(5), it suffices to prove the polynomial

preservation properties for the expression (4.1) on K̂.
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Any polynomial v(x, y) in P p(F̂ ) whose tangential component along the y-axis vanishes,
can be written as

(4.9) v(x, y) =

(
v1(x, y)
xv2(x, y)

)

for some v1 ∈ Pp(F̂ ) and v2 ∈ Pp−1(F̂ ). This implies

v(x, y) = v − gradτ (xv1) + gradτ (xv1)

=

(
v1 − v1 − x∂xv1
xv2 − x∂yv1

)
+ gradτ (xv1)

= x ṽ + gradτ (xv1), with ṽ =

(
−∂xv1

v2 − ∂yv1

)
∈ P p−1(F̂ ).

With this decomposition,

E
curl
F̂1
v = E

curl
F̂1

(x ṽ + gradτ (xv1)),

= E
curl
F̂1

(x ṽ) + gradE
grad

F̂1
(xv1), by commutativity.

By the polynomial preservation properties of E
grad

F̂1
established in [7], the last term is clearly

in P p(K̂). For the remaining term, referring to (4.1), we find that

E
curl
F̂1
v =

2z

x+ z

∫ 1

0

∫ 1−t

0



s t
0 1
s t


 s(x+ z)ṽ(s(x+ z), y + t(x+ z)) ds dt +

1

x+ z



−z
0
x




∫ 1

0

∫ 1−t

0

(
1 − s
−t

)
· s(x+ z)ṽ(s(x+ z), y + t(x+ z)) ds dt,

so the x+z term in the denominator cancels out. Since ṽ ∈ P p−1(F̂ ), by arguments similar

to the proof of Theorem 3.1(5), we find that E
curl
F̂1
v is in P p(K̂).

To prove that the Nédélec space is preserved, observe that (4.1) implies


x

y
z


 · Ecurl

F̂1
v =

2z

x+ z

∫ 1

0

∫ 1−t

0

(
s(x+ z)

y + t(x+ z)

)
· v(s(x+ z), y + t(x+ z)) ds dt.

If v is in Np(F̂ ), then by (3.7), the integrand is a polynomial of degree at most p + 1.

Furthermore, since v has the form in (4.9), the integrand has s(x + z) as a scalar factor.
Hence the x + z term in the denominator cancels out. Usual arguments then yield that
x · Ecurl

F̂1
v is in Pp+1(K̂), so the proof is finished by appealing to (3.7) again. �

5. Edge corrections

As in the H1 case, edge corrections are necessary now, because successive applications of
different face corrections alter the previously zeroed tangential traces. Consider the three-

face problem of finding a polynomial extension of v given on face Fl that has zero tangential
trace on Fi and Fj whenever v is a smooth function whose tangential component vanishes
on edges Ejk and Eik. To solve this intermediate problem, we define the next operator.

Beginning with the case of the reference tetrahedron K̂, let v be a smooth function on

the x-y face F̂ whose tangential components along the edges on x and y axes vanish. Define
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the edge correction for the edge along the z-axis by

E
curl
Ê03
v (x, y, z) =

1

x+ y + z



−z
0
x




∫ 1

0

∫ 1−t

0

(
1 − s

−t

)
· v(s(x+ y + z), t(x+ y + z)) ds dt

+
1

x+ y + z




0

−z
y




∫ 1

0

∫ 1−t

0

(
−s

1 − t

)
· v(s(x+ y + z), t(x+ y + z)) ds dt(5.1)

+
2z

x+ y + z

∫ 1

0

∫ 1−t

0



s t
s t

s t


v(s(x+ y + z), t(x+ y + z)) ds dt.

As in the previous sections, we next generalize this expression to the case of the edge Eil of
the general tetrahedron K. Split v into components as in (3.3), then substitute this form
of v into (5.1). A few simplifications then transform the above expression to

E
curl
Ê03
v (x, y, z) =

λ2 gradλ3 − λ3 gradλ2

(1 − λ0)3

∫∫

T3(0,0,λ0)

D2v ds

+
λ0 gradλ3 − λ3 gradλ0

(1 − λ0)3

∫∫

T3(0,0,λ0)

D0v ds

+
2λ3 gradλ0

(1 − λ0)3

∫∫

T3(0,0,λ0)

D0v ds.

Thus we obtain the general formula on any tetrahedron K:

(5.2)

E
curl
Eil,l

v =
∑

m∈{j,k}

λm gradλl − λl gradλm

(1 − λi)3

∫∫

Tl(0,0,λi)

Dmv ds

+
2λl gradλi

(1 − λi)3

∫∫

Tl(0,0,λi)

Div ds,

where Dmv is as defined in (3.6) but now with λ̃j(s) denoting the barycentric coordinates
of the current region of integration T (0, 0, λi). It is easy to check that if all vi = v̄, then
the expression above vanishes, so it is independent of the non-uniqueness in the splitting
in (3.3).

