
NETGEN - An Advancing Front 2D/3D-MeshGenerator Based on Abstract RulesJoachim Sch�oberl�AbstractIn this paper, the algorithms of the automatic mesh generator NETGEN are described.The domain is provided by a Constructive Solid Geometry (CSG). The whole task of3D mesh generation splits into four subproblems of special point calculation, edgefollowing, surface meshing and �nally volume mesh generation. Surface and volumemesh generation are based on the advancing front method. Emphasis is given tothe abstract structure of the element generation rules. Several techniques of meshoptimization are tested and quality plots are presented.1 IntroductionMany engineering disciplines require partial di�erential equation (pde) modeling. Two ofthe most popular methods to treat pdes numerically are the �nite element method and the�nite volume method. Both require partitioning the domain of interest into a set of simpledomains, the elements. In two dimensions triangles and quadrilaterals are used, in threedimensions tetrahedra, hexahedra and pentahedra are the most popular elements. It isdesirable to perform this partitioning automatically. There are several approaches workingwell in the plane, but cause a lot of di�culties in three dimensions. Overviews of meshgeneration algorithms are given in [1], [13].One of the most popular methods is the advancing front technique, see e.g. [10], [14], [9],[8], [6]. The input to this method is a boundary mesh. Starting with the original boundary,element by element is cut o� to reduce the domain iteratively. The state of the algorithmis always represented by the advancing boundary front. In several papers, rules for elementgeneration are presented. We want to emphasize, how to handle these rules by means of anabstract rule description. The advancing front method can be applied for plane, for surfaceas well as for three dimensional mesh generation. Our approach to rule application leads toa highly uni�ed code for these three kinds of mesh generation.Advancing front mesh generation starts with a given boundary mesh. In 3D, boundarymesh generation is also a non-trivial task. It can be solved by an advancing front surfacemesh generator starting at the boundaries of the smooth pieces of the surface, namely theedges. Edge �nding can be split into calculation of initial points and implicit curve following.Depending on the geometric model, initial point calculation can be complicated, too. Weuse the Constructive Solid Geometry (CSG) - model, de�ning complicated solids by theBoolean operations applied to simple primitives [11]. For this model we have to solve manynonlinear equations in three variables to calculate initial points for edge detection. Thewhole mesh generation problem is sketched in Figure 1.�This work is supported by the Austrian Science Fund - 'Fonds zur F�orderung der wissenschaftlichenForschung' - under project P 10643-TEC 1

Geometric model?� Nonlinear equationsSpecial points?� Curve followingEdges?� 2D mesh generation +local transformationSurface mesh?� 3D mesh generationVolume meshFigure 1: Subproblems in mesh generationThe paper is organized accordingly to the several sub-problems. In x2 the geometricmodel in use is described. The problem of calculating corners and more special points isdescribed in x3, edge detection in x4. Our implementation of the advancing front method forplane, surface and volume mesh generation is explained in x5. The used mesh optimizationstrategies are discussed in x6. In x7 examples are given and in x8 the current work issummarized.2 Geometric ModelingThe wide �eld of computational geometry provides several possibilities for geometric mod-eling [11]. The di�erent models have complementary properties with respect to ease of soliddescription and ease of mesh generation algorithms.The Constructive Solid Geometry (CSG) - model uses smooth primitives like cylindersand spheres to build more complex solids by the Boolean operations. In the computer, thesolid is represented by a binary tree. The leaves are the primitives, and the nodes are theoperations intersection, union and complement. A lot of mechanical production parts canbe described by this model very simply, but it takes some numerical e�ort to �nd the cornersand edges.Explicit surface description, e.g. by spline patches, is very well suited for smooth surfaceslike car bodies and airplane wings [7]. It is di�cult to describe geometries with cuttingedges, but mesh generation for explicit surfaces can be much simpler. The exibility of bothmethods can be combined by using CSG primitives described by spline patches.To apply mesh generation algorithms for the CSG model, some operations have to beimplemented for every class of primitives. For globally convergent algorithms to �nd thecorners we need the test 'Is a given cube contained in the primitive ?' The possible answersare 'no', 'partially' and 'yes'. For edge detection as well as surface meshing we need localquantities like the normal vector to the smooth boundary of a primitive.2

Figure 2: Examples for points of intersection and points of extreme coordinates3 Special Point CalculationThe �rst step in mesh generation is the calculation of special points. For reasons of numericalapproximation it is important to place mesh nodes at the corners of the geometry. These'points of intersection' are points, where at least three surfaces intersect (Figure 2). Thecomputation of them is explained in x3.1.Starting at these points, one can follow the edges. But not every edge is terminated bytwo points of intersection. E.g., a cylinder has closed edges (Figure 2). To get uniquelyde�ned points on these curves one can choose the points with minimal or maximal x, y orz coordinates. The computation of the 'points of extreme coordinates' is described in x3.2.There are more types of special points arising from some kind of degeneration. These pointsare discussed in x3.3. Together with the special points, tangents to the edges are calculated.3.1 Points of intersectionPoints of intersection are points, where at least three surfaces intersect. For implicitlyde�ned surfaces these are the roots of the nonlinear systemf1 (x; y; z) = 0;f2 (x; y; z) = 0; (1)f3 (x; y; z) = 0:Robust and exible solving procedures for this problem are bisection algorithms based ongeometric tests. We start with a cube containing the whole solid. This cube is cut into eightcubes of half the size recursively, until a necessary criterion to have a point of intersectionin the cube is not ful�lled anymore or the prescribed precision is reached. A very cheapcriterion is the number of surfaces cutting the cube, which has to be at least three. Theevolution of a bisection algorithm for a 2D example is given in Figure 3. If the point ofintersection is regular, the bisection algorithm converges with linear rate.3.1.1 LocalizationThe bisection algorithm uses only information of the solid contained in a cube. If we use aCSG model, the solid can be reduced to a local model in the cube by a recursive algorithmon the binary solid tree. The local model is 0 , if the cube is outside of the solid, S, if thecube is partially contained in the solid, or 1, if the cube is fully contained in the solid. Thestate S is described by a smaller CSG model again. A primitive has to provide a function todetermine the relation of a cube to the solid. For the Boolean operations, the localizationcan be expressed by the localization of the operands:3

