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Abstract

This work provides a complete analysis of eddy current problems, rang-
ing from a proof of unique solvability to the analysis of a multiharmonic
discretization technique.

For proving existence and uniqueness, we use a Schur complement ap-
proach in order to combine the structurally different results for conducting
and non-conducting regions.

For solving the time-dependent problem, we take advantage of the
periodicity of the solution. Since the sources usually are alternating cur-
rent, we propose a truncated Fourier series expansion, i.e. a so-called
multiharmonic ansatz, instead of a costly time-stepping scheme. More-
over, we suggest to introduce a regularization parameter for the numerical
solution, what ensures unique solvability not only in the factor space of
divergence-free functions, but in the whole space H(curl). Finally, we
provide estimates for the errors that are due to the truncated Fourier
series, the spatial discretization and the regularization parameter.

1 Introduction

This paper aims at providing a complete analysis of general nonlinear eddy
current problems and their numerical treatment by a multiharmonic solution
technique. It summarizes and extends the results that were obtained in [3].
Corresponding to the following main tasks, the paper splits into four parts:

• Analysis of existence and uniqueness,

• Time discretization by means of a truncated Fourier series expansion,

• Regularization and complete analysis of the linear problem,

• A combined error estimate with respect to the truncation, spatial dis-
cretization regularization parameter.

∗This work has been supported by the Austrian Science Fund “Fonds zur Förderung der
wissenschaftlichen Forschung (FWF)” under the grants SFB F013, P 14953 and START Y192.
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Concerning the first item, we point out that eddy current problems are of
parabolic type in conducting regions and reduce to an elliptic problem in non-
conducting domains. Although PDEs of mixed type have been widely analyzed
(e.g. [17]), there has not been published a simple proof of unique solvability
of general eddy current problems yet, at least to our knowledge. In Section 2,
we rigorously analyze the problem and present a new proof of existence and
uniqueness in domains consisting of both conducting and non-conducting parts.

It is worth mentioning that in many real life problems, the sources are harmonic
alternate current. Consequently, the solution would be harmonic as well, pro-
vided the problem was linear. Due to the generally nonlinear relation between
magnetic field and induction, however, the solution is not necessarily harmonic,
but can be represented as a Fourier series.
This gives rise to the idea of a so-called multiharmonic ansatz, i.e. of a truncation
of the Fourier series, instead of an expensive time-stepping scheme. Since only a
fairly small number of harmonics is required for sufficiently good approximation,
this approach easily outperforms time-stepping schemes.
The simulation of electromagnetic devices in the frequency domain, i.e. by means
of a harmonic or multiharmonic ansatz, has been pursued e.g. by Yamada and
Bessho in [25] or Gyselinck et al. in [14]. Other works on this topic include
for example [4, 11, 13, 18, 24]. Whereas most of these works consider the
problem in complex vector spaces, we propose a real scheme because of the easier
linearization: Since the operators do not satisfy the Cauchy-Riemann equations,
the complex problem is not differentiable and thus cannot be linearized by the
Newton method (cf. e.g. [13, 16]).
We present and analyze the multiharmonic ansatz in Section 3, where we also
provide an estimate of the error due to truncation of the Fourier series.

As far as regularization is concerned, we remark that the problem is uniquely
solvable only in the factor space of divergence-free functions. As will be seen
in Section 2, this is due to the kernel of the curl-operator. In order to avoid
working in this factor space, we regularize the problem, what ensures unique
solvability in the whole space H(curl).
In Section 4, we justify this procedure for the example of the linear harmonic
problem and present estimates of the additional error that is introduced by this
regularization.

Finally, in Section 5, we combine the results on the truncated Fourier series, on
regularization and on finite element discretization in order to provide a complete
error estimate.
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2 Existence and Uniqueness

Eddy current problems are described by the quasistationary Maxwell equations
(e.g. [15])

curlH = J ,

curlE = −∂B
∂t

, (1)

divB = 0,

where H denotes the magnetic field, B the magnetic field density (induction),
J the electric current density, and E the electric field, respectively.
These equations are joined by the material relations

B = µH,

J = σE,

with the magnetic permeability µ and the electric conductivity σ. Although in
general µ and σ are tensors, they are scalar in our case, since we consider only
isotropic materials.
Whereas the conductivity can usually be assumed to be constant for each ma-
terial, the relation between B and H is generally nonlinear. Disregarding the
effects of hysteresis, we have H = ν(|B|)B, where the continuous function
ν : R+

0 → R+ satisfies the following properties, which are immediate conse-
quences of the physical background (cf. [19, 20]):

0 < ν ≤ ν(s) ≤ ν, ∀ s, (2)
s 7→ ν(s)s is strictly monotone, (3)
s 7→ ν(s)s is Lipschitz continuous. (4)

Introducing a vector potential u for the magnetic field density B = curlu, we
transform equation (1) to

σ
∂u

∂t
+ curl (ν(|curlu|) curlu) = f , (5)

where f denotes the impressed and source currents.

In this section, we want to prove existence of a weak solution of problem (5)
together with appropriate boundary conditions and an initial condition. Fur-
thermore, we show that the solution is unique in a certain sense. This section
is arranged in two parts: Firstly, we show that the problem is uniquely solvable
in both conducting and non-conducting regions. Secondly, we conclude that the
eddy current problem (5) is uniquely solvable in general domains consisting of
non-conducting and conducting regions.
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2.1 Some Results for Conducting and Non-Conducting
Regions

In electromagnetic problems, one often deals with conducting (σ > 0) and non-
conducting (σ = 0) regions, for example in the case of some conducting part
surrounded by air. The problem that we consider has a significantly different
structure in these two cases. For non-conducting regions, equation (5) is a
stationary and elliptic problem:

Find u(x) :

curl (ν curlu) = f , in Ω,
u× n = g, on Γ.

(6)

For conductors, on the other hand, we face a parabolic problem:

Find u(x, t) :

σ
∂u

∂t
+ curl (ν curlu) = f , in Ω× [0, T ],

u× n = g, on Γ× [0, T ],
u = u0, on Ω× {0}.

(7)

We remark that in general the relation between the magnetic field H and the
induction B could be nonlinear in both conducting and non-conducting regions.
Mostly, however, for the non-conducting part we have a linear relation between
B and H, so there ν = ν(x).
In the conducting region, ν(|curlu|) with the properties (2) and (3) is supposed
to be given.

We will now prove that both problems are solvable and that the solution is
unique in a certain sense. For this task, we consider the weak formulation of
these equations.

Non-Conducting Regions

The weak formulation of (6) yields the variational equation∫
Ω

ν curlu · curlv dx︸ ︷︷ ︸
=: a(u,v)

=
∫

Ω

f v dx︸ ︷︷ ︸
=: 〈F,v〉

, ∀v ∈ V , (8)

with V = H0(curl,Ω) = {v ∈H(curl,Ω) : v × n = 0 on Γ}.
We are looking for a solution u in the linear manifold g̃+V , where g̃ ∈H(curl)
should meet the boundary condition g̃ × n = g on Γ. This is possible for
g ∈H− 1

2 (divΓ,Γ), since the tangential trace γτ : H(curl,Ω) →H− 1
2 (divΓ,Γ)

is surjective [7].
Homogenization of the problem leads to

Find u ∈ V : a(u,v) = 〈F̃ ,v〉, ∀v ∈ V , (9)
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with 〈F̃ ,v〉 := 〈F,v〉 − a(g̃,v). The linear form F ∈ V ∗ and the bilinear form
a(·, ·) : H(curl)×H(curl) → R are those defined in (8).

For gradient fields v, the left hand side of (8) = (9) equals zero, so clearly the
source f has to be weakly divergence-free in order to ensure solvability. This
means

∫
Ω
f · gradφdx = 0, for all φ ∈ H1

0 (Ω), is a necessary condition for
existence of a solution.

Remark 1. Later on, we will consider only divergence-free test functions. With
this reduced set of test functions, no additional conditions for solvability are
required, since the space V then does not contain any gradient fields.

The following considerations motivate this reduction to solenoidal functions:
Since the curl of a gradient field vanishes, for every solution u of (9), we get a
set of solutions u+gradφ, φ ∈ H1

0 (Ω), i.e. the problem is not uniquely solvable.
However, we can show uniqueness in the factor space of divergence-free, i.e.
solenoidal functions.

For multiply connected domains, we denote the p ≥ 1 components of the bound-
ary ∂Ω by Γi, 1 ≤ i ≤ p. In this general case, equation (9) does not change
if we add gradφ for arbitrary φ ∈ H1(Ω) with φ constant on each boundary
component, i.e. φ = ci on Γi, 1 ≤ i ≤ p.
This gives rise to the definition

W (Ω) := W := {w = gradφ :

φ ∈ H1(Ω) and φ = ci on Γi, 1 ≤ i ≤ p}.
(10)

For proving uniqueness, we factor the space V by W , and restrict equation (9)
to this factor space

V̄ := V /W ' {v ∈ V : (v,w)L2 = 0, ∀w ∈W }. (11)

So the problem that we deal with now reads as follows:

Find u ∈ V̄ : a(u,v) = 〈F̃ ,v〉, ∀v ∈ V̄ . (12)

We will see that this variational problem is uniquely solvable by the Lax-Milgram
theorem (e.g. [12]), or by Browder-Minty (e.g. [27]) in the nonlinear case. For
proving existence and uniqueness, we need an important result on norm equiv-
alence in the space H(curl,Ω) ∩ H(div,Ω) for multiply connected domains
Ω:

Lemma 2 ([1]). Let Ω be multiply connected with Lipschitz boundary and bound-
ary components Γi, 1 ≤ i ≤ p, let X(Ω) := H(curl,Ω) ∩H(div,Ω) with the
norm

‖v‖2
X(Ω) = ‖v‖2

L2(Ω) + ‖curlv‖2
L2(Ω) + ‖div v‖2

L2(Ω).