Let us now solve the three-face problem. The required extension operator is

(5.3) E
curl
ij,l = E

curl
l − E

curl
Fi,l − E

curl
Fj ,l + E

curl
Ekl,l

,

whose properties appear in the next proposition. As in the case of the face correction, to
analyze this operator, we first establish a continuity property in a positive order Sobolev

space, as seen in the next lemma (proved in Appendix A).

Lemma 5.1. E
curl
ij,l is a continuous operator from H

1/2
0,ij(Fl) into H(curl ).

We use this together with the trace decomposition to prove the required continuity from
the trace space. All the properties of this extension we shall need are in the next proposition.

Proposition 5.1. The three face extension E
curl
ij,l satisfies the following:

(1) Commutativity: E
curl
ij,l gradτ u = grad(Egrad

ij,l u) for all u ∈ H
1/2
0,ij(Fl).
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(2) Continuity: E
curl
ij,l extends to a continuous operator from X

−1/2
0,ij (Fl) into H(curl ).

(3) Extension property: For all v ∈X−1/2
0,ij (Fl),

trcτ (E
curl
ij,l v)

∣∣
Fi

= 0, trcτ (E
curl
ij,l v)

∣∣
Fj

= 0, trcτ (E
curl
ij,l v)

∣∣
Fl

= v.

(4) Polynomial preservation: Suppose v ∈ P p(Fl) is such that v · t = 0 on the edges Ejk

and Eik. Then the extension E
curl
ij,l v is in P p(K). If in addition v is in the Nédélec

space Np(Fl), then E
curl
ij,l v is in Np(K).

Proof. Proof of (1): We will prove that

(5.4) E
curl
Ê03

(gradτ u) = grad(Egrad

Ê03
u)

for a smooth function u(x, y) that vanishes along the x and y edges. The required commu-

tativity property stated in item (1) then follows by arguments similar to those detailed in
the proof of Proposition 3(1), which we shall not repeat here. To prove (5.4), we start by

computing the gradient of the expression for E
grad

Ê03
u given in [7]:

grad(Egrad

Ê03
u) =

2z

x+ y + z

∫ 1

0

∫ 1−s

0



s t

s t
s t


gradτ u(s(x+ y + z), t(x+ y + z)) dt ds

+
2

(x+ y + z)2




−z
−z
x+ y




∫ 1

0

∫ 1−s

0
u(s(x+ y + z), t(x+ y + z) dt ds.(5.5)

We must now express the last integral in terms of surface gradients alone. Since u vanishes
along the x and y-axis, we can apply parts (1) and (2) of Lemma 4.1 to the last term
in (5.5). (While applying this lemma, as is clear from its proof, we are integrating along

the path shown in Fig. 4, obtained by combining the paths in Fig. 3(a) and 3(b). Hence
the symmetries with respect to the z-edge are not lost.)

grad(Egrad

Ê03
u) =

2z

x+ y + z

∫ 1

0

∫ 1−t

0



s t
s t

s t


gradτ u(s(x+ y + z), t(x + y + z)) ds dt

+
1

x+ y + z



−z
0
x




∫ 1

0

∫ 1−t

0

(
1 − s
−t

)
· gradτ u(s(x+ y + z), t(x + y + z)) ds dt

+
1

x+ y + z




0
−z
y




∫ 1

0

∫ 1−t

0

(
−s

1 − t

)
· gradτ u(s(x+ y + z), t(x+ y + z)) ds dt.

This expression is the same as (5.1) with gradτ u in place of v. Thus we have proved (5.4).
Proof of (2): We use the regular decomposition again: By Theorem 2.1,

v = gradτ φ+ψ, with φ ∈ H
1/2
0,ij(Fl), and ψ ∈H1/2

0,ij(Fl).

Applying the three face extension to this decomposition,

‖Ecurl
ij,l v‖H(curl ) = ‖grad(Egrad

ij,l φ) + E
curl
ij,l ψ‖H(curl ), by commutativity (item (1)),

≤ C

(
‖φ‖

H
1/2

0,ij (Fl)
+ ‖ψ‖

H
1/2

0,ij(Fl)

)
, by [7, Prop. 4.1] and Lemma 5.1,

≤ C‖v‖
X

−1/2

0,ij (Fl)
, by Theorem 2.1.
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x

y

z

u = 0

u = 0

(s(x + y + z), t(x + y + z)

Figure 4. Integration paths symmetrizing the edge correction

Proof of (3): To show that trcτ (Ecurl
ij,l v)

∣∣
Fi

= 0,

trcτ (E
curl
ij,l v)

∣∣
Fi

=trcτ (E
curl
i,l v) − trcτ (E

curl
Fj ,lv) + trcτ (E

curl
Ekl,l

v)

∣∣∣∣
Fi

, by (4.7)

= − trcτ (E
curl
Fj ,lv)|Fi + trcτ (E

curl
Ekl,l

v)|Fi , by Prop. 4.1(3).