Figure 3: Bisection algorithm\ 0 S1 10 0 0 0S2 0 S1\S2 S21 0 S1 1 [0 S1 10 0 S1 1S2 S2 S1[S2 11 1 1 1 n0 1S nS1 0A minimal number of three primitives in the local model is used as necessary condition inthe bisection algorithm.3.1.2 Newton's methodLet us assume, we can evaluate the functions fi as well as their derivatives. If we are closeto a root of the nonlinear system (1), we can use the locally quadratic convergent Newtonmethod to calculate the coordinates in just a few steps within machine precision [12]. WithF (x) := (f1 (x; y; z) ; f2 (x; y; z) ; f3 (x; y; z)) and a given initial point x0 Newton's methodis de�ned by xk+1 = xk � �F 0 �xk���1 F �xk� :For (1), the geometric interpretation of Newton's method is as following. In the limit, thecomponents of F (x) measure the distance of x to the corresponding surface, and the columnsof the matrix F 0 are scalar multiples of the normal vectors of the surfaces. The new pointxk+1 is the point of intersection of the three tangential plains. We need the regularity ofthe solution to apply Newton's method.We see, which operations a primitive has to provide. In a small environment of thesurface, we need a linear approximation to an implicit representation of the surface. Forexplicitly given surfaces we can de�ne an implicit function byf(x) = (x� P (x); n(P (x))) ; (2)where P (x) is the projection of x onto the surface, and n is the normal vector to the surface.The derivative of f is rf(x) = n(P (x)):The non-trivial step for explicit surfaces is the implementation of the projection P (x).For spline surfaces this projection can be implemented fast and robust by using the convexhull property and zoom-in algorithms [7].Before starting Newton's method one has to check whether it converges to a uniquesolution. This test is given in Kantorovich's theorem [12]:4

Let B(x0; r) be a sphere containing the current box.Assume that F 0 (x0) is regular and the conditionskF 0 (y)� F 0 (x) k � ky � xk 8x; y 2 B(x0; r);kF 0 �x0��1 k � �;kF 0 �x0��1 F �x0� k � �;are ful�lled such that � := �� < 12 ; (3)t� := 1� �1�p1� 2�� < r: (4)Then Newton's method with initial point x0 is well de�ned and xk converges toa root of F in B (x0; t�). The root is unique in B(x0; t��) witht�� = 1� �1 +p1� 2�� :In a small environment of a regular solution the constants � and are bounded. By furthersubdivision we can reduce � until (3) and (4) are ful�lled and the solution is unique in thebisection interval.To implement the convergence test we have to evaluate the constants �, and �. Forthis we need in addition to the implicit function value and its derivative an estimate for thelocal Lipschitz - constant of rf . For the implicit function f de�ned in (2), the bound canbe calculated by means of the main curvature �. In the (2�)�1 environment of the surfacethe Hessian r2f is bounded by 2�.3.2 Points of extreme coordinatesAs mentioned above, we also want to �nd points of minimal and maximal x, y and zcoordinates on an edge. The problem of �nding the maximal x coordinate on the edgede�ned by the intersection of the surfaces f1 and f2 is the constraint maximization problemmaxf1=f2=0x:The corresponding Lagrangian for this problem isL (x; y; z; �1; �2) = x+ �1f1 (x; y; z) + �2f2 (x; y; z) :Necessary conditions for points of extreme coordinates are the Kuhn-Tucker conditions of�rst order r(x;y;z)L = (1; 0; 0)t + �1rf1 + �2rf2 = 0;f1 = 0;f2 = 0:By the elimination of the Lagrange multipliers we get the non-linear 3� 3 systemf1 = 0;f2 = 0; (5)f3 := (rf1 �rf2)x = 0:5