Then on the space XN (Ω) = {v ∈ X(Ω) : v × n = 0 on ∂Ω}, the seminorm

v 7→ ‖curlv‖L2(Ω) + ‖div v‖L2(Ω) +
p∑
i=1

|〈v · n, 1〉Γi |

is equivalent to the norm ‖ · ‖X(Ω).
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Remark 3. As can easily be seen, in the space V̄ both div v in the domain and
v · n on each boundary component are zero: By the definition of V̄ = V /W ,
we have

∫
Ω
v · gradφdx = 0 for all functions φ ∈ H1(Ω) that are constant on

all components of the boundary. Integration by parts yields

−
∫

Ω

div v · φdx+
∑
i

ci(φ)
∫

Γi

v · nds = 0.

Since this equality is satisfied for all φ ∈ H1
0 (Ω), div v equals zero almost every-

where, and thus also v · n on each boundary component.
Consequently, Lemma 2 provides the required equivalence between the fullH(curl)-
norm and the seminorm |u|2 =

∫
Ω
|curlu|2.

Throughout the rest of this paper we assume Ω to be multiply connected with
Lipschitz boundary.

Lemma 4. For ν ∈ L∞(Ω) with 0 < ν ≤ ν(x) ≤ ν almost everywhere (a.e.) in
Ω, there exists a unique u ∈ V̄ solving

a(u,v) = 〈F̃ ,v〉, ∀v ∈ V̄ . (12)

Proof. By the Lax-Milgram theorem, it suffices to show that a(·, ·) is bilinear,
V̄ -elliptic and V̄ -continuous and that F̃ ∈ V̄ ∗.
Bilinearity is evident, the same holds for linearity of F̃ . V̄ -ellipticity and V̄ -
continuity of a(·, ·) follow immediately from the assumptions on ν and the norm
equivalence stated in Lemma 2 and Remark 3. This norm equivalence also
implies the boundedness of F̃ .

Remark 5. Problem (12) is uniquely solvable for nonlinear reluctivity ν =
ν(|curlu|) as well, if ν fulfills the assumptions (2) and (3). Existence and
uniqueness then follow by Browder’s and Minty’s theorem or by the nonlinear
version of Lax-Milgram with the additional condition (4).

Conducting Regions

We continue by analyzing the parabolic problem in the conducting area:
The weak formulation of (7) yields the variational equation∫

Ω

σ
∂u

∂t
v dx+

∫
Ω

ν(|curlu|) curlu · curlv dx︸ ︷︷ ︸
=: 〈A(u),v〉

=
∫

Ω

f v dx︸ ︷︷ ︸
=: 〈F,v〉

, (13)

for all v ∈ V and almost everywhere in (0, T ), with V = H0(curl,Ω) =
{v ∈H(curl,Ω) : v × n = 0 on Γ} as above.

We homogenize the problem as before. Furthermore, we also restrict the equa-
tion to the factor space V̄ as defined in (11), at least at first. Later on, we
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will see that the solution is unique in V = H0(curl), not only in the space of
weakly divergence-free functions V̄ = V /W (Ω).

So, almost everywhere in (0, T ), the problem we are concerned with reads as
follows:

Find u ∈ V̄ : (σ
∂u

∂t
,v)L2 + 〈A(u),v〉 = 〈F̃ ,v〉, ∀v ∈ V̄ . (14)

Here, A : V̄ → V̄
∗ is the operator defined in (13), and F̃ results from the

homogenization: If we have g̃(t) fulfilling the boundary conditions, we get
〈F̃ ,v〉 := 〈F,v〉 − (σ ∂g̃

∂t ,v)L2 − 〈A(g̃),v〉 with F as in (13).

Let us now consider u as a function u : [0, T ] → V̄ , t 7→ u(·, t) and define the
operators Ā : L2((0, T ), V̄ ) → L2((0, T ), V̄ ∗) and F̄ ∈ L2((0, T ), V̄ ∗) as follows:

〈Ā(u)(t),v〉 :=
∫
Ω

ν(|curlu(t)|) curlu(t) · curlv dx,

∀v ∈ V̄ , u ∈ L2((0, T ), V̄ ), (15)

〈F̄ (t),v〉 :=
∫
Ω

f(t) · v dx−
∫
Ω

σ
∂g̃(t)
∂t

· v dx− 〈Ā(g̃)(t),v〉,

∀v ∈ V̄ . (16)

Here we require g̃ ∈ L2((0, T ),H(curl)) with its time derivative ∂g̃
∂t ∈ L2((0, T ),H(curl)∗)

for the definition of F̄ . This prerequisite is met by any reasonable function
g(t) in the boundary condition, e.g. for g ∈ L2((0, T ),H− 1

2 (divΓ,Γ)) with
∂g
∂t ∈ L2((0, T ),H− 1

2 (divΓ,Γ)).

With the above definitions, equation (14) together with the initial condition
u(x, 0) = u0(x), i.e. the original equation (7) in its weak formulation, can be
written as an operator equation in L2((0, T ), V̄ ∗):

Find u ∈ L2((0, T ), V̄ ) with u̇ ∈ L2((0, T ), V̄ ∗) such that

σ u̇+ Ā(u) = F̄ , (17a)

u(0) = u0, (17b)

with u0 ∈ L2(Ω).
Note that the initial condition (17b) is meaningful, because the Banach space
valued functions {u ∈ L2((0, T ), V̄ ) : u̇ ∈ L2((0, T ), V̄ ∗)} can be continuously
embedded into C([0, T ], L2(Ω)), see [26].

For proving unique solvability of (17), we first quote an important theorem on
existence and uniqueness of solutions of nonlinear parabolic problems, which
can be found e.g. in [27]:
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Theorem 6. Let V ⊂ H ⊂ V ∗ be an evolution triple and let A : V → V ∗ be a
hemicontinuous, monotone and coercive operator. Suppose furthermore that A
is bounded, and let u0 ∈ H and b ∈ L2((0, T ), V ∗) (with 0 < T <∞) be given.
Then the initial value problem

u′(t) +A(u(t)) = b(t), for almost all t ∈ (0, T ), (18a)
u(0) = u0 ∈ H, (18b)

u ∈ L2((0, T ), V ), u′ ∈ L2((0, T ), V ∗), (18c)

has a unique solution.

Lemma 7. Let s 7→ ν(s) be continuous, 0 < ν ≤ ν(s) ≤ ν, ∀ s ∈ R+
0 and let

the function s 7→ ν(s)s be monotone.
Suppose σ ∈ L∞ to be strictly positive and let moreover u0 ∈ L2(Ω), f ∈
L2((0, T ), V̄ ∗) and the inhomogeneity g̃ ∈ L2((0, T ),H(curl)) with ∂g̃

∂t ∈ L2((0, T ),H(curl)∗)
be given.
Then we have a unique u ∈ L2((0, T ), V̄ ) with u̇ ∈ L2((0, T ), V̄ ∗) which solves
(17), i.e.

σ u̇+ Ā(u) = F̄ ,

u(0) = u0.

Proof. It is easy to see that – due to the norm equivalence in V̄ (Lemma 2) and
the assumptions on ν – the prerequisites of Theorem 6 are fulfilled.

Uniqueness in H0(curl): Our next issue is to show that under certain as-
sumptions the solution given by Lemma 7 is unique in the whole space V =
H0(curl). For this task we consider equation (17) with an arbitrary test func-
tion w ∈W :∫

Ω

σ
∂u

∂t
w dx+

∫
Ω

ν(|curlu|) curlu · curlw dx

=
∫
Ω

f w dx−
∫
Ω

σ
∂g̃

∂t
w dx−

∫
Ω

ν(|curl g̃|) curlu · curlw dx. (19)

Suppose now, that f(t) is divergence-free for all t, i.e.∫
Ω

f(t) ·w = 0, ∀ t ∈ [0, T ], ∀w ∈W ,

where W = {w = gradφ : φ ∈ H1(Ω) and φ = ci on Γi, 1 ≤ i ≤ p} as defined
in (10). Assume moreover that the same holds for σ ∂g̃

∂t (t). Then the right hand
side in (19) equals zero, what implies∫

Ω

σ
∂u

∂t
w = 0, ∀w ∈W , (20)
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since the curl of a gradient field w ∈W vanishes.
In other words, for constant conductivity σ, the time derivative of the function
we are looking for is divergence-free for all moments in time. This means that –
provided the initial solution u0 is solenoidal as well – all possible solutions u(t)
are divergence-free and thus lie in V̄ , where we have already shown existence
and uniqueness in Lemma 7.
We summarize these ideas in the following lemma:

Lemma 8. Suppose that the functions f(t) and σ ∂g̃
∂t (t) are defined for all t ∈

[0, T ] and divergence-free in the following weak sense:∫
Ω

f(t) ·w = 0, ∀ t ∈ [0, T ], ∀w ∈W ,∫
Ω

σ
∂g̃

∂t
(t) ·w = 0, ∀ t ∈ [0, T ], ∀w ∈W .

