
POLYNOMIAL EXTENSION OPERATORS. PART I

LESZEK DEMKOWICZ, JAYADEEP GOPALAKRISHNAN, AND JOACHIM SCHÖBERL

Abstract. In this series of papers, we construct operators that extend certain given

functions on the boundary of a tetrahedron into the interior of the tetrahedron, with

continuity properties in appropriate Sobolev norms. These extensions are novel in that

they have certain polynomial preservation properties important in the analysis of high

order finite elements. This part of the series is devoted to introducing our new technique

for constructing the extensions, and its application to the case of polynomial extensions

from H1/2(∂K) into H1(K), for any tetrahedron K.

1. Introduction

This paper is the first in a series of papers that construct extension operators with certain

polynomial preservation properties for the three basic first order Sobolev spaces

H1(D) = {u ∈ L2(D) : grad u ∈ L2(D)}(1.1)

H(curl ,D) = {u ∈ L2(D) : curlu ∈ L2(D)}(1.2)

H(div,D) = {u ∈ L2(D) : div u ∈ L2(D)}.(1.3)

Here the derivatives are understood in the distributional sense, L2(D) denotes the set of

square integrable functions (with respect to the Lebesgue measure) on an open subset D
of the three dimensional Euclidean space, and L2(D) denotes the set of vector functions
whose components are in L2(D). The domain into which our extensions are performed is a

tetrahedron K.
Extension operators are right inverses of trace maps. To describe the traces of the spaces

in (1.1)–(1.3), let φ be a smooth scalar function and φ is a smooth vector function on K.

Then three standard trace operators are

trcφ = φ|∂K , (scalar trace),

trcτ φ =
(
φ − (φ · n)n

)∣∣
∂K
, (tangential trace),

trcn φ = (φ · n)
∣∣
∂K
, (normal trace).

where n denotes the outward unit normal on ∂K. It is well known that trc extends to a
continuous operator (which we continue to call trc) from H1(K) onto H1/2(∂K) [17]. Sim-
ilarly, the tangential trace trcτ is well defined on H(curl ,K) and its range is a subspace of

H−1/2(∂K), and the normal trace trcn is well defined on H(div,K) [6] with its range equal

to H−1/2(∂K). We want to construct continuous extension operators that map functions on
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the boundary of a tetrahedron lying in the range of trc, trcτ , trcn into H1(K),H(curl ,K),
and H(div,K), respectively.

A polynomial extension operator is an extension operator with the additional property

that whenever the function on ∂K to be extended is the trace of a polynomial on K, the
extended function is also a polynomial.

1.1. Goal. Our aim in this series of papers is to construct three polynomial extension

operators E
grad
K ,Ecurl

K , and E
div
K on any tetrahedron K such that the following diagram

commutes:

(1.4)

H1/2(∂K)
gradτ−−−−→ trcτ (H(curl ,K))

curlτ−−−−→ trcn(H(div,K))
yE

grad

K

yE
curl
K

yE
div
K

H1(K)
grad
−−−−→ H(curl ,K)

curl
−−−−→ H(div,K)

The goal of this part of the series is to construct the first in the sequence of these operators,

namely E
grad
K . In the forthcoming parts [12, 13], we will construct the other two polynomial

extension operators. Next, we state precisely the properties we require for E
grad
K .

1.2. The H1(K) polynomial extension problem. The problem we occupy ourselves

with in this paper is that of constructing a linear operator E
grad
K : H1/2(∂K) 7→ H1(K) with

the following properties:

- The trace of E
grad
K u on ∂K coincides with u, i.e., trc(Egrad

K u) = u.(1.5)

- E
grad
K is a continuous map from H1/2(∂K) into H1(K), i.e., there is a

constant Cgrad independent of u such that

‖Egrad
K u‖H1(K) ≤ Cgrad‖u‖H1/2(∂K) for all u ∈ H1/2(∂K).

(1.6)

- If u is a polynomial of degree at most p on each face of K and continuous

on ∂K, then E
grad
K u is a polynomial of degree at most p on K.

(1.7)

The main result of this paper is Theorem 6.1, which solves the problem as stated above.

1.3. Existing work. The concept of extension operators is intimately related with the idea

of the trace operators and it has been present in the vast literature on Sobolev Spaces for
a long time. For instance, the proof of surjectivity of trace operator for standard Sobolev
spaces Hs(Ω) is based on the Lion’s construction of a corresponding extension operator, see

e.g. [23, Lemma 3.36]. It is perhaps worth mentioning that, contrary to this trace operator,
the extension operator does not break down at half-integers and that the same construction
serves the whole Sobolev scale for s ∈ R.

The subject of polynomial preserving extension operators originates from the conver-
gence analysis for the p- and hp-versions of the Finite Element Method (FEM). The first
construction of such an operator is for the H1-space on a two dimensional region and is due

to Babuška and Suri [3]. It contains the origins of many ideas that have been generalized
and developed in subsequent contributions. Those include the definition of the primary
extension operator (cf. Section 2 of this contribution), the solution of a ‘two-edge extension

problem’ using a system of two integral equations, and the analysis of continuity properties
of ‘edge-to-edge operators’ necessary for the solution of an ultimate ‘three edge extension’
problem. The analysis was carried out first for a triangle and then extended to the case of a

square element by using a bilinear map collapsing a square into a triangle. The construction
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from [3] appears again in a later paper [2] by Babuška, Craig, Mandel, and Pitkäranta, in
the context of preconditioning for the p version of the FEM.

The two dimensional polynomial preserving extension operator was subsequently utilized

by Maday [21, 22] to demonstrate that interpolation between polynomial spaces equipped
with Sobolev integer norms yields norms equivalent to the standard fractional Sobolev
norms. A recent exposition of this subject is contained in [5]. Maday [22] also studied the

continuity properties of the Babuška-Suri operator in weighted Sobolev spaces.
The first construction of a polynomial preserving extension operator in three space di-

mensions from H1/2(∂U) into H1(U) was done for a cube U by Ben Belgacem in [4]. The

construction utilized the earlier results of Maday mentioned above. The second construc-
tion was done for a tetrahedron by Muñoz-Sola [24]. The idea of Muñoz-Sola is rooted in
the construction of “face bubble” shape functions for tetrahedral FEM. If ζ is the product

of barycentric coordinates of the vertices of a face, then the face bubble functions have ζ as
a factor. Muñoz-Sola applies a three dimensional analogue of the Babuška-Suri extension
to the quotient φ/ζ, and multiplies the factor ζ back into the extension. The resulting lift

vanishes on the remaining faces and displays appropriate continuity properties. The Muñoz-
Sola’s construction was recently analyzed in [18] in context of boundary elements, wherein

it is shown that the norm of the extension as an operator from L2 into H̃1/2 grows with
polynomial order p as log1/2 p. (Here H̃1/2 is the stronger intrinsic norm on the subspace

of H1/2 with weakly vanishing traces – see [18] for its definition.) Although the tetrahedral
H1 polynomial extension problem, as stated in (1.2), was solved by Muñoz-Sola [24], in this
paper we want to present an alternate solution to the same problem. The main reason for

presenting our new construction is that our techniques can be generalized to give polyno-
mial extensions in the other two Sobolev spaces in (1.2) and (1.3), as will be amply evident
from the subsequent parts of this series [12, 13]. Furthermore, with our techniques, we are

able to provide polynomial extensions with the commutativity properties shown in (1.4),
which we find aesthetic as well as useful. It is not clear to us if the technique in [24] can
yield such extensions, but we do recognize the importance of [24], and indeed some of our

arguments are motivated by it.
The need for polynomial preserving extension operators, at least in the analysis of pmeth-

ods in H1, is well known, as attested by the above mentioned works. In fact they are impor-

tant also in other areas, such as in the theory of spectral methods even on one element as
shown in [15], and for preconditioning as shown in [25]. The importance of polynomial ex-
tensions in the context of p and hp approximation theory for Maxwell equations was first rec-

ognized by Demkowicz and Babuška in [10], who considered the two dimensional triangular
case. For a triangle T , the construction of a polynomial preserving extension operator from
H−1/2(∂T ) into H(curl, T ) follows directly from the corresponding construction for the H1-

case, and presents no essential technical difficulties. The utility of the polynomial extension
operators in H1(T ) and H(curl, T ) forming a commuting de Rham diagram in developing
approximations using “projection-based interpolation operators” is evident from [10]. The

projection-based interpolation theory was generalized to three space dimensions (tetrahe-
dra) by Demkowicz and Buffa in [11], under the conjecture of existence of commuting, poly-
nomial preserving extension operators for the three spaces H1(K),H(curl,K),H(div,K)

(for a refined version of the theory in context of both tetrahedral and hexahedral elements,
see [9]). The extensions we construct in this series of papers establish the truth of this
conjecture, thus providing the missing link in the approximation theory of [11].
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An alternate technique for constructing commuting H1(T ) and H(curl, T ) polynomial
extensions deserves special mention. In two space dimensions, for any triangle T , Ainsworth
and Demkowicz [1] constructed polynomial extensions explicitly by solving a system of

three integral equations in the spirit of the system of two integral equations analyzed in [3].
The H1(T ) extension operator has smaller norm than the two-dimensional version of the
Muñoz-Sola’s operator [24] and can be used for constructing optimal shape functions for a

triangular element. The Ainsworth-Demkowicz operator was also shown to map L2(∂K)
into H1/2(K), with a constant independent of polynomial order p (cf. this result with that

of [18] mentioned above). Unfortunately, our attempts to extend the Ainsworth-Demkowicz
technique to three dimensions failed as the analysis reached prohibitive levels of complexity.

