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Abstract

In this paper we consider multigrid methods for the parameter dependent problem
of nearly incompressible materials. We construct and analyze multilevel-projection
algorithms, which can be applied to the mixed as well as to the equivalent, non-
conforming finite element scheme in primal variables. For proper norms, we prove
that the smoothing property and the approximation property hold with constants
that are independent of the small parameter. Thus we obtain robust and optimal
convergence rates for the W-cycle and the variable V-cycle multigrid methods. The
numerical results pretty well conform the robustness and optimality of the multigrid
methods proposed.

1 Introduction

We consider the linear elasticity problem to find u € [Hj(Q)]? such that
Q/L/ e(u) : e(v)dx + )\/ divudivedx = / o dx, (1)
Q Q Q

with the positive constants A and u of Lamé, the strain operator e(u) := 0.5(Vu + (Vu)T)
and the volume force f € [Ly(Q)]2. We are interested in the nearly incompressible case, i.e.
the Poisson ration v is close to 0.5. Then the 'bad parameter’ € := 24/\ becomes small.

For conforming low order finite element methods the parameter £ enters disadvanta-
geously into the discretization error estimate. This effect is also verified numerically and is
well known as "locking effect’, [2]. Various non-conforming discretization methods lead to
discretization errors robust for v — 0.5, see [12], [10]. We use the mixed formulation for
u and divu to obtain a stable saddle-point system. By the choice of non-continuous finite
elements for the dual variable, it can be eliminated at element level, and we return to a
symmetric positive definite finite element method.

Also the convergence rate of standard multigrid methods applied to solve the positive
definite linear system deteriorates as v — 0.5. To overcome this difficulty, robust multigrid
methods have been designed for the equivalent mixed finite element scheme with penalty
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term in [21], [15], [3], [9], [4]. Related multigrid methods for the Stokes problem are analyzed
in [8], [20]. The papers mainly differ in the kind of smoothing iteration used for the indefinite
system.

In [18], a new multigrid method for parameter dependent problems in primal variables
has been suggested and the analysis for the two-level method was given. The key components
are an overlapping block-smoother capturing the divergence free basis functions, and a grid
transfer operator prolongating coarse grid divergence free functions to fine grid divergence
free functions. In this paper we establish the approximation and the smoothing property
necessary for the multigrid analysis [14], [6].

During the analysis we switch between both equivalent algorithms, the primal one and
the mixed one.

The outline of the paper is as follows. In Section 2 some available results are collected.
The algorithmic aspects of the multigrid method are formulated in Section 3, the analysis
is started in Section 4. Approximation property and smoothing property are proven in
Section 5 and in Section 6, respectively. Numerical results are given in Section 7.

2 Stability and Discretization

We introduce the dual variable
p:=¢ 'divu

and obtain the equivalent mixed problem to find (u,p) € X :=V x Q := [H;(Q)]> x Ly/R
such that

B((u,p),(v,q)) = (fav)O v(an) EX) (2)
with f = (2u) '/ and the bilinear-form
B ((u,p), (v,q)) = (e(u),e(v))o + (divu, q)o + (dive, p)g — € (p, q)o, (3)

where (.,.)g denotes the inner product in Ly of scalar, vector valued or tensor valued func-
tions. Clearly, B is continuous on X x X with the product norm ||(u, p)||x = (||u|?+||p||2)"/>.
The proper stability criterion on some subspace X, :=V, x @), C X is the condition

- B((u,p), (v,q))
waex.  100)]x

>cll(u,pllx  V(up)e X, (4)

Here and throughout the paper ¢ will be a generic constant which is independent of the pa-
rameter € and the mesh-size defined below and which may be different in different equations.
It follows from the second inequality of Korn, the LBB condition of the Stokes problem and
further estimates due to the penalty term that B is stable on X, = X, see [11], [1]. We
assume that € is a convex polygonal domain and get from [10] the regularity theorem

[ullz + [l < el fllo- (5)

For finite element discretization we choose the subspace X; = V;, x Qr C X, where V7,
consists of continuous, piecewise quadratic functions, and )7, of piecewise constant functions
on a triangular mesh with mesh-size parameter hy. The integer L defines the number of
multigrid levels. We get the finite dimensional problem find (up,p;) € X, such that

B((ur,pr), (vr,q1)) = (fior)e  V(vr,qr) € Xr. (6)

The LBB condition is fulfilled for the pair of spaces V;, and @y, see [11] p. 211, which
implies the stability condition (4) on X, = X7.
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The essential fact is the non-continuity of the functions in @ leading to an easily
invertible matrix for the L, inner product. The dual variable p;, can be eliminated element-
wise and the problem can be reduced to the non-conforming symmetric and positive definite
problem find uz, € V7, such that

Ar(ur,vr) = (f,vr)o Voup € Vg, (7)

with the bilinear-form
Ap(u,v) = (e(u),£(v))o 4+ £ (T2 div u, divv)q. (8)

The operator Tg denotes the Ly-orthogonal projection onto ;. We mention that this
projection can be implemented in the element matrix assembling subroutine. Due to the
equivalence of the primal and the mixed finite element method we get bounds for the dis-
cretization error that are independent of ¢ also for the primal version.