Assume moreover that σu0 is divergence-free as well, i.e.∫
Ω

σu0 ·w = 0, ∀w ∈W .

Then, if there is a solution u of (17), we have∫
Ω

σu(t) ·w = 0, ∀ t ∈ [0, T ], ∀w ∈W .

Proof. We have already shown this in the discussion preceding this lemma.

Remark 9. We emphasize again that any solution of (17) is defined for all t
and continuous because of the embedding {u ∈ L2((0, T ), V̄ ) : u̇ ∈ L2((0, T ), V̄ ∗)} ⊂
C([0, T ], L2(Ω)).

For constant conductivity in the whole domain Ω, we immediately get the fol-
lowing consequence:

Corollary 10. Let the assumptions of the Lemmata 7 and 8 be satisfied. Sup-
pose furthermore that σ = const.
Then there exists a unique u ∈ L2((0, T ),V ) with u̇ ∈ L2((0, T ),V ∗) such that

σ u̇+ Ā(u) = F̄ ,

u(0) = u0,

and this solution u is divergence-free for all t.

2.2 Application to Eddy Current Problems

Taking advantage of the knowledge we have gained in the previous paragraphs,
we can now prove the main result of this section, to wit existence of a solution
of the eddy current problem and its uniqueness in a certain sense.
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The Lemmata 4 and 7 provide existence and uniqueness of the solution in non-
conducting and conducting regions, respectively. However, we have not treated
the case of domains consisting of parts with positive conductivity and of regions
with σ = 0 yet.
Usually, the domain of the whole eddy current problem (5) is such a mixed
domain, because we often face a conducting region Ω1 together with some sur-
rounding air Ω2 = Ω \ Ω1, where we have σ = 0. We sketch the situation of a
simple two-dimensional problem in Figure 1.

&%
'$

Ω1

(σ > 0)

Ω2

(σ = 0)

ΓI

Figure 1: Sketch of the domain Ω = Ω1 ∪ Ω2.

Consequently, our task in the following paragraph consists in assembling the
previous results to the desired theorem. The main idea for the proof is a Schur
complement approach based on the observation that the solution in the non-
conducting part is uniquely determined by the solution in the conducting region.

Let us first consider some fixed moment in time t. For joining the solutions in
the respective domains, we need an interface condition on ΓI = Ω1 ∩ Ω2: The
tangential component of the joined solution should be continuous, i.e. we should
have

u1 × n1 = −u2 × n2, on ΓI , (21)

where u1 and u2 are the solutions in Ω1 and Ω2 at the fixed time t, and ni are
the respective outer unit normal vectors at the interface ΓI .
Suppose we knew the solution u1 in the conducting region. Then the interface
condition (21) together with the original boundary condition

u× n = 0, on Γ = ∂Ω,

provide the necessary boundary conditions for the equation in the non-conducting
part (6). So by Lemma 4 we have a unique divergence-free solution u2 ∈ g̃+V̄ 2,
where g̃ ∈H(curl,Ω2) satisfies the boundary conditions, and V̄ 2 is the factor
space of divergence-free functions as in (11). In other words, the solution in the
conducting domain Ω1 uniquely determines the solution in the non-conducting
region Ω2.
We summarize these considerations in the following lemma:

10



Lemma 11. Let Ω = Ω1∪Ω2 with Ω1∩Ω2 = ∅ and let Ω2 be multiply connected
with Lipschitz boundary. Assume ν ∈ L∞(Ω2) with 0 < ν ≤ ν(x) ≤ ν a.e. in
Ω2.
Let V = {v ∈ H(curl,Ω2) : v × n = 0 on ∂Ω2} and W = W (Ω2) as in (10).
Define V̄ := V /W and let f ∈ V̄ ∗ be given.
Then for each u1 ∈ H(curl,Ω1) exists exactly one function u2 ∈ g̃ + V̄ such
that u2 is the weak solution of

curl (ν curlu2) = f , in Ω2,
u2 × n = 0, on ∂Ω ∩ ∂Ω2,
u2 × n = u1 × n, on ∂Ω1 ∩ ∂Ω2,

(22)

where n is the outer unit normal vector to ∂Ω2 and g̃ ∈ H(curl,Ω2) satisfies
the boundary conditions.

Lemma 11 shows that u2 = U(u1) for some function U : H(curl,Ω1) →
H(curl,Ω2), i.e. the solution in Ω2 is uniquely defined by the solution in Ω1. We
point out that the eddy current problem is uniquely solvable in the conducting
region Ω1 (Lemma 7). Consequently, the idea to take advantage of the relation
u2 = U(u1) for proving unique solvability of the whole eddy current problem
seems obvious.

For our proof, we define a space Ṽ which contains arbitrary divergence-free func-
tions in Ω1, but only those functions in the non-
conducting domain Ω2 that are determined by the function
U : H(curl,Ω1) →H(curl,Ω2). Moreover, we impose homogeneous Dirichlet
boundary conditions as usual:

Ṽ := {v ∈H(curl,Ω) : v|Ω1
∈H(curl,Ω1),

v|Ω2
= U(v|Ω1

),

(v,w)L2 = 0, ∀w ∈W (Ω1),
v × n = 0, on Γ = ∂Ω},

(23)

where W (Ω1) are the gradient fields on Ω1 as defined in (10).
The space Ṽ is just another representation of the divergence-free H(curl)-
functions in Ω1 with zero tangential component on the
boundary Γ̃ := ∂Ω ∩ ∂Ω1, i.e. Ṽ 'H Γ̃(curl,Ω1)/W (Ω1). Since in Ω1 we deal
with the nonlinear parabolic problem (17), and since this equation is uniquely
solvable by Lemma 7, we may hope that the whole eddy current problem re-
stricted to Ṽ is uniquely solvable as well. As we see in the following main
theorem on unique solvability of eddy current problems, this is actually the
case.

Theorem 12. Let s 7→ ν1(s) be continuous, 0 < ν1 ≤ ν1(s) ≤ ν1, ∀ s ∈ R+
0 and

let the function s 7→ ν1(s)s be monotone. Assume furthermore ν2 ∈ L∞(Ω2)
with 0 < ν2 ≤ ν2(x) ≤ ν2 a.e. in Ω2.
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Let moreover u0 ∈ L2(Ω) and f ∈ L2((0, T ), Ṽ
∗
) be given, and suppose σ ∈ L∞

to be strictly positive.

Then there is a unique u ∈ L2((0, T ), Ṽ ) with u̇ ∈ L2((0, T ), Ṽ
∗
) such that u

is the weak solution of (5), more precisely of

σ
∂u

∂t
+ curl (ν1(|curlu|) curlu) = f , in Ω1 × [0, T ],

curl (ν2 curlu) = f , in Ω2 × [0, T ],

u× n = 0, on Γ× [0, T ],

u = u0, on Ω× {0},

with a continuos tangential component along the interface Ω1 ∩ Ω2.
This means that we have a unique u ∈ L2((0, T ), Ṽ ) with u̇ ∈
L2((0, T ), Ṽ

∗
) solution of

σu̇+A1(u) = F, in Ω1, (24a)
A2u = F, in Ω2, (24b)
u0 = u0, (24c)

with the operators A1, A2 and F as in (8) and (13), respectively.

Proof. By the choice of the space Ṽ , i.e. by Lemma 11, equation (24b) is fulfilled
for any u ∈ L2((0, T ), Ṽ ).
Remains to show that equation (24a) with the initial condition (24c) is uniquely
solvable. We have already proven this fact in Lemma 7 for the space V̄ instead
of Ṽ . However, since Ṽ is nothing more than another representation of V̄ , the
result can be carried over to Ṽ one-to-one.
Thus we have proven that (24) is uniquely solvable.

Remark 13. We mention that no solvability condition for the source f is re-
quired (cf. Remark 1), since the space of test functions does not contain any
gradient fields. Moreover, we stress that the condition f ∈ L2((0, T ), Ṽ

∗
) is

satisfied for any reasonable right hand side. For example, f ∈ L2((0, T ),L2(Ω))
is clearly sufficient.

Under certain assumptions, the solution is not only unique among the divergence-
free functions, but even in the space

V̂ = {v ∈H(curl,Ω) : v|Ω1
∈H(curl,Ω1),

v|Ω2
= U(v|Ω1

),

v × n = 0, on Γ = ∂Ω}.

(25)

This means the solution is unique among those H(curl)-functions that are
divergence-free in the non-conducting region Ω2 and arbitrary in Ω1.
We summarize this result, which is an immediate consequence of Theorem 12
and Corollary 10, in the following corollary:
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Corollary 14. Let the assumptions of Theorem 12 be satisfied and suppose
that σ = const. Let furthermore f(t) be defined for all t and f(t) and u0 be
divergence-free in Ω1, i.e.∫

Ω1

f(t) ·w = 0, ∀ t ∈ [0, T ], ∀w ∈W (Ω1),∫
Ω1

u0 ·w = 0, ∀w ∈W (Ω1).

Moreover, let V̂ be defined as in (25).
Then there exists a unique u ∈ L2((0, T ), V̂ ) with u̇ ∈ L2((0, T ), V̂

∗
) solving

(24), and this solution is divergence-free for all t.