To the best of our knowledge, our commuting polynomial extensions for a tetrahedron is

the first result of this kind. To compare with the most recent other work in this direction
that we know of, the contribution of Costabel, Dauge and Demkowicz [8] presents an anal-
ogous family of commuting extension operators defined on polynomial spaces on a cube.

The construction mimics separation of variables for polynomial spaces and is based on the
Maday’s spectral equivalence results for fractional spaces mentioned earlier. However, these
extension operators defined on polynomial spaces change with the polynomial degree, al-

though their norms are shown to be independent of polynomial degree p. In contrast, the
expressions defining our extensions do not vary with degree.

1.4. Overview of our techniques. Our approach to solve the problem stated above starts
with a study of the simpler case of extending a given function from just one face. Then

we will analyze how to modify this extension process to solve the case when data is given
on more faces. We highlight the main new techniques in the construction of our extension
operators:

(1) Primary extensions: We start with processes that extend functions given on the

plane R2, which we call “primary extensions”. In constructing the final extension
from ∂K, the first step is to pick a face of ∂K and apply the primary extension
from that face. Of course, such an extended function in general will not have the

needed traces in the remaining faces.
(2) Corrections: The next step is to “correct” the above mentioned incorrect traces on

the remaining faces. This step is divided into the construction of “face correction

operators”, “edge correction operators”, and a “vertex correction operator”. Most
of the technical aspects of the presented construction are in the design of these
corrections.

(3) Commutativity: Once we construct the first operator appearing in the commuting

diagram (1.4), namely E
grad
K , then the construction of the succeeding operators are

motivated by the commutativity properties in (1.4). Indeed, to obtain E
curl
K , we

consider each of the primary and correction operators that went into the design

of the preceding operator E
grad
K , and find corresponding H(curl ) operators that

commute with it. Similarly, the construction of the H(div) extension will proceed
by examining the steps in the construction of the H(curl ) extension and finding
their commuting H(div) analogues. This will be clear from Parts II [12] and III [13]

of this series.
(4) Regular decomposition of traces: In the H(curl ) and H(div) cases where traces

are in Sobolev spaces of negative index, we will characterize the trace space using a

decomposition involving Sobolev spaces of positive indices only. This will feature in
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Parts II [12]and III [13] only, as the trace space of H1(K) is H1/2(∂K), a Sobolev
space of positive index.

(5) Weighted norm estimates: The extension operators we construct are all integral

operators with polynomial kernels. To establish their continuity properties in ap-
propriate fractional Sobolev norms, we use weighted norm estimates. We are able
to do this even when traces are in Sobolev spaces of negative index, because of the

above mentioned regular decomposition of the trace space. A number of weighted
norm estimates used throughout this series are given in Appendix A of this part.

1.5. Notations. For ready reference, we quickly list here some notations that we will use
throughout this series.

The “reference tetrahedron” K̂ is defined by

K̂ = {(x, y, z) : x ≥ 0, y ≥ 0, x+ y + z ≤ 1},

with the following enumeration of vertices:

â0 = (0, 0, 0), â1 = (1, 0, 0), â2 = (0, 1, 0), and â3 = (0, 0, 1).

The face of K̂ opposite to vertex âi is denoted by F̂i. The face F̂3 is distinguished in that

the data for the primary extensions is given there, so we shall also denote it simply by F̂ .
The edge connecting âi and âj is denoted by Êij.

We denote by K a generic tetrahedron (of positive volume). When the notations defined

for K̂ above are employed without the superscript (hat), they denote the corresponding
geometrical objects on a general tetrahedron K, e.g., ai denote the vertices of K, and Fi is
the face of K opposite to the vertex ai.

Let λi(x), for i = 0, . . . 3 be the linear function on K satisfying λi(aj) = δij . The affine
coordinates (or barycentric coordinates) of a point in K are the values of λi at that point
arranged into a 4-tuple (λi, λj , λk, λl), where the order is not significant. Throughout this

series, the indices i, j, k, l are a permutation of 0, 1, 2, 3.
Many integral operators we consider will require us to integrate over subtriangles of a

face Fl of K. We now express these subtriangles using the affine coordinates of Fl, namely

λFl
m = λm|Fl

for m = i, j, or k. For any permutation {i, j, k, l} of {0, 1, 2, 3}, we define

(1.8) Tl(ri, rj , rk) = {x ∈ Fl : λFl
i (x) ≥ ri, λ

Fl
j (x) ≥ rj, and λFl

k (x) ≥ rk}.

Note that the order of the arguments ri, rj , rk in the notation Tl(ri, rj , rk) is not significant,
but the subscripts of these arguments indicate which affine coordinate it corresponds to.

This region is illustrated in Figure 1. Also define

Tl(0, rj , rk) = {x ∈ Fl : λFl
j (x) ≥ rj, and λFl

k (x) ≥ rk},(1.9)

Tl(0, 0, ri) = {x ∈ Fl : λFl
i (x) ≥ ri}.(1.10)

Note that the definition of Tl(0, rj , rk) is consistent with (1.8) when ri = 0. Similarly the

definition of Tl(0, 0, ri) is consistent with (1.8) when rj = rk = 0. In particular, from the
indices of the arguments, we judge which barycentric coordinates are zero, e.g., in Tl(0, rk, 0),
since l and k have already appeared, and since {i, j, k, l} is a permutation of {0, 1, 2, 3}, we

understand that the affine coordinates with indices that have not appeared, namely λFl
i and

λFl
j , are simply greater than or equal to zero: Tl(0, rk, 0) = {x ∈ Fl : λFl

k (x) ≥ rk, λ
Fl
i (x) ≥

0, λFl
j (x) ≥ 0}, which is consistent with (1.8). See Figures 1, 3, and 4 for illustrations of

these subtriangles.
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Figure 1. The regions of integration that define Egradu. The left figure
shows the integration region in gray for the extension from the x-y plane.

The right figure shows the integration region for the mapped extension from
a face of a general tetrahedron.

Our notation for Sobolev spaces is standard: Let Hs(D) denote the standard Sobolev

space of order s on domain D, e.g., when s = 1 the definition is as in (1.1). See e.g. [14,
19, 23] for the more complex definitions in the case when s is fractional. The definitions of
H(curl ,D) and H(div,D) are already given in (1.2)-(1.3) To shorten notation, when the

domain is K, we often simply write H(curl ) for H(curl ,K) (and similarly H(div)).
In inequalities bounding function norms, we denote by C (or C with some subscript) a

generic constant whose value at different occurrences may differ but is independent of the

functions involved.

2. The primary extension operator

The primary extension operator for the H1(K) case follows from the well known two

dimensional polynomial extension from a line [2], as generalized to three space dimensions

in [24] . Suppose u(x, y) is a smooth function given on the face F̂ of K̂ (see § 1.5 for

notation). The primary extension maps u to a function Egradu defined on K̂ as follows

(2.1) E
gradu (x, y, z) =

2

z2

∫ x+z

x

∫ x+y+z−ex

y
u(x̃, ỹ) dỹ dx̃.

Clearly, the value of the extension at the point (x, y, z) is determined by integrating u

over the triangle with vertices (x, y, 0), (x + z, y, 0), and (x, y + z, 0), as shown in the first
illustration of Figure 1. Note that Egrad can be thought of either as an extension from
the plane R2 into the adjacent infinite slab R2 × (0, 1) ≡ {(x, y, z) : 0 < z < 1}, or as an

extension from the face F̂ into K̂.

