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Abstract

An efficient finite element (FE) formulation for the simulation of multibody systems is derived from
Hamilton’s principle. According to the classical assumptions of multibody systems, a large rotation for-
mulation has been chosen, where large rotations and large displacements, but only small deformations of
the single bodies are taken into account. Absolute coordinates are chosen for the degrees of freedom. The
numerical solution strategy is based on the assumption that the period of large rotations of the single bodies
is much larger than the period of oscillations due to deformation. The strain tensor is modified based on
the latter assumption and therefore, the present formulation distinguishes significantly from standard nodal
based nonlinear finite element methods. Constraints are defined in integral form for every pair of surfaces
of two bodies. This leads to a small number of constraint equations and avoids artificial stress singularities.
Due to the special structure of the resulting system, the most expensive part of the system of equations can
be solved in advance and only once for a given Runge-Kutta scheme. The present method has been imple-
mented and tested with the FE-package NETGEN/NGSOLVE.

Keywords: absolute coordinate formulation, large rotation theory, finite elements, time–integration
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1 Introduction

The dynamics of mechanical systems including large deformations normally leads to a nonlinear stiffness
matrix, see Zienkiewicz and Taylor [34]. In conventional geometrically nonlinear finite element (FE) for-
mulations, the stiffness matrix has to be updated frequently within Newton’s method and is therefore com-
putationally costly. It shall be emphasized that the specific aim of the present formulation is to simulate
mechanical problems with large displacements but small deformations, which means small strain as well
as small displacements with respect to a co-rotated reference frame. It is obvious that due to this special
assumptions the strategy can be more efficient compared to standard nonlinear finite element methods. This
is applicable for the case for several engineering applications, like a gear unit or a crankshaft.
Multibody system dynamics has developed to a stand-alone field of research in the past decades and several
books emerged, among them [5, 10, 20, 21, 23, 24, 27, 28, 29, 33]. Starting with rigid-body dynamics,
the equations of motion can be derived e.g. from Lagrange’s equations. Including the flexibility of single
bodies, simplified formulations like beam theory have reached large importance in multibody dynamics,
e.g. for the investigation of a slider-crank mechanism [9], the stability of a rotor-blade of a helicopter or the
stability of a satellite with highly flexible solar panels, see Bremer [5]. While most of these approaches use
the conventional beam-theory with respect to a moving frame, Simo derived a newer approach based on the
large rotation vector, see Simo and Vu-Quoc [32]. Shabana summarized different methods for the modeling
of multibody systems in his book [27]. He proposes a floating frame of reference formulation (FFRF) for
the modeling of multibody systems and treats numerous examples. In the case of structural elements, the
FFRF is advantageous because the elastic deformation can be described easier in the corotated reference
frame than in a global frame.
In the case of solid 2D and 3D flexible multibodies, the number of possible formulations is much lower
than for structural multibodies. Two main formulations are well known. The first one is based on geo-
metrically nonlinear FE. It results in a constant mass matrix and a nonlinear stiffness matrix. Standard FE
codes which include geometrically nonlinear behavior are mostly based on such formulations, the solution
differs between the so-called total and updated Lagrangian formulation. A formulation which is based on
the co-rotational approach and the updated Lagrangian formulation has been introduced by Pan and Haug
[26]. In the case of multibody systems, the geometrically nonlinear FE formulation is coupled with possibly
nonlinear constraints and the resulting formulation is therefore sometimes called absolute coordinate for-
mulation (ACF), see e.g. K̈ubler et al. [22]. This term may not be mixed up with absolute nodal coordinate
formulation (ANCF), which is a special formulation for flexible multibody dynamics. There, absolute coor-
dinates represent slopes and displacements of nodes. The second approach is based on the FFRF. There, it
is possible to utilize all the knowledge from small strain theory because the linear equations of motion for