The author is aware of the sub-optimal convergence rate O(h) for the P, — Py element
pairing. There exist several elements with non-continuous pressure and optimal convergence
rate, see [13], [11]. The element is chosen for reasons of simpler notation and implementation,
but the following analysis is not limited to the special element.

3 The Multigrid Algorithm

For the application of multigrid solvers a sequence of uniformly refined triangulations 7; of
mesh-size h; and the corresponding nested P, — P, finite element spaces

Xlz‘/lXQ1CX2:‘/2XQ2C...CXL:VLXQL (9)

are used. By means of the computable Q-orthogonal projection operators IlQ @ — Q) we
define the bilinear-forms

Ay(u,v) = (e(u),e(v))o + e~ (I2 divu, dive)y Yu,v €V, (10)

for l = 1,...,L. We mention that the forms are defined on the infinite dimensional space
V. We define norms ||ul|4, :== A;(u,u)'/? and the Ly self-adjoint operators 4; : V; — V] as
(Ayug, v)o = Ay(ug,v), Yu,v € Vil =1,..., L. Tt is clear that A;(.,.) estimates A;1(.,.)
from below, i.e.

A (u,u) > Ay(u, u) YuelV,

but the converse estimate does not hold with some constant independently bounded in .

This fact requires special grid transfer operators, which are constructed as follows. On
each level [ = 2,..., L we define the subspace of functions which vanish on the boundaries
of the coarse grid elements

Vir= [ [HDPA. (11)
TeT—1

It splits orthogonally into |7;_1| subspaces. Each of them is generated by the basis functions
belonging to the nodes inside a triangle of the coarser grid, see Figure 1.

We define the projection operator PlAji : V. — V7 such that

Al(Pl?%u’ Ul,T) = Al(u, UZ,T) Yue V, \V/Ul,T S W,T- (12)



Figure 1: Subspace V;r used in prolongation

Figure 2: Basis functions for kernel of ]lQ div

The co-projection I — PlAji is the discrete harmonic extension on each coarse grid triangle.
It can be computed fast and will be used as prolongation operator. We use the natural
embedding V;_; C V; without denoting it by any symbol.

Prolongation u; | — w;:

13
w = (I = P)u—y (13)

The idea of this prolongation is to lift coarse grid div-free functions to fine grid div-free
functions. As we will see later, this prolongation is continuous in the sense of

(I = Pt ualla, < cllualla,  YVwy € Vi

We define the operator E, ' : V; — Vjas B, ' = F’ﬁiAl’l such that the prolongation can be
rewritten as
I-PY=1-E"A,.

The operator Ej is self-adjoint with respect to (.,.)o. In matrix form Ej is the restriction of
A; to the degrees of freedom spanning the space V. Using the Ly-orthogonal projection
P .V = V4, the (.,.)o - adjoint restriction operator is P (I — A;E;'). We mention
that the projection PZL}l is required for notation only, it does not enter into the computation.

Also the smoother must be properly designed. A damped Richardson smoother (I —7A,)
would need a damping parameter 7 proportional to £. Thus the components of the error
in the kernel of A; would be smoothed out very slow, as € becomes small. The suggested
smoother is a block Jacobi smoother, which takes care of the kernel of IlQ div. On a simply
connected domain with only one part of natural boundary conditions, the kernel of IlQ div
is spanned by basis functions drawn in Figure 2, similar to [11], pp 268.

