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Abstract. Maxwell equations are posed as variational boundary
value problems in the function space H(curl) and are discretized
by Nédélec finite elements. The arising linear equation systems
are usually huge and thus require iterative solvers with good pre-
conditioners. In [10] and [1] multigrid preconditioners for Maxwell
equations have been developed and analyzed. In the current pa-
per, we improve the results available so far. The key is to utilize
recently proposed Clément type interpolation operators in H(curl)
which allow an analysis very similar to the scalar case. The present
improvement involves commuting operators which are projections.

1. Introduction

Maxwell equations are partial differential equations describing electro-
magnetic phenomena. In comparison to other fields, their numerical
treatment by finite element methods is relatively new. A reason is that
they require the vector valued function space H(curl), what has many
consequences for the whole numerical analysis. A recent monograph
is [11].

The key for the numerical analysis for Maxwell equations is most
often the de Rham complex [6, 2]. It is the basis for the construction
of finite elements [12, 13, 9, 8, 20, 22] and the a priori error estimates,
preconditioners [10, 1, 21, 14], and eigenvalue problems [3, 4].

Most often, Maxwell equations must be treated in 3D. The arising
linear equation systems are usually huge and thus require iterative
solvers. Due to the different scaling of the differential operator on
the solenoidal and the irrotational sub-spaces, the matrix is very ill
conditioned. In [10] and [1] multigrid preconditioners taking care of
the different scaling on the sub-spaces are formulated and analyzed.

In the present paper we present a new multigrid convergence proof
based on commuting interpolation operators. Now, the most tricky
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part is the construction of the operators [17, 18, 19]. After that, the
multigrid analysis follows the line of the scalar case. We can also
sharpen the results available so far. The analysis treats the case of
non-convex domains, the estimates are robust with respect to small
L2-coefficients, and the constants do not depend on the global shape
of the domain.

Notation: We write a � b, when a ≤ cb, where c is a constant
independent of a, b, the coefficients ν and κ of the equation, and the
mesh-size h. The constant may and will depend on the shape of the
finite elements. We write a � b for b � a, and we write a ' for a � b
and b � a.

The rest of the paper is organized as follows. In Section 2, the
variational problem, the multigrid algorithm and the main theorem
is presented. The commuting projection operators are defined and
analyzed in Section 3, The main theorem if proven in Section 4.

2. Multigrid methods for H(curl)

Let Ω be a bounded, polyhedral Lipschitz domain in R3. Its bound-
ary Γ = ∂Ω is decomposed into the Dirichlet part ΓD and the Neu-
mann part ΓN . As usual, define the space H(curl, ω) = {v ∈ [L2(ω)]3 :
curl v ∈ [L2(ω)]3} for some domain ω, and write H(curl) for ω = Ω.
Let V := HD(curl) := {v ∈ H(curl) : vt = 0 on ΓD}. Similarly, we
define H1

D = {v ∈ H1 : v = 0 on ΓD}. We write vt and vn for the
tangential and normal traces, respectively.

Several versions of Maxwell equations lead to the variational prob-
lem: find u ∈ V such that

(1) A(u, v) = f(v) ∀ v ∈ V
with the bilinear-form

A(u, v) :=

∫
Ω

curlu curl v dx+ κ

∫
Ω

uv dx

and the linear form f(.) defined as

f(v) :=

∫
Ω

jv dx,

where j ∈ [L2]
3 is the given current density satisfying div j = 0 and

jn = 0.
We assume that the coefficient κ ∈ R satisfies 0 < κ � 1. In par-

ticular if the magnetostatic problem is regularized by adding a small
L2-term, the coefficient κ is small and the robustness of the algorithm
is a must.
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The analysis becomes often more transparent if one considers the
exact sequence of spaces

(2) H1 ∇−→ H(curl)
curl−→ H(div)

div−→ L2,

with the Sobolev space H1 := {v ∈ L2 : ∇v ∈ [L2]
3}, the vector

valued spaces H(curl) and H(div) := {v ∈ [L2]
3 : div v ∈ L2}, and the

Lebesgue space L2. The exact sequence property means that the range
of the left operator coincides with the kernel of the right operator. For
simplicity we assume simple topologies.