3 Truncated Fourier Series Expansion

We recall that we are engaged in the solution of the problem

curl (ν curlu) + σ
∂u

∂t
= f , (5)

with Dirichlet boundary conditions and an initial condition. In order to solve
this equation numerically, we need a discretization in time and space. Instead
of semi-discretizing the equation in space and solving the resulting ODE by a
time-stepping method, we take advantage of the periodicity of the source current
and thus the expected solution: Since the right hand side of (5) is a harmonic
current of the form f̂ · cos(ωt), the ansatz

u(x, t) = uc(x) · cos(ωt) + us(x) · sin(ωt)

seems to be manifest. This would reduce equation (5) to an equation for the
coefficients uc(x) and us(x) that only depend on the spatial coordinates.
In the linear case (i.e. for ν independent of curlu), the solution can be expressed
in terms of the same base frequency ω as the given current source. Due to the
nonlinearity, however, the solution depends on higher harmonics as well, but
will still be periodical and can consequently be represented as a Fourier series.
Truncating this series at some finite number N , i.e. applying a so-called multi-
harmonic ansatz, then yields a system of equations for the Fourier coefficients.

We mention that the Fourier series
∑

[uck cos(kωt) + usk sin(kωt)] can also be
written in complex notation as

u(x, t) = Re
∞∑
k=0

ûk · eikωt, (26)

with ûk = uck − iusk.
Since the projector Re is injective for Fourier series (26) with û0 = 0, the
problem can be regarded as a complex one. This means that the projector Re

13



can be skipped without losing unique solvability (cf. [3]). Although in some
publications (e.g. [4, 13, 25]) this fact is exploited for rewriting the problem as
a system of complex equations, we prefer to stay with the formulation over R,
because the complex operator does not satisfy the Cauchy-Riemann equations
and thus is not differentiable (e.g. [13, 16]), what eliminates the possibility of
linearization by the Newton method (cf. [3]).

3.1 Steady State Solution

In many eddy current problems, we are not so much interested in the response
of some device to closure of the electric circuit, but more in its behavior under
a harmonic current for the time t→∞. So what we really want to calculate is
a steady state solution, i.e. a solution of the original problem (5) without the
initial condition:

Definition 15. The function u(x, t) is called a periodic steady state solution
of equation (5), if

1. u satisfies (5) (but not necessarily the initial condition),

2. u is periodic, i.e. ∃T ∀ t : u(x, t) = u(x, t+ T ).

For our eddy current problem, we are actually looking for a periodic steady
state solution as defined in Definition 15.

Let the right hand side be given as f(x, t) = f̂(x) · cos(ωt), and suppose we
knew a periodic solution u with the same period T = 2π

ω . Then – assuming that
u is sufficiently smooth in the time variable – we could rewrite it as a Fourier
series

u(x, t) = uc0 +
∞∑
k=1

uck · cos(kωt) + usk · sin(kωt). (27)

Hence, the magnetic field H = H(curlu) is periodic as well and can be written
in the form

H(curlu) = Hc
0(curlu)+

∞∑
k=1

Hc
k(curlu) · cos(kωt)

+Hs
k(curlu) · sin(kωt).

(28)

We consider equation (5) – together with homogeneous Dirichlet boundary con-
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ditions – in its weak formulation, i.e.

2
T

T∫
0

∫
Ω

H(curlu) · curlv dxdt

︸ ︷︷ ︸
=:〈A(u),v〉

+
2
T

T∫
0

∫
Ω

σ
∂u

∂t
· v dxdt

︸ ︷︷ ︸
=:〈Mu,v〉

=
2
T

T∫
0

∫
Ω

f · v dxdt

︸ ︷︷ ︸
=:〈F,v〉

, ∀v.

(29)

Apparently, using (27) and (28) as ansatz for the solution, the problem consists
in calculating the Fourier coefficients uck and usk. This means that we regard the
operators A and M as defined in (29) as operators mapping from H0(curl)N

into its dual space.
For an exact definition of the domain of these operators, assume that the whole
region Ω consists of a conducting and a non-conducting part, Ω1 and Ω2 respec-
tively (cf. Fig. 1). Keeping in mind that eddy current problems are uniquely
solvable only up to gradient fields, at least in non-conducting regions, we are
looking for Fourier coefficients uc/sk in the space

V := H0(curl,Ω)/W (Ω2), (30)

where the gradient fields in Ω2, W (Ω2), are meant as in (10). The constant
coefficient

uc0 ∈ V 0 := H0(curl,Ω)/W (Ω),

should be divergence-free in the whole domain of consideration.
By Lemma 2, we have ‖ · ‖L2 ' ‖curl · ‖L2 in the space V 0. The space V of
solenoidal functions in the non-conducting domain is treated in the following
lemma:

Lemma 16. Suppose that the domains Ω1 and Ω2 are multiply connected and
have Lipschitz boundary. Let Ω = Ω1 ∪ Ω2 with an interface ΓI = Ω1 ∩ Ω2 of
positive measure. Then in the space V as defined in (30) we have the estimate

‖v‖2
L2(Ω) ≤ c ·

(
‖v‖2

L2(Ω1)
+ ‖curlv‖2

L2(Ω)

)
.

Proof. Let v ∈ V . In a first step we show

‖v‖L2(Ω2) ≤ c ·
(
‖curlv‖L2(Ω2) + ‖v × n‖

H− 1
2 (divΓI

,ΓI)

)
. (31)

We would like to make use of the result on norm equivalence provided by
Lemma 2. However, in order to apply this lemma, we need to construct some v̂
with v̂ × n = 0 on ∂Ω2 and (v̂,w)L2(Ω2) = 0, ∀w ∈W (Ω2). We know that v
has zero tangential trace on ∂Ω ∩ ∂Ω2, but not necessarily on ΓI .
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By the inverse trace theorem (cf. [7]), we have some ṽ ∈ H(curl,Ω2) with
ṽ × n = v × n on ∂Ω2 such that

‖ṽ‖H(curl,Ω2) ≤ c ‖v × n‖
H− 1

2 (div∂Ω2 ,∂Ω2)
= c ‖v × n‖

H− 1
2 (divΓI

,ΓI)
.

Now, (v − ṽ)× n = 0 on ∂Ω2, but we need to ensure solenoidality:

v̂ := v − ṽ − z,
with z ∈W (Ω2) : (z,w)L2(Ω2) = (v − ṽ,w)L2(Ω2), ∀w ∈W (Ω2).

Thus, we have ‖z‖L2(Ω2) ≤ ‖ṽ‖L2(Ω2) and, since v̂ satisfies the prerequisites of
Lemma 2,

‖v‖L2(Ω2) ≤ ‖v − ṽ‖0 + ‖ṽ‖0 ≤ ‖v̂‖0 + ‖z‖0 + ‖ṽ‖0

≤ c · ‖curl v̂‖0 + 2‖ṽ‖0 = c · ‖curl (v − ṽ)‖0 + 2‖ṽ‖0

≤ c · ‖curlv‖0 + c · ‖curl ṽ‖0 + 2‖ṽ‖0

≤ c ·
(
‖curlv‖L2(Ω2) + ‖v × n‖

H− 1
2 (divΓI

,ΓI)

)
,

where ‖ · ‖0 = ‖ · ‖L2(Ω2).
The next step yields the desired result, where we take advantage of the bounded
trace operator [7]:

‖v‖2
L2(Ω) = ‖v‖2

L2(Ω1)
+ ‖v‖2

L2(Ω2)

≤ ‖v‖2
L2(Ω1)

+ c ·
(
‖curlv‖2

L2(Ω2)
+ ‖v × n‖2

H− 1
2 (divΓI

,ΓI)

)
≤ c ·

(
‖v‖2

L2(Ω1)
+ ‖curlv‖2

L2(Ω2)
+ ‖v‖2

H(curl,Ω1)

)
≤ c ·

(
‖v‖2

L2(Ω1)
+ ‖curlv‖2

L2(Ω)

)
.

Finally, we define the space for the Fourier coefficients uc/sk :

V :=
{
v ∈ V 0 × (V 2)N : ‖v‖V <∞

}
, (32)

with the norm

‖v‖2
V := |v|2M + |v|2A, (33)

|v|2M :=
∞∑
k=1

kω(‖vck‖2
L2(Ω1)

+ ‖vsk‖2
L2(Ω1)

), (34)

|v|2A := ‖curlvc0‖2
L2(Ω) +

∞∑
k=1

(‖curlvck‖2
L2(Ω) + ‖curlvsk‖2

L2(Ω)). (35)

We remark that ‖·‖V really is a norm, because for the coefficient vc0, which is not
covered by the seminorm |·|M , we have the norm equivalence with the seminorm
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‖curlvc0‖L2 . Moreover, for the non-conducting domain Ω2, which is not con-
tained in | · |M either,
Lemma 16 provides the necessary estimate.
By the definition (32), we consider only Fourier series with a solenoidal con-
stant coefficient vc0 that are divergence-free in the non-conducting regions. Now
we prove that the eddy current problem is uniquely solvable in this space V.
Since we can show that the constant coefficient is zero (Theorem 21), this cor-
responds perfectly well to the results of Section 2, where we showed unique
solvability among arbitrary H(curl)-functions that are divergence-free in the
non-conducting domain (Corollary 14).

