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Abstract. We consider a stabilized finite element formulation for the Reissner-Mindlin plate
bending model. The method uses standard bases functions for the deflection and the rotation vector.
We apply a standard multigrid algorithm to obtain a preconditioner. We prove that the condition
number of the preconditioned system is uniformly bounded with respect to the multigrid level and
the thickness parameter. The abstract multigrid theory is applied for carefully chosen norms. We
have to prove also some new finite element error estimates. Numerical results confirm the analysis.
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1. Introduction. In this paper we consider a family of stabilized finite ele-
ment methods for the Reissner-Mindlin plate model. The origin of the method is
in a Galerkin-Least-Squares method introduced by Hughes and Franca [11]. There,
the shear force was discretized independently and locally condensed. The method
introduced in [20] and further analyzed in [14] avoids the additional variable; it is for-
mulated directly in the displacement variables, the deflection and the rotation vector.
The corresponding lowest order method is due to Pitkäranta [17].

This stabilized method has two advantages compared to more traditional meth-
ods. First, standard basis functions can be used; in particular, no bubble-functions
are needed. Second, the condition number of the stiffness matrix is reduced, which
opens the way for using standard multigrid algorithms for the positive definite system
matrix.

Classical textbooks on multigrid methods are [10] and [5]. So far, there has
been relatively few work on multigrid methods for Reissner-Mindlin plate methods.
The first is the work of Peisker, Rust and Stein [16], in which Pitkärantas method
is analyzed. In a subsequent paper by Peisker [15] the Hughes-Franca method is
analyzed. In this algorithm, the shear force is kept as an independent unknown, and
the iteration is based on the indefinite stiffness matrix of the mixed form. The same
holds for the multigrid methods analyzed in the papers by Arnold, Falk and Winther
[3] and Brenner [8]. In [18, 19] multigrid methods for stiffness matrices in displacement
variables were analyzed. There, block-smoothers are required to compensate the ill-
conditioning arising from the more classical elements.

The mesh-dependent, stabilized finite element formulation leads to different bilinear-
forms on different levels. Thus, the non-nested multigrid analysis has to be applied
[4, 6]. Our analysis is based on the abstract framework given in [5].

The paper is organized as follows. In Section 2 we define the method, state
available results, and prove some new error estimates as needed for our multigrid
analysis. In Section 3 we define and analyze the multigrid method. Numerical results
confirming the analysis are given in Section 4.

2. The plate model. Let Ω ⊂ IR2 be the midsurface of the plate and suppose
that the plate is clamped along the boundary Γ. The variational formulation of the
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Reissner-Mindlin model is: find the deflection w ∈ H1
0 (Ω) and the rotation vector

β = (βx, βy) ∈ [H1
0 (Ω)]2 such that

a(β,η) + t−2(∇w−β,∇v− η) = (f, v) + (f ,η) ∀(v,η) ∈ H1
0 (Ω)× [H1

0 (Ω)]2.(2.1)

Here, t > 0 is the thickness of the plate and f ∈ L2(Ω) is the transverse load acting
on Ω. The additional, non-standard source term f ∈ [L2(Ω)]2 is required for the
multigrid analysis. The bilinear form a represents bending energy and is defined as

a(β,η) =
1
6

{
(ε(β), ε(η)) +

ν

1− ν
(div β,div η)

}
,(2.2)

where ν is the Poisson ratio, ε(·) is the small strain tensor and div stands for the
divergence, viz.

ε(β) =
1
2

{
∇β + (∇β)T

}
,(2.3)

div β =
∂βx

∂x
+

∂βy

∂y
.(2.4)

For D ⊂ IR2 we define the Sobolev spaces Hs(D) and Hs
0(D), with s ≥ 0,

in the usual way, i.e. first for integral values s and then for nonintegral values by
interpolation, cf. [12]. As usual, we define Hs(D) := [H−s

0 (D)]∗ for s < 0. The
norms and seminorms will be denoted by ‖·‖s,D and |·|s,D, respectively. The L2-inner
products in L2(D), [L2(D)]2 or [L2(D)]2×2 are denoted by (·, ·)D. The subscript D
will be dropped when D = Ω.

By taking the scaled shear force

q = t−2(∇w − β)(2.5)

as an independent unknown one obtains the following mixed formulation: find (w,β, q) ∈
H1

0 (Ω)× [H1
0 (Ω)]2 × [L2(Ω)]2 such that

a(β,η) + (q,∇v − η) = (f, v) + (f ,η) ∀(v,η) ∈ H1
0 (Ω)× [H1

0 (Ω)]2,
(∇w − β, s)− t2(q, s) = 0 ∀s ∈ [L2(Ω)]2.(2.6)

The distributional differential equations of this system are obtained by integrating by
parts:

Lβ + q = f in Ω,

−div q = f in Ω,

−t2q +∇w − β = 0 in Ω,(2.7)
w = 0, β = 0 on ∂Ω.