a single body without rigid body motion are nonlinearly transformed by means of the rigid body rotation
of the corotated reference frame. E.g. Ambrósio [1] combines the FFRF and standard FE methods and
derives a formulation which can treat physical nonlinearities like plasticity. However, the coupling of small
deformations and large rotations leads to complex nonlinear terms in the mass matrix which then has to be
re-computed in every time step. Only few publications on solid 2D or 3D flexible multibody systems can be
found in the open literature. Simeon [31] uses stabilization techniques in order to solve a solid 2D flexible
multibody systems with contact. Eberhard [8] introduces a hybrid FE and multibody method and switches
between rigid and elastic behavior of the bodies depending on the state of the bodies. Orden [25] uses the
geometrically nonlinear FE method to discretize his models and applies the energy-momentum method in
order to get a stable integration.
In the past decade, engineering problems from industry led to a further development of the well known
component mode synthesis based on Craig-Bampton modes, for details on the formulation with multibody
systems see Ǵeradin and Cardona [10]. In the case of the FFRF, the possibly large number of degrees of
freedom of a FE mesh is reduced by means of a modal decomposition of the original mesh. The modal de-
composition works well for the FFRF, because of the linearity with respect to the corotated reference frame.
The approximation with a small number of eigenmodes compared to the original degrees of freedom turns
out to converge fast if all static modes are included. One possible drawback of this method is the necessary
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modal analysis in the preprocessing, which is nowadays possible for very complex meshes due to efficient
numerical solvers for eigenvalue problems. Another problem arises, if the number of boundary and con-
straint conditions leads to a large number of static modes, which reduces the performance of the numerical
solution. For the reduced problem, a highly nonlinear system of equations of motion has to be solved. Due
to the fact that modal synthesis is based on a linear decomposition, it is primarily not suitable for physically
or geometrically nonlinear problems. However, some experiments have been made for beam-type multibody
systems with eigenmodes and plasticity, see Gerstmayr and Irschik [12, 11].
The present approach for 3D multibody systems is based on geometrically nonlinear FE methods. The new
feature of this method is the decomposition of the strain into a small deformation and a large rotation, which
is especially adapted to flexible multibody systems. Unlike many existing multibody dynamics formulations
we use absolute coordinates and no rotational degrees of freedom in order to get a constant mass matrix and
a nonlinear stiffness matrix. In contrast to the co-rotational FE approach of Argyris [2] or Belytschko [3],
the large rotation is equal for all elements of a single body, the decomposition of the rotation is different and
only small deformations are permitted in the present approach. It turns out in the discretized form of the
equations of motion that the nonlinear stiffness matrix can be replaced by means of the constant small strain
stiffness matrix which undergoes an orthogonal transformation by means of the nonlinear rotation matrix.
Additionally there is a nonlinear part of quadratic terms of the small deformation quantities, which turns out
to be of lower significance in the solution strategy. While it has been shown, that the present formulation
can be transformed into the FFRF by means of a coordinate transformation, see Gerstmayr [14], the solution
strategy within an implicit time–integration method shows significant advantages compared to the FFRF.
Due to the assumption that rigid body rotations change slowly within one time step, the nonlinear stiffness
matrix can be approximated by means of the small strain stiffness matrix transformed by the rotation matri-
ces of the single bodies computed from the last time step. A small number of iterations (between two and
four) for the solution of the nonlinear equations within a single time step shows that the approximated non-
linear stiffness matrix contains the main terms. The method can be compared to the concept of the modified
Newton’s method, where the Jacobian of the method is computed during the last iteration. The significant
advantage of the present method lies in the efficient computation of the inverse of the Jacobian, because no
large systems of equations has to be factorized. The Jacobian is computed by means of application of the