3.2 Existence and Uniqueness

With these considerations, we are now able to show the existence of a uniquely
defined periodic steady state solution of the eddy current problem (5). Before
passing to the main theorem, however, we show some properties of the operators
A and M :

Lemma 17. Suppose σ ∈ L∞(Ω1) with 0 < σ ≤ σ(x) ≤ σ almost everywhere.
Let the function s 7→ ν(s) ·s be Lipschitz continuous and strongly monotone, and
assume that Ω1 and Ω2 are multiply connected and have Lipschitz boundary.
Then the operators A : V → V∗ and M : V → V∗ as defined in (29) have the
following properties:

〈A(u)−A(v),u− v〉 ≥ cM · |u− v|2A, (36)

〈A(u)−A(v),w〉 ≤ 3
2
cL · |u− v|A · |w|A, (37)

〈Mu,v〉 ≤ σ · |u|M · |v|M , (38)
〈Mu,u†〉 ≥ σ · |u|2M , (39)
〈Mu,u〉 = 0, (40)

where by u† we mean the “rotation” of u in the following sense:

u† =
(
uc

us

)†

=
(
us

−uc

)
=

∞∑
k=1

usk cos(kωt)− uck sin(kωt).

The constants cM and cL in (36) and (37) are the monotonicity and Lipschitz
constants of the function s 7→ ν(s) · s, respectively.

Proof. All these statements are based on the orthonormality of the functions
cos(kωt), sin(kωt) w.r.t. the scalar product 2

T (·, ·)L2(0,T ).
The proof of the properties (36) and (37) relies on the strong monotonicity and
Lipschitz continuity of the B-H-curve which imply

[H(B1)−H(B2)]
T [B1 −B2] ≥ cM |B1 −B2|2,∣∣∣[H(B1)−H(B2)]

T
B3

∣∣∣ ≤ 3cL |B1 −B2| |B3|,
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for all inductions B1,B2,B3 and for the magnetic field H(B) = ν(|B|) ·B.
The boundedness of M (38) can easily be seen, and (39) is due to the fact that
M acts like a rotation:

〈Mu,u†〉 =
2
T

T∫
0

∫
Ω

σ
∂u

∂t
u† dxdt

=
∫
Ω

σ
∑
k

kω
(
|uck|2 + |usk|2

)
dx ≥ σ|u|2M .

The orthogonality (40) is clear because of

2π∫
0

∂

∂t
[a cos(t) + b sin(t)] · [a cos(t) + b sin(t)] dt = ba− ab = 0.

Lemma 18. Let the assumptions of Lemma 17 be valid. Then the operator K
defined by

〈K(u),v〉 := 〈A(u),v〉+ 〈Mu,v〉, (41)

satisfies the following inf-sup- and sup-sup-condition:

inf
u,v∈V,u 6=v

sup
w∈V,w 6=0

〈K(u)−K(v),w〉
‖u− v‖V ‖w‖V

≥

≥ min{3
2
cL, cM} ·

σ

3cL + σ
=: β (42)

sup
u,v∈V,u 6=v

sup
w∈V,w 6=0

〈K(u)−K(v),w〉
‖u− v‖V ‖w‖V

≤ 2 max{3
2
cL, σ} =: γ (43)

Proof. For the inf-sup-condition, let u and v be given and choose w = α1(u−
v) + α2(u− v)†. We distinguish two cases:

• 3
2cL|u − v|

2
A ≤ 1

2σ|u − v|
2
M : Choose α1 = 0, α2 = 1. Then by (37) and

(39) we have

〈K(u)−K(v),w〉
‖u− v‖ ‖w‖

=
〈A(u)−A(v), (u− v)†〉

‖u− v‖2
+

+
〈M(u− v), (u− v)†〉

‖u− v‖2

≥
−

(
3
2cL|u− v|

2
A

)
+ σ|u− v|2M

|u− v|2M + |u− v|2A

≥
1
2σ|u− v|

2
M(

1 + σ
3cL

)
|u− v|2M

=
3
2
cL ·

σ

3cL + σ
.
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• 3
2cL|u− v|

2
A >

1
2σ|u− v|

2
M : Choose α1 = 1, α2 = 0. By (36) and (40) we

get

〈K(u)−K(v),w〉
‖u− v‖ ‖w‖

=
〈A(u)−A(v),u− v〉+ 〈M(u− v),u− v〉

‖u− v‖2

≥ cM |u− v|2A + 0(
3cL

σ + 1
)
|u− v|2A

= cM · σ

3cL + σ
.

The Lipschitz continuity of K, i.e. property (43), follows immediately from the
boundedness of M (38), the Lipschitz continuity of A (37) and from (a+ b)2 ≤
2(a2 + b2), ∀ a, b.

This allows us to prove existence and uniqueness of a periodic steady state
solution:

Lemma 19. Let the assumptions of Lemma 17 be valid, suppose moreover that
ν ∈ L∞ is bounded away from zero: ν(s) ≥ ν > 0 almost everywhere.
Define the space of divergence-free functions

Ṽ :=
{
v ∈ V 0 × (V 2

0)
N : ‖v‖V <∞

}
. (44)

Then for F ∈ Ṽ∗ the problem

Find u ∈ Ṽ : 〈K(u),v〉 = 〈F,v〉, ∀v ∈ Ṽ,

with K = A+M as in (29) or (41), respectively, is uniquely solvable, i.e. there
exists a unique divergence-free periodic steady state solution of (5).

Proof. By Browder’s and Minty’s Theorem it suffices to show that K is strictly
monotone, coercive and hemicontinuous. By (36) and (40), we conclude

〈K(u)−K(v),u− v〉 = 〈A(u)−A(v),u− v〉+ 〈M(u− v),u− v〉
≥ cM · |u− v|2A.

In Ṽ we have the norm equivalence according to Lemma 2, so there | · |A is a
norm. Thus strict monotonicity is proved, since 〈K(u) −K(v),u − v〉 > 0 for
u 6= v.
Coerciveness follows immediately by

〈K(u),u〉 ≥ ν · |u|2A,

and again the norm equivalence, and hemicontinuity is obvious.

Theorem 20. Let the assumptions of Lemma 17 be valid, suppose moreover
ν ≥ 0 almost everywhere.
Then for each F ∈ V∗ that is divergence-free in the conducting region, the
problem

Find u ∈ V : 〈K(u),v〉 = 〈F,v〉, ∀v ∈ V, (45)

is uniquely solvable.
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Proof. For showing unique solvability, we proceed as follows: According to
Lemma 19 we observe solvability in the subspace of divergence-free functions.1

So first we show that the problem is solvable even in the larger space V, and
finally we conclude uniqueness by the inf-sup-condition (42).
By Lemma 19, we know

∃u ∈ Ṽ ⊂ V : 〈K(u),v〉 = 〈F,v〉, ∀v ∈ Ṽ. (46)

Suppose now that we face a test function w ∈ V, w = v1 + v2 with v1 ∈ Ṽ and
v2 ∈W (Ω1), i.e. a gradient field in the conducting region. Then the left hand
side of equation (46) remains unchanged, because

〈K(u),v2〉 = 〈A(u),v2〉+ 〈Mu,v2〉 = 0 + 0.

Here, we take advantage of the solenoidality of u, which implies 〈Mu,v2〉 = 0,
and of the fact that the curl of a gradient field vanishes. Since F is divergence-
free in the conducting region, we have 〈F,v2〉 = 0, i.e. the right hand side of
(46) stays the same as well.
Thus we have proved the solvability of (45). Remains to show the uniqueness:
Suppose we have two solutions u1 and u2. Then we know

〈K(u1)−K(u2),v〉 = 0, ∀v ∈ V.

On the other hand, the inf-sup-condition (42) ensures

β‖u1 − u2‖ ≤ sup
v∈V,‖v‖=1

〈K(u1)−K(u2),v〉 = 0,

thus u1 = u2.

3.3 Reduction to Odd Harmonics

Theorem 20 states that for given divergence-free current source f , there is ex-
actly one periodic steady state solution u ∈ V. In the following, we use this
result to show that we do not require the even coefficients in the Fourier series
for u.
In order to keep notation simple, we use u to denote the sequence of Fourier
coefficients and u(t) to signify the periodic function that is determined by these
coefficients according to (27), and similarly for f .

Since odd modes cos((2k + 1)ωt), sin((2k + 1)ωt), k ∈ N, change the sign when
shifted by half a period, the condition

v
(
t+

π

ω

)
= −v(t), ∀ t, (47)

is an equivalent characterization of the property vc2k = vs2k = 0, ∀ k ∈ N0,
for any function v = vc0 +

∑
vck cos(kωt) + vsk sin(kωt). The current source

f = f̂ · cos(ωt) apparently satisfies (47).
1We remark that ν ≥ 0 is sufficient for monotonicity, what ensures solvability already.
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Due to the unique solvability of (5), it is fairly easy to see that f satisfying (47)
implies the same property for the periodic steady state solution:
For a given right hand side f(·), we get the unique solution u. Shifting the
right hand side to f̃(·) = f

(
·+ π

ω

)
, we obtain the solution ũ. On the other

hand, f̄ = −f leads to the result ū. Note that, since f
(
·+ π

ω

)
= −f(·), we

have ũ = ū.
Clearly, u

(
·+ π

ω

)
is a periodic steady state solution of (5) with right hand side

f̃ . Because of Theorem 20, we have ũ(·) = u
(
·+ π

ω

)
.

On the other hand, −u apparently solves (5) with right hand side f̄ and so
−u = ū because of the uniqueness.
So altogether we have the relation

u
(
·+π

ω

)
= ũ(·) = ū(·) = −u(·),

i.e. u satisfies (47) and can thus be described by odd harmonics, what proves
the following theorem:

Theorem 21. Let the current source f satisfy (47). Then the unique periodic
steady state solution of (5) with right hand side f satisfies (47) as well and can
accordingly be entirely represented by odd harmonics, i.e.

u(x, t) =
∞∑
k=0

uc2k+1(x) · cos((2k + 1)ωt) + us2k+1(x) · sin((2k + 1)ωt).