These kernel basis functions are captured by subspaces V; generated by nodal basis
functions belonging to the nodes drawn in Figure 3. For all [ = 2, ..., L, this leads to the
definition of the n; subspaces

Vie = [HY( Q)P V) (14)
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Vi

Figure 3: Subspaces containing div-free basis functions

assigned to the corner nodes N;;, ¢ = 1,...,n, of the triangulation 7,. Here, €); is the
closure of the union over elements in 7; adjacent to the node NNV;;,. We define the projections
PV =V, as

Al(ﬂﬁlu, Ul,i) = Al(u,vl,i) YueV VUM € W,i- (15)

By means of these subspaces we define the block Jacobi smoother as

Smoother S : V; — Vi

16
S{t=T-7>M" P (16)

The necessary damping parameter depends only on the number of overlapping spaces, which
is bounded for shape regular elements. Especially, it does not depend on ¢ and [. We
assume that 7 is small enough to ensure only positive eigenvalues of S/*. In the numerical
examples, we will also use the according block Gauss-Seidel smoother, which does not need
any damping at all. We also define the operator D; ' : V; — V] as

47

n
D' =Y PiA (17)
i=1

which corresponds in matrix form to the sum over local inverses. By means of D; the
smoother can be written as

S =T1—-71D/ A, (18)

Now we can state the multigrid algorithm in recursive form. We apply m; smoothing steps
on the level I and perform either the V-cycle (¢ = 1) or the W-cycle (¢ = 2).

Algorithm 1
Procedure MG (u, f,1)
ifl=1

MG(u, f,1) = A f
else

1,0 _

dszl,...,ml
u =y DN (f - At

dl = f — Alul’ml
& = PA(T - B!
u?? =0



doj=1,...,q
u? = MG(u?I~1 d?* 1 —1)
u? = (I — B Ap)u®?
u4,0 — ul,ml + U3
dszl,...,ml
utt =yt DN (f — AT
MG(u, f,1) = ut™

4 The Multigrid Analysis

In this section we start the analysis of the multigrid method. First, we specify a multigrid
method for the mixed form and prove equivalence to the algorithm stated in the last chapter.
We define an Ly-like norm, for which we will prove the approximation property and the
smoothing property in the following two chapters.

Forl=1,...,L we define the subspaces

Xio = {(u,p) € X;: I[P divwy = epi}. (19)
We will use the relation
B((u, 1), (0,¢)) =0 V(u,m) € X1, Vg € Q (20)
later. From (10) and (19) it follows that
B((ui,mi), (v1,0)) = Ay(uy, v) Y (u,p) € X1, YV, €V, (21)
is valid. We extend definition (14) to local mixed spaces
X = Vi x Qui with Qi = (La()/R) N Q (22)

fori=1,...,m,1=1,..., L. We also extend the spaces V, r of the prolongation defined in
(11) to the mixed spaces

Xir =Vir xQir with Qur = H (Lo(T)/R) N Q, (23)

TeT -1

[ =2,...,L. The spaces are designed such that the orthogonal decomposition

Q=Qu1OQur (24)

and
B((ur,pr), (0,q1-1)) = 0 Y (ur,pr) € Xir, Vg1 € Qi1 (25)

hold. In addition to the norm ||.||x we define the energy-norm

(s p) |13 = B((u, ), (u, =p))*/* = (le(v) 1§ + ¢ [Ip][§)"*,
which by Korn’s inequality is equivalent to the norm (||ul||? 4 £||p|/2)*/2.
For any subspace X, C X the projection PP : X — X, is defined by

B(PP(u,p), (v,q)) = B((u,p), (v,q))  V(v,q) € X.. (26)

We will use projections to X;_1, X;7 and X;;. The next lemma collects some of their
properties.



Lemma 1
1. All subspaces X, X,;; and X, fulfill the stability condition (4) with one common
constant c.

2. The projections PP, P, P55 are well defined and uniformly bounded on X; with
respect to the ||.||X—norm

3. PP, maps X0 into X;_1 .

4. P} and P[5, map X,q into itself, and they are bounded by 1 with respect to the
||.|| p-norm on X ;.

5. The co-projection I — P/}, maps X,_1 into X .

Proof: 1. Stability condition for the spaces are standard. The spaces V;; and the factor-
spaces of V;r can be derived from a finite number of spaces by scaling and translation, and
these transformations do not change the stability constant. Thus the common constant is
the maximum of a finite number of stability constants.

2. The continuity of P? with respect to ||.||x-norm follows from the stability condition (4)

B(P2(u,p), (v, B((u,p), (v,
||P*B(u,p)||X S ¢ sup ( ( p) ( q)) =c¢ sup (( p) ( Q)) S CH(U;p)HX-
(.)€ X- (v, @)l x waoex. v, q)llx

3. For (u,p) € X0 we get

B(Plél(u’p)a (U’ Ql—l)) = B((u,p), (0’ Ql—l)) =0 Va1 € Q-1

4. Next set (@,p) = P}(u,p). We now decompose a function ¢ € @, orthogonally into
q € Ql,i and Qo = (q, 1)079l,i/|Qlai‘ in Ql,i and G2 = (q in Q \ Ql,i- B((ﬂ,ﬁ), (0, Q1)) vanishes by
definition of the projection, B((%,p), (0,¢2)) = (div i, ¢2)0,0,; — € (D. ¢2)0,0,; = 0 is achieved
by Green’s theorem and definition of ;;. By (24), (25) and the same arguments P/}, € X
is proven.