Theorem 2.1. The following statements apply to Egrad:

(1) The operator Egrad defined for smooth functions u by (2.1) extends as a continuous

operator from H1/2(F̂ ) to H1(K̂), i.e., there is a constant C > 0 such that

‖Egradu‖H1(K̂) ≤ C‖u‖H1/2(F̂ ),

for all u in H1/2(F̂ ).
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(2) The trace of Egradu on F̂ equals u for all u in H1/2(F̂ ).
(3) If u is a polynomial of degree at most p, then Egradu is also a polynomial of degree

at most p.

Proof. The proof of the continuity estimate in the first item proceeds by a standard tech-

nique involving the Fourier transform. We have included this proof in Appendix B. (In
Part II [12], we will develop an alternate technique.)

The second statement of the theorem is immediately verified for smooth u, once we

rewrite (2.1) by a change of variable as

(2.2) E
gradu (x, y, z) = 2

∫ 1

0

∫ 1−s

0
u(x+ sz, y + tz) dt ds.

So, by the standard density argument, it follows for all u ∈ H1/2(F̂ ).

To prove the last statement of the theorem, observe that if u is a polynomial of degree
at most p, then the integrand u(x + sz, y + tz) in (2.2) is a polynomial of degree at most
p in x, y, and z, with coefficients depending on s and t. After integrating over s and t, we

continue to have a polynomial of degree at most p in x, y, and z. �

Since any tetrahedron can be mapped one-one onto K̂ using an affine map, the above

definition of Egrad automatically defines an extension from a face for any tetrahedron. The
expressions for such mapped extensions are greatly simplified by the use of affine coordinates
(or barycentric coordinates) of the tetrahedron. Let K be any tetrahedron. Suppose u is a

smooth function defined on a face Fl of K and we want to extend it to K. The extension
operator on K now involves integration of u over a subtriangle of Fl. We express such
subtriangles using the notations established in § 1.5. The extension from Fl into K is

defined by

(2.3) E
grad
l u (λi, λj , λk, λl) =

2

λ2
l

∫∫

Tl(λi,λj ,λk)

u(s) ds,

where s is the two dimensional variable of integration running over the subtriangle Tl(λi, λj , λk)

defined in (1.8) and ds is the standard (two dimensional) Lebesgue measure on this subtri-
angle. (The region of integration is illustrated in Figure 1.) Clearly, the definition in (2.3)

reduces to (2.1) if we choose l = 3 and K = K̂. An analogue of Theorem 2.1 obviously

holds for the operator in (2.3) by mapping.

3. Face corrections

From the definition of E
grad
l u, it is clear that when u is a smooth function on Fl which

vanishes on the boundary ∂Fl, the extended function E
grad
l u in general does not have zero

trace on ∂K \ Fl. Now we show how to add a correction to E
grad
l u so that the corrected

result will have zero trace on a face other than Fl.
For definiteness, we first consider the situation on the face F̂1 of the reference tetrahedron

K̂ after the extension Egradu has been performed. The correction term for F̂1, namely

E
grad

F̂1
u, must be so that the corrected result Egradu − E

grad

F̂1
u achieves zero trace on F̂1

without altering the trace on the original face F̂ . Therefore, we design the correction term

by linear interpolation between the value of Egradu on F̂1 and 0 along the lines where x+ z
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Figure 2. Illustration of the face correction process

and y are constant (see Figure 2), i.e., we define

(3.1) E
grad

F̂1
u (x, y, z) =

z

x+ z
E

gradu(0, y, x+ z).

The interpolation process that we employed here has the following interesting continu-

ity property in weighted spaces (whose proof appears in Appendix A). Our notation
for weighted spaces is as follows: Let L2

w(D) denote the weighted space of all Lebesgue
measurable functions f on a domain D (in Rn – in this paper n = 1, 2, or 3) such that

‖f‖2
L2

w(D) ≡
∫
D w |f |2 dx < ∞. Here w(x) is a nonnegative weight function on D and

dx is the standard Lebesgue measure on D. Similarly, the weighted Sobolev space H1
w(D)

consists of all functions in L2
w(D) whose first order distributional derivatives are also in

L2
w(D).

Lemma 3.1. The map BF̂1
defined by

φ(y, z) 7→ BF̂1
φ :=

z

x+ z
φ(y, x+ z)

is continuous from L2
1/z(F̂1) ∩H

1
z (F̂1) into H1(K̂).

To study the face correction operator in (3.1), in addition to the above lemma, we shall
need some more properties of the primary extension Egradu involving weighted spaces.

Lemma 3.2.

(1) Let Rgrad map smooth functions u on face F̂3 to functions on face F̂1 by

u(x, y) 7→ R
gradu (y, z) := E

gradu(0, y, z).

Rgrad extends to a continuous map from L2
1/x(F̂3) into L2

1/z(F̂1) ∩H
1
z (F̂1).

(2) Let Lgrad map smooth functions u on face F̂3 to functions on edge Ê03 by

u(x, y) 7→ L
gradu (z) := E

gradu(0, 0, z).

Lgrad extends to a continuous map from L2
1/x(F̂3) ∩ L

2
1/y(F̂3) into L2(Ê03) ∩H

1
z2(Ê03).
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Figure 3. Domain of integration for face corrections (a) in the reference
domain and (b) in a general tetrahedron

Proofs of this and all other lemmas appear in Appendix A. Note that although Theorem 2.1
needs u to be in H1/2(F̂ ) for Egradu to be in H1(K̂), the above lemma shows that the traces
of Egradu on a face and an edge are well defined even when u is only in a weighted L2 space.

Before stating the properties of E
grad

F̂
, let us extend its definition for any face of a general

tetrahedron K, using the affine coordinate notation established in § 1.5. The face correction
operator for a face Fi to correct the primary extension from face Fl, is defined in affine

coordinates by

(3.2) E
grad
Fi,l

u (λ0, λ1, λ2, λ3) =
2λl

(λi + λl)3

∫∫

Tl(0,λj ,λk)

u(s) ds,

where Tl(0, rj , rk) is as defined in (1.9). The region of integration is illustrated in Figure 3

Now suppose u is a smooth function on Fl which vanishes on one of its edges, say the
edge connecting vertices aj and ak, which we denote by Ejk. This edge is shared by Fi and
Fl. The two-face problem is the problem of finding a polynomial extension of u from Fl that

is zero on Fi. With the above defined face correction, we are now able to solve the two face
problem. The extension operator that solves the Fi-Fl two-face problem is defined by

(3.3) E
grad
i,l u = E

grad
l u− E

grad
Fi,l

u.

It can be extended to an operator on

(3.4) H
1/2
0,i (Fl) = H1/2(Fl) ∩ L

2
1/λi

(Fl)

with the following properties:

Proposition 3.1. The two-face extension E
grad
i,l satisfies the following:

(1) E
grad
i,l is a continuous operator from H

1/2
0,i (Fl) into H1(K).

(2) For all u ∈ H
1/2
0,i (Fl), the trace of E

grad
i,l u on Fi is zero, while its trace on Fl equals u.

(3) If u is a polynomial of degree at most p that vanishes on Ejk, then E
grad
i,l u is a

polynomial of degree at most p.

Proof. To prove item (1), observe that since Theorem 2.1 yields

‖Egrad
l u‖H1(K) ≤ C‖u‖H1/2(Fl)

≤ C‖u‖
H

1/2

0,i (Fl)
,
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it suffices to prove that E
grad
Fi,l

is a continuous map from H
1/2
0,i (Fl) into H1(K). In fact, E

grad
Fi,l

is continuous on the larger space L2
1/λi

(Fl), as we show now. Because E
grad
Fi,l

for any i is

obtained by mapping E
grad

F̂1
from K̂, it suffices to prove that E

grad

F̂1
: L2

1/x(F̂3) 7→ H1(K̂) is

continuous. By definition, E
grad

F̂1
is the composition

E
grad

F̂1
= BF̂1

◦ R
grad.

By Lemma 3.2, Rgrad : L2
1/x(F̂3) 7→ L2

1/z(F̂1) ∩ H
1
z (F̂1) is continuous, and by Lemma 3.1,

BF̂1
: L2

1/z(F̂1)∩H
1
z (F̂1) 7→ H1(K̂) is continuous, hence the continuity of their composition

follows.

Proof of (2): By (2.3) and (3.2),

E
grad
i,l u =

2

λ2
l

∫∫

Tl(λi,λj ,λk)

u(s) ds −
2λl

(λi + λl)3

∫∫

Tl(0,λj ,λk)

u(s) ds.

Since λi = 0 on face Fi, we immediately see after setting λi = 0 above, that the trace on
Fi vanishes. The trace on Fl is u because the the last term above vanishes upon setting

λl = 0, while the trace of E
grad
l u on Fl is u (by Theorem 2.1).