Remark 22. Since the solution u(x, t) depends only on odd harmonics, the
magnetic field H(curlu) has the same property:

H
(
t+

π

ω

)
= ν

(∣∣curlu
(
t+

π

ω

)∣∣) · curlu
(
t+

π

ω

)
=

= ν(| − curlu(t)|) · (−curlu(t)) = −H(t).

3.4 Time Discretization by means of a Multiharmonic Ansatz

For numerical calculations, we cannot use the whole Fourier series, but only a
finite sum

u(x, t) ∼
N∑
k=0

[
uck(x) · cos(kωt) + usk(x) · sin(kωt)

]
. (48)

We use this so-called multiharmonic ansatz for the current source f and for the
magnetic field H(curlu) as well, i.e. we truncate the Fourier series expansion
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at the N -th coefficient. Consequently, the problem that we deal with reads

curl
N∑
k=0

[
Hc

k(curlu) · cos(kωt) +Hs
k(curlu) · sin(kωt)

]
+

+ ωσ

N∑
k=0

k
[
usk · cos(kωt)− uck · sin(kωt)

]
(49)

=
N∑
k=0

[
f ck · cos(kωt) + fsk · sin(kωt)

]
.

We test this equation with cos(mωt) and sin(mωt) and integrate by t, taking
advantage of the orthogonality

ω

π

∫ 2π
ω

0

cos(kωt) cos(mωt) dt = δkm,

ω

π

∫ 2π
ω

0

cos(kωt) sin(mωt) dt = 0,

ω

π

∫ 2π
ω

0

sin(kωt) sin(mωt) dt = δkm.

Together with the fact that all even harmonics are zero (Theorem 21), this leads
to the following system of equations in space:

ω

π

Z 2π
ω

0

(49) ·


cos(mωt)

sin(mωt)

ff
dt =⇒

curl

0BBBBB@
Hc

1(curlu)
Hs

1(curlu)
...

Hc
2n+1(curlu)

Hs
2n+1(curlu)

1CCCCCA + (50)

+ ωσ

0BBBBB@
0 1
−1 0

. . .

0 2n + 1
−(2n + 1) 0

1CCCCCA
| {z }

=:D

0BBBBB@
uc

1

us
1

...
uc

2n+1

us
2n+1

1CCCCCA =

0BBBBB@
fc

1

fs
1

...
fc

2n+1

fs
2n+1

1CCCCCA ,

where we assume N = 2n+ 1.
For the sake of better readability, we introduce the abbreviationH = (Hc

1,H
s
1,

. . . , Hs
2n+1)

T for the Fourier coefficients of the magnetic field, and analogously
we write u for (uc1, . . . , u

s
2n+1)

T and f for (f c1, . . . , f
s
2n+1)

T . Now the problem
that we have to solve, i.e. (50) together with homogeneous Dirichlet boundary
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conditions, can be written in a more compact way:

curlH(curlu) + ωσDu = f , in Ω,
u× n = 0, on Γ, (51)

with the matrix D from (50).

3.5 The Error due to Truncation of the Fourier Series

In this section we analyze the error that we have introduced by the multihar-
monic ansatz, i.e. by truncating the Fourier series at some finite index N .
The analysis splits in three parts: First, we claim that the discretization error
can be estimated by the best approximation error, analogously to Cea’s Lemma
(e.g. [5]) for linear elliptic problems or rather to Babus̆ka’s and Aziz’ lemma
for mixed problems [2]. Secondly, we further estimate the approximation error
by analyzing the convergence of Fourier series for sufficiently smooth functions.
Finally, we quote a regularity result which shows that the solution is adequately
smooth.

Recall that the original problem reads as:

Find u ∈ V : 〈K(u),v〉 = 〈F,v〉, ∀v ∈ V, (45)

with the operator K : V → V∗, K = A+M as in (29) or (41), respectively.
The discrete problem, which has been stated in (49), can be written in abstract
form as

Find uN ∈ VN : 〈K(uN ),vN 〉 = 〈F,vN 〉, ∀vN ∈ VN , (52)

where the discrete space VN corresponds to finite sums of Fourier coefficients:

VN := V 0 ×
(
V 2

)N
. (53)

The space VN ⊂ V should be equipped with the same norm ‖ · ‖V.
We remark that – due to Theorem 21 – in practice we consider only the odd
harmonics in VN . Moreover we emphasize that the operator K in the discrete
problem is actually the same as in the original problem where we consider the
complete Fourier series. This seems surprising at first glance, since for u ∈ VN ,
in general H(curlu) 6∈ VN , but only H(curlu) ∈ V. However, the Fourier
coefficients Hk of the magnetic field for k > N do not appear in the equation
since we test only with functions v ∈ VN .
Thus we have the following result:

Lemma 23. Suppose the assumptions of Lemma 17 are valid and that the right
hand side is divergence-free in Ω1. Denote the solutions of (45) and (52) by u
and uN , respectively.
Then we have

‖u− uN‖V ≤ c inf
vN∈VN

‖u− vN‖V. (54)
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Proof. The proof exploits the Galerkin orthogonality and the fact that the inf-
sup-condition (42) holds for the discrete problem as well: As can be seen in the
proof of Lemma 18, for uN ,vN ∈ VN we have

sup
wN∈VN ,wN 6=0

〈K(uN )−K(vN ),wN 〉
‖wN‖V

≥ β ‖uN − vN‖V.

Consequently, for arbitrary vN ∈ VN we can estimate the discretization error
in the following way:

‖u− uN‖ ≤ ‖u− vN‖+ ‖uN − vN‖

≤ ‖u− vN‖+
1
β

sup
wN∈VN ,

wN 6=0

〈K(uN )−K(vN ),wN 〉
‖wN‖

≤ ‖u− vN‖+
1
β

sup
wN∈VN ,

wN 6=0

〈K(uN )−K(u),wN 〉
‖wN‖︸ ︷︷ ︸

=0

+
1
β

sup
wN∈VN ,

wN 6=0

〈K(u)−K(vN ),wN 〉
‖wN‖

≤ ‖u− vN‖+
1
β
γ‖u− vN‖.

Obviously, the best approximation error to some function u = uc0+
∑∞
k=1 u

c
k cos(kωt)+

usk sin(kωt) can be estimated by

inf
vN∈VN

‖u− vN‖V ≤ ‖u− ũN‖V, (55)

where ũN = uc0 +
∑N
k=1 u

c
k cos(kωt) + usk sin(kωt) is the truncated Fourier se-

ries.2

This difference between the partial sum and the whole Fourier series converges
to zero for N →∞, provided the function u is smooth enough. More precisely,
we have the following estimate:

Lemma 24. If u(x, t) ∈ H1((0, T ),H(curl)) ∩ H2((0, T ),L2), then u can
be represented by means of a Fourier series. Moreover, the error between the
function u(x, t) and the truncated Fourier series ũN = uc0+

∑N
k=1 u

c
k cos(kωt)+

usk sin(kωt) can be estimated by

‖u− ũN‖L2((0,T ),H(curl))∩H1((0,T ),L2) ≤
≤ cN−1‖u‖H1((0,T ),H(curl))∩H2((0,T ),L2),

2Note that for u solving (45), ũN does not necessarily solve (52).
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provided the coefficients are calculated in the usual way:

uck =
2
T

T∫
0

u(x, t) cos(kωt) dt, and usk =
2
T

T∫
0

u(x, t) sin(kωt) dt.

Proof. Since u is continuous in the time variable, its Fourier series expan-
sion converges. Remains to analyze the rate of convergence. Therefore, we
take a close look at the norm in the space Xm := Hm((0, T ),H(curl)) ∩
Hm+1((0, T ),L2) for m ∈ N0 and the way it is calculated for a Fourier series.
For each v ∈ Xm, we have the representation

‖v‖2
Xm

=

T∫
0

[
|v(t)|21 + |v′(t)|21 + . . .+ |v(m)(t)|21 +

+ ‖v(t)‖2
0 + ‖v′(t)‖2

0 + . . .+ ‖v(m+1)‖2
0

]
dt

=
T

2

∞∑
k=0

[ [
1 + (kω)2 + . . .+ (kω)2m

] (
|vck|21 + |vsk|21

)
+

+
[
1 + . . .+ (kω)2(m+1)

] (
‖vck‖2

0 + ‖vsk‖2
0

) ]
.

Here and in the following, we mean by ‖ · ‖0 the L2-norm, and by | · |1 the
H(curl)-seminorm.
Consequently, the convergence speed can be estimated by

‖u− ũN‖2
X0

=
T

2

∞∑
k=N+1

[ (
|uck|21 + |usk|21

)
+

+
[
1 + (kω)2

] (
‖uck‖2

0 + ‖usk‖2
0

) ]
≤ T

2
max
k≥N+1

1
1 + (kω)2

·

·
∞∑

k=N+1

[ [
1 + (kω)2

] (
|uck|21 + |usk|21

)
+

+
[
1 + (kω)2 + (kω)4

] (
‖uck‖2

0 + ‖usk‖2
0

) ]
≤ T

2
1

1 + [(N + 1)ω]2
‖u‖2

X1
≤ cN−2‖u‖2

X1
.