Now, let (u,p) € X;o and X, such that (4,p) = PP(u,p) € X;o. Then,

(4, p)||5 = B((4,p), (4, —p)) = B((u, p), (4, —p)) =
= B((u,p), (4, —p)) + B((u,p), (0,p)) — B((0,p),
< (le)[s + < Ipl3) " (le(@)lg + = 1Bl = |I(

gives the upper bound 1.
5. Let (u,p) € X;_10. Then

B((I - pz?T)(U:p); (0,¢1-1)) =0 Vg1 €Qi

holds because of the assumption and (25). The same form tested with ¢ € ;7 vanishes
because of the definition of the projection, and @; can be decomposed by (24).

g3

)
(

(&

)l

(a,
u,p

O
We also define projections PAt4% .V, — V, C V] by

Ay(PAAy v) = Ay (u,v) Yo €V, (27)
and set PA = PA4t This definition is consistent with (12) and (15).

Lemma 2
Let X, =V, x Q. C X; and (u,p) = PP(u,p).
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1. If (u,p) € Xy and (@,p) € X, then i = P vAkq,
2. If (u,p) — (@1, p) € Xy, then @ = Ptu.
Proof: To verify statement 1 we use (21) and obtain
Ay(t,v) = B((4,p), (v,0)) = B((u, p), (v,0)) = Ag(u,v) Vv e V..
Statement 2 is checked by
At —u,v)=B((t—u,p—p),(v,0)) =0 Vo eV.

O
Algorithm 1 leads to the multigrid operator M;j', which for [ = 2,..., L fulfills the
recursion
M = o,
MA = (5™ (= (I = P = (M) PRI = PA) (S7™. (28)

We define the corresponding multigrid operator for the mixed system as

MP = o,
MP = (SP)™ (I = (1= PRI — (ME)")PEL(I — Pf)) (SP)™.
with the smoothing operators
P =17 B
i=1

for 2 <[ < L. The iteration for the mixed system is well defined for the limit case ¢ = 0,
too.

Theorem 1 (Equivalence of Algorithms)
Both multigrid procedures are equivalent, namely for (u;, p;) € X, there holds

(ﬁl,ﬁl) = MlB (ul,pl) fll]ﬁHS ’lALl = MZA(ul). (29)

Proof: By induction on [, Lemma 1 and Lemma 2.
O
In the following chapters we will need the approximation properties of the finite element
spaces. Let I} be the Lagrange interpolator into V;. Recall the (local) Ly projector IlQ to
@, and define the product operator I;¥ = (IlV,TlQ) : X — X,. Then the approximation
inequalities
lu =1/ ully < ehllulla and  [lp = 7pllo < chullpll (30)
hold.
We define the norm

(s D)o = By [lullg + ellpllg + 1112 1115 (31)
On the space X, it is identical to the norm
lullfo = R ?[lulls + & I divul[§ + &% 12, divullg (32)

on V;. These norms will be used in the multigrid proof for measuring smoothness.
The main theorem of this paper is



Theorem 2 (Two-Grid Convergence)
The two-grid operator M* can be estimated by

1M 4y < emp ', (33)

with a constant c¢ independent of | and . The two-grid operator MZB maps X, into itself
and is bounded on X;, by

1375 < cm, ! (34)
with a constant ¢ independent of | and ¢.
Proof: Define for (u°, p°) € X
(u',p") = (I = (I = PR)PE,(I - P5)) (u®,p") (35)
and
(w?,p?) = (SP)™ (u', p"). (36)
By the previous lemmata we get (u',p') € X and
ut = (I (1= BRI~ P uls
In Section 5 we will prove the approximation property (see Theorem 4)

(', P o = [lutllio < ellulla, = ell(u®, p")l| 5 (37)
using the mixed form. We also get (u?,p?) € X, and
u? = (Sf)mlul.
In Section 6 we will prove the smoothing property (see Theorem 5)

~1/4

I, 55 = llu?]la, < em™ o = em [ (u', pY) I (38)

using the primal form. Combining both properties proves the theorem.

The following theorem follows by standard techniques [14], [6], [5].