For degenerated edges, e.g., if a sphere is put on top of a cylinder, the third equation f3 = 0is ful�lled on the whole edge. The following algorithms are not able to handle degeneratededges, so we demand edge regularity in the form ofkrf1 �rf2k � "1krf1k krf2k; (6)with the application speci�c, small parameter "1. If the edge is parallel to the y-z plane,then every point on that edge ful�lls the necessary Kuhn-Tucker conditions of �rst order.So we demand the numerically su�cient Kuhn-Tucker condition of second ordersTr2L (x; �) s � "2ksk2 8s 2 C: (7)The tangential cone C is the one dimensional space spanned by rf1 �rf2. The su�cientKuhn-Tucker condition ensures isolated solutions.3.2.1 Bisection criteriaTo calculate the points of extreme coordinates, the �rst step is again a bisection algorithm. Anecessary condition is that there are at least two surfaces in the localization of the solid. Tomake use of the third equation f3 = 0, we apply the mean value theorem kf (x)�f (x�) k �kx�x�k sup�2[x;x�] kf 0 (�) k. A necessary condition for a solution in the ballB(c; r) containingthe bisection cube is jf3(c)j � r sup�2B(c;r) krf3(�)k: (8)This can be estimated by the computable boundkrf3k � �kr2f1kkrf2k+ kr2f2kkrf1k� :These necessary conditions are only su�cient, if the edge is regular according to (6) and thesecond order Kuhn-Tucker condition (7) is ful�lled. Both conditions are speci�ed for thesolution of (5), but they can be checked only for a given point in the bisection cube. Whilewe can give necessary conditions to (6) in terms of bounds for second order derivatives, weneed third order derivatives to give necessary conditions to (7). Therefore we perform thebisection algorithm until the cube is 'small' in comparison to geometric details and checkcondition (7) in the center of the cube.If we are close to an edge, we want to switch to Newton's method again. Due to thefact just mentioned, we cannot apply Kantorovich's theorem. For reasons of numericalapproximation, it is important to solve the �rst two equations of (5). The third one isused only to get a �nite number of points on the edges. So we apply Newton's methodto f1(x) = 0; f2(x) = 0; sT (x � c) = 0 with the approximation s = rf1(c) � rf2(c) ofthe tangential vector evaluated in the center c of the cube. For this equation, we canapply Kantorovich's theorem using just bounds for second order derivatives. By de�ning anapplication speci�c, minimal distance for special points, we get one numerical solution perpoint of extreme coordinate.Although the described algorithm cannot handle degenerated edges formed by two sur-faces, we can handle solids with degenerated edges by using a third surface belonging tothe same edge. E.g., if we put a sphere on top of a cylinder, we already need the planeterminating the cylinder. While the algorithm applied to the �rst two surfaces stops becauseof (6), it calculates the proper point, if it is applied to the third surface together with oneof the �rst two. 6

Figure 4: Two intersecting cylinders3.3 Degenerated PointsA further kind of a special point is a degenerated point speci�ed byf1 = 0;f2 = 0; (9)rf1 �rf2 = 0:This means that the tangential planes are parallel in a point of intersection. We are inter-ested in isolated degenerated points, like seen in Figure 4, only. Degenerated edges ful�llequation (9) on the whole edge.The classi�cation of degenerated points needs a second order approximation. Thereforewe introduce a local coordinate system spanned by the orthogonal unit vectors e1, e2 ande3, such that e3 is parallel to the common normal vector of f1 and f2. The surfaces f1 andf2 are approximated by the two, pure quadratic graphs�(i)3 = 12(�1 �2)A(i) �1�2 ! ; i = 1; 2:The matrices A(i) are given by the implicit function theorem asA(i) = "eTkr2fieleT3rf #k;l=1;2 :The intersection of the surfaces is approximated by the intersection of the approximations�(1)3 = �(2)3 . The intersection is classi�ed by the eigenvalues of A(1) � A(2). If both have thesame sign, i.e., det �A(1) � A(2)� is positive, the intersection is only one point. If at least oneeigenvalue is 0, the degeneration is of higher order, like in the case of a degenerated edge. Ifthere are two eigenvalues of opposite sign, i.e., the determinant is negative, then two edgesintersect in this point. The tangential vectors of both edges are given by the non-trivialsolutions of the quadratic equation(�1 �2) �A(1) � A(2)� �1�2 ! = 0:The bisection criteria for degenerated point calculation are analogous to the criteria forpoints of extreme coordinates. Only condition (8) is extended to all three components andthe tests for non-degeneration di�er. We check, whether det �A(1) � A(2)� � �" in thecenter of the bisection cube is ful�lled. 7

4 Calculating EdgesThe second step after special point calculation is edge detection. If we speak of a specialpoint now, we mean a tuple (pi; ti) of a geometric point pi together with the tangentialvector ti pointing in the direction of an edge starting in that point. There are always severalspecial points within one geometric point.For edge detection one has to choose an initial point for every edge and has to followit, until the corresponding terminal point is reached. Then the edge is subdivided intosegments of the demanded mesh size as good as possible. Selecting initial and terminalpoints is explained in x4.1 and edge following in x4.2.4.1 Selecting Start PointsWe start with two sets of special points, with the set of unconditional special points Suand the set of conditional special points Sc. Unconditional points have to appear in thegenerated mesh, while conditional points are only used, if the edge would not be foundwithout them. Points of intersection are of unconditional type, while points of extremecoordinates are conditional special points.As long as Su is non-empty, we choose one point from Su as initial point on an edge.Otherwise, if only Sc is non-empty, we choose one of them. All special points within thisgeometric point are moved from Sc to Su.Starting in tangential direction, we follow the edge, until we reach the correspondingterminal point on the edge contained in Su. If there are some conditional special points onthe edge, they are removed from Sc.When we �nished one edge, the initial point and the �nal point are removed from Su.As long as Su or Sc are non-empty, we go on with the next edge.4.2 Following CurvesImplicit curve following is mainly investigated for homotopy methods to solve nonlinearequations [12]. The principle is to start at a given point x0 on the curve, and follow thecurve in small steps until some terminal point on the curve is reached. The search is doneby a predictor - corrector method. In the current point xk, we compute the unit tangentialvector tk to the curve. Up to a scalar factor, it is the vector product of the normal vectorsof the two surfaces de�ning the edge. As predictor, we use the point~xk+1 = xk + �ktkwith the adaptively controlled step-length �k. This point is projected back onto the curveby the reduced Newton method to get the new value xk+1.On smooth curves, we havekxk+1 � ~xk+1k = O �k~xk+1 � xkk2� ;which can be used for adaptive step-length control. As long as the relationkxk+1 � ~xk+1k � ck~xk+1 � xkk (10)is not ful�lled, we halve the step-length �k and test a new ~xk+1. Because the left hand sidedepends quadratically on the right hand side, (10) will be ful�lled for a su�ciently small �k.A proper choice is, e.g. c = 0:1. If condition (10) is ful�lled with c=4, we try with a doubledstep-length for the next step. 8