Let the domain Ω be covered with a regular triangulation. We define

the set of vertices V = {Vi},
the set of edges E = {E = [VE1 , VE2 ]},
the set of faces F = {F = [VF1 , VF2 , VF3 ]},

the set of tetrahedra T = {T = [VT1 , VT2 , VT3 , VT4 ]}.
We write V , E, F , and T for the particular vertex, edge, face, and
tetrahedron. Let V v

h denote the finite element space generated by the
Lagrangian vertex elements, let V e

h be the space of Nédélec’s edge ele-

ments [12], the V f
h be the space of Raviart-Thomas face elements [15],

and V t
h be the space of piece-wise constant finite elements. These dis-

crete spaces inherit the exact sequence property

(3) V v
h

∇−→ V e
h

curl−→ V f
h

div−→ V t
h .

The super-scripts v, e, f , and t will be used to indicate vertex-, edge-,
face-, and element-related entities.

The multigrid method is based on a sequence of nested meshes
T0, . . . , TL. On each level l, 0 ≤ l ≤ L, we define the correspond-
ing finite element space V v

l , V
e
l , V

f
l , and V t

l . These spaces are nested,
i.e. there holds

V e
0 ⊂ V e

1 ⊂ . . . ⊂ V e
L

for the Nédélec spaces and as well for the other ones. The Maxwell
equations require special smoothing iterations. One possibility is the
smoother proposed by Hiptmair. It is an additive or multiplicative
sub-space correction method. The finite element space on the level l is
decomposed as

V e
l =

∑
E∈El

span{ϕE}+
∑
V ∈Vl

span{∇ϕV }.

Here, ϕE is the edge-element basis function associated with the edge
E, and ϕV is the H1-conforming nodal basis function associated with
the vertex V . Note that ∇ϕV belongs to the Nédélec finite element



4 JOACHIM SCHÖBERL

space. The smoothing steps for the gradient basis functions can be
implemented as Jacobi or Gauss-Seidel iteration for a scalar potential
problem, see [10].

The smoother by Arnold, Falk, and Winther is based on the subspace
decomposition

V e
l =

∑
V ∈V

VV ,

where VV is the space on the vertex patch

VV = span{ϕE : E is an edge connected to the vertex V }.
We denote the smoothing iteration on level l by

(4) ûl = ul +D−1
l (fl − Alul)

Definition 1. We will need the following norms:
The energy norm:

‖u‖2
A := κ ‖u‖2

L2
+ ‖ curl u‖2

L2

The 2-norm:

|||u|||22 := inf
ϕ∈H2

{
κ‖ϕ‖2

H2 + ‖u−∇ϕ‖2
H2

}
The 0-norm:

|||u|||20 := inf
ϕ∈L2

{
κ‖ϕ‖2

L2
+ ‖u−∇ϕ‖2

L2

}
The discrete 0-norm for ul ∈ Vl:

|||ul|||20,l := inf
ϕ∈V v

l

{
κ‖ϕ‖2

L2
+ ‖ul −∇ϕ‖2

L2

}
Lemma 2. The quadratic forms generated by the smoothers by Hipt-
mair and by Arnold, Falk, and Winther are equivalent to the discrete
0-norms, i.e. there holds

(5) (Dlul, ul) ' |||ul|||20,l.

Follows immediately from [10, 1].
In this paper we introduce a new version of commuting interpolation

operators Πl based on [17, 18]. These new operators are projections
onto the finite element spaces. By means of these operators we form
the multi-level decomposition.

Theorem 3 (Multilevel decomposition). Let u ∈ VL. The multi-level
decomposition

u = Π0u+
L∑

l=1

(Πl − Πl−1)u
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satisfies the stability estimate

(6) ‖Π0u‖2
A +

L∑
l=1

h−2
l |||Πlu− Πl−1u |||20,l � ‖u‖2

A.

3. Commuting Projection Operators

In [17], regularity-free commuting interpolation operators for the se-
quence of spaces H1 → H(curl) → H(div) → L2 have been introduced
and approximation error estimates have been shown. In [18], additional
a posteriori estimates were proven. Now, we modify the operators to
obtain also the projection property.

To overcome point evaluation which requires more regularity, lo-
cal averaging operators [7, 16] for Sobolev spaces have been intro-
duced. For each vertex Vi, let ωi ⊂ B(0, 1) be a domain with measure
meas{ωi} ' 1.