Theorem 3 (Multigrid Convergence)
e The norm of the W-cycle operator is bounded independently of L and ¢ if the number
of smoothing steps m; is sufficiently large.

e The variable V-cycle operator with m! = 2~! leads to a preconditioner C;"' := (I —
M A" with condition number k(C;'Ar) bounded independently of L and «.

5 Approximation Property

The coarse grid operator (uy,p;) € X0 — (us,p5) € Xy is split into

(u2,pa) (I - pl%)(ulapl):
(u3, p3) P (uz, p2), (39)
(ua,pa) = (I — Pz?T)(U?np?,),
(us,ps) = (u1,p1) — (s, pa)-



Theorem 4 (Approximation Property)
Let (uy,p1) € X, and compute (us,ps) by (39). Then the approximation property

[(us, ps)llio < ¢|l(ur, p1)ll s (40)

is valid.

Proof: We use the triangle inequality and the three lemmata proven below to obtain the
result

||(U5ap5)||l,0 = ||(u1,p1) - (u4,p4)||0
< [(urs p1) = (w2, p2)llio + || (w2, p2) — (uz, p3)|[o + || (us, p3) — (wa, pa)|li0
< cl[(ur, p1)| s

Lemma 3
With the notation of (39) there holds

||(U2,P2)||B + ||(U2ap2) - (U1,p1)||z,o + ||p2 - fzg1p2||o < C||(U1apl)||B- (41)

Proof: Lemma 1 gives ||P%-(uy,p1)|lp < ||(u1,p1)||, which bounds the first term. The

second term is bounded due to the norm equivalence ||.||p ~ ||.|[1.0 on X;.7. From p,—I2 p, €
Qur, stability (4) of X7, orthogonality (25) and the definition of P, we obtain

B((O,pg - [l€1p2)’ (Ua Q))

lp2 = 121 p2llo < ¢ sup

(0,0)€Qu T (v, )|l x
B((0 B((—us,0
= ¢ sup (( ,pg),(U,Q)) =c sup (( U2, ),(v,q)) S c||u2||1.
waoear (v, a)llx waoear v, @)llx
O
Lemma 4
With the notation of (39) there holds
[ (uz, p3)l|B + || (uz; p3) — (uz, p2)ll10 < c||(u1, p1)l 5 (42)

Proof: By stability of X;_;, the definition of (us,p3), continuity of B(.,.) and Lemma 3 we
get

B((U3,p3 — ]31]72)7 (U, Q))

usl[i + ||lps — IZ pollo < ¢ sup

(0:0)€Q1_1 (v, @) x
B —I°
- ¢ sup ((Ug,pg l—1p2)7 (an))
(0,0)€Qi_1 (v, )|l x

< c(Juslli + [lp2 = I21p2llo) < e ll(ur, p1)| 5,
and in combination with Lemma 3
Ips — p2llo < |lps — [gpoHo + [|p2 — Ilg1p2||0 < c||(u1,p1)|lB-

This gives also
ellpsllo < 2ellp2 — palls + 2¢lpalls < e ll(ur. p) I3
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We state the dual problem on X

B((p,1), (v,q)) = (uz — u3, v)g V(v,q) € X

and get the L, estimate by Galerkin orthogonality, approximation (30) and regularity (5)

Jug — usl|§ = B((¢, %), (ug — us, p; — p3))

B((p, ) = (Il‘il% ffflw), (up — u3, pa — p3))

c(lle =1 yoll + 1e — I219ll0) (luz — uslls + |lp2 — psllo)
ch ([lellz + [[ll) (lually + [luslls + [[p2 — pallo)

ch|lug — usllo || (u1, p1)]| 5-

IA AN A

Dividing by ||us — us||o we obtain the result.

Lemma 5
With the notation of (39) there holds

[[(a; pa) = (uz; ps)llio < cl|(ur; p1)l[ 5. (43)

Proof: Friedrichs’ inequality on V7, stability (4), Galerkin - and orthogonality (25) give

|| (wa, pa) = (us,p3)lli0 < c||(ua, ps) — (us, p3)|| x

B((us — - B
<o s Blm—wep—p)@a) o Blmsp). (0.0)
(va)eXt,r (o, a)llx (v.)EX,T (v, @)l x
B((u3,0), (v, q
waexr (v a)lx

and the proof if complete.

O
6 Smoothing Property
In this chapter we prove the smoothing property
(I = 7D A ™ul|a, < em™ful]yo. (44)
Recall that we have chosen 7 such that ||7D; ' 4|4, < 1. The estimate
I(T = 7D A)™ull%, = (D AT — 7D AP u, u)p, < em”Julf, (45)

is well established in multigrid theory [14].