Sufficient regularity of the periodic steady state solution u(x, t) of (5) can be
deduced by the regularity of the right hand side f(x, t) = f̂(x) · cos(ωt): Ana-
loguously to [12, §7.1.3, Theorem 5], we can deduce from f ∈ H1((0, T ),L2(Ω))
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that u ∈ H1((0, T ),H0(curl))∩H2((0, T ),H0(curl)∗). This result can be im-
mediately carried over to the situation of f ∈ H2((0, T ),L2(Ω)), what yields
even more than the desired regularity u ∈ X1.
Now, since ‖·‖V ≤ c‖·‖X0 , the Lemmata 23 and 24 together with the knowledge
about regularity can be combined to achieve the final result of this section:

Theorem 25. Assume f(x, t) ∈ H2((0, T ),L2), f divergence-free in the con-
ducting region, and suppose the assumptions of Lemma 17 are valid. Denote the
periodic steady state solution of (5), i.e. the solution of (45), by u = u(x, t),
and let uN denominate the solution of the multiharmonic problem (52).
Then we have

‖u− uN‖V ≤ cN−1‖u‖X1 = c(u) ·N−1.

4 Regularization

As we have seen in Sections 2 and 3, the eddy current problem (5) is uniquely
solvable only in the space of divergence-free functions (at least in the non-
conducting regions). This circumstance has to be considered in the numerical
solution: One can try to tackle the problem in the factor space of solenoidal
functions V /W or work with an equivalent mixed formulation.
However, we prefer to follow a different approach: We slightly perturb the
problem by introducing a small regularization parameter ε > 0 in the non-
conducting regions, more precisely by replacing the conductivity coefficient σ
by

σε(x) = max{σ(x), ε}. (56)

The resulting perturbed problem then is uniquely solvable in the whole space
H(curl).

In the following, we motivate and justify this regularization at the example of
the linear harmonic problem. Also, we emphasize that the results achieved in
this section can be directly carried over to the nonlinear multiharmonic problem.
Supposing that the reluctivity ν = ν(x) does not depend on the induction
B = curlu and considering only the base harmonic leads to the following
variational equation (cf. Section 3):

∫
Ω

ν curl
(
vc

vs

)T
curl

(
uc

us

)
+ ωσ

(
vc

vs

)T(
0 1
−1 0

) (
uc

us

)
dx =

=
∫

Ω

(
vc

vs

)T(
f c

fs

)
dx, ∀

(
vc

vs

)
∈H0(curl)2. (57)

In Theorem 20 we have shown that there exists a unique divergence-free periodic
steady state solution of the eddy current problem (5). Since for linear problems
and harmonic source current, this solution obviously depends only on the base
frequency, equation (57) is uniquely solvable in the space of divergence-free
functions.
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Another way to show existence and uniqueness for this linear problem is to
employ the knowledge about mixed finite element methods and saddle point
problems.

4.1 Mixed Problems

Mixed finite element methods are concerned with the solution of problems of
the following form:

Find (u, φ) ∈ V ×W :
a(u, v) + b(v, φ) = 〈F, v〉, ∀ v ∈ V,
b(u, ψ) = 〈G,ψ〉, ∀ψ ∈W.

(58)

We introduce the space

Vb := {v ∈ V : b(v, ψ) = 0, ∀ψ ∈W}. (59)

Remark 26. Note that, if a pair (u, φ) satisfies (58) with G = 0, then the first
argument u is a solution of the variational problem

Find u ∈ Vb : a(u, v) = 〈F, v〉, ∀ v ∈ Vb. (60)

We quote a well-known theorem about unique solvability of the mixed problem
(58):

Theorem 27 ([6]). Let the bilinear form a(·, ·) be continuous on V × V and
Vb-elliptic, i.e.

∃α > 0 : a(v, v) ≥ α‖v‖2
V , ∀ v ∈ Vb.

Assume moreover that the bilinear form b(·, ·) is continuous on V ×W and that
it satisfies the so-called inf-sup-condition

∃β > 0 : inf
ψ∈W,ψ 6=0

sup
v∈V, v 6=0

b(v, ψ)
‖v‖V ‖ψ‖W

≥ β.

Then, for each F ∈ V ∗ and G ∈W ∗, problem (58) has a unique solution.

We now want to rewrite the variational equation (57) as an equivalent mixed
problem. For this task, we define V := H0(curl)2 and W := W (Ω)2.
If we define the bilinear form b(·, ·) as

b(v,φ) :=
∫

Ω

(
vc

vs

)T(
φc

φs

)
dx, ∀v ∈ V , φ ∈W , (61)

the space V b (59) introduced for the analysis of mixed finite element meth-
ods equals exactly the space of all weakly divergence-free functions in V =
H0(curl)2. As we have seen in the discussion about existence and uniqueness
in Section 2, this space is essential for eddy current problems, since in non-
conducting regions uniqueness can only be guaranteed up to the set of gradient
fields.
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Let us now define

k(u,v) :=
∫
Ω

[
ν curl

(
vc

vs

)T
curl

(
uc

us

)
+ ωσ

(
vc

vs

)T( 0 1
−1 0

)(
uc

us

)]
dx, (62)

for u,v ∈ V , and consider the mixed formulation

k(u,v) + b(v,φ) =
∫

Ω

(
vc

vs

)T(
f c

fs

)
dx, ∀v ∈ V ,

b(u,ψ) = 0, ∀ψ ∈W .

(63)

For the following, we denote the right hand side of the first equation,
∫
vTf , by

〈F,v〉.

By Remark 26 we know that, if the pair (u,φ) ∈ V ×W satisfies (63), u is a
solution of equation (57) with test functions v ∈ V b. However, since the source
current is divergence-free, i.e. (f ,ψ)L2 = 0, ∀ψ ∈W , u also satisfies equation
(57) for gradient fields as test functions, as can easily be seen.
On the other hand, if we have a divergence-free solution u of (57), the pair (u, 0)
solves problem (63). In this sense, the mixed problem (63) and the equation
(57) (in the space of solenoidal functions V b) are equivalent.

Since V b-ellipticity of k(·, ·) follows from the norm equivalence∫
|curl · |2 ' ‖·‖2

H(curl) in the space of divergence-free functions V b (cf. Lemma
2 and Remark 3), and because the inf-sup-condition can easily be verified, we
have the following lemma:

Lemma 28. The mixed problem (63) has a unique solution (u,φ) ∈ V ×W ,
where moreover, we have u ∈ V b, i.e. u is divergence-free, and φ = 0.

Proof. Unique solvability follows immediately by Theorem 27, and the addi-
tional property u ∈ V b, φ = 0 is easy to see.

By the discussion on equivalence between the mixed problem (63) and the vari-
ational equation (57), we have the following corollary:

Corollary 29. Problem (57) is uniquely solvable in the space of weakly divergence-
free functions V b, even with general test functions v ∈ V = H0(curl)2.

4.2 The Perturbed Problem

As mentioned previously, we introduce a regularization parameter ε > 0, what
guarantees unique solvability of the perturbed problem in the whole space
H0(curl).
In order to prove this statement, we define the bilinear form

kε(u,v) :=
∫
Ω

[
ν curl

(
vc

vs

)T
curl

(
uc

us

)
+ ωσε

(
vc

vs

)T( 0 1
−1 0

)(
uc

us

)]
dx, (64)
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with σε(x) = max{σ(x), ε} (56). The perturbed problem

Find (uε,φε) ∈ V ×W :
kε(uε,v) + b(v,φε) = 〈F,v〉, ∀v ∈ V ,
b(uε,ψ) = 0, ∀ψ ∈W ,

(65)

with the linear form F as in (63), satisfies the assumptions of Theorem 27 and
thus is well posed in H0(curl)2 ×W , just like the original problem (63).
Hence we immediately conclude unique solvability of the perturbed problem in
H0(curl)2:

Lemma 30. There exists a unique solution uε ∈ V of the variational equation

kε(uε,v) = 〈F,v〉, ∀v ∈ V , (66)

and uε is divergence-free, i.e. uε ∈ V b.

Proof. Existence of a solution uε ∈ V b and uniqueness in V b is guaranteed by
the equivalence with the mixed problem. Suppose now that ũ = uε +w solves
(66) for some w ∈W . Then we have

0 = kε(uε +w,v)− 〈F,v〉
= kε(uε,v) + kε(w,v)− 〈F,v〉 = kε(w,v), ∀v ∈ V .

For gradient fields w ∈W , kε(w,v) reduces to∫
Ω

ωσε(wcvs −wsvc) dx.

Since ω 6= 0 and σε(x) > 0, ∀x,

kε(w,v) = 0, ∀v ∈ V ,

implies w = 0. Consequently, uε is unique in V = H0(curl)2.

Remains to show that the perturbed problem is close to the original equation
and that its solution converges to the original solution for ε→ 0.
For elliptic variational problems, the situation of a perturbed bilinear form is
covered by Strang’s Lemmata on variational crimes [23]. These can be general-
ized to mixed problems, what provides an estimate of the error ‖u− uε‖:

Lemma 31. Suppose that both the problem (58) and the problem

aε(uε, v) + b(v, φε) = 〈F, v〉, ∀ v ∈ V,
b(uε, ψ) = 0, ∀ψ ∈W, (67)

with a perturbed bilinear form aε(·, ·) satisfy the assumptions of Theorem 27.
Then

‖u− uε‖V ≤ C inf
v∈Vb

(
‖u− v‖V + sup

w∈Vb

a(v, w)− aε(v, w)
‖w‖V

)
,

where u is the solution of (58) and uε the solution of (67).
The constant C = max{(1 + µ

αε
), 1
αε
} depends on αε, the Vb-ellipticity constant

of aε(·, ·), and on µ, the constant of boundedness of a(·, ·).
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Proof. The proof is a simple adaptation to mixed problems of the ideas presented
in [23]. Details can be found in [3].