Proof of (3): Going back to the reference tetrahedron, observe that if u vanishes on edge
along the y-axis, then

u(x, y) = xup−1(x, y)

for some polynomial up−1 of degree at most p−1. Using this in the face correction expression
in (3.1), we have

(Egrad

F̂1
u)(x, y, z) =

z

x+ z

∫ 1

0

∫ 1−t

0
u(s(x+ z), y + t(x+ z)) ds dt

=
z

x+ z

∫ 1

0

∫ 1−t

0
s(x+ z)up−1(s(x+ z), y + t(x+ z)) ds dt

= z

∫ 1

0

∫ 1−t

0
sup−1(s(x+ z), y + t(x+ z)) ds dt.

The integral above is a polynomial of degree at most p− 1 by the same arguments as in the
proof of Theorem 2.1(3), hence the result follows. �

4. Edge corrections

If the function u (to be extended from face Fl) vanishes on ∂Fl, then we want the extended
function to vanish on all faces other than Fl. After an application of the face correction
operator for face Fi, the extension has zero trace on Fi. To obtain zero trace on another

face, say Fj , we can consider applying the face correction operator for Fj . Unfortunately,
after this second correction the resulting total trace on Fi will no longer be zero, in general.
This necessitates the use of further correction operators which we discuss now.

Let us first consider the case of the reference tetrahedron K̂ after the application of the

face correction E
grad

F̂1
. This operator alters the traces on face F̂2. In order to return this

trace to its original setting we use an additional correction operator whose trace coincides
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0

x

x y

z

x + y + z

y x + y + z
(x, y, z)

(x, y + z, 0)

(x, 0, y + z)
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ak

aj
(λi, λj , λk, λl)

Tl(0, 0, λi)

(a) (b)

Figure 4. Domain of integration for the edge correction operators in (a) ref-
erence domain, and (b) general tetrahedron.

with that of of E
grad

F̂1
u on F̂2. It is defined by linearly interpolating the value of E

grad

F̂1
u on

this face down to zero along the lines where y + z and x are constant:

E
grad

Ê03
u(x, y, z) =

z

y + z
E

grad

F̂1
u(x, 0, y + z),

=
z

x+ y + z
E

gradu(0, 0, x + y + z), by (3.1)(4.1)

=
2z

(x+ y + z)3

∫ x+y+z

0

∫ x+y+z−ex

0
u(x̃, ỹ) dỹ dx̃, by (2.1).(4.2)

We call this operator the “edge correction operator” for the Ê03 edge, because as is clear
from (4.1), its action only depends on the value of Egradu along Ê03. The interpolation
process from this edge to the tetrahedron implicit in (4.1) has the following continuity
property:

Lemma 4.1. The map BÊ03
defined by

φ(z) 7→ BÊ03
φ :=

z

x+ y + z
φ(x+ y + z)

is continuous from L2(Ê03) ∩H
1
z2(Ê03) into H1(K̂).

Next, we generalize the expression in (4.2) to one in affine coordinates on a general
tetrahedron. Let K be a general tetrahedron with the function to be extended given on
face Fl. Let Eil denote the edge connecting the vertex ai to al. Then, the correction

operator associated to the edge Eil is

(4.3) E
grad
Eil,l

u (λ0, λ1, λ2, λ3) =
2λl

(1 − λi)3

∫∫

Tl(0,0,λi)

u(s) ds,

where, Tl(0, 0, ri) is as defined in (1.10). The integration domain is illustrated in Figure 4.
We can now solve the three-face problem of finding an extension of u from Fl that is zero

on Fi and Fj whenever u is a smooth function that vanishes on edges Ejk and Eik. The
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Fi-Fj-Fl three-face problem is solved by the extension operator

(4.4) E
grad
ij,l = E

grad
l − E

grad
Fi,l

− E
grad
Fj ,l + E

grad
Ekl,l

,

whose properties appear in the next proposition. The space to which E
grad
ij,l can be extended

continuously is

(4.5) H
1/2
0,ij(Fl) = H1/2(Fl) ∩ L2

1/λi
(Fl) ∩ L2

1/λj
(Fl)

as seen below.

Proposition 4.1. The three-face extension E
grad
ij,l satisfies the following:

(1) E
grad
ij,l is a continuous operator from H

1/2
0,ij(Fl) into H1(K).

(2) For all u ∈ H
1/2
0,ij(Fl) the traces of the edge and face corrections satisfy

E
grad
Fi,l

u
∣∣
Fk

= E
grad
Ejl,l

u,(4.6)

(Egrad
Ejl,l

u)
∣∣
Fj

= 2λl

∫∫

Fl

u(s) ds,(4.7)

(Egrad
Ejl,l

u)
∣∣
Fl

= 0,(4.8)

E
grad
ij,l u

∣∣
Fi∪Fj

= 0.(4.9)

(3) If u is a polynomial of degree at most p that vanishes on Eij ∪ Ejk, then E
grad
Ejl,l

u is

a polynomial of degree at most p for all j = 0, 1, 2.

Proof. To prove the first item, in view of Theorem 2.1(1) and Proposition 3.1(1), it suffices

to prove that the last term in (4.4), namely E
grad
Ekl,l

, is a continuous operator from H
1/2
0,ij into

H1(K). Since E
grad
Ekl,l

is obtained by mapping E
grad

Ê03
from K̂, it suffices to prove the continuity

of E
grad

Ê03
. But E

grad

Ê03
= BÊ03

◦ Lgrad, so by Lemmas 3.2 and 4.1, we conclude that E
grad

Ê03
is

continuous from L2
1/x(F̂3)∩L

2
1/y(F̂3) into H1(K̂). Thus E

grad
Ekl,l

is continuous from H
1/2
0,ij into

H1(K).
To prove (4.6), we start with

E
grad
Fi,l

u− E
grad
Ejl,l

u =
2λl

(λi + λl)3

∫∫

Tl(0,λj ,λk)

u(s) ds −
2λl

(1 − λj)3

∫∫

Tl(0,λj ,0)

u(s) ds.

Since λk = 0 on face Fk, by setting λk = 0 in the first integral above, and observing that

1 − λj = λi + λl, we see that the right hand side above is zero, thus proving (4.6). Proofs
of (4.7) and (4.8) follow immediately by setting λi = 0 and λl = 0, respectively, in (4.3).
To prove (4.9), observe that

E
grad
ij,l u

∣∣
Fi

= E
grad
i,l u

∣∣
Fi

− (Egrad
Fj ,l u− E

grad
Ekl,l

u)
∣∣
Fi
.

We see that this trace is zero by using Proposition 3.1(2) and (4.6). By symmetry of E
grad
ij,l ,

the trace on Fj must also vanish.

Proof of (3): This is best seen using the reference tetrahedron expression (4.1). Since u

vanishes on the edges of K̂ along the x and y axes, we can write, for instance, u(x, y) =
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xup−1(x, y) for some polynomials up−1 of degree at most p− 1. Then

E
grad

Ê03

u =
2z

x+ y + z

∫ 1

0

∫ 1−s

0
u(s(x+ y + z), t(x + y + z)) dt ds

= 2z

∫ 1

0

∫ 1−s

0
s up−1(s(x+ y + z), t(x + y + z)) dt ds,

so the polynomial preservation property follows. �

5. Extension of a face bubble

In this section, we consider the problem of extending functions in

(5.1) H
1/2
0,ijk(Fl) = H1/2(Fl) ∩ L

2
1/λi

(Fl) ∩ L
2
1/λj

(Fl) ∩ L
2
1/λk

(Fl)

in such a way that the extension is polynomial preserving and has zero traces on all faces

other than Fl. Such extensions have applications in the design of optimal face shape func-
tions for high order finite elements. Note that smooth functions that vanish on the boundary

edges of Fl (the so called “face bubble” functions) are in H
1/2
0,ijk(Fl).

The extension operator from H
1/2
0,ijk(Fl) into H1(K) is given by

(5.2) E
grad
ijk,lu = E

grad
l u − E

grad
Vl

u −
∑

m∈{i,j,k}

(
E

grad
Fm,lu− E

grad
Eml,l

u
)
,

where E
grad
l is the primary extension operator defined in (2.3), E

grad
Fi,l

is the face correction

operator defined in (3.2), E
grad
Eil,l

is the edge correction operator defined in (4.3), and

E
grad
Vl

u (λ0, λ1, λ2, λ3) = 2λl

∫∫

Fl

u(s) ds.

This last operator may be thought of as a vertex correction, because the right hand side

above equals λlE
grad
l u(al), i.e., it depends only on the value of E

grad
l u at a vertex. It is

needed because the edge corrections alter the traces zeroed by the face corrections.

Proposition 5.1. The operator E
grad
ijk,l satisfies the following:

(1) E
grad
ijk,l is a continuous map from H

1/2
0,ijk(Fl) into H1(K).