By additive Schwarz techniques [22], [17] the induced norm |ju||p, = (Du, u)é/2 can be

expressed by
lullp, = inf > flugl,-
":E Ul,g

ul i€V

If the estimate ||ul|p, < c||u||;0 would be true, the smoothing property would be proven.
Unfortunately, it is not. The essential part of this section is the proof of the estimate

[ellip, a0, < e llullio, (46)
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where ||.||(p,,4,,,, is the interpolation norm between ||.|[p, and ||.|[4, with parameter 1/2.
We use the real method of interpolation of Lions and Peetre [16], see also [7]. Inequalities
(45) and (46) immediately give the smoothing property

I(1 = 7D A)™ulla, < e |1 = 7D7 A) ™ ull (411,

< em ™ ulipag,. < emull. (47)

We define the bilinear-form for the limit case € = 0 as
Bo((u,p), (v,q)) = (e(u), e(v))o + (divu, q)o + (divv, p)o. (48)

To establish (46) we split u = uy + uy + ug by solving for (u;, p;) € X; such that

BO((UI;pl): (Ua‘J)) = U((U: 0)7 (U,O)),
By((us,p2), (v,9)) = Bo((u,0),(0,q—12,q)), (49)
Bo((us, ps), (v,4)) = Bo((u,0),(0,12,9))  V(v,q) € X,.

oy

The splitting is constructed such that w; is discrete divergence free, u, has non-smooth
divergence and u3 has smooth divergence.

Theorem 5 (Smoothing Property)
The estimate (46) and therefore the smoothing property (44) are valid.

Proof: We split u using (49), apply the triangle inequality, Lemma 7 - 9, and Lemma 6
below to obtain (46) by

||u1||[DlaAlh/2 + HuQH[Dz,Alh/z + ||u3||[Dz,Azh/2
¢ (lurlleo + luzllio + [[usllio)

¢|[ullio

||u||[Dl,Alh/2

ININCIN

The smoothing property (44) follows by the estimates (47).

Lemma 6
The decomposition (49) is stable in ||.||; o norm, namely

[uillio + l[uallio + llusllo < ¢lfullio. (50)

Proof: By stability (4) we get the bounds |lui|l; + ||pillo < cllulli and ||us|li + ||p2llo <

¢||I2 divully. First, we bound |u1][f9 = h~2|luql5. The solution of the dual problem find
(p,1) € X such that

Bo((¢, %), (v,9)) = (ur,v)0  Y(v,q) € X,

is bounded by |[¢|la+||¢||1 < ¢|lu1]lo. By Galerkin orthogonality, approximation, regularity,
and the inverse inequality h ||ul|; < ¢||ul/o we obtain

[ualls = Bo((e, ¥), (ur, 1))
= Bo((. %) = I (9. 4), (w1, p1)) + Bo(L]" (0, 9) = (0. 9), (u,0)) + Bo((sp, 1)), (u, 0))
< c(h(llell + 11l (rully + lpallo) + A (lllz + 1l l[ull + lellz + 1) ullo)
< c(bllurlo lully + fluallollullo) < ¢ lluallo flulo-

12



Next, we estimate
W2 usl§ < e |12 divull§ < ez [|ullfo: (51)

Therefore let
BU((%W: (Ua(J)) = (uZ,v)U V(U?q) € X’
then we get by B((u2,p2), (v, ¢1-1)) =0 Yu, €V, q1 € Qi1

||u2||g = BO((SOJ ¢) - ([lvgpa [lgl w): (U27p2))
< chlllglla + [[%lh) (fuall + [Ip2llo) < ¢lluallo 2|12 divuljo.

The last term uz is bounded by the triangle inequality.
O

The discrete divergence free part u; is estimated by lifting to the potential space and
Sobolev-Space interpolation in the next lemma.

Lemma 7
Let uy be defined in (49). Then the estimate

willipra,,. < cllullio (52)
is valid.

Proof: First, we define a lifting procedure £ : V;, — V and a left-inverse interpolation oper-
ator I : V' — V| between discrete divergence free and continuous divergence free functions.
Therefore let XT := V* x QF = [[p(HJ(T) x Ly(T)/R) and set Fu; = u; — w, with
(w,p) € X such that

Boy((w,p), (v,9) = Bo((u1,0),(0,9)) ¥ (v,q) € X7 (53)
Hence, div Fu; = 0, and by stability and Friedrichs’ inequality
[Builli + b~ Ewllo < ch™Hlw o
Because () is assumed to be convex, there exists a potential ¢ € HZ () such that
Eup=roty |l +h7 el < ch™luo.