Now, by (4.6) and (5.2),

trcτ (E
curl
Fj ,lv) =

2λl

(λj + λl)3

∫∫

Tl(0,λi,λk)

∑

m∈{i,k}

Dmv gradτ λm ds

+
λj gradτ λl − λl gradτ λj

(λj + λl)3
,

∫∫

Tl(0,λi,λk)

Djv ds, and

trcτ (E
curl
Ekl,l

v) =
∑

m∈{i,j}

λm gradτ λl − λl gradτ λm

(1 − λk)3

∫∫

Tl(0,0,λk)

Dmv ds

+
2λl gradτ λk

(1 − λk)3

∫∫

Tl(0,0,λk)

Dkv ds.

These two expressions coincide on Fi because on Fi we have λi = 0, gradτ λi = 0, λj +λl =
1 − λk, and Tl(0, λi, λk) = Tl(0, 0, λk). Hence

(5.6) trcτ (E
curl
Fj ,lv − E

curl
Ekl,l

v)|Fi = 0,

and so trcτ (E
curl
ij,l v)|Fi = 0. That trcτ (E

curl
ij,l v)|Fj = 0 now immediately follows because the

expression for the three face extension E
curl
ij,l is symmetric with respect to i and j. The

third identity trcτ (E
curl
ij,l v)|Fl

= v holds because all the correction operators have vanishing

tangential traces on Fl.
Proof of (4): To show that the expression in (5.1) is in P p(K̂) is easy. Indeed, since v

has vanishing tangential components along both the x and y-axes, it has the form v(x, y) =

(xv1(x, y), yv2(x, y))
t. Hence the denominator term x+ y + z in (5.1) cancels out showing

that E
curl
Ê03
v is in P p(K̂).
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If v is in Np(F̂ ), then since (5.1) implies



x
y

z


 · Ecurl

Ê03
v =

2z

x+ y + z

∫ 1

0

∫ 1−t

0

(
s(x+ y + z)
t(x+ y + z)

)
· v(s(x+ y + z), t(x+ y + z)) ds dt,

and (3.7) implies x · v is in Pp+1(F̂ ), we have x ·Ecurl
Ê03
v is in Pp+1(K̂). This proves the last

statement of the proposition. �

6. Extension of a tangential face bubble

Now consider a tangential vector function on the face Fl of a general tetrahedron K,
whose tangential components along all the three edges of Fl vanish. The four-face problem
is the problem of finding an extension of v into K whose tangential traces are zero on all

the other three faces of K.
We have all the main ingredients to solve the four-face problem right away. The required

extension operator is

(6.1) E
curl
ijk,lv = E

curl
l v − E

curl
Vl
v −

∑

m∈{i,j,k}

(
E

curl
Fm,lv − E

curl
Eml,l

v
)
,

where E
curl
l is the primary extension operator defined in (3.5), E

curl
Fi,l is the face correction

operator defined in (4.6), E
curl
Eil,l

is the edge correction operator defined in (5.2), and E
curl
Vl

is

a vertex correction operator defined by

(6.2) E
curl
Vl
v =

∑

m∈{i,j,k}

(λm gradλl − λl gradλm)

∫∫

Fl

Dmv ds

where Dmv is as defined before in (3.6) but now with λ̃j(s) in (3.6) denoting the barycentric

coordinates of Fl, i.e., now λ̃j = λj|Fl
.

Proposition 6.1. The four-face extension E
curl
ijk,l satisfies the following:

(1) Commutativity: E
curl
ijk,l gradτ u = grad(Egrad

ijk,lu) for all u ∈ H1/2
0,ijk(Fl).

(2) Continuity: E
curl
ijk,l is a continuous map from X

−1/2
0,ijk (Fl) into H(curl ).

(3) Extension property: For all v ∈ X−1/2
0,ijk (Fl), the tangential traces of E

curl
ijk,lv on all

faces of the tetrahedron are zero except for the face Fl, where it equals v.

(4) Polynomial preservation: Suppose v ∈ P p(Fl) is such that v · t = 0 on ∂Fl. Then

the extension E
curl
ijk,lv is in P p(K). Furthermore, if v is in the Nédélec space Np(Fl),

then its extension E
curl
ijk,lv is in Np(K).

Proof. Proof of (1): We have already proven the commutativity properties of all the oper-

ators in (6.1) except E
curl
Vl

. Therefore, it is enough to prove that

(6.3) E
curl
Vl

gradτ u = grad(Egrad
Vl

u), for all u ∈ H1/2
0,ijk(Fl),

for the operator E
grad
Vl

defined in [7]. Furthermore, by mapping, it is enough to prove (6.3)

for the specific case of the reference tetrahedron with l = 3. In this case, the right hand



EXTENSION OPERATORS 20

side of (6.3) simplifies to

E
curl
V3

(gradτ u) (x, y, z) =




0
0

1




∫ 1

0

∫ 1−s

0

(
−s
−t

)
· gradτ u(s, t) ds dt +



−z
0
x




∫ 1

0

∫ 1−s

0

(
1

0

)
· gradτ u ds dt +




0
−z
y




∫ 1

0

∫ 1−s

0

(
0

1

)
· gradτ u ds dt.