(2) The traces of E
grad
ijk,lu on all faces of the tetrahedron are zero except for the face Fl,

where the trace equals u.

(3) If u is a polynomial of degree at most p, then E
grad
ijk,lu is a polynomial of degree at

most p.

Proof. The continuity property of E
grad
ijk,l follows immediately by the results established in

Propositions 3.1(1) and 4.1(1), since the continuity of the vertex correction is obvious.

Let us now prove that the trace of E
grad
ijk,lu on Fi is zero. Observe that by a rearrangement

of the terms in (5.2),

E
grad
ijk,lu|Fi = (Egrad

l u− E
grad
Fi,l

u)|Fi

− (Egrad
Fj ,l u− E

grad
Ekl,l

u)|Fi − (Egrad
Fk ,l u− E

grad
Ejl,l

u)|Fi

+ (Egrad
Eil,l

u− E
grad
Vl

u)|Fi .
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The first term on the right hand side is zero by Proposition 3.1(2). The second and third are
also zero by Proposition 4.1 – see (4.6). Furthermore, the last term also vanishes by (4.7).

Thus the trace of E
grad
ijk,lu on Fi is zero. The traces on Fj and Fk must also be zero because

the expression for E
grad
ijk,lu is symmetric in i, j, k. That the trace on Fl is u, as well as

the polynomial preservation property, follows by collecting the results in Propositions 3.1
and 4.1. �

6. The total extension operator

We are now in a position to solve the extension problem as posed in the beginning of
this paper in (1.5)–(1.7) by combining the primary extension Egrad with the face, edge, and
vertex corrections.

Let u be any function in H1/2(∂K). We extend this function into K by selecting the
faces of K in some order, say Fi, Fj , Fk and Fl, and defining the following extensions from
these faces:

Ui = E
grad
i u,

Uj = E
grad
i,j wj , where wj = (u− Ui)|Fj ,

Uk = E
grad
ij,k wk, where wk = (u− Ui − Uj)|Fk

,

Ul = E
grad
ijk,lwl, where wl = (u− Ui − Uj − Uk)|Fl

.

Here, the operators E
grad
i , E

grad
i,j , E

grad
ij,k and E

grad
ijk,l are as defined in (2.3), (3.3), (4.4), and (5.2),

respectively. The total extension operator is then defined by

(6.1) E
grad
K u = Ui + Uj + Uk + Ul.

This operator is well defined provided wj , wk, and wl are in the domains of the operators

E
grad
i,j , E

grad
ij,k , and E

grad
ijk,l, respectively, which is indeed the case as asserted by the following

lemma:

Lemma 6.1. There is a constant C > 0 independent of u such that the functions wj, wk,
and wl defined above satisfy

‖wj‖H
1/2

0,i (Fj)
≤ C‖u‖H1/2(∂K),

‖wk‖H
1/2

0,ij (Fk)
≤ C‖u‖H1/2(∂K),

‖wl‖H
1/2

0,ijk(Fl)
≤ C‖u‖H1/2(∂K).

Collecting all the results we have established in the course of the construction of E
grad
K ,

we have the following theorem:

Theorem 6.1. The operator E
grad
K defined by (6.1) satisfies

(1) the extension property (1.5),
(2) the continuity property (1.6), and

(3) the polynomial preservation property (1.7).
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Proof. All the three properties follow from the previous propositions. E.g., to prove the
continuity property, we use the previously proved inequalities

‖Egrad
ijk,lwl‖H1(K) ≤ C‖wl‖H

1/2

0,ijk(Fl)
, by Proposition 5.1(1),

‖Egrad
ij,k wk‖H1(K) ≤ C‖wk‖H

1/2

0,ij (Fk)
, by Proposition 4.1(1),

‖Egrad
i,j wj‖H1(K) ≤ C‖wj‖H

1/2

0,i (Fj)
, by Proposition 3.1(1),

‖Egrad
i u‖H1(K) ≤ C‖u‖H1/2(Fl)

, by Theorem 2.1(1),

in

‖Egrad
K u‖H1(K) ≤ ‖Egrad

i u‖H1(K) + ‖Egrad
i,j wj‖H1(K) + ‖Egrad

ij,k wk‖H1(K) + ‖Egrad
ijk,lwl‖H1(K)

and complete the estimate using Lemma 6.1. �

Appendix A. Proofs of the lemmas

In this section, we prove all the previously stated lemmas in the order in which they

appeared in Sections 2–5. Before we start proving these lemmas, let us begin with some
preliminary results which will turn useful in the proofs. These results are often stated in
more generality than we need them in this paper, because we will need the general forms

in later parts of this series.
There are two kind of operators that pervade the proofs, namely the averaging type,

and the interpolating type. We first collect the continuity properties of some averaging

type operators in Lemmas A.1 and A.2. The interpolatory operators are considered next
in Lemmas A.3 and A.4, after which we begin proving the lemmas of the previous sections.
We start with operators that map functions on the x-y face to functions on the y-z face.

Lemma A.1 (Face-to-face maps). Let θ(s, t) be a function in C(
¯̂
F ). Define the the following

maps for smooth u(x, y):

u(x, y) 7−→ Aθ
1u (y, z) :=

∫ 1

0
θ(s, 0) u(sz, y) ds

u(x, y) 7−→ Aθ
2u (y, z) :=

∫ 1

0
θ(s, 1 − s) u(sz, y + (1 − s)z) ds

u(x, y) 7−→ Aθ
3u (y, z) := 2

∫ 1

0

∫ 1−s

0
θ(s, t) u(sz, y + tz) dt ds.

Then the following continuity properties hold:

(1) The maps Aθ
1, A

θ
2, and Aθ

3 extend to continuous operators from L2
1/x(F̂3) into L2

1/z(F̂1).

(2) If in addition, θ(s, t) is in C1(
¯̂
F ), then Aθ

3 is continuous under the a stronger norm,
namely

(A.1) ‖Aθ
3u‖L2

1/z
(F̂1)∩H1

z (F̂1) ≤ C‖u‖L2
1/x

(F̂3)
.

Proof. Because of the well known [20] density of C∞(
¯̂
F3) ∩ L

2
1/x(F̂3) in L2

1/x(F̂3), to prove

item (1), it suffices to prove that there is a constant C > 0 such that

‖Aθ
i u‖L2

1/z
(F̂3) ≤ C‖u‖L2

1/x
(F̂1)

for all smooth functions u(x, y).
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Let us consider the operator Aθ
1 acting on a smooth function u. We start with an

application of Cauchy-Schwarz inequality to bound the required norm:

‖Aθ
1u‖

2
L2

1/z
(F̂1)

=

∫ 1

0

∫ 1−y

0

1

z

∣∣∣∣
∫ 1

0
θ(s, 0) u(sz, y) ds

∣∣∣∣
2

dz dy

≤

∫ 1

0

∫ 1−y

0

1

z

(∫ 1

0
|θ(s, 0)|2ds

)(∫ 1

0
|u(sz, y)|2ds

)
dz dy,

by Cauchy-Schwarz inequality. Setting Cθ =
∫ 1
0 |θ(s, 0)|

2ds, we continue, and apply Fubini’s
theorem on a tetrahedral region, as follows.

‖Aθ
1u‖

2
L2

1/z
(F̂1)

= C2
θ

∫ 1

0

∫ 1−y

0

1

z

∫ z

0
|u(x, y)|2

dx

z
dz dy,

= C2
θ

∫ 1

0

∫ 1−y

0

(∫ 1−y

x

1

z2
dz

)
|u(x, y)|2 dx dy,

= C2
θ

∫ 1

0

∫ 1−y

0

(
1

x
−

1

1 − y

)
|u(x, y)|2 dx dy,

≤ C2
θ ‖u‖2

L2
1/x

(F̂ )
.

This establishes the continuity of Aθ
1.

To prove the continuity of the next map,

‖Aθ
2u‖

2
L2

1/z
(F̂1)

=

∫ 1

0

∫ 1−y

0

1

z

∣∣∣∣
∫ 1

0
θ(s, 1 − s)u(sz, y + (1 − s)z) ds

∣∣∣∣
2

dz dy

=

(∫ 1

0
|θ(s, 1 − s)|2ds

)∫ 1

0

∫ 1−y

0

1

z

∫ 1

0
|u(sz, y + (1 − s)z)|2ds dz dy

= C2
θ

∫ 1

0

∫ 1−y

0

∫ z

0

1

z
|u(x, y + z − x)|2

dx

z
dz dy,

by the substitution x = zs. Here Cθ =
∫ 1
0 |θ(s, 1 − s)|2ds. Continuing,

‖Aθ
2u‖

2
L2

1/z
(F̂1)

= C2
θ

∫ 1

0

∫ 1

x

∫ 1−z

0

1

z2
|u(x, y + z − x)|2 dy dz dx, by Fubini’s theorem,

= C2
θ

∫ 1

0

∫ 1

x

∫ 1−x

z−x

1

z2
|u(x, y′)|2dy′ dz dx, by substitution y′ = y + z − x,

≤ C2
θ

∫ 1

0

∫ 1

x

∫ 1−x

0
|u(x, y′)|2dy′ dz dx

= C2
θ

∫ 1

0

∫ 1−x

0

(
1

x
− 1

)
|u(x, y′)|2dy′ dx

≤ C2
θ ‖u‖2

L2
1/x

(F̂ )
.