The interpolation is a modification of the Scott-Zhang interpolation [19]. First, shrink
all ©; to ; = N; + 0.9(€; — N;). For each node N; select an edge e; and a set o; such that
N; € 0, C e, |oi] > cle;| and 0; N Qj = () Y corner nodes N; # Nj, see the figure below. We
set o = Uo;.

Following [19], we construct a Lo(o)-biorthogonal basis {l; € Ly(0;)} to the nodal basis
{p:}. The projection operator I1; : V" — V]

I[Iiv:= Z(U, li)Lg(U)pi

13



is well defined on H' and the approximation is of optimal order
v =TI vllm < ch'=™ v, m =0, 1. (54)
If v € V is such that suppv € €, then [I;v € Vii. The operator II, : V' — V] defined by
[v(N;) =0 Y corner nodes N;
/e [lhvds = /e vds Vedges e;

is standard for Stokes problems [11], p. 211, and fulfills
vl < e (ol + R o]fo)-

Then the projection operator
Hl = ]._.[2([ - Hl) + H1

fulfills ||TL||; < ¢ and I? dive = I? divILv, and thus
1Tl < e (55)

Because Fu; —u; € V' and II; vanishes on V', it is a left-inverse to the lifting defined

above. Because I, preserves support in €;, also IT; maps H;(€;) into V.
Let {¥;} be a partition of unity fulfilling

Z\Ifizl, supp ¥; CQi,
W13 ll2.00 + Pl Wil 1100 + [ @illoe < c.
The product rule and integration by parts gives
[Tigllz < e (B2 [l@llog + @ll20.)- (56)
Using II; rot (U,) € Vi, (55), (56), we get

M rot @l < 37 Mot (W) I3, < e 3 [lrot (Tip)[3, < e D [ Wil
< X (M elisn + lelag,) < e (P lells + llell3)

By local Ly-projection onto a C'! continuous FE-space of the same mesh-size h; we can split
¢ = ¢, + ¢ such that

ledl; < cllell; — 7=0,1,2,
and the inverse inequality
@illa < eh™2(|@llo

and the approximation inequality

16llo < ch?[| 2l

are fulfilled. This gives ||II; rot ¢;||p, < ch 2||@illo and ||IT; rot @||p, < ¢||@]|2. Using operator
interpolation and norm equivalence H'(Q) ~ [Lo(Q), H*(2)]1/2 we get

luillipr, A, = ITirot ¢l a,,, < [[Hitot ¢illp, 4, . + [T ot Gl 4,
< c(llollp-2rame,, + 1E1m2) < c(ledln-rm + 18]m2)
< c(h Mgl + llell2) < ch Mullo < ellulro.

O
The component us is orthogonal to divergence free functions and has non-smooth diver-
gence.
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Lemma 8
Let uy be defined in (49). Then the estimate

[uallipy.ay . < ¢ lluallio (57)
is valid.
Proof: We use ||.|[|%, < cll.[[5,, |l.IA, < c¢h™27"|.[|§ and the intermediate result (51) to
obtain

[usllfp, a,,, < clluallp, = ¢ inf D7 Juall,
UQ:Zui

< ¢ inf A% TM|ull§ < ch e usllg < clullf,
U=y u; ’

O
The part uz with smooth divergence will now be estimated by better approximation of
the coarse grid interpolant of the dual variable.

Lemma 9
Let uz be defined in (49). Then the estimate

lusllipr .. < ¢ llusllio (58)
is valid.
Proof: By definition of us we have I? divus = I, div u, and together with stability of X;_,
we get |[ugll; < |12, divullo. This gives

lusllZ, < e (lusllf + 2712 divous|[§) < e [I2, divullg < ce lus|[7y.
On the other hand, we have

lus||, < ¢ inzf:u h % Hullg < ce ' h % lusllg < ce* lusli.
3= i

By operator interpolation we finish the proof.

7 Numerical Results

Several versions of the multigrid method in primal variables developed and analyzed above
have been tested numerically. The following two problems have been investigated within
the finite element code FEPP on a SUN Ultra 1 / 166 MHz workstation with 320 MB RAM.

Problem A: Driven Cavity example.

We consider the unit square = (0,1)2. The initial triangulation 77 is given by two
triangles, further meshes are obtained by successive refinement. We have used the finite
element space based on P, elements. The bilinear-form A (.,.) on the finest level is defined
in (8), where the projection I maps into the piece-wise constant FE-space. The source
term is set to f = 0. Dirichlet boundary conditions are specified as

B { (1,0)T at nodes € [0,1] x {1},
ur, = (O,O)T at nodes ¢ [0,1] x {1},
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Figure 5: Solution of Problem B

and incorporated by homogenization of the FE system. A plot of the solution at level 5 is
given in Figure 4.