Because u vanishes on the boundary, the last two terms on the right hand side are zero,
and the remaining term can be rewritten using Lemma 4.1(3):

E
curl
V3

(gradτ u) =




0

0
1




∫ 1

0

∫ 1−s

0

(
−s
−t

)
· gradτ u(s, t) ds dt

=




0
0

1




∫∫

F̂

2u(s, t) ds dt

= grad(Egrad
V3

u).

Proof of (2): First observe that the continuity of the vertex correction E
curl
Vl

fromH0,ijk(Fl)

into H1(K) is obvious. To obtain the continuity stated in the proposition, we use Theo-
rem 2.1: Split

v = gradτ φ+ψ, with φ ∈ H
1/2
0,ijk(Fl), and ψ ∈H1/2

0,ijk(Fl).

Then by the commutativity property already proved, E
curl
ijk,lv = grad(Egrad

ijk,lφ) + E
curl
ijk,lψ.

Hence, using the obvious continuity of E
curl
Vl

: H0,ijk(Fl) 7→H1(K), we have

‖Ecurl
ijk,lv‖H(curl ) ≤ C

(
‖φ‖

H
1/2

0,ijk(Fl)
+ ‖ψ‖

H
1/2

0,ijk(Fl)

)
, by [7, Prop. 5.1],

≤ C‖v‖
X

−1/2

0,ijk (Fl)
, by Theorem 2.1.

Proof of (3): To prove the extension property, we first rewrite the terms in (6.1) as

(6.4) E
curl
ijk,lv = E

curl
i,l v − (Ecurl

Fj ,lv − E
curl
Ekl,l

v) − (Ecurl
Fk,lv − E

curl
Ejl,l

v) + (Ecurl
Eil,l

v − E
curl
Vl
v).

Note that in the course of the proof of Proposition 5.1(3), we have shown that trcτ (E
curl
Fj ,lv−

E
curl
Ekl,l

v) vanishes on Fi – see (5.6). Hence the middle two terms in (6.4) have vanishing
tangential traces on Fi. The first term also has vanishing tangential trace on Fi by Propo-

sition 4.1(3). Hence,

trcτ (Ecurl
ijk,lv)|Fi = trcτ (E

curl
Eil,l

v − E
curl
Vl
v)|Fi

=
∑

m∈{j,k}

(λm gradτ λl − λl gradτ λm)|Fi

(1 − 0)3

∫∫

Tl(0,0,0)

Dmv ds

−
∑

m∈{i,j,k}

(λm gradτ λl − λl gradτ λm)|Fi

∫∫

Fl

Dmv ds

= 0,

because, on the face Fi, we have λi = 0, gradτ λi = 0, and Tl(0, 0, 0) = Fl. Since E
curl
ijk,l is

symmetric with respect to i, j, and k, the above implies that the tangential trace vanishes on
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Fi∪Fj∪Fk. That trcτ (E
curl
ijk,lv) coincides with v on Fl follows because all correction operators

in (6.1) have vanishing tangential traces on Fl, while the primary extension reproduces v
as its tangential trace on Fl.

Proof of (4): From the expression (6.2), it is clear that the vertex correction always results

in a lowest order function in the Nédélec space (a Whitney form). Hence, the polynomial
preservation property follows from the already established results in Proposition 4.1(4) and
Proposition 5.1(4). �

7. Extension from the whole boundary of the tetrahedron

Consider any function v in the trace space of H(curl ) on ∂K, i.e., v ∈ X−1/2. Let us
now solve the problem of extending this function from ∂K into K in a polynomial preserving

way. The construction, at this stage, is completely analogous to the H1 case: Define

U i = E
curl
i v,

U j = E
curl
i,j wj, where wj = Rj(v − trcτ U i),

Uk = E
curl
ij,kwk, where wk = Rk(v − trcτ U i − trcτ U j),

U l = E
curl
ijk,lwl, where wl = Rl(v − trcτ U i − trcτ U j − trcτ Uk),

where Ri is the restriction to face Fi defined in (2.5), and the extensions E
curl
i , E

curl
i,j , E

curl
ij,k ,

and E
curl
ijk,l are as defined in (3.5), (4.7), (5.3), and (6.1), respectively. The total extension

operator is then defined by

(7.1) E
curl
K v = U i +U j +Uk +U l.

Lemma 7.1. The functions wj, wk, and wl defined above satisfy

‖wj‖X
−1/2

0,i (Fj)
≤ C‖v‖

X−1/2 ,

‖wk‖X
−1/2

0,ij (Fk)
≤ C‖v‖

X−1/2 ,

‖wl‖X
−1/2

0,ijk (Fl)
≤ C‖v‖

X−1/2 .