Figure 5: Example meshing problemThe points along the curve are stored in a list. As we have reached the terminal point,this approximative curve is subdivided into the segments of the prescribed grid-size as goodas possible. The points generated are projected onto the exact edge.5 Surface and Volume Mesh GenerationFor a human being, 2D mesh generation is a boring, but trivial task. Let us analyze, howwe might solve the following problem. Some plane domain is given in terms of a boundarymesh consisting of line segments. The goal is to �ll the area with nearly equilateral triangles(see Figure 5). One might cut o� the corner on the left hand side by one triangle. On theright hand side, one might �ll in three triangles as sketched in the Figure 5. The new pointshould be chosen such that the shape of the triangles is optimal. On the top we can connectto the inner boundary by one triangle. We go on until the whole domain is meshed. But,how do we decide where to put a triangle? We recognize a speci�c image formed by theboundary elements and decide to cut o� one or more triangles simultaneously. That is thetask we have to teach the computer: If the boundary looks like a certain image, then cuto� these triangles and get that new boundary.This algorithm is the well known advancing front method, see e.g. [10], [14], [9], [8],[6]. The action performed for a certain boundary image is described by geometric rules.Our version of the advancing front method di�ers from others in the way, how the rules areapplied. The approach is to separate the concrete rules form the rule application code. Thealgorithm has to check rules stored in data structures. Therefore the code complexity isindependent of the number of rules. The algorithm is complicated, but well de�ned and canbe, at least theoretically, implemented failsafe. Especially in 3D, the choice of the concreterules is based on heuristics, which is put into an easily maintainable rule description data-base.We proceed as follows. First, we describe the overall algorithm, we continue with theabstract rule description and the rule application algorithm. Finally, we concentrate on theextensions for surface and volume mesh generation.5.1 The overall algorithmThe whole advancing front algorithm is stated in Figure 6. The input data to the meshgenerator is the boundary description. It consists of the vector of nP pointsX = (X1; : : : ; XnP) 2 RD�nP ;9

load boundary mesh (starting front)initialize quality classeswhile front is not emptychoose base-element from frontget environment of base-elementtransform to local coordinate systemtest for applicable rulesif a rule is applicablegenerate new points in local coordinatestransform new points to global coordinatesstore new inner elementsupdate frontelse decrease quality class for base-elementFigure 6: Overall algorithmwhere D = 2 for plane meshing and D = 3 for surface and volume meshing, and the vectorof nBE boundary elements (as usual, Nn denotes the set of natural numbers � n)R = (R1; : : : ; RnBE) 2 Nd�nBEnP :A simplicial boundary element is identi�ed with the d indices of the corner points. For planeand surface meshing we have boundary segments (d = 2), for volume meshing the boundaryelements are triangles (d = 3).To every boundary element, the quality class, a natural number, is associated. It isinitialized to one, which means highest quality.The state of the preceding algorithm is always represented by the current boundaryelement vector. The algorithm performs as long as the length of the vector is positive.We choose one of the boundary elements minimizing the criterionquality class + distance to boundary.This element will be called base-element. The distance to the boundary is determined bythe minimal number of inner elements needed to draw an open path from the element toan arbitrary element of the original boundary. This distance term ensures a nearly uniformgrowing of the mesh over the whole boundary. The quality term prefers elements, on whichbetter �tting rules can be applied.The examination of the boundary is a local process. For the following steps, we haveto know the environment of the base-element. This environment consists of all boundaryelements closer to the base-element than a prescribed radius, and the accompanying cornerpoints. Depending on the rules, the radius is chosen between three and �ve times thedesired edge-length parameter h. This step is a geometric search process, it de�nes theasymptotic complexity of the whole algorithm. While one has to test each point of thecurrent boundary in a straight forward approach, a quadtree or octree search tree for 2D or3D, respectively, reduces the complexity of point searches to a logarithmic behavior. By theuse of an alternating digital tree (ADT), also boundary elements can be found fast [2]. The10