Remark 32. The constant C in Lemma 31 depends on αε, the Vb-ellipticity
constant of the perturbed bilinear form aε(·, ·). We emphasize that in our case,
i.e. with kε(·, ·) as defined in (64), αε does not depend on ε, since we have

kε(v,v) =
∫

Ω

[
ν |curlv|2 + ωσε(vcvs − vsvc)

]
dx

=
∫

Ω

ν |curlv|2 dx ≥ c ‖v‖2
V , ∀v ∈ V b. (68)

Indeed, in the space of divergence-free functions V b we have equivalence between
the seminorm ‖curlv‖L2 and the full norm ‖v‖V =

(
‖v‖2

L2
+ ‖curlv‖2

L2

) 1
2

according to Lemma 2 and Remark 3. Since ν is assumed to be bounded from
below, i.e. ν(x) ≥ ν > 0 almost everywhere, the estimate (68) holds.

As an immediate consequence, we have an estimate for the error introduced by
the regularization:

Lemma 33. The solution of the perturbed variational problem

Find uε ∈ V : kε(uε,v) = 〈F,v〉, ∀v ∈ V = H0(curl)2, (69)

converges to the solution u of (57) for ε→ 0. More precisely we have

‖u− uε‖V ≤ εC‖u‖L2 , (70)

for some constant C independent of ε.

Proof. The proof is simple, since the difference between perturbed and original
bilinear form can be estimated in the following way:

|k(v,w)− kε(v,w)| =

∣∣∣∣∣
∫

Ω

ω(σ − σε)
(
vc

vs

)T(
0 1
−1 0

) (
wc

ws

)
dx

∣∣∣∣∣
≤ εω ‖v‖L2 ‖w‖L2 .

With this estimate and the knowledge that u ∈ V b (cf. Lemma 28), we have

‖u− uε‖V ≤ C inf
v∈Vb

(
‖u− v‖V + sup

w∈Vb

εω ‖v‖L2 ‖w‖L2

‖w‖V

)
≤ ε ω C‖u‖L2 ,

according to Lemma 31.

The results of this section, especially the Lemmata 30 and 33, motivate and jus-
tify our procedure of solving a perturbed problem with conductivity σε instead
of σ.
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4.3 An Estimate of the Discretization Error

Finite element discretization of the perturbed variational problem (66) yields
an approximation uε,h of uε. For a complete analysis, it remains to estimate
the error between the solution of the original problem u and the finite element
approximation for the perturbed problem.
For this task, we require some well-known results:
First we need Cea’s Lemma (e.g. [5]), which allows to estimate the discretization
error ‖uε−uε,h‖ by the best approximation error and thus by the interpolation
error:

‖uε − uε,h‖V ≤ c inf
vh∈V h

‖uε − vh‖V ≤ c ‖uε −Πhuε‖V . (71)

Here, by Πh we mean an interpolation operator mapping from
H(curl) into the Nédélec finite element space. We point out that the con-
stant c in (71) is independent of ε, since ε does not appear in the V b-ellipticity
constant (cf. Remark 32), nor does the constant of boundedness depend on ε.
The second tool required is a Clément-type quasi interpolation operator accord-
ing to [22], which is stable in H(curl):

‖Πhw‖H(curl) ≤ c‖w‖H(curl). (72)

The stability in H(curl) follows directly from the L2-stability and the com-
muting diagram property shown in [22]. This quasi interpolation operator also
satisfies the following approximation property for w ∈ H1 with curlw ∈ H1

[22]:

‖(I −Πh)w‖H(curl) ≤ ch
(
‖w‖2

H1 + ‖curlw‖2
H1

) 1
2 . (73)

These results permit to prove the following estimate:

Lemma 34. Let u ∈ V b be the solution of problem (57) and uε,h the solution of
the discretized perturbed problem (69). Assume moreover u ∈H1 and curlu ∈
H1. Then we have

‖u− uε,h‖V ≤ (ε+ h) · c(u), (74)

where c(u) is some constant depending on u.

Proof. With Lemma 33 and the tools quoted above, the estimate follows easily:

‖u− uε,h‖V ≤ ‖u− uε‖V + ‖uε − uε,h‖V︸ ︷︷ ︸
≤ c ‖(I−Πh)uε‖

≤ εc‖u‖L2 + c ‖(I −Πh)[(uε − u) + u]‖V .

The second term can be estimated further by taking advantage of stability (72)
and approximation (73) of the quasi interpolation operator:

≤ εc‖u‖L2 + c‖uε − u‖V + ch
(
‖u‖2

H1 + ‖curlu‖2
H1

) 1
2

≤ εc(u) + hc(u) ≤ (ε+ h) · c(u).
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We remark that in general full regularity of the solution u cannot be guaran-
teed. With the whole domain consisting of several subdomains with different
parameters ν and σ, the solution can at most be piecewise smooth. As long as
the interfaces and outer boundary are smooth, f ∈ L2 leads to u ∈H2(Ωj) for
each subdomain Ωj (cf. e.g. [10]).
However, corners and edges in the interfaces as well as on the outer boundary
lead to singularities (cf. [8, 10]). In that case, one has to be content with interior
regularity in each subdomain together with an analysis of the singularities that
can be found for example in the works of Costabel, Dauge and Nicaise, e.g.
[8, 9, 10].
It is worth mentioning that u ∈ Hs with curlu ∈ Hs for some s ∈ (0, 1) still
leads to a convergence estimate of the form

‖u− uε,h‖V ≤ (ε+ hs) · c(u). (75)

5 A Complete Error Estimate

Finally, we are able to give a complete estimate of the error depending on the
number of harmonics in the truncated Fourier series N , on the regularization
parameter ε and on the discretization parameter h.
First, however, we state that the Strang-Lemma can immediately be carried
over to the nonlinear problem in the space V:

Lemma 35. Suppose we have

sup
w∈V,‖w‖=1

〈Kε(u)−Kε(v),w〉 ≥ βε‖u− v‖V, ∀u,v ∈ V,

sup
w∈V,‖w‖=1

〈K(u)−K(v),w〉 ≤ γ‖u− v‖V, ∀u,v ∈ V,

then the difference between the solutions u and uε of

〈K(u),v〉 = 〈F,v〉, ∀v ∈ V,
〈Kε(uε),v〉 = 〈F,v〉, ∀v ∈ V,

can be estimated by

‖u− uε‖ ≤ C(βε, γ) inf
w∈V

(
‖u−w‖V + sup

v∈V

〈Kε(w)−K(w),v〉
‖v‖V

)
.

Proof. As with Lemma 31, the proof is a simple adaptation to nonlinear prob-
lems of the ideas presented in [23]. The linear version can be found in [21].

Remark 36. The prerequisites of Lemma 35 are immediate consequences of
the inf-sup- (42) and sup-sup-condition (43). It can easily be checked that the
constant βε is actually independent of ε, just like in the linear harmonic problem
(cf. Remark 32). Consequently, we get convergence for ε→ 0:

‖u− uε‖V ≤ εC ‖u‖V. (76)
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Theorem 37. Let the assumptions of Theorem 25 be satisfied, and let us denote
by u ∈ V the unique periodic steady state solution of the eddy current problem
(5), i.e. the solution of (45). Let uN ∈ VN ⊂ V be the solution of the multihar-
monic problem with N harmonics (52), and denote by uN,ε,h ∈

(
V 2
h

)N ⊂ VN
its approximation, which solves the discretized perturbed problem. Suppose that
u is smooth: uc/sk ∈H1 with curluc/sk ∈H1, for all k.
Then we have the following estimate:

‖u− uN,ε,h‖V ≤ (ε+ h+N−1) c(u), (77)

where c(u) is a constant depending on the exact solution u, and on ω as well.

Proof. The proof combines the previous results on Fourier series convergence
and on the discretization error. It rests upon the observation that the estimates
in ε and h can be directly carried over to the nonlinear problem in the spaces
V and VN , respectively. This is possible, since we can generalize the Strang-
Lemma to the space V (Lemma 35).
As a consequence, the error between u and the discrete approximation uN,ε,h
can be estimated by the triangle inequality:

‖u− uN,ε,h‖V ≤ ‖u− uN‖V + ‖uN − uN,ε,h‖V

≤ c(u)N−1 + c(uN ) (ε+ h)

≤ (ε+ h+N−1) c(u).

6 Concluding Remarks

In this paper we presented a complete analysis of nonlinear eddy current prob-
lems consisting of conducting and non-conducting domains. For their numerical
treatment, we suggested and analyzed a multiharmonic solution technique that
takes advantage of the periodicity of the solution. The errors due to the trun-
cated Fourier series expansion as well as spatial discretization and regularization
were rigorously estimated.
Fast solvers for the system defining the discrete Fourier coefficients and other
aspects of the numerical simulation as well as numerical results demonstrating
the efficiency of the multiharmonic approach in combination with multigrid
techniques will be presented in a foregoing paper.
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