Theorem 7.1. The operator E
curl
K in (7.1) has the following properties:

(1) Continuity: E
curl
K is a continuous operator from X−1/2 into H(curl ).

(2) Commutativity: grad(Egrad
K u) = E

curl
K (gradτ u) for all u in H1/2(∂K).

(3) Extension property: The tangential trace trcτ (E
curl
K v) coincides with v for all v

in X−1/2.
(4) Full polynomial preservation: If v is the tangential trace of a function in P p(K),

then E
curl
K v is in P p(K).

(5) Nédélec polynomial preservation: If v is the tangential trace of a function inNp(K),

then E
curl
K v is in Np(K).

Proof. The proof follows by combining the previous results. E.g., the proof of continuity fol-
lows by combining the continuity of v 7→ wm for m = j, k, l (Lemma 7.1), the continuity of

the primary extension (Theorem 3.1), and the continuity of the intermediate extension oper-

ators E
curl
i,j (Proposition 4.1), E

curl
ij,k (Proposition 5.1) and E

curl
ijk,l (Proposition 6.1). The proof

of the commutativity property similarly follows because each of the intermediate operators
satisfy commutativity properties. The remaining properties are also proved similarly. �
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z

z

Sz

(x, y, z)

u(x,y)

Kθu

0

Figure 5. The value of Kθu at a point (x, y, z) in the slice Sz is determined

by integrating u over the triangle in the x-y plane shown above. Even if
u(x, y) is not differentiable, Kθu can be differentiable. But the derivatives
of Kθu degenerate as z → 0, unless u is differentiable (see Lemma A.2).

Appendix A. Proofs of the lemmas

We now prove all the lemmas in the order in which they appeared in the previous sections.
For these proofs, we will use the lemmas established in [7], as well as a few new auxiliary

results. We begin with the following auxiliary lemma:

Lemma A.1. Let Sz = {(x′, y′, z′) ∈ K̂ : z′ = z}, θ(x, y) be a smooth function on F̂ , and

G0u (x, y, z) =

∫ 1

0
θ(s, 1 − s) u(x+ sz, y + (1 − s)z) ds,

G1u (x, y, z) =

∫ 1

0
θ(0, t) u(x, y + tz) dt,

G2u (x, y, z) =

∫ 1

0
θ(s, 0) u(x+ sz, y) ds.

Then, for any 0 < z < 1,
√

2 ‖G0u‖L2(Sz) ≤ ‖θ‖L1(Ê12)‖u‖L2(F̂ )

‖G1u‖L2(Sz) ≤ ‖θ‖L1(Ê20)‖u‖L2(F̂ ),

‖G2u‖L2(Sz) ≤ ‖θ‖L1(Ê01)‖u‖L2(F̂ ).

Proof. The three estimates have very similar proofs, so we will only prove the last one:

‖G2u‖2
L2(Sz) =

∫∫

Sz

∣∣∣∣
∫ 1

0
θ(s, 0) u(x+ sz, y) ds

∣∣∣∣
2

dx dy

=

∫∫

Sz

(∫ 1

0
θ(s1, 0) u(x+ s1z, y) ds1

)(∫ 1

0
θ(s2, 0) u(x+ s2z, y) ds2

)
dx dy

=

∫ 1

0

∫ 1

0
θ(s1, 0) θ(s2, 0)

( ∫∫

Sz

u(x+ s1z, y) u(x+ s2z, y) dx dy

)
ds1 ds2
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by Fubini’s theorem. Now applying Cauchy-Schwarz inequality to the integral over Sz in
the parentheses above, and increasing the integration domain to all (x, y) in F̂ , we obtain

‖G2u‖2
L2(Sz) ≤

∫ 1

0

∫ 1

0
|θ(s1, 0) θ(s2, 0)| ‖u‖L2(F̂ )‖u‖L2(F̂ ) ds1 ds2

=

(∫ 1

0
|θ(s, 0)| ds

)2

‖u‖2
L2(F̂ )

,

from which the last estimate of the lemma follows. �

Next, we present a result for the integral operator

Kθu (x, y, z) =

∫ 1

0

∫ 1−t

0
θ(s, t) u(x+ sz, y + tz) ds dt,

with a smooth kernel θ. This is a smoothing integral, but the smoothness of the resulting
function degenerates as z → 0. The following lemma quantifies this by examining norms of
derivatives on slices Sz (see Fig. 5) parallel to and approaching the x-y plane.

Lemma A.2. Let θ(x, y) be a smooth function on F̂ . Then the map Kθ defined above for

smooth functions u(x, y) on F̂ , extends to a continuous operator from L2(F̂ ) into L2(K̂).