nLP points and the nLBE boundary elements in the environment are marked by the vectorslP and lE, respectivelyXlP (i); 1 � i � nLP ; RlE(i); 1 � i � nLBE :Without loss of generality, we let RlE(1) be the base-element and XlP (1), XlP (2) and, for the3D case, XlP (3), are the corners of the base-element. For the rest of the loop, we only haveto work with a bounded number of points and boundary elements.To simplify the following steps, we transform the nLP points of the environment to alocal coordinate system xi = F (XlP (i)); 1 � i � nLP :The coordinate transformation F is chosen such that x1 = 0, x2 is a point on the local�1-axis and, for the 3D case, x3 is a point in the local �1-�2-plane. If we choose unit-lengthin the local coordinate system corresponding to the desired edge-length h, the edge-lengthof well sized elements in local coordinates is about one. The various possibilities of thecoordinate transformation will be discussed in Section 5.4. The nLBE boundary elements inthe environment are described by local boundary elements ri using local point indiceslP (ri;j) = RlE(i);j; 1 � i � nLBE ; 1 � j � dTo the local boundary description the rule testing algorithm is applied. This key-step ofour approach is described in Section 5.3. Here we only mention, that the tolerances of therules are given by the quality class of the base-element. A high quality allows only goodelements, which can make any rule application impossible.If an applicable rule is found, it describes where to generate new points in local coordi-nates.The nNP new points y1; : : : ; ynNP are transformed to global coordinates and appendedto the point vector XnP+i = F�1(yi); 1 � i � nNP :The rule describes the creation of new inner elements. After converting the local toglobal point indices, the elements are stored in the element list.The rule also prescribes the necessary changes in the advancing front. Some boundaryelements must be deleted, some others are added to the global boundary element vector R.If no rule is applicable for the base element, its quality class is decreased. This enableseither the application of a worse �tting rule later on, or a rule applied to a neighbor boundaryelement also removes the current one.5.2 Abstract rule descriptionNext, the abstract description for 2D and 3D element generation rules is explained. Due tothe coordinate transformation, 2D and surface meshing can be handled by the same rules.A rule is always speci�ed in reference position, such that the elements have optimal shape.A rule involves nEP existing points given by the vector xR.xR = (xR1 ; : : : xRnEP) 2 Rd�nEP :The connection of these points by elements is speci�ed by the vector of existing boundaryelements rR = (rR1 ; : : : ; rRnEBE) 2 Nd�nEBEnEP :11

Rx = fR

1x = fR Rx = fR
2 2

3 6

R
1

R

fR fR

f3
R

y1

45

Figure 7: Example for old points, new point and free-zone,base element is (1, 2)Some rules generate new points whose coordinates are given by the vectoryR = (yR1 ; : : : ; yRnNP) 2 Rd�nNP ;and new boundary elements connecting existing and new pointssR = (sR1 ; : : : ; sRnNBE) 2 Nd�nNBEnEP+nNP :The corner with index i, 1 � i � nEP + nNP of the boundary element is xi for i � nEP , oryi�nEP , otherwise. The generation of nNE inner elements is speci�ed by the vectortR = (tR1 ; : : : ; tRnNE) 2 N(d+1)�nNEnEP+nNP :To be able to apply a rule, we need some free space containing no existing point and noexisting boundary element. We de�ne the free-zone by the convex hull of the nFP pointsfRi combined to the vector fR = (fR1 ; : : : ; fRnFP) 2 Rd�nFP :An example for a rule �lling a corner of 120 degree by two triangles is shown in Figure 7.This example is described by the data structurexR = ((0; 0); (1; 0); (�0:5; 0:866));yR = ((0:5; 0:866));rR = ((1; 2); (3; 1));sR = ((3; 4); (4; 2));tR = ((1; 2; 4); (1; 4; 3));fR = ((0; 0); (1; 0); (1:5; 0:866); (1; 1:732); (0; 1:732); (�0:5; 0:866));with constants nEP = 3, nNP = 1, nEBE = 2, nNBE = 2, nNE = 2, nFP = 6. Without lossof generality, we can always set xR1 = 0, xR2 = (xR2;1; 0) and rR1 = (1; 2) for the 2D case andxR1 = 0, xR2 = (xR2;1; 0; 0), xR3 = (xR3;1; xR3;2; 0) and rR1 = (1; 2; 3) for the 3D case.The rules are speci�ed for elements of optimal shape. But in a real situation, we will nothave a corner of exact 120 degree. The real existing points will deviate form the referenceposition xR. Let us denote the real existing points by x0. We de�ne the deviation u 2 Rd�nEPby u = x0 � xR:12

A deviation of the existing points should also lead to a movement of the new points. Thesimplest case is given by a liner mapping of movements. We generate new points at theposition y0 = yR + Lyu:Analogously, the corners of the free-zone fR are moved to f 0 by the linear mapping Lff 0 = fR + Lfu:For the 120 degree corner, the linear mappingLyu = �u1 + u2 + u3leads to two congruent, isosceles triangles. The linear mapping for the corners of the free-zone is constructed as follows. The points f 01, f 02 and f 06 have to match the points x01, x02 andx03. The other three are mirrored at the new point y01.f 01 � fR1 = u1;f 02 � fR2 = u2;f 03 � fR3 = 2Lyu� u3 = �2u1 + 2u2 + u3;f 04 � fR4 = 2Lyu� u1 = �3u1 + 2u2 + 2u3;f 05 � fR5 = 2Lyu� u2 = �2u1 + u2 + 2u3;f 06 � fR6 = u3:Mention, it is not ensured to achieve properly oriented inner elements. In the case of wrongorientation, we reject the application of the rule.5.3 The rule application algorithmWe need an algorithm applying rules de�ned by the data structure to a boundary imagegiven in local coordinates. This is to �nd injective mappingsmP : NnEP ! NnLPand mE : NnEBE ! NnLBEassigning each point (boundary element) in reference position a point (boundary element)in the environment of the base-element. In the 3D case, the three possible rotations of atriangle are handled by the mappingmO : NnEBE ! N3:For the 2D case, we set mO = 0. The mapping mP de�nes the vector x0 of local points inreference numbering by x0 = (xmP (i))1�i�nEP ;it also speci�es the deviation u, the position of the new points in local coordinates y0 andthe corner points of the free-zone f 0.If the restrictions listed below are ful�lled, we can apply that rule.� The quality class of the base-element must be worse then a prescribed value. Thisenables rules necessary for the termination of the algorithm, but which should beavoided if possible. 13