rigid body rotation matrices to the mass matrix times the inverse of the small strain stiffness matrices.
For the numerical time–integration, higher order implicit Runge Kutta methods have been implemented. For
dynamical problems, solution methods differ between explicit and implicit methods. In explicit methods,
only the factorization of the mass matrix is necessary, while the so-called elastic forces only need to be
evaluated. The schemes are computationally cheap for one time step, but stability criteria require a small
time step depending on the highest eigen-frequences. For the special case of differential algebraic equations
(DAEs), explicit methods are unstable in general, independent of the time step. Certain implicit schemes,
like special Lobatto or Radau classes, see Hairer et al. [19], are stable independent of the time step for the
case of ordinary differential equations, and are stable for the case of specific classes of DAEs. However,
implicit methods require the solution of a nonlinear system of equations and lead to a Jacobian which is
decomposed of a constant mass matrix and a non-constant stiffness matrix. For large deformation prob-
lems, e.g. the bending of an initially straight beam into a circle, there is a significant difference between
the Jacobian for initial values (straight beam) and the Jacobian for the final state (curved beam) such that
the computation has to be performed stepwise and several Jacobians need to be computed. In the case of
large displacements (including large rotations) but small deformations, the Jacobian undergoes significant
changes, too, but a detailed investigation shows that the underlying rigid body rotation is mostly influenc-
ing the non-constant part of the Jacobian. In the present contribution multibody systems are considered,
where high-frequency deformation is coupled to low-frequency rigid-body rotations of the single bodies.
The strain tensor, which is used for the computation of the strain energy as well as for the stiffness matrix,
is modified such that only linear dependence on small deformations coupled nonlinearly with rigid body
rotations are considered. For details with respect to accuracy and stability of such methods, see e.g. Hairer
et al. [19, 17, 18]. In a resent work on implicit Runge Kutta methods for the present ACF, an-stage Runge
Kutta formula is used to integrate the equations of motion directly, see Gerstmayr and Schöberl [16]. In that
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case, a larger matrix containing the mass matrix and the small strain stiffness matrix has to be factorized
in the preprocessing phase. In the present paper, one-step methods are used to approximate the stages of a
n-stage Runge-Kutta formula and iterated till the residual of then-stage formula is practically zero. This
strategy avoids the computation of larger systems of nonlinear equations for every time step. The present
method turns out to work well with linear constraints. The method has been extended for the case of non-
linear material behavior, see Gerstmayr [13].
The paper is organized as follows: Section 2 includes a brief derivation of the equations of motion and the
definition of the reduced strain measure. Section 3 presents the decomposition of the total displacement
of a point into a rigid body part and a small deformation. In Section 4, constraint equations modeled by
means of distributed constraints are introduced through the limit case of the penalty method which leads
to the Lagrange multiplier technique. Section 5 shows the equations of motion with a detailed analysis of
the variation of the reduced Green strain measure. The equations of motion are discretized in Section 6 and
a time–integration scheme is applied exemplarily in Section 7. In Section 8 and 9 two examples are pre-
sented which show the accordance of the formulation with standard FFRF beam-type formulations. While
differences could be expected due to differences of the 3D solid model and the beam theory due to special
supports of the 3D structure and due to the non-symmetry of the tetrahedral mesh, both formulations turn
out to coincide perfectly. Furthermore, the examples show that the use of integral constraints is comparable
to constraints in structural elements. It shall be emphasized that the implementation has not been optimized
and therefore computational times are not comparable to those of commercial software. The advantages
of the formulation are documented in its outstanding appearance of the equations of motion. Furthermore,
the example problems are defined by means of a small number of parameters and can be verified easily by
other researchers. The method has been applied to real-life 3D problems, which have been presented by
Gerstmayr and Schöberl [15].