We define the mapping

mi : y ∈ ωi 7→ Vi + ρhiy,

where hi is the local mesh-size, and ρ > 0 is a global parameter which
is introduced to scale the size of the patches. We define the possibly
enlarged mapped sets

ωv
i := conv[Vi,mi(ωi)],

and the convex combinations associated with the edges, faces, and
tetrahedra

ωe
ij := conv[ωv

i , ω
v
j ],

ωf
ijk := conv[ωv

i , ω
v
j , ω

v
k],

ωt
ijkl := conv[ωv

i , ω
v
j , ω

v
k, ω

v
l ].

We assume that these sets are contained in the vertex patches Ωv
i :=

{T : Vi ∈ T}, the edge patches Ωe
ij := Ωv

i ∪Ωv
j , and so on. In particular,

we assume that all these sets are contained in Ω. This construction is
possible for polyhedral Lipschitz domains.

Next, we fix some integer p ≥ 0, and define for each vertex Vi a
function

fi ∈ L∞(ωi)

such that

(7)

∫
ωi

fi(y)w(y) dy = w(0) for all polynomials w up to order p.
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The generic constants will depend on ‖fi‖L∞ . Note that ‖fi‖Lp �
‖fi‖L∞ . One possibility is to choose fi as the unique polynomial satis-
fying (7).

In [17], we have constructed interpolation operators satisfying the
commuting diagram property:

(8)

H1 ∇−→ H(curl)
curl−→ H(div)

div−→ L2yπv

yπe

yπf

yπt

V v
h

∇−→ V e
h

curl−→ V f
h

div−→ V t
h .

We start with a Clément type quasi-interpolation operators for scalar
functions. The interpolant is expanded with respect to the vertex basis
{ϕv

i }

(9) (πvw)(x) :=
∑
Vi∈V

ψv
i (w) ϕv

i (x),

where the vertex evaluation functionals are

ψv
i (w) :=

∫
ωi

fi(y)w(mi(y)) dy.

The interpolation operators for the remaining spaces are all derived
from the specific choice of the interpolation operator πv. Like the
interpolation point for πv is smeared out, we now move all the involved
vertices of the other operators:

(10) (πev)(x) :=
∑

Eij∈E

ψe
ij(v) ϕ

e
ij(x)

with the edge evaluation functionals

ψe
ij(v) :=

∫
ωi

∫
ωj

fi(y1)fj(y2)

mj(y2)∫
mi(y1)

τ · v ds dy2dy1.

We take line integrals starting in the domain ωv
i and terminating in ωv

j ,
and average them by the weighting functions fi and fj. Similarly, we
define operators for H(div),

(11) (πfq)(x) :=
∑

Fijk∈F

ψf
ijk(q) ϕ

f
ijk(x)
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with the face evaluation functionals

ψf
ijk(q) =

∫
ωi

∫
ωj

∫
ωk

fifjfk

∫
[mi(y1),mj(y2),

mk(y3)]

ν · q ds dy3dy2dy1,

and finally for L2,

(12) (πts)(x) =
∑

Tijkl∈T

ψt
ijkl(s) ϕ

t
ijkl(x)

with the tetrahedral evaluation functionals

Ψt
ijkl(s) =

∫
ωi

∫
ωj

∫
ωk

∫
ωl

fifjfkfl

∫
[mi(y1),mj(y2),

mk(y3),ml(y4)]

s dx dy4dy3dy2dy1.

In [17], Theorem 5, the following interpolation error estimates have
been proven:

Theorem 4 (L2-approximation). Let p be the order of consistency as
defined in (7). Then the approximation estimates

‖w − πvw‖L2(T ) � hT |w|H1(ΩT ) for p ≥ 0,

‖v − πev‖L2(T ) � hT |v|H1(ΩT ) for p ≥ 1,

‖q − πfq‖L2(T ) � hT |q|H1(ΩT ) for p ≥ 2,

‖s− πts‖L2(T ) � hT |s|H1(ΩT ) for p ≥ 3

are valid.

In [18], new estimates for a posteriori error analysis in H(curl) and
H(div) have been established. Thus we call them a posteriori estimates.

Theorem 5 (a posteriori estimates). For every u ∈ H(curl) there
exists ϕ ∈ H1 and z ∈ [H1]3 such that

(13) u− πeu = ∇ϕ+ z.