Moreover, letting Sz = {(x′, y′, z′) ∈ K̂ : z′ = z}, the following inequalities hold for any
0 < z < 1:

‖Kθu‖L2(Sz) ≤ κ1‖u‖L2(F̂ ),(A.1)

‖grad(Kθu)‖L2(Sz) ≤ κ2 z
−1‖u‖L2(F̂ ),(A.2)

‖grad(Kθu)‖L2(Sz) ≤ κ3‖gradτ u‖L2(F̂ ),(A.3)

where κ1 = ‖θ‖L1(F̂ ), κ2 = 2
√

3
(
‖θ‖2

W 1
1 (F̂ )

+ ‖θ‖2
L1(∂F̂ )

)1/2
, and κ3 =

√
3 ‖θ‖L1(F̂ ).

Proof. The proof of the first estimate (A.1) is similar to the proof of Lemma A.1, so we
omit it. To prove the second estimate (A.2), we rewrite the expression for Kθu as

Kθu (x, y, z) =

∫ 1

0

∫ 1−t

0
θ(s, t) u(x+ sz, y + tz) ds dt(A.4)

=
1

z2

∫ x+z

x

∫ x+y+z−x′

y
θ(
x′ − x

z
,
y′ − y

z
) u(x′, y′) dy′dx′,

and differentiate it (so that no derivatives fall on u). Then we obtain the following identity:

(A.5) grad(Kθu) =
1

z




−K∂sθu+G0u−G1u

−K∂tθu+G0u−G2u
−2Kθu− K(s∂sθ+t∂tθ)u+G0u


 ,

where Kα (appearing above with α = ∂sθ, ∂tθ, and s∂sθ + t∂tθ) denotes the same expres-
sion as on the right hand side of (A.4), but with θ(s, t) replaced by α(s, t). By applying

Lemma A.1 and (A.1) to estimate the terms on the right hand side of (A.5), we obtain (A.2).
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To prove the last estimate of the lemma, we express grad(Kθu) differently from (A.5),
this time letting all the derivatives fall on u:

grad(Kθu) =

∫ 1

0

∫ 1−t

0
θ(s, t)




1 0

0 1
s t


gradτ u(x+ sz, y + tz) ds dt

=




Kθ(∂xu)
Kθ(∂yu)

Ksθ(∂xu) + Ktθ(∂yu)


 .

Thus, (A.3) follows by applying (A.1) to each term on the right hand side above. �

Proof of Lemma 3.1 (the K-functional technique). We use the real method of interpola-
tion of spaces [2] and Peetre’s K-functional [16]. It is well known [11, 12] that an equivalent

norm on space H1/2(F̂ ) is

|||u|||H1/2(F̂ ) =

(∫ ∞

0
t−2|K(t, u)|2 dt

)1/2

,

where the K-functional is defined by

K(t, u)2 = inf
u=u0+u1

‖u0‖2
L2(F̂ )

+ t2‖u1‖2
H1(F̂ )

.

The infimum is taken over all decompositions u = u0 +u1 of u in H1/2(Fl) with u0 in L2(F̂ )

and u1 in H1(F̂ ). For such a decomposition, (A.2) and (A.3) of Lemma A.2 gives

∥∥gradKθu0

∥∥2

L2(Sz)
≤ Cz−2‖u0‖2

L2(F̂ )
,

∥∥gradKθu1

∥∥2

L2(Sz)
≤ C‖u1‖2

H1(F̂ )
,

where Sz is the slice defined previously (see Fig. 5). Using these to estimate the H1(K̂)-
norm, we have

‖Kθu‖2
H1(K̂)

=

∫ 1

0

(
‖Kθu‖2

L2(Sz) +
∥∥grad

(
Kθ(u0 + u1)

)∥∥2

L2(Sz)

)
dz

≤ C

∫ 1

0
‖u‖2

L2(F̂ )
+ z−2

(
‖u0‖2

L2(F̂ )
+ z2‖u1‖2

H1(F̂ )

)
dz,

where we have also used (A.1) of Lemma A.2. Taking the infimum over all the decomposi-
tions,

∥∥Kθu
∥∥2

H1(K̂)
≤ C

∫ 1

0
z−2K(z, u)2 dz ≤ C |||u|||2

H1/2(F̂ )
.

�

Proof of Lemma 4.1. The proofs of the first, second, and third identities rely on an
application of the fundamental theorem of calculus along the integration paths shown in
Fig. 3(a), 3(b), and 3(c), respectively. Since the three proofs are very similar, we will only

prove the first identity.
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First, integrating ∂u/∂s along the vertical path in Fig. 3(a), we have
∫ 1

0

∫ 1−t

0
u(s, t) ds dt

=

∫ 1

0

∫ 1−t

0

∫ s

0

∂u

∂s
(s′, t) ds′ds dt (Fundamental theorem of calculus)

=

∫ 1

0

∫ 1−t

0

∫ 1−t

s′
ds

∂u

∂s
(s′, t) ds′dt (Fubini’s theorem)

=

∫ 1

0

∫ 1−t

0
(1 − t− s)

∂u

∂s
(s, t) ds dt (variable change: s′ → s).