� Because of the compatible placement of the local coordinate system and the positionof boundary element one in reference position we can setmE(1) = 1:� The boundary in the rule description has to be topologically equivalent to its imagein the local boundary, which meansmP (rRi;j) = rmE(i);j+mO(i); 1 � i � nNBE; 1 � j � d: (11)To avoid additional complication, we assume to take the corner index modulo d.� The point deviation must not exceed a limit depending on the quality classjuij � f d(qual: cl:);where f d(:) is a monotone increasing function such that f(x) ! 1 as x ! 1. Forexample, we use f(x) = 0:2x2.� Each local boundary element not contained in the image of mE must not intersect thefree-zone.� And �nally, each generated inner element ti must be properly oriented and the elementerror functional E(ti) measuring the well-shapedness of the element must be below alimit depending on the quality classE(ti) � f s(qual: cl:); 1 � i � NE:Element error functionals will be discussed in Section 6. For example, we chose f s(x) =x.To construct the mappings mP , mE and mO we essentially have to test each of thenLP nEP�nLBEnEBE�3nEBE possibilities. In an average 3D case we have nEP = 5, nEBE = 3,nLP = 30 and nLBE = 50 leading to 8:2 � 1013 possibilities.But by a good ordering of the trials, we can reduce the work to a realistic amount. Itis advantageous to start with the mapping of elements. The algorithm performing this taskfor the 2D case is stated in Figure 8. It simulates nEBE nested loops from 1 to nLBE, butthe loop for element ei is only started, if the elements 1; : : : ; ei� 1 are compatible mapped.Compatible is understood in the sense of (11).Every loop mapping a boundary element connected to an already mapped one will �ndonly one (or, in exceptional cases a few) hits. Only separated boundary elements in the ruledescription will produce nearly nLBE hits. This gives a complexity of O(nEBE � nLBE) forconnected boundary elements and an additional factor nLBE for each separated group.The mapping of most points in the rule description is determined by the mapping ofelements. Only the mapping of separated points in the rule description must be tried foreach local point.5.4 Possibilities of the transformationThe di�erence between plane and surface mesh generation is essentially contained in thecoordinate transformations F : S \ Ub:e: ! R2 used in the overall algorithm (Figure 6). Itmaps the environment Ub:e: of the base-element from the surface S into the plane. In theplane the 2D rules are applied. If new points must be inserted, they have to be mapped by14

ei = 2, mE(1) = 1, mE(2) = 0while ei � 2while mE(ei) < nLBEincrement mE(ei)if mE(ei) compatible to mE(1); : : : ; mE(ei� 1)if ei < nEBEincrement eimE(ei) = 0elseall elements are compatibly mapped !!!decrement eiFigure 8: Element mapping algorithmF�1 from the plane to the surface. The whole task is sketched in Figure 9. Because we canchoose individual, local transformations, we do not have the problems of global coordinatetransformations as non-uniform point distribution and singularities.For small edge-length h compared to the radius of curvature, the transformation can beimplemented numerically using the surface-operations de�ned in Section 3. For an edge-length of about the curvature radius, individual bijective transformations have to be imple-mented for every class of surface.Beside surface mesh generation, the local coordinate transformation can be used forother mesh generation variants:� Graded mesh generation can be achieved by varying the unit-length in the local coor-dinate system.� (Local) anisotropic meshes can be produced by anisotropic coordinate transformations.5.5 The rules in 2DThe nine rules used for 2D are drawn in Figure 10. The �rst seven rules have a free-zone toensure enough space for further, well shaped elements. The last two ensure the terminationof the algorithm. They have enough free space to build a new triangle, but do not takecare of the remaining rest domain. To avoid the application of the last two rules at thebeginning, the minimal quality class of them is set to a higher value (e.g. 5).A dead lock cannot appear, because in 2D it is always possible to cut o� a trianglewithout inserting a new point by one of the last three rules.5.6 Closure for 3D mesh generationIn 3D, it is not always possible to cut o� one element without inserting new points. Theseboundaries can cause di�culties to the advancing front method. An example taken from[8] is a pentahedron, which cannot be dissected into tetrahedra without inserting a point inthe inner, see Figure 11.We could not de�ne rules for a robust handling of these type of geometries. Therefore itis necessary to recognize the problem, and to have an alternative algorithm. The problem15

local transformation

B’A’

B
A

Figure 9: Surface mesh generation

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

��������

��������

��������

��������

��������

��������

��������

��������

��������

���
���
���
���
���
���

���
���
���
���
���
���

Existing/new bound. el.