2 Equations of motion

The equations of motion for large deformations including large strains are derived from Hamilton’s principle

δ

∫ t2

t1
Ldt = 0 (1)

whereL is the Lagrange functionalL = T − V . The kinetic energy reads

T = 1/2
∫

V0

ρ|u̇|2 dV0. (2)

Here,u̇ is the absolute velocity (measured from an inertial frame) in every point of the reference volumeV0.
For the present case of absolute coordinates, which means thatu depends linearly on the degrees of freedom,
the variation ofT leads to a constant mass matrix. Note that in the case of the FFRF, the displacementu is a
nonlinear function of the unknown rigid body displacements and unknown small deformations. We assume
linear material behavior and no follower forces, therefore the variation of the potential energy is equal to the
virtual work of internal forces and the virtual work of boundary and volume forces

−δV = −
∫

V0

S : δE dV0 +
∫

V0

f0 · δu dV0 +
∫

A0

t0 · δu dA0, (3)

whereS denotes the2nd Piola-Kirchhoff stress tensor,E the Green strain tensor,V0 the Volume,f0 the
body forces,t0 the surface forces andu the displacements. The Lagrangian (material) formulation is used
throughout, and written in tensorial notation, see e.g. Bonet and Wood [4].S is defined by means of a
hyper-elastic energy functionalW (E)

S =
∂W (E)

∂E
. (4)
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The abbreviation

δWext =
∫

V0

f0 · δu dV0 +
∫

A0

t0 · δu dA0 (5)

is introduced. Integration by parts leads to the variational formulation∫
V0

ρü · δu dV0 +
∫

V0

S : δE dV0 − δWext = 0. (6)

The strain energy functional for a St. Venant Kirchhoff material reads

W (E) =
λ

2
(trE)2 + µ|E|2 (7)

with the Laḿe coefficientsµ andλ, for details and range of application see Bonet and Wood [4]. The Green
strain tensorE can be expressed in terms of the displacement-gradient∇u,

E =
1
2
(∇u +∇uT +∇uT∇u). (8)

A conventional geometrically linear formulation neglects second order terms in∇u,

Elin =
1
2

(
∇u +∇uT

)
. (9)

This simplification cannot describe large rotations, sinceElin 6= 0 for rigid body displacementsu. Therefore
the large displacement is decomposed into

u = u0 + ũ, (10)

whereu0 represents large rigid body displacements andũ is asmalldisplacement part. Applying the nabla
operator to Eq. (10) gives∇u = ∇u0 +∇ũ. The rigid body displacement consists of a translational and a
rotational part

u0(x) = ut + Rx− x, (11)

whereut is a translation vector andR is a rotation matrix which are both attached to each single body
separately. The position of a point of a body in reference configuration is denoted byx. The rotation matrix
can be expressed byR = ∇u0 + I, I is the identity tensor. We restrict our problems to small displacements
with respect to the rigid body motion, that means|ũ| � 1. With sufficient smoothness we may assume
small deformations|∇ũ| � 1, as well. We then approximateE, by neglecting quadratic terms in∇ũ:

E =
1
2

[
(R +∇ũ)T (R +∇ũ)− I

]
=

1
2
(∇ũT R + RT∇ũ +∇ũT∇ũ)

≈ Ẽ :=
1
2
(∇ũT R + RT∇ũ) = Sym(RT∇ũ). (12)

The symmetry operator is defined bySym(A) = 1
2(A + AT ).

3 Unique decomposition ofu

The approximation of̃E only holds for small values of∇ũ. In the case of the FFRF, a mean-axis-frame is
suggested by Schwertassek et al. [30] which is defined by a minimization problem of the deformation in the
reference configuration. In the case of absolute coordinates, this minimization problem can be written in the
form

find ū0 such that
1
V

∫
V

(u− ū0)T (u− ū0) dV = min (13)
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with ū0 = ūt + R̄x−x. However, we want an explicit expression forR̄, therefore we use the following two
relations ∫

V0

(ū0 − u) dV0 = 0 and
∫

V0

(∇ū0 −∇u) dV0 = 0 (14)

which can be resolved to

ūt =
1
V0

∫
V0

u dV0 and ∇ū0 = R̄− I =
1
V0

∫
V0

∇u dV0. (15)

This means that we compute the average displacement ofu for ūt and the average gradient ofu for R̄ − I
instead using aL2-best approximation ofu by an affine linear function̄u0.
The matrixR̄ still includes a small amount of the average stretch of the body, therefore a decomposition
R̄ = UR into a stretchU and a rotationR has to be performed. The decomposition is implemented by
applying the deformation̄R to a body and measuring the rotation matrixR due to the deformation of3
certain points of a body. This decomposition behaves similar to the well known polar decomposition, but it
is computationally cheaper.