Next, we integrate along the slanted line in Fig. 3(a) to get
∫ 1

0

∫ 1−t

0
u(s, t) ds dt =

∫ 1

0

∫ β

0
u(α, β − α) dαdβ (variable change: α = s, β = s+ t)

=

∫ 1

0

∫ β

0

∫ α

0

d

dα
u(α′, β − α′) dα′dαdβ

=

∫ 1

0

∫ β

0

∫ α

0

(
∂u

∂s
− ∂u

∂t

)
(α′, β − α′) dα′dαdβ

=

∫ 1

0

∫ β

0

∫ β

α′

dα

(
∂u

∂s
− ∂u

∂t

)
(α′, β − α′) dα′dβ

=

∫ 1

0

∫ β

0
(β − α)

(
∂u

∂s
− ∂u

∂t

)
(α, β − α) dαdβ

=

∫ 1

0

∫ 1−t

0
t

(
∂u

∂s
− ∂u

∂t

)
(s, t) ds dt (variable change).

Taking the average of the two identities we get the first identity of the lemma. �

Next, let us prove the continuity of the face and edge correction operators. Recall the

averaging operators Aθ
3, B

θ
2 and the interpolatory operators Jθ, Lθ analyzed in [7, Appen-

dix A]:

Aθ
3u (y, z) = 2

∫ 1

0

∫ 1−s

0
θ(s, t) u(sz, y + tz) dt ds,(A.6)

Bθ
2u (z) = 2

∫ 1

0

∫ 1−s

0
θ(s, t)u(sz, tz) dt ds.(A.7)

Jθφ (x, y, z) = θ(x, y, z)φ(y, x + z),(A.8)

Lθψ (x, y, z) = θ(x, y, z)ψ(x + y + z),(A.9)

which we used in the analysis of the H1 face and edge correction operators. We will use
them here in the H(curl ) case as well.

Proof of Lemma 4.2. Combining the two terms in the definition of the face correction (4.1),
write

E
curl
F̂
v =

∫ 1

0

∫ 1−t

0




(3s− 1)z 3zt

0 2z
2zs+ x(1 − s) 2zt− xt


 v(s(x+ z), y + t(x+ z))

x+ z
ds dt.

In terms of the operators in (A.6) and (A.8), this expression becomes

(A.10) E
curl
F̂

(
v1
v2

)
=




Jβ1
◦ Aθ1

3 v1 + Jβ1
◦ Aθ2

3 v2
Jβ1

◦Aθ3

3 v2

Jβ1
◦Aθ4

3 v1 + Jβ2
◦Aθ5

3 v1 + Jβ1
◦Aθ6

3 v2 − Jβ2
◦Aθ6/2

3 v2



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with

(A.11)
θ1 =

3s− 1

2
θ2 =

3t

2
, θ3 = 1, β1 =

z

x+ z

θ4 = s, θ5 =
1 − s

2
θ6 = t, β2 =

x

x+ z
.

Since |βi| are bounded, we can apply [7, Lemma A.3] to conclude that the map Jβi
:

L2
z(F̂1) 7−→ L2(K̂) is continuous. In addition, for the specific β1 and β2 in (A.11) above, we

have

grad(Jβ1
φ) =



Jβ1

(∂zφ) − Jβ1
(φ/z)

Jβ1
(∂yφ)

Jβ1
(∂zφ) + Jβ2

(φ/z)


 , grad(Jβ2

φ) =



Jβ2

(∂zφ) + Jβ1
(φ/z)

Jβ2
(∂yφ)

Jβ2
(∂zφ) − Jβ2

(φ/z)


 .

Applying [7, Lemma A.3] again to these gradients, we conclude that the map

(A.12) Jβi
: L2

1/z(F̂1) ∩H1
z (F̂1) 7−→ H1(K̂)

is continuous. Furthermore, since the θi in (A.11) are smooth, applying [7, Lemma A.1],
we find that

(A.13) Aθi
3 : L2

1/x(F̂3) 7−→ L2
1/z(F̂1) ∩H1

z (F̂1)

is continuous. Combining the continuity of the maps in (A.12) and (A.13), we get that each

of the operators in (A.10) of the form Jβi
◦Aθj

3 is continuous from L2
1/x(F̂3) into H1(K̂).

Since H
1/2
0,i (Fl) = H1/2(Fl) ∩ L2

1/λi
(Fl), the continuity of the two-face extension E

curl
i,l =

E
curl
l − E

curl
Fi,l , now follows from the continuity of E

curl
l proved in Theorem 3.1 and the con-

tinuity of the face correction established above. �

Proof of Lemma 5.1. Let us first consider the expression (5.1) for the edge correction,

summing its the three terms, namely
(A.14)

E
curl
Ê
v =

∫∫

F̂




(3s− 1)z 3zt

3zs z(3t− 1)
x(1 − s) − ys+ 2zs −xt+ y(1 − t) + 2zt


v(s(x+ y + z), t(x+ y + z))

x+ y + z
ds dt.