The decomposition satisfies

h−1
T ‖ϕ‖L2(T ) + ‖∇ϕ‖L2(T ) ≤ c ‖u‖L2(eωT )

h−1
T ‖z‖L2(T ) + ‖∇z‖L2(T ) ≤ c ‖ curlu‖L2(eωT ).

The constant c depends only on the shape of triangles in the enlarged
element patch ω̃T containing neighbor elements of neighbor elements of
T , but does not depend on the global shape of the domain Ω.

Now, we construct new operators Πv,Πe,Πf ,Πt sharing most proper-
ties of the previous operators π, and which are also projectors onto the
finite element spaces. The only property they do not share is locality.
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Lemma 6. On the finite element space, the quasi-interpolation opera-
tors converge uniformly to the identity. I.e., there holds

‖uh − πuh‖L2 � ρ‖uh‖L2 ∀uh ∈ Vh.

Here, Vh stands for V v
h , V e

h , V f
h , or V t

h , and π is the corresponding
interpolation operator. The parameter ρ ∈ (0, ρ0) scales the size of the
averaging domains.

The technical proof is given in [19].

Theorem 7. There exists a parameter ρ0 depending only on the shape
of the elements and on the ‖ · ‖L∞-norm of the chosen functionals fi

such that π|Vh
is invertible for all ρ ∈ (0, ρ0).

Proof. There is a ρ0 such that

‖uh − πuh‖L2 ≤
1

2
‖uh‖L2 ∀uh ∈ Vh, ∀ ρ ≤ ρ0.

We apply Neumann series (1− a)−1 =
∑∞

k=0 a
k for |a| < 1 to invert π:

[π|Vh
]−1 = [I − (I − π|Vh

)]−1 =
∞∑

k=0

(I − π|Vh
)k.

Since ‖I − π|Vh
‖L2 ≤ 1

2
, the Neumann series converges to the inverse

[π|Vh
]−1. �

Now, we can define operators

Π := [π|Vh
]−1π.

They are projections onto Vh. There holds the relation

I − Π = (I − Π)(I − π),

which allows to transfer the approximation properties from π to the
projections Π:

‖(I − Π)u‖L2 ≤ ‖(I − Π)‖L2‖(I − π)u‖L2 .

Theorem 8. The projection operator Πe is continuous with respect to
the norms

(14) ‖Πeu‖0 � ‖u‖0

(15) ‖Πeu‖A � ‖u‖A

(16) |||Πeu|||0 � |||u|||0
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Theorem 9. Let κ � 1. The projection operator Πe satisfies the error
estimates

(17) |||u− Πeu|||0 � h‖u‖A

(18) ‖u− Πeu‖A � h|||u|||2

(19) |||u− Πeu|||0 � h2|||u|||2

Proof. Estimate (17) follows from the a posteriori estimate, Theorem 5.
Estimate (18) is a reformulation for the a priori estimates of Theorem 4,
namely

‖u− Πeu‖2
A = κ‖u− Πeu‖2

L2
+ ‖ curl(u− Πeu)‖2

L2

� h2
{
κ|u|2H1 + | curlu|2H1

}
� h2 inf

ϕ∈H2

{
κ|u−∇ϕ|2H1 + κ|∇ϕ|2H1 + ‖ curl(u−∇ϕ)‖2

H1

}
� h2 inf

ϕ∈H2

{
κ‖ϕ‖2

H2 + ‖u−∇ϕ‖2
H2

}
Estimate (19) uses that (I−Πe) is a projector, and combines estimates
(17) and (18). �

4. The Multi-level decomposition result

Now, we are prepared to prove the multi-level decomposition result,
Theorem 3.

Lemma 10. The discrete 0-norm is equivalent to the continuous one,
i.e. there holds

|||ul|||0,l ' |||ul|||0 ∀ul ∈ Vl.