4 Modeling of Constraints

In 2 and 3 dimensional solid FE formulations the modeling of constraints is still a field of ongoing research.
Constraints can represent complicated types of bearings, in certain fields of interest one may even not ne-
glect the lubrication gap or the dynamics of the oil film. However, in many simulations bearings may be
simplified. For example, a revolute joint can be modeled by restricting a set of points to lie on a rigid
cylinder. In such a formulation, the number of constraints and the complexity of the problem depend on the
mesh-size. We therefore use weaker constraint conditions by constraining integral values of the deforma-
tion. LetΓi denote a part of the surface of a body andwi(x) a weight function which may be zero (ground
joint), constant (spherical joint) or affine linear (cylindrical joints with fixed axis of rotation). We generally
define linear constraints as ∫

Γi

wi(x)udΓi −
∫

Γj

wj(x)udΓj = 0. (16)

For ground joints,wj is set to zero. Constant values are used forwi(x) andwj(x) in order to restrict the
distance of the midpoints of two surfaces (rotational joint), affine linear functions are used forwi(x) and
wj(x) in order to restrict the relative rotation between two surfaces. For the more general case of nonlinear
constraints we rewrite the set of constraint equations as

B(u) = 0. (17)

In the present formulation, constraints are included via Lagrange-parameters, for more details on this mod-
eling, see e.g. [25]. In a mathematically formal way we define the potential of constraint forces

Vpen(u) =
1
2ε
‖B(u)‖2, (18)

whereε is a small parameter. The variation ofVpen leads to

δVpen(u) =
1
ε
B(u)T B′(u)δu, (19)

where the abbreviation

B′(u) =
d

du
B(u) (20)

is used. With the Lagrange parameterλ := 1
εB(u) the weak form of the equations of motion is obtained,∫

V0

ρü · δu dV0 +
∫

V0

S : δẼ dV0 − δWext + (B′(u)T λ)·δu = 0

B(u) = 0. (21)
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5 Variation of the Green strain tensor

In the case of prescribed rigid-body motions, the FE method could be directly applied to Eq. (21). In the
more general case of non-prescribed motions of the single bodies, the variation ofδR must not be neglected
in the variation of the Green strain tensor, Eq. (12). We introduce the abbreviationsG = ∇u, G̃ = ∇ũ and
make use of the special property of the rotation matrix,Sym(RT δR) = 0. The approximate Green strain
tensor (12) is rewritten in the form̃E = Sym(RT G̃) and its variation becomes

δẼ = Sym(RT δG̃ + δRT G̃)
= Sym(RT (δG− δR) + δRT G̃)
= Sym(RT δG + δRT G̃). (22)

The dependencyδR̄ onu can be derived from Eq. (15) which gives

δR̄ =
1
V

∫
V
∇δu dV. (23)

The variation forR then may be written as

δR =
∂R

∂R̄
: δR̄ =

∂R

∂R̄
:

1
V

∫
V

δGdV. (24)

The dependency∂R/∂R̄ is computed by means of numerical differentiation. Neglecting the variation ofR
would mean to neglect a part of the coupling betweenR andu, resulting in the violation of the conservation
of energy. This leads to acceptable results for very small deformations but to instability for moderately small
deformations. However, the fact that the change ofR and the influence ofδR is small leads to an iterative
scheme which is computationally efficient but includes all the terms inR.
We introduce the4th order material tensorD = λI ⊗ I + 2µI and the4th order identity tensorI. The
partial derivative of Eq. (7) with respect to the approximated Green strain tensorẼ follows to

S =
∂W

∂Ẽ
= λtr(Ẽ)I + 2µẼ = Ẽ : D. (25)

By use of Eq. (22) the variation of the potential of internal forces follows to∫
V0