Problem B: Flow through a pipe.

The geometry and the solution at level 4 are given in Figure 5. The boundary is split into
the jacket I'y, inlet boundary I's and outlet boundary I's. We specify homogeneous Dirichlet
boundary conditions at Iy and natural boundary conditions elsewhere. We solve the finite
element problem find uy € V;, such that

Ap(ug,vr) = (9,v0)0r, Vo € Vi.

The bilinear-form A(u,v) is obtained from A(u,v) by replacing the term (e(u),e(v)) by
(Vu, Vv)y. This is done to obtain physically correct boundary conditions. The boundary
stress is defined as ¢ = (0,1)7. The problem involves curved boundary approximation, a
non-convex domain and mixed boundary conditions.

At first, we investigate the behavior of the condition number x(C;*A) in dependence
of the number of levels I and the parameter . The preconditioner C, is obtained by the
application of a symmetric multigrid operator, either a W-2-2 cycle or a V-1-1 cycle. In
addition to the additive smoother (16), we use the multiplicative counterpart

n;
st =TI - P, (59)

i=1
for pre-smoothing and in reversed order for post-smoothing. It does not need damping at
all. The numerical results for the condition number #(C;'A;) for Problem A obtained by
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[ ‘ Unknowns additive smoother multiplicative smoother
e = 10" 1072 | 10=* [ 1075 | 10° 1072 | 10=* | 107°
2 50 1.82 | 251 |266 |266 |1.04 |1.10 |1.11 | 1.11
3 162 227 |6.79 |7.66 |7.67 |126 |215 |229 |230
4 578 258 | 859 [991 |993 |1.37 |247 |2.64 |2.64
5 2178 272 19.79 |[11.60 | 11.62 | 1.39 |2.56 |2.73 | 273
6 8450 279 |10.84 | 13.12 | 13.15 | 1.39 | 2.65 | 2.82 | 2.82
7 33282 2.73 | 11.66 | 14.41 | 14.45 | 1.39 |2.72 |2.90 | 2.91
Table 1: Condition numbers for V-1-1 cycle
[ ‘ Unknowns additive smoother multiplicative smoother
e = 10" 1072 | 10=* [ 1075 | 10° 1072 | 10=* | 107°
2 50 1.05 | 108 |1.10 |1.10 | 1.000 |1.00 | 1.00 | 1.00
3 162 1.15 | 165 |1.74 |1.74 |1.002 |1.05 |1.06 | 1.06
4 578 .19 | 176 |1.73 |1.73 |1.002 |1.05 |1.05 | 1.06
5 2178 1.24 | 179 |1.87 |1.86 |1.002 |1.04 |1.05 | 1.05
6 8450 1.26 | 1.8 |1.92 |1.91 |1.002 |1.05 |1.05 | 1.05
7 33282 1.26 | 1.87 |1.92 |1.92 |1.002 |1.05 |1.05 | 1.05

Table 2: Condition numbers for W-2-2 cycle

the Lanzcos method are given in Table 1 for a V-1-1 cycle and in Table 2 for a W-2-2
cycle. For the W-2-2 the calculated condition numbers neither depend on the level nor
on the parameter, what is in correspondence with the analysis provided. We do not have
optimal estimates for V-cycle convergence rate yet, but the numerical results seem to be
very promising.

Next, we used the V-1-1 multigrid preconditioner in a preconditioned conjugate gradients
solver for the solution of Problem A and Problem B. The small parameter is set to e = 1076,
The iteration is terminated after an reduction of the error in energy norm by a factor of
108. The necessary iteration numbers and CPU times are shown in Table 3 and Table 4,
respectively.

Level | Unknowns | Iterations | Time[sec]
2 50 4 0.01
3 162 10 0.08
4 D78 15 0.41
Y 2178 15 1.88
6 8450 16 8.56
7 33282 16 37.06
8 132098 16 154.80

Table 3: Iteration numbers and CPU times for Problem A, PCG with V-1-1 cycle
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Level | Unknowns | Iterations | Time[sec]
2 230 10 0.1
3 810 13 0.6
4 3026 15 2.7
Y 11682 17 12.9
6 45890 18 08.2
7 181890 18 242.0

Table 4: Iteration numbers and CPU times for Problem B, PCG with V-1-1 cycle

Finally, I want to express my thanks to D. Braess, U. Langer and Ch. Wieners for many

discussions on this topic and for valuable suggestions to improve the presentation.
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