To prove the continuity of Aθ
3,

∥∥1

2
A1

3u
∥∥2

L2
1/z

(F̂1)
=

∫ 1

0

∫ 1−y

0

1

z

(∫ 1

0

∫ 1−s

0
θ(s, t) u(sz, y + tz) dt ds

)2

dz dy

≤ ‖θ‖2
L2(F̂ )

∫ 1

0

∫ 1−y

0

1

z

(∫ 1

0

∫ 1−s

0
|u(sz, y + tz)|2 dt ds

)
dz dy,
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where we have applied the Cauchy-Schwarz inequality. Next, we change variables, and then
interchange the order of integration, carefully considering the variable integration limits:

∥∥1

2
A1

3u
∥∥2

L2
1/z

(F̂1)
≤

∫ 1

0

∫ 1−y

0

1

z3

∫ z

0

∫ y+z−x′

y
|u(x′, y′)|2 dy′dx′ dz dy

=

∫ 1

0

∫ 1−y′

0
|u(x′, y′)|2

∫ y′

0

∫ 1−y

x′+y′−y
z−3 dz dy dx′ dy′,

(In the last step we have applied Fubini’s theorem to a four dimensional region.) Now the

inner z and y integrals can be evaluated and estimated by

2

∫ y′

0

∫ 1−y

x′+y′−y
z−3 dz dy =

∫ y′

0

(
(x′ + y′ − y)−2 − (1 − y)−2

)
dy

= −
1

1 − y′
+

1

x′
+ 1 −

1

x′ + y′

≤
1

x′
.

Hence the continuity of Aθ
3 from L2

1/x(F̂3) into L2
1/z(F̂1) follows.

It now only remains to prove (A.1) under the stronger assumption on θ. This is a

consequence of the following two identities.

∂y(A
θ
3u) = −

1

z
A∂tθ

3 u+
2

z
(Aθ

1u−Aθ
2u)(A.2)

∂z(A
θ
3u) = −

1

z
A

(s∂sθ+t∂tθ)
3 u+

2

z
(Aθ

2u−Aθ
3u).(A.3)

These identities follow by variable changes and differentiation, e.g., to prove the first one,

∂yA
θ
3v =

2

z2

∂

∂y

(∫ x

0

∫ y+z−x′

y
θ(
x′

z
,
y′ − y

z
) u(x′, y′) dy′ dx′

)

= −
1

z

∫ x

0

∫ y+z−x′

y

∂θ

∂t
(
x′

z
,
y′ − y

z
) u(x′, y′) dy′ dx′

+
2

z2

∫ x

0
θ(
x′

z
,
y′ − y

z
) u(x′, y + z − x′) dx′ −

2

z2

∫ x

0
θ(
x′

z
, 0) v(x′, y) dx′

= −
1

z
A∂tθ

3 u+
2

z

∫ 1

0
θ(s, 1 − s)u(sz, y + (1 − s)z) ds−

2

z

∫ 1

0
θ(s, 0)u(sz, y) ds,

which is (A.2). Equation (A.3) is proved similarly. From (A.2) and (A.3), it is clear that
if θ satisfies the additional smoothness assumptions, then we can apply continuity results

already proved above to obtain (A.1). �

Lemma A.2 (Face-to-edge maps). Let θ(s, t) be a function in C(
¯̂
F ). Define the the fol-

lowing maps for smooth u(x, y).

u(x, y) 7−→ Bθ
1u (z) :=

∫ 1

0
θ(s, 1 − s) u(sz, (1 − s)z) ds,

u(x, y) 7−→ Bθ
2u (z) := 2

∫ 1

0

∫ 1−s

0
θ(s, t)u(sz, tz) dt ds.

Then the following continuity properties hold:

(1) Bθ
1 and Bθ

2 extend to continuous operators from L2
1/x(F̂3) ∩ L

2
1/y(F̂3) into L2(Ê03).



EXTENSION OPERATORS 18

(2) If in addition, θ(s, t) is in C1(
¯̂
F ), then Bθ

2 is continuous in a stronger norm:

(A.4) ‖Bθ
2u‖H2

z2(Ê03∩L2(Ê03) ≤ C‖u‖L2
1/x

(F̂3)∩L2
1/y

(F̂3).

Proof. As in Lemma A.1, it suffices to consider smooth u(x, y) because of density. To prove

the continuity of Bθ
1 , set Cθ =

∫ 1
0 |θ(s, 1 − s)|2ds and observe that

‖Bθ
1u‖

2
L2(Ê03)

=

∫ 1

0

∣∣∣∣
∫ 1

0
θ(s, 1 − s) u(sz, (1 − s)z) ds

∣∣∣∣
2

dz,

≤ C2
θ

∫ 1

0

∫ 1

0
|u(sz, (1 − s)z)|2 ds dz,

= C2
θ

∫ 1

0

∫ z

0

1

z
|u(x′, z − x′)|2 dx′ dz,

= C2
θ

∫ 1

0

∫ 1−x

0

1

x+ y
|u(x, y)|2 dy dx.

The result now follows from
1

x+ y
≤

1

2

(
1

x
+

1

y

)
.

The continuity of B2 is proved as follows:

∥∥1

2
Bθ

2u
∥∥2

L2(Ê03)
=

∫ 1

0

∣∣∣∣
∫ 1

0

∫ 1−s

0
θ(s, t) u(sz, tz) dt ds

∣∣∣∣
2

dz

≤ ‖θ‖2
L2(F̂ )

∫ 1

0

∫ 1

0

∫ 1−s

0
|u(sz, tz)|2 dt ds dz

= ‖θ‖2
L2(F̂ )

∫ 1

0

∫ z

0

∫ z−x′

0

1

z2
|u(x′, y′)|2 dy′ dx′ dz.

Now we apply Fubini’s theorem over a tetrahedron to get

∥∥1

2
Bθ

2u
∥∥2

L2(Ê03)
=

∫ 1

0

∫ 1−x′

0
|u(x′, y′)|2

∫ 1

x′+y′

1

z2
dz dy′ dx′

=

∫ 1

0

∫ 1−x′

0

(
1

x′ + y′
− 1

)
|u(x′, y′)|2 dz dy′ dx′,

from which the result follows since
1

x′ + y′
− 1 ≤

1

2
(
1

x′
+

1

y′
).

It now only remains to prove (A.4). Differentiating,

d

dz
Bθ

2u =
d

dz

(
2

z2

∫ z

0

∫ z−x′

0
u(x′, y′) dy′ dx′

)

= −
2

z
Bθ

2u−
1

z
Bs∂sθ+t∂tθ

2 u+
2

z2

∫ z

0
(
x′

z
, z − x′z)u(x′, z − x′) dx′.

In other words,

(A.5)
d

dz
Bθ

2u = −
1

z
Bs∂sθ+t∂tθ

2 u+
2

z
(Bθ

1u−Bθ
2u).

Hence (A.4) follows from the already proved item (1). �
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Lemma A.3 (Face-to-tetrahedron maps). Let θ(x, y, z) be a function in L∞(K̂). The
following map, defined for smooth φ(y, z),

φ(y, z) 7−→ Jθφ (x, y, z) := θ(x, y, z)φ(y, x+ z)

extend to a continuous operator from L2
z(F̂1) into L2(K̂).

Proof. The proof is immediate once we make the change of variable (x′, y′, z′) = (x, y, x+ z).
Indeed,

‖Jθφ‖
2
L2(K̂)

=

∫ 1

0

∫ 1−x

0

∫ 1−x−z

0
|θ(x, y, z)φ(y, x + z)|2 dy dz dx

=

∫ 1

0

∫ 1−y′

0

∫ z′

0

∣∣θ(x′, y′, z′ − x′)|2 |φ(y′, z′)
∣∣2 dx′ dz′dy′

≤

∫ 1

0

∫ 1−y′

0

(∫ z′

0
‖θ‖2

L∞(K̂)
dx′
)
|φ(y′, z′)|2 dz′dy′

≤ ‖θ‖2
L∞(K̂)

‖φ‖2
Lz(F̂1)

.