S : δẼ dV0 =
∫

V0

Sym(RT G̃) :D :Sym(δGT R + G̃T δR) dV0. (26)

6 Discretized Equations

The main part of the internal energy (26) can be rewritten in the following discretized form∫
V0

Sym
(
RT G̃

)
: D : Sym

(
δGT R

)
dV0 → ũT

h RT
h ARhδu, (27)

where the indexh indicates that these are discretized terms according to the continuous terms.A is the
stiffness matrix of the system in reference configuration. The remaining terms due toδR lead to small
quadratic terms with respect to the small displacementũh and are therefore placed at the right hand side of
the resulting equations∫

V0

Sym
(
RT G̃

)
: D : Sym

(
G̃T δR

)
dV0 → fδR(ũ2

h)δu. (28)

The FE discretization leads to a system of differential-algebraic equations (DAEs)

Müh + RT
h ARhũh + B′

h(uh)T λh = fh + fδR

Bh(uh) = 0.
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The right hand side only depends on external forces and on terms which result due toδR. Additionally we
introducef0 = (RT

h ARh)u0 andf̄ = fh + fδR + f0. Applying the matrixRh to the first equation we get

MRhüh + ARhuh + RhB′
h(uh)T λh = Rhf̄

Bh(uh) = 0. (29)

We assume linear constraints and split intoBh(u) = B1B2u whereB1 is only a small matrix depend-
ing on the number of constraints andB2 is a block-diagonal matrix which commutes withRh and fulfills
BhRT

h Rhu = B1R
T
h B2uRh.

7 Integration-scheme

The numerical time–integration scheme is sketched by applying exemplarily the trapezoidal rule. For a
linear mechanical systemMü + Au = f it reads

Maj+1 + K
[
uj + τvj + τ2

4 (aj + aj+1)
]

= fj+1,

uj+1 = uj + τvj + τ2

4 (aj + aj+1), vj+1 = vj + τ
2 (aj + aj+1) (30)

whereτ is the time-step size, the velocities are denoted byv = u̇ and the accelerations area = ü. The index
j indicates the previous and the indexj + 1 the actual time step. Only in the first line, a system of equations
needs to be solved while the second line is just evaluated. We put terms with indexj to the right hand side
and rewrite our system as

(M + τ2A)Rha + BT
2 RhBT

1 λ = Rhf̄ + d,
B1R

T
h B2Rha = e.

(31)

This system can be solved efficiently: We eliminateRha and get the Schur-complement equation

B1R
T
h B2(M +

τ2

4
A)−1BT

2 RhB1λh = B1R
T
h B2(M + τ2A)−1(Rhf̄ + d) + e. (32)

The matrixB2(M +τ2A)−1BT
2 is computed for certain time stepsizesτ only once for the whole simulation.

Thus, the computationally costly part of the solution is computed in advance.

7.1 Implementation of the integration scheme

The DAE-system Eq. (29) is of index 3. According to Hairer et al. [19] we may apply certain kinds
of Runge-Kutta methods like the RadauIIA method withs ≥ 2, s denoting the number of stages of the
Runge-Kutta method. The order of convergence for the algebraic variable is the highest for the investigated
Runge-Kutta schemes withs− 1.
In the subsequent examples the 2 and 3-stage RadauIIA formula has been applied successfully. The above
described method for the decomposition of the system in a constant and a time-dependent part easily works
for 1-stage integration methods but is cumbersome for methods with several stages. For the sake of sim-
plicity, a modified Newton method is used. For small time steps the Jacobian of a method withn-stages
approximates the Jacobian of a method usingn steps with a 1-stage method. We therefore only compute the
residual of the chosenn-stage method but we use the Jacobian of the trapezoidal rule for everyn stages.

8 Numerical example: 3D pendulum

In the following example, a beam-type formulation is compared with the present formulation studying plane
motions of a pendulum released from the horizontal position. The pendulum only may rotate around its
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Figure 1: Mesh of the 3-D model of the pendulum.