Here, the differential operator L is defined as

Lη =
1
6
div

{
ε(η) +

ν

1− ν
div ηI

}
,(2.8)

where we used the notation div for the divergence operator applied to a second order
tensor:

div m = (
∂mxx

∂x
+

∂mxy

∂y
,
∂myx

∂x
+

∂myy

∂y
).(2.9)
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For the moment tensor m defined by

m =
1
6

{
ε(β) +

ν

1− ν
div βI

}
.(2.10)

there holds

Lβ = div m.(2.11)

The first two equations in (2.7) above are the local equilibrium equations between
the moment, shear force and load. The third equation represents the constitutive
relation between the shear strain and shear force.

In the limit t → 0 the solution (w,β) = (wt,βt) of the Reissner–Mindlin equations
converges to the Kirchhoff solution with

β0 = ∇w0.(2.12)

The limit solution w0 satisfies the biharmonic equation in the domain Ω and only two
boundary conditions on each part of the boundary, cf. [1]. This singularity gives rise
to the boundary layers in the solution which complicates the convergence analysis of
the methods.

Throughout the rest of the paper we assume that the domain Ω is convex. The
following regularity estimate collects results from [2, 13]:

Theorem 2.1. Let Ω be a convex polygonal domain. Denote by (w,β, q) the
Reissner–Mindlin solution for the clamped plate and let w = w0 +wr, where w0 is the
deflection obtained from the Kirchhoff model. Then there holds

‖w0‖3 + t−1‖wr‖2 + ‖β‖2 + ‖q‖0 + t‖q‖1 ≤ C(‖f‖−1 + t‖f‖0 + ‖f‖0).(2.13)

In our analysis we will utilize the following t-dependent norms. For (v,η) ∈
L2(Ω)× [L2(Ω)]2 we define

‖(v,η)‖1,t = ‖η‖0 + inf
v=v0+vr

v0∈H1(Ω)

{
‖v0‖1 + t−1‖vr‖0

}
,(2.14)

for (v,η) ∈ H2(Ω)× [H2(Ω)]2 we define

‖(v,η)‖3,t = ‖η‖2 + inf
v=v0+vr

v0∈H3(Ω)∩H2
0
(Ω)

{
‖v0‖3 + t−1‖vr‖2

}
,(2.15)

and for (f,f) ∈ L2(Ω)× [L2(Ω)]2 we define

‖(f,f)‖−1,t = ‖f‖0 + ‖f‖−1 + t‖f‖0.(2.16)

The regularity estimate (2.13) immediately gives

‖(w,β)‖3,t ≤ C‖(f,f)‖−1,t.(2.17)

Furthermore, the norms ‖(·, ·)‖−1,t and ‖(·, ·)‖1,t are dual to each other:
Theorem 2.2. There holds

C1 ‖(f,f)‖−1,t ≤ sup
(v,η)

(f, v) + (f ,η)
‖(v,η)‖1,t

≤ C2 ‖(f,f)‖−1,t,(2.18)

where C1 and C2 do not depend on t.
The proof is given in [19], page 41.
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2.1. Finite element subspaces. We will use standard notation from finite
element analysis [7]. Let Ch be the partitioning of Ω̄ into triangles or convex quadri-
laterals satisfying the usual compatibility conditions. For generality we allow a mesh
consisting of both triangles and quadrilaterals. As usual, hK denotes the diameter of
K ∈ Ch, and h stands for the global mesh parameter h = maxK∈Ch

hK . We define

Rm(K) =
{

Pm(K) when K is a triangle,
Qm(K) when K is a quadrilateral.(2.19)

For k ≥ 1, we define the finite element subspaces for the deflection and the rotation
as

Wh = {v ∈ H1
0 (Ω) | v|K ∈ Rk+1(K), ∀K ∈ Ch},(2.20)

Vh = {η ∈ [H1
0 (Ω)]2 | η|K ∈ [Rk(K)]2, ∀K ∈ Ch}.(2.21)

The finite element method of [20, 14] is as follows:
Method 2.1. Given the loading (f,f) ∈ L2(Ω) × [L2(Ω)]2, find (wh,βh) ∈

Wh × Vh such that

Ah(wh,βh; v,η) = Fh(v,η) ∀(v,η) ∈ Wh × Vh,(2.22)

with the bilinear and linear forms defined as

Ah(z,φ; v,η) = a(φ,η)−
∑

K∈Ch

αh2
K(Lφ,Lη)K

+
∑

K∈Ch

(t2 + αh2
K)−1(∇z − φ− αh2

KLφ,∇v − η − αh2
KLη)K .(2.23)

Fh(v,η) = (f, v) + (f ,η)−
∑

K∈Ch

αh2
Kt2(t2 + αh2

K)−1(f ,Lη)K(2.24)

−
∑

K∈Ch

(t2 + αh2
K)−1αh2

K(f ,∇v − η)K .