Proof. One estimate is trivial, namely

|||ul|||20 = inf
ϕ∈H1

{
κ‖ul −∇ϕ‖2

L2
+ ‖ϕ‖2

L2

}
≤ inf

ϕ∈V v
l

{
κ‖ul −∇ϕ‖2

L2
+ ‖ϕ‖2

L2

}
= |||ul|||20,l.
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To verify the other one, we insert the continuous, commuting pro-
jection operators:

|||ul|||20,l = inf
ϕl∈V v

l

{
κ‖ul −∇ϕl‖2

L2
+ ‖ϕl‖2

L2

}
≤ inf

ϕ∈H1

{
κ‖ul −∇Πv

l ϕ‖2
L2

+ ‖Πv
l ϕ‖2

L2

}
= inf

ϕ∈H1

{
κ‖Πe

l (ul −∇ϕ)‖2
L2

+ ‖Πv
l ϕ‖2

L2

}
� inf

ϕ∈H1

{
κ‖ul −∇ϕ‖2

L2
+ ‖ϕ‖2

L2

}
= |||ul|||20

�

From the continuity estimate (16) there follows immediately

|||(Πl − Πl−1)u|||0 � |||u|||0 ∀u ∈ [L2]
3 +∇L2

The approximation estimate (19) of Theorem 9 leads to

|||(Πl−Πl−1)u|||0 ≤ |||Πlu−u|||0+|||u−Πl−1u|||0 � h2
l |||u|||2 ∀u ∈ ∇H2+[H2]3.

By combining Lemma 10, the triangle inequality, and the two esti-
mates above, and exchanging the order of quantifies, we obtain

|||(Πl − Πl−1)u|||20,l � inf
u=u1+u2

|||(Πl − Πl−1)u1|||20 + |||(Πl − Πl−1)u2|||20

� inf
u=u1+u2

{
|||u1|||20 + h4

l |||u2|||22
}

= inf
u=u1+u2

inf
u1=∇ϕ1+z1
u2=∇ϕ2+z2

{
κ‖ϕ1‖2

L2
+ ‖z1‖2

L2
+ κh4

l ‖ϕ2‖2
H2 + h4

l ‖z2‖2
H2

}
= inf

u=∇ϕ+z
κ inf

ϕ=ϕ1+ϕ2

{
‖ϕ1‖2

0 + h4
l ‖ϕ2‖2

H2

}
+ inf

z=z1+z2

{
‖z1‖2

0 + h4
l ‖z2‖2

H2

}
Now, we take the sum for l = 1 . . . L. We use that

∑
inf[. . .] ≤

inf
∑

[. . .] to obtain
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L∑
l=1

h−2
l |||(Πl − Πl−1)u|||20,l

� inf
u=∇ϕ+z

κ
L∑

l=1

inf
ϕ=ϕ1+ϕ2

{
h−2

l ‖ϕ1‖2
L2

+ h2
l ‖ϕ2‖2

H2

}
+

L∑
l=1

inf
z=z1+z2

{
h−2

l ‖z1‖2
L2

+ h2
l ‖z2‖2

H2

}
.

The sums are dominated by the K-functional interpolation norm
‖ · ‖[L2,H2]1/2

= ‖ · ‖H1 . An elementary proof can be found in [5].
Together with a partition of unity on the coarse grid one can show
that

L∑
l=1

inf
ϕ=ϕ1+ϕ2

{
h−2

l ‖ϕ1‖2
L2

+ h2
l ‖ϕ2‖2

H2

}
� h−2

0 ‖ϕ‖2
L2

+ ‖∇ϕ‖2
L2
,

where the involved constant only depends on the shape of the elements,
but not on the global domain.

Thus, the sum is bounded by

L∑
l=1

h−2
l |||(Πl − Πl−1)u|||20,l

� inf
u=∇ϕ+z

κ
{
h−2

0 ‖ϕ‖2
L2

+ ‖∇ϕ‖2
L2

}
+ h−2

0 ‖z‖2
L2

+ ‖∇z‖2
L2
.(20)

Now, we apply Theorem 5 to bound the coarse grid interpolation error

u− Πe
0u = ∇ϕ+ z

such that

‖∇ϕ‖2
L2

+ h−2
0 ‖ϕ‖2

L2
� ‖u‖2

L2
,

‖∇z‖2
L2

+ h−2
0 ‖z‖2

L2
� ‖ curl u‖2

L2
.

Since Πl are projections, and V0 ⊂ Vl, there holds

L∑
l=1

h−2
l |||(Πl − Πl−1)u|||20,l =

L∑
l=1

h−2
l |||(Πl − Πl−1)(u− Πe

0u)|||20,l � ‖u‖2
A.

The bound for the coarse grid term in (6) follows directly from the
continuity of the interpolation operators.
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