�

Lemma A.4 (Edge-to-tetrahedron maps). Let θ(x, y, z) be a function in L∞(K̂). The
following map, defined for smooth ψ(z),

ψ(z) 7−→ Lθψ (x, y, z) := θ(x, y, z)ψ(x+ y + z)

extend to continuous operators from L2
z2(Ê03) into L2(K̂).

Proof. Making the variable change (x′, y′, z′) = (x+ y, y, x+ y + z), we find that

‖Lθψ‖
2
L2(K̂)

=

∫ 1

0

∫ z′

0

∫ y′

0

∣∣θ(x′ − y′, y′, z − x′)ψ(z′)
∣∣2 dx′ dy′ dz′

≤

∫ 1

0
‖θ‖2

L∞(K̂)

(z′)2

2

∣∣ψ(z′)
∣∣2 dz′,

thus proving the continuity of Lθ. �

With the help of the above results, we now start proving all the lemmas that appeared
in the previous sections.

Proof of Lemma 3.2. First, we need to prove that

R
grad : L2

1/x(F̂3) 7−→ L2
1/z(F̂1) ∩H

1
z (F̂1)

is continuous. But

R
gradu = Aθ

3u,

with θ(s, t) ≡ 1. Hence, we obtain the required continuity properties from Lemma A.1,
specifically the estimate in (A.1).

Similarly, the continuity of Lgrad : L2
1/x(F̂3) ∩ L

2
1/y(F̂3) 7−→ L2(Ê03) ∩ H

1
z2(Ê03) follows

from Lemma A.2 because

L
gradu = Bθ

2u,

with θ(s, t) ≡ 1 (see (A.4)). �
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Proof of Lemma 3.1. It suffices to prove that

(A.6) ‖BF̂1
φ‖H1(K̂) ≤ C

(
‖φ‖L2

1/z
(F̂1) + ‖φ‖H1

z (F̂1)

)

for all φ(y, z) in C∞(
¯̂
F1) that vanish in a neighborhood of the y-axis, because it is proven

in [16, Lemma 3.1] that such functions are dense in L2
1/z(F̂1) ∩H

1
z (F̂1). For such a φ, the

function BF̂1
φ is obviously in H1(K̂) and vanishes on F̂3. Hence the Poincaré inequality

gives a constant Ĉ depending only on K̂ such that

‖BF̂1
φ‖L2(K̂) ≤ Ĉ‖grad(BF̂1

φ)‖L2(K̂).

Moreover,

grad(BF̂1
φ) =

z

x+ z
grad

(
φ(y, x+ z)

)
+ φ(y, x+ z) grad

(
z

x+ z

)

=
z

x+ z



∂zφ(y, x+ z)

∂yφ(y, x+ z)
∂zφ(y, x+ z)


+

1

(x+ z)2



−z

0

x


φ(y, x+ z)

=



Jθ2

(∂zφ)

Jθ2
(∂yφ)

Jθ2
(∂zφ)


+



−Jθ2

(φ/z)

0
Jθ1

(φ/z)


 ,

with

θ1 =
x

x+ z
and θ2 =

z

x+ z
.

Thus (A.6) follows from the continuity properties of Jθ established in Lemma A.3 (noting
that both θ1 and θ2 only take values between 0 and 1). �

Proof of Lemma 4.1. Since BÊ03
ψ = Lθ2

ψ with

θ2 =
z

x+ y + z
,

and since

grad(BÊ03
ψ) =

1

(x+ y + z)2




−z

−z
x+ y


ψ(x+ y + z) +

z

x+ y + z




1

1
1


ψ′(x+ y + z)

=



−Lθ2

(ψ/z)

−Lθ2
(ψ/z)

Lθ1
(ψ/z)


+



Lθ2

(ψ′)

Lθ2
(ψ′)

Lθ2
(ψ′)


 ,

with

θ1 =
x+ y

x+ y + z

the required estimate follows immediately from the continuity properties of Lθ established

in Lemma A.4. �
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Proof of Lemma 6.1. By a well known characterization of H1/2-norms on polyhedral
surfaces (see [6, Theorem 2.5], [17, Lemma 1.3.2.6], or [24, Lemma 1]), there is a constant

C > 0 such that for all v in H1/2(∂K),

‖v‖2
L2

1/λi
(Fj)

≤ C‖v‖2
H1/2(Fi∪Fj)

if v|Fi = 0,(A.7)

‖v‖2
L2

1/λi
(Fk) + ‖v‖2

L2
1/λj

(Fk) ≤ C‖v‖2
H1/2(Fi∪Fj∪Fk)

if v|Fi∪Fj = 0,(A.8)

‖v‖2
L2

1/λi
(Fl)

+ ‖v‖2
L2

1/λj
(Fl)

+ ‖v‖2
L2

1/λk
(Fl)

≤ C‖v‖2
H1/2(∂K)

if v|Fi∪Fj∪Fk
= 0.(A.9)

Applying the first inequality above to the function v = u−E
grad
i u|∂K , which vanishes on Fi

(by Theorem 2.1(2)), and coincides with the given function wj on Fj , we find that

‖wj‖
2

H
1/2

0,i (Fj)
= ‖wj‖

2
H1/2(Fj)

+ ‖wj‖
2
L2

1/λi
(Fj)

≤ C‖v‖2
H1/2(Fi∪Fj)

≤ C‖u‖2
H1/2(Fi∪Fj)

+ C‖Egrad
i u‖2

H1/2(Fi∪Fj)

≤ C‖u‖2
H1/2(Fi∪Fj)

+ C‖Egrad
i u‖2

H1(K) (by trace theorem)

≤ C‖u‖2
H1/2(Fi∪Fj)

+ C‖u‖2
H1/2(Fi)

(by Theorem 2.1(1)),

which proves the first inequality of the lemma.
To prove the bound for wk = (u− Ui − Uj)|Fk

, we apply (A.8) to the function

v = (I − E
grad
i,j Rj)(I − E

grad
i )u,

where Rj denotes the restriction to face Fj (and I is the identity). Clearly, wk = Rkv, and
by Proposition 3.1(2), v vanishes on Fi ∪ Fj , so (A.8) gives

‖wk‖H
1/2

0,ij(Fk)
≤ C‖v‖H1/2(Fi∪Fj∪Fk).

The required bound for wk follows as in the wj-case by using the trace theorem and the

continuity of the operators E
grad
i,j and E

grad
i . The final estimate for wl is proved similarly,

but using

v = (I − E
grad
ij,k Rk)(I − E

grad
i,j Rj)(I − E

grad
i )u

and (A.9). �

Appendix B. Two techniques to study the primary extension

The starting point for constructing the tetrahedral extensions in any of the H1(K),

H(curl ) or H(div) case is the study of “primary extensions”, i.e., extensions into H1(K̂),

H(curl , K̂), and H(div, K̂) from one face:

E
gradu (x, y, z) =

2

z2

∫ x+z

x

∫ x+y+z−ex

y
u(x̃, ỹ) dỹ dx̃(B.1)

E
curlv (x, y, z) =

2

z3

∫ x+z

x

∫ x+y+z−ex

y




z 0

0 z
x− x̃ y − ỹ


v(x̃, ỹ) dỹ dx̃(B.2)

E
divw (x, y, z) =

2

z3

∫ x+z

x

∫ x+y+z−ex

y




x̃− x
ỹ − y

−z


w(x̃, ỹ) dỹ dx̃(B.3)



EXTENSION OPERATORS 22

We have already seen the primary extension appearing in (B.1) in the previous sections.
The other two operators above are the primary extensions for the H(curl ) and H(div)
case (which will be discussed in more detail in Parts II [12] and III [13]).

The purpose of this appendix is to establish the continuity property of Egrad stated
in Theorem 2.1. But since the arguments required to prove the continuity of the other
two operators E

curl and E
div are very similar, we establish the continuity of all of these

primary extensions together here. We can exhibit two techniques to establish such continuity
properties, one using the Fourier transform, and the other using Peetre’s K-functional. The
latter approach will be shown in Part II. In this appendix, we outline the more standard

Fourier transform technique.
The Fourier transform technique proceeds by viewing the above operators as extending

functions given on R2 (the entire x-y plane) into the infinite slab R2 × (0, 1) ≡ {(x, y, z) :

0 < z < 1}. Define the Fourier transform on R2 as usual by

(B.4) Fu (ω) ≡ û(ω) :=

∫∫

R2

e−i2πω·xu(x) dx.

We begin by noting some properties of the Fourier transform of an indicator function.