Figure 2: Comparison of a pendulum, midspan-deflection.
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Figure 3: Comparison of pendulum, rigid-body angle.

x-axis, see Figure 1. The geometrical parameters of the example are chosen such that it is comparable to
a conventional beam formulation, because there is no other formulation available for the authors in order
to compare the results. The pendulum has a length of 1m and a rectangular cross-section with a height of
50mm and a width2.5mm. The pendulum is very thin in order to reduce the number of elements for the
total model and to get a converged solution for the deflection. Young’s modulus has been chosen as2.1 ·108

and Poisson’s ratio is0.3. The influence of the hinge with respect to the angular velocity or deflection is
negligible. The rigid-body angle is defined as the angle between the horizontal axis and the line defined by
the support and the end-point of the pendulum.
The present formulation is compared with a FFRF where the pendulum is modeled by means of the Bernoulli-
Euler beam theory. Small deformations but large rotations are taken into account, for details of the study
see Dibold [7]. The problem is discretized in space by the Ritz-method, where 12 Legendre polynomials are
used for the modeling of the deflection of the whole pendulum. A comparison between 8, 10 and 12 shape
functions showed that the solution was already converged.
The present method has been implemented into the extendable FE-code NGSolve, which is part of the
program NETGEN/NGSolve. Tetrahedral elements with quadratic shape functions have been used for the
present study. The support is realized by a very thin cylinder attached to the pendulum. The mesh of the
model (showing the support) is depicted in Figure 1. The midpoints of both sides of the cylinder are fixed
to the ground, meaning that the integral of the displacements at each side has to be zero. The pendulum
is released from the horizontal position and driven only due to gravity (g=9.81m/s2). Figure 3 shows a
comparison of the angle of both models which coincide perfectly. Figure 2 shows a comparison of the
mid-span deflection of the two models. The deflection is defined as the distance of the deformed axis to the
undeformed co-rotated axis, given by the line between the support and the end-point of the beam.

9 Numerical example: slider-crank mechanism

In order to show the functionality of the formulation for a problem with joints between two bodies, a slider-
crank mechanism is studied. The mechanism consists of a driving beam which only exhibits rotation and a
driven beam which is connected to the driving beam at one end and the other end is restricted to horizontal
motion. The dimensions of the driving beam areL = 0.5m,H = 50mm,W = 5mm and of the driven beam
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Figure 4: Comparison of a slider-crank mechanism, deflection of driven body.

Figure 5: Comparison of a slider-crank mechanism, angle of driven body.
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L = 1m, H = 50mm,W = 5mm. Concerning material properties for both beams, Young’s modulus is set
to E = 2.1E10, Poisson’s Ratio isν = 0.3 and density isρ = 7800. The mechanism is driven by its own
weight under gravityg = 9.81m/s and is initially in the horizontal position. The total computational time
for the problem with the finest mesh (17976 quadratic tetrahedral elements, 6166 points), with the 2-stage
RadauIIA time–integration method and 3200 time steps (0.5ms) on a Pentium IV (2.4GHz) computer was
12 hours 15 minutes. The computational time for one time step is therefore 13.8 sec, where a nonlinear
problem with approximately 74000 unknowns has to be solved for the two stages of the RadauIIA method.
For the approximation of the two-stage method with a one-stage method, ca. 10 iterations are necessary.
Explicit methods might compute one time step faster, but they need much smaller time steps in order to get
a stable and accurate solution, while in the present implicit method the solution converges fort = 0.5ms
and larger time steps (5ms) might be used for an estimation of the solution.
A comparison with a beam-type formulation has been performed according to the this example. The
midspan-deflection of the driven beam with respect to a chord-frame is depicted in Figure 4, the rigid body
rotation of the driven beam, measured by the angle of the chord-frame is depicted in Figure 5. Both results
agree well with the beam theory although a 3-dimensional FE-computation with constraint conditions in
integrated form is compared with a 2-dimensional beam-theory.
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