Using the Bθ
2 in (A.7) and the Lθ in (A.9), we can rewrite this expression as

(A.15)

E
curl
Ê

(
v1
v2

)
=




Lβ3
◦Bθ1

2 v1 Lβ3
◦Bθ2

2 v2
Lβ3

◦B3θ3

2 v1 Lβ3
◦Bθ4

2 v2
Lβ3

◦ (Bθ5

2 +B2θ3

2 )v1 − Lβ2
◦Bθ3

2 v1 Lβ2
◦ (Bθ6

2 +B2θ2

2 )v2 − Lβ1
◦B2θ2

2 v2


 ,

with

(A.16)

θ1 =
3s− 1

2
θ2 =

t

2
, θ3 =

s

2
, β1 =

x

x+ y + z
, β2 =

y

x+ y + z

θ4 =
3t− 1

2
, θ5 =

1 − s

2
θ6 =

1 − t

2
, β3 =

z

x+ y + z
.
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Note that the above βi take values in the bounded interval [0, 1]. Hence [7, Lemma A.4]

implies that Lβi
: L2

z2(Ê03) 7→ L2(K̂) is continuous. However, since

grad(Lβ1
ψ(z)) =

1

(x+ y + z)2



y + z
−x
−x


ψ(x+ y + z) +

x

x+ y + z



ψ′(x+ y + z)
ψ′(x+ y + z)

ψ′(x+ y + z)


 ,

=



Lβ2

(ψ/z) + Lβ3
(ψ/z)

−Lβ1
(ψ/z)

−Lβ1
(ψ/z)


 +



Lβ1

(ψ′)

Lβ1
(ψ′)

Lβ1
(ψ′)


 ,

and since similar identities hold for the gradients of Lβ2
ψ and Lβ3

ψ, applying [7, Lemma A.4]

to the components of these gradients, we find a stronger continuity property, namely

(A.17) Lβi
: L2(Ê03) ∩H1

z2(Ê03) 7−→ H1(K̂)

is continuous. Next, since θi in (A.11) are smooth, applying [7, Lemma A.2], we also have

(A.18) B
θj

2 : L2
1/x(F̂3) ∩ L2

1/y(F̂3) 7−→ L2(Ê03) ∩H1
z2(Ê03).

Since all the operators in (A.15) are of the form Lβi
◦Bθj

2 , combining the continuity properties
of (A.17) and (A.18), we find that the edge correction

(A.19) E
curl
Ê

: [L2
1/x(F̂ ) ∩ L2

1/y(F̂ )]2 7→H1(K̂)

is continuous.
The required continuity of the three-face extension E

curl
ij,l = E

curl
l − E

curl
Fi,l − E

curl
Fj ,l + E

curl
Ekl,l

now follows from the continuity of (A.19), the continuity of the face corrections (established

in the proof of Lemma 4.2) and the continuity of the primary extension (Theorem 3.1). �

Proof of Lemma 7.1. By the definition of the space X
−1/2
0,I (Fl), its norm is

‖wj‖X
−1/2

0,I (Fj)
= inf

Rlu=wj ,u∈X
−1/2

0,I

‖u‖
X−1/2 .

Hence

‖wj‖X
−1/2

0,i (Fj)
≤ ‖v − trcτ U i‖X−1/2

≤ ‖v‖
X−1/2 + ‖ trcτ E

curl
i v‖

X−1/2

≤ ‖v‖
X−1/2 +C‖Ecurl

i v‖H(curl ) by trace theorem

≤ ‖v‖
X−1/2 +C‖v‖

X−1/2(Fl)
by Theorem 3.1

≤ C‖v‖
X−1/2 by (2.6).

The remaining estimates are proved similarly. �
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[7] L. Demkowicz, J. Gopalakrishnan, and J. Schöberl, Polynomial extension operators. Part I, This

journal, (2007).

[8] , Polynomial extension operators. Part III, In preparation, (2007).

[9] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, no. 5 in Springer

series in Computational Mathematics, Springer-Verlag, New York, 1986.

[10] J. Gopalakrishnan and L. F. Demkowicz, Quasioptimality of some spectral mixed methods, J. Com-

put. Appl. Math., 167 (2004), pp. 163–182.

[11] P. Grisvard, Elliptic Problems in Nonsmooth Domains, no. 24 in Monographs and Studies in Mathe-

matics, Pitman Advanced Publishing Program, Marshfield, Massachusetts, 1985.

[12] J. L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, vol. I,

Springer-Verlag, New York, 1972.

[13] P. Monk, Finite element methods for Maxwell’s equations, Numerical Mathematics and Scientific Com-

putation, Oxford University Press, New York, 2003.
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