Lemma B.1. Let χ
△

denote the characteristic function of the unit triangle △= {(x, y) ∈
R2 : x > 0, y > 0, x+ y < 1}, and η(x, y) be a linear function. Then, for all t > 0 and all
unit vectors ω,

(1) χ̂
△
η (tω) is bounded uniformly in t and ω, and

(2) the integral

∫ ∞

0
|χ̂

△
η (tω)|2 dt is finite and bounded uniformly in ω.

Proof. We begin with the case of a constant function η ≡ 1. For this case the first assertion
is immediate as the exponential in (B.4) is uniformly bounded by one:

(B.5) |χ̂
△
η(ω)| = |χ̂

△
(ω)| ≤

∫∫

△

∣∣e−i2πtω·x
∣∣ dx ≤

1

2
.

To prove the second assertion, it will be convenient to work with a rotated system of
coordinates x̃, ỹ in such a way that the x̃-axis passes through the point ω (see Figure 5).

We only consider the case when ω is in the first quadrant as the other cases are similar.
Then

χ̂
△
η(ω) =

∫

R

∫

R

e−i2π|ω|exχ
△
(x̃, ỹ) dx̃ dỹ =

∫
ey2

ey1

[
e−i2π|ω|ex

−i2π|ω|

]ex=b(ey)

ex=a(ey)

dỹ ,

where a(ỹ) and b(ỹ) are as in Figure 5, ỹ1 and ỹ2 are such that the interval [ỹ1, ỹ2] is the
projection of △ on the ỹ-axis, and the notation [g(x)]x=q

x=p denotes the difference g(q)− g(p).

Now, for |ω| = 1 and t > 0, the second assertion follows from

∫ ∞

1
|χ̂

△
(tω)|2 dt =

∫ ∞

1

∣∣∣∣∣

∫
ey2

ey1

[
e−i2πtex

−i2πt

]ex=b(ey)

ex=a(ey)

dỹ

∣∣∣∣∣

2

dt

≤

∫ ∞

1

1

4π2

∣∣∣∣
1

t

∫ 1

−1

[
e−i2πtex

]ex=b(ey)

ex=a(ey)
dỹ

∣∣∣∣
2

dt

and the fact that the inner integral is bounded uniformly in t. Notice that integrability

from 0 to 1 follows from the first assertion.
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ω x̃

ỹ

x

y

0

a(ỹ)

b(ỹ)

1

Figure 5. Rotated system of coordinates (x̃, ỹ) in Lemma B.1

The proofs for η(x, y) = x and η(x, y) = y are similar. For instance, for η(x, y) = x =
(x̃,−ỹ)t · ω, we have

χ̂
△
x(tω) =

∫
ey2

ey1

(∫ b(ey)

a(ey)
e−i2πtex

(
x̃

−ỹ

)
· ω dx̃

)
dỹ,

so the first assertion follows because the integrand is uniformly bounded. The second
assertion also follows because once the inner integral is evaluated, it is immediate that it

can be bounded as before by C/t as t→ ∞. �

Remark B.1. In fact, Lemma B.1 extends to a large class of functions η(x, y) including

polynomials of arbitrary degree.

Lemma B.2. Let η(s, t) be a linear polynomial. Then the map defined for smooth func-
tions u(x, y) on R2 by

u(x, y) 7−→ Kηu (x, y, z) :=

∫ 1

0

∫ 1−s

0
η(s, t) u(x+ sz, y + tz) dt ds

extends to a continuous operator from H−1/2(R2) into L2
(
R2 × (0, 1)

)
.

Proof. We shall consider the case η ≡ 1 first. Notice that for each fixed z, the operator is

in the form of a convolution in x and y variables:

Kηu(x, y, z) =
1

z2

∫ 0

−z

∫ 0

−z−s′
u(x− s′, y − t′) dt′ ds′ =

1

z2
(χz▽

∗ u),

where χz▽
is the characteristic function of {(x, y) : x < 0, y < 0, x + y > −z} (the unit

triangle scaled by −z). In what follows, we assume that u(x, y) is a test function from the
Schwartz space (see e.g. [19, 23]) and, upon establishing the continuity estimate, tacitly

complete the proof using the standard density argument.
Applying the Fourier transform (on the x-y plane) and using its standard properties [19]

K̂ηu (ω, z) =
1

z2
χ̂

z▽
(ω) û(ω) = χ̂

△
(−zω) û(ω).
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By Parseval’s identity,
∫ 1

0

∫∫

R2

|Kηu(x, y, z)|
2 dx dy dz =

∫ 1

0

∫∫

R2

|K̂ηu(ω, z)|
2 dω dz

=

∫∫

R2

(∫ 1

0
|χ̂

△
(zω)|2 dz

)
|û(ω)|2 dω.(B.6)

Now we split the integral over R2 into two integrals, one over the unit disk D = {ω ∈ R2 :

|ω| < 1} and the other over R2 \D, and analyze each separately.
Substituting z|ω| = t and denoting ω̂ = ω/|ω|,

(B.7)

∫ 1

0
|χ̂

△
(zω)|2 dz =

1

|ω|

∫ |ω|

0
|χ̂

△
(tω̂)|2 dt ≤

1

2

by the first assertion of Lemma B.1 (see (B.5)). By the second assertion of Lemma B.1, we
can get another bound for the same term:

(B.8)

∫ 1

0
|χ̂

△
(zω)|2 dz =

1

|ω|

∫ |ω|

0
|χ̂

△
(tω̂)|2 dt ≤

1

|ω|

∫ ∞

0
|χ̂

△
(tω̂)|2 dt ≤

c

|ω|
.

Using these estimates in (B.6), specifically (B.7) in D and (B.8) in R2 \D,
∫ 1

0

∫∫

R2

|Kηu(x, y, z)|
2 dx dy dz ≤

∫∫

D

1

2
|û(ω)|2 dω +

∫∫

R2\D

c

|ω|
|û(ω)|2 dω

≤ C

∫∫

R2

(
1 + |ω|2

)−1/2
|û(ω)|2 dω.

Because of a well known characterization of Sobolev norms via the Fourier transform [19, 23],

the right hand side above is the square of a norm equivalent to the H−1/2(R2)-norm, so the

proof for the η ≡ 1 case is finished.
The reasoning for cases η(x, y) = x and η(x, y) = y is fully analogous. For instance, for

the former, we have,

Kη (x, y, z) =
1

z2

(x
z
χ

z▽
∗ u
)
,

so

K̂ηu(ω, z) =
1

z2
χ̂

z▽
x(ω) û(ω) = χ̂

△
x(zω)û(ω).

The rest of the estimation is fully analogous utilizing the boundedness properties for the

Fourier transform of factor xχ
△

proved in Lemma B.1. �

Theorem B.1. The polynomial extension operators in (B.1)–(B.3) extend to continuous
operators on the spaces below:

E
grad : H1/2(F̂ ) 7−→ H1(K̂)

E
curl : H−1/2(curlτ , F̂ ) 7−→ H(curl , K̂)

E
div : H−1/2(F̂ ) 7−→ H(div, K̂).

Proof. We quickly sketch the arguments, considering the last operator first.
The H(div) primary extension: According to Lemma B.2, each of the three components

of E
div is a continuous map from H−1/2(R2) into L2(R2×(0, 1)). Moreover, div(Edivw) = 0.

Consequently, E
div maps H−1/2(R2) into H(div,R2 × (0, 1)). Since there is a continuous
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extension operator [7] from H−1/2(F̂ ) into H−1/2(R2), and since the restriction operator

from H(div,R2 × (0, 1)) into H(div, K̂) is obviously continuous, the proof of this case is
finished.

The H(curl) primary extension: By the same arguments as above, the three compo-

nents of E
curl are continuous maps from H−1/2(F̂ ) into L2(K̂). Moreover, by the readily

established commutativity property

curl (Ecurlv) = E
div(curlτ v)

and the continuity of E
div on H−1/2(F̂ ), we find that E

curl is a continuous map from

H−1/2(curl, F̂ ) into H(curl, T ).
The H1 primary extension: The surface gradient gradτ is a continuous map [6] from

H1/2(F̂ ) into H−1/2(F̂ ). Combining this with the easily established commutativity property

grad(Egradu) = E
curl(gradτ u),

and the continuity of E
curl, we find that the left hand side above has its L2(K̂)-norm

bounded by the H1/2(F̂ )-norm of u. Since square integrability of the gradient grad(Egradu)
implies the square integrability of the function Egradu (by e.g., a generalization of Stokes

theorem [14, Theorem I.2.9]), and since constants are preserved by Egrad, the H1 extension

operator Egrad is continuous from H1/2(F̂ ) into H1(K̂). �
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