Existing points

New points

Free-zoneFigure 10: Rules for 2D16

Figure 11: Example for a di�cult boundaryis identi�ed, if we cannot apply any rule up to a certain quality class. The alternativealgorithm has to insert one point in the inner of the rest domain, such that elements can bebuilt to this new point.Experiments have shown, that in most of the exceptional cases star shaped rest domainscan be achieved. For these domains, we can �nd an inner point, which can be connected toeach boundary triangle by a tetrahedron. A star point x has to be in front of each boundaryelement of one rest domain, which meansnTi (x�XRi;1) � 0has to be ful�lled for all boundary elements Ri with outer normal vectors ni. The solutionx is calculated by the Simplex method applied to the linear optimization problemminx2R3maxi nTi (x�XRi;1):
6 Mesh OptimizationThe quality of the generated mesh can be improved dramatically by several techniques ofmesh optimization [3]. We distinguish between metric optimization, where points are movedto increase the quality, and topological changes to the mesh, where points are reconnectedby di�erent elements.To quantify the quality of the mesh, we need an error functional for the elements. Becausethe standard �nite element functional maximal edge-length over in-radius is expensive tocalculate for 3D, we use a cheaper one dominating the standard functional. For a triangularelement T we use the termE(T) = p336 (Pi li)2Area +Xi lih + hli � 2! ;for a tetrahedral element we useE(T) = 164p2 (Pi li)3V ol +Xi lih + hli � 2! ;with the 3 or 6 edge lengths li, respectively. The constants are chosen such that an equilateralelement has error 1. The �rst term of each functional penalizes at elements, the second17

one too large or too small elements. As one element degenerates, the functional tends toin�nity. If the orientation of the element nodes is negative, we set the error to in�nity, too.The total error functional of the mesh T is the sum of the element errorsE(T) = XT2T E(T):6.1 Metric optimizationIn two dimensions, Laplacian smoothing is the standard mesh improvement algorithm. Theinner points are moved into the center of gravity of the neighbors iteratively. Laplaciansmoothing cannot be applied for surfaces, and it does not work well in 3D. Theoretically,the optimal topological equivalent mesh can be calculated by minimizing the error functionalE(T). A global minimization is too expensive, but we can apply point-wise relaxation ofthe error functional. Therefore we have to solve a set of minimization problems of maximalsize three. We use the BFGS method, a member of the Broyden family (see [4]). It isglobally convergent with locally quadratic convergence rate, although it does not need secondderivatives.One step of the relaxation method for an inner point is to solve the three dimensionalproblem minx2R3Ei(T ; x);where Ei(T ; x) is the global error functional E(T) with the point Xi moved to x. Of course,only the elements connected to Xi have to be used in the optimization procedure. Becausewe start with a valid �nite element mesh and the error of a wrong oriented element is de�nedas in�nity, the mesh minimizing Ei is a valid mesh.Points in the surfaces are optimized by the two dimensional problemmint2R2Ei(T ; F�1(t));where F is the local transformation from the surface to the two dimensional parameter set.The point Xi is moved to F�1(t). Analogous points on edges are optimized by the solutionof mint2R Ei(T ; G�1(t));with the local transformation G from the edge into the parameter interval.6.2 Topological optimizationWhen point movement cannot increase the mesh quality anymore, some changes in the meshtopology may help a lot. Therefore a few elements are removed and the points are connectedin a new manner. This actions may be described by local rules also.The simplest technique working in two as well as in three dimensions is point collapsing(Figure 12). If the mesh quality increases, if two points are collapsed in the center and theelements between are removed, we perform this change to the mesh.The common technique in two dimensions is edge swapping [5]. Often two at trianglescan be improved by swapping the common edge (Figure 12). We get two new trianglesconnecting the same four points in a di�erent manner. To generalize edge swapping to threedimensions, we have to distinguish di�erent cases. Five points can be connected by two aswell as by three tetrahedra, see Figure 13. The optimizer can select the better one. Six pointsforming an octahedron can be cut into four tetrahedra in three di�erent manners, where we18

Figure 12: Point collapsing and edge swapping
1

3

2

4

5 1

3

2

4

5

3
5

1 6

4 2

3
5

1 6

4 2

3
5

1 6

4 2

Figure 13: Face swapping in 3Dcan choose the best one. The optimal connection is a valid mesh, because otherwise at leastone tetrahedron with wrong orientation would occur and therefore the error functional isin�nite.7 ExamplesFinally, we give several examples showing the performance of the mesh generator. The�rst example, called 'Cube and Spheres', shows a cube intersected by a sphere and by thecomplement of a sphere. The information given to the mesh generator consists of the text�le shown in Figure 14 describing the geometry, and the desired mesh size parameter.The 'plane' command de�nes half-spaces by a point in the plane and the outer normalvector. Spheres are de�ned by the center and the radius. By the Boolean operations, morecomplex objects can be formed and assigned to named solids. The solid called 'all' is themain object used by NETGEN.The edges as well as the surface mesh of this example are drawn in Figure 15. First theconvergence behavior of the bisection algorithm for special point calculation is investigated.There are 24 points of intersection (three in each of the eight corners) and also 24 points ofextreme coordinates (four on each of the six circles). The number of cubes per level usedfor point of intersection and point of extreme coordinates calculation are shown in Table1 and 2, respectively. We can see a bounded number independent of the level. The �nalmesh according to an edge-length parameter h = 10 consists of 1418 surface triangles, 1898tetrahedra and 813 points. The classi�cation of the elements with respect to the qualitymeasure E(T) is drawn in Figure 16. The left hand side shows the quality before, the righthand side after optimization. CPU times on a SUN Ultra 1 workstation for the individual19

solid cube =plane (0, 0, 0; 0, 0, -1)and plane (0, 0, 0; 0, -1, 0)and plane (0, 0, 0; -1, 0, 0)and plane (100, 100, 100; 0, 0, 1)and plane (100, 100, 100; 0, 1, 0)and plane (100, 100, 100; 1, 0, 0);solid all = cubeand sphere (50, 50, 50; 75)and not sphere (50, 50, 50; 60);Figure 14: Input to 'Cube and Spheres'Level 1 2 3 4 5 6 7 8 9 10 11Intervals 1 7 19 56 200 664 1712 1824 1896 1128 384Table 1: Cubes per level for point of intersection calculationsubproblems are given in Table 3.To apply e�cient geometric multigrid methods, we require a coarse mesh, which willbe hierarchically re�ned. Our version of the advancing front method is well suited to thegeneration of very coarse meshes, because by the abstract rules many special cases can behandled without coding. For the same object, a mesh with edge-length h = 50 was generatedconsisting only of 124 surface triangles, 74 tetrahedra and 54 points.A second example is the crankshaft drawn in Figure 17. The mesh consists of 592 surfaceelements, 853 volume elements and 335 mesh nodes. Figure 18 shows the quality classesof the volume elements. The total CPU time need for the generation of the mesh was 140seconds. The �nal example is a surface mesh (Figure 19) of some Sculpture in St. Gallen.8 Concluding RemarksIn this paper, we proposed the separation of element generation rules from the code. Thefunctionality of the implemented code is precise speci�ed, while all the heuristics of therules is moved to an extern rule description. Tools for graphical editing of the rules may bedeveloped. By means of these tools it should be possible to develop a proper set of rules formixed tetrahedral, pentahedral and hexahedral mesh generation.We can use the same rules for plane and surface mesh generation as well as for uniform,graded or anisotropic mesh generation. The distinction is contained in two transformations.Level 1 2 3 4 5 6 7 8 9 10 11Intervals 1 7 19 56 200 688 2120 2880 3048 2928 2976Table 2: Cubes per level for point of extreme coordinates calculation20

Figure 15: Cube and Spheres
Step Points Edges Surface Surf. Opt. Volume Vol. Opt. totalSeconds 5 1 13 15 220 150 394Table 3: CPU times for individual subproblems for 'Cube and Spheres'

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
 0

 50

 100

 150

 200

 250

 300

 350

 400

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
 0
 50
 100
 150
 200
 250
 300
 350
 400
 450
 500

Figure 16: Quality classes for 'Cube and Spheres'

Figure 17: Crankshaft21

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
 0

 20

 40

 60

 80

 100

 120

 140

 160

Figure 18: Quality classes for crankshaft

Figure 19: Sculpture in St. Gallen and surface mesh
22

At current time we have implemented only two dimensional graded mesh generation.The corner-, edges- and surface mesh generation algorithms are based on abstract geo-metric primitives. Therefore new geometric objects can be implemented without changingthe main code.The software as well as the examples are available via anonymous ftp from the address:ftp.numa.uni-linz.ac.at/pub/software/netgen.tar.gzReferences[1] T. J. Baker. Developments and trends in three-dimensional mesh generation. Appl.Numer. Math., 5:275{304, 1989.[2] J. Bonet and J. Peraire. An alternating digital tree (ADT) algorithm for 3D geometricsearching and intersection problems. Int. J. Numer. Methods Eng., 31:1{17, 1991.[3] E. B. de l'Isle and P. L. George. Optimization of tetrahedral meshes. In I. Babuska,J. E. Flaherty, W. D. Henshaw, J. E. Hopcroft, J. E. Oliger, and T. Tezduyar, editors,Modeling, Mesh Generation, and Adaptive Numerical Methods for Partial Di�erentialEquations, volume 75, pages 97{127. Springer, New York, 1995.[4] R. Fletcher. Practical Methods of Optimization, Volume 1: Unconstrained Optimiza-tion. John Wiley & Sons, Chichester - New York - Brisbane - Toronto, 1980.[5] W. H. Frey and D. A. Field. Mesh relaxation: A new technique for improving triangu-lations. Int. J. Numer. Methods Eng., 31:1121{1133, 1991.[6] P. L. George and E. Seveno. The advancing-front mesh generation method revisited.Int. J. Numer. Methods Eng., 37:3605{3619, 1994.[7] J. Hoschek and D. Lasser. Grundlagen der geometrischen Datenverarbeitung. Teubner,Stuttgart, 1989.[8] H. Jin and R. I. Tanner. Generation of unstructured tetrahedral meshes by advancingfront technique. Int. J. Numer. Methods Eng., 36:1805{1823, 1993.[9] B. P. Johnston and J. M. Sullivan, Jr. A normal o�setting technique for automatic meshgeneration in three dimensions. Int. J. Numer. Methods Eng., 36:1717{1734, 1993.[10] S. H. Lo. A new mesh generation scheme for arbitrary planar domains. Int. J. Numer.Methods Eng., 21:1403{1426, 1985.[11] M. E. Mortenson. Geometric Modeling. John Wiley & Sons, New York, 1985.[12] H. Schwetlick. Numerische L�osung nichtlinearer Gleichungen. Deutscher Verlag derWissenschaften, Berlin, 1979.[13] J. f. Thompson and N. P. Weatherill. Aspects of numerical grid generation: Currentscience and art. Technical report, NSF Engineering Research Center for ComputationalField Simulation, Mississippi State University, and Department of Civil Engineering,University College of Swansea, UK, 1993.23

[14] J. Z. Zhu, O. C. Zienkiewicz, E. Hinton, and J. Wu. A new approach to the developmentof automatic quadrilateral mesh generation. Int. J. Numer. Methods Eng., 32:849{866,1991.

24