Here and throughout the paper α is a positive parameter lying in the range 0 < α < CI ,
where CI is the constant in the inverse inequality

CI

∑
K∈Ch

h2
K‖Lφ‖2

0,K ≤ a(φ,φ) ∀φ ∈ Vh.

From the solution (wh,βh) we then calculate the approximation for the shear by

qh|K = (t2 + αh2
K)−1

(
∇wh − βh + αh2

K(f −Lβh)
)
|K ∀K ∈ Ch.(2.25)

Note that from (2.7) we see that the exact shear satisfies

q|K = (t2 + αh2
K)−1

(
∇w − β + αh2

K(f −Lβ)
)
|K ∀K ∈ Ch.(2.26)

Remark 2.1. For triangular elements with k = 1 it holds Lφ = 0, ∀φ ∈ Vh,
and the bilinear form is simply

Ah(z,φ; v,η) = a(φ,η) +
∑

K∈Ch

(t2 + αh2
K)−1(∇z − φ,∇v − η)K .(2.27)



Schöberl- Stenberg. MGMs for RM plates. Preprint. October 13, 2007 5

Furthermore, there is no upper limit for the parameter α. This has been first proposed
by Fried and Yang [9] and analyzed by Pitkäranta [17]. For k = 1, this formulation
can be used for quadrilaterals as well.

In our previous works [20, 14] we have analyzed the method for f = 0. Hence,
we will here prove the consistency for a general loading.

Theorem 2.3. The solution (w,β) to (2.7) satisfies the equation

Ah(w,β; v,η) = Fh(v,η) ∀(v,η) ∈ Wh × Vh.(2.28)

Proof. Recalling the first equation in (2.7), the expression (2.26), and the varia-
tional form (2.6), we get

Ah(w,β; v,η)

= a(β,η)−
∑

K∈Ch

αh2
K(Lβ,Lη)K

+
∑

K∈Ch

(t2 + αh2
K)−1(∇w − β − αh2

KLβ,∇v − η − αh2
KLη)K

= a(β,η) +
∑

K∈Ch

αh2
K(q − f ,Lη)K

+
∑

K∈Ch

(q − αh2
K(t2 + αh2

K)−1f ,∇v − η − αh2
KLη)K

= a(β,η) +
∑

K∈Ch

αh2
K(q,Lη)K −

∑
K∈Ch

αh2
K(f ,Lη)K

+(q,∇v − η)−
∑

K∈Ch

αh2
K(q,Lη)K

−
∑

K∈Ch

αh2
K(t2 + αh2

K)−1(f ,∇v − η − αh2
KLη)K

= a(β,η) + (q,∇v − η)−
∑

K∈Ch

αh2
K(f ,Lη)K

−
∑

K∈Ch

αKh2(t2 + αh2
K)−1(,∇v − η − αh2

KLη)K

= (f, v) + (f ,η)−
∑

K∈Ch

αh2
K(f ,Lη)K

−
∑

K∈Ch

αh2
K(t2 + αh2

K)−1(f ,∇v − η − αh2
KLη)K

= (f, v) + (f ,η)−
∑

K∈Ch

αh2
K(t2 + αh2

K)−1(f ,∇v − η)K

−
∑

K∈Ch

(1− αh2
K(t2 + αh2

K)−1)(f , αh2
KLη)K .

= (f, v) + (f ,η)−
∑

K∈Ch

αh2
K(t2 + αh2

K)−1(f ,∇v − η)K

−
∑

K∈Ch

t2(t2 + αh2
K)−1)(f , αh2

KLη)K

= Fh(v,η).
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The following norms are natural for the stability and error analysis:
Definition 2.4. For (v,η) ∈ H1

0 (Ω)× [H1
0 (Ω)]2 we define

|||(v,η)|||2h = ‖v‖2
1 + ‖η‖2

1 +
∑

K∈Ch

(t2 + h2
K)−1‖∇v − η‖2

0,K ,(2.29)

and for r ∈ [L2(Ω)]2

‖r‖h = (
∑

K∈Ch

(t2 + h2
K)‖r‖2

0,K)1/2.(2.30)

The stability of the method was proven in [14]:
Theorem 2.5. There is a positive constant C such that

Ah(v,η; v,η) ≥ C|||(v,η)|||2h ∀(v,η) ∈ Wh × Vh.(2.31)

Stability, consistency, and regularity imply the following error estimate:
Theorem 2.6. For the solution (wh,βh) of (2.22) it holds

|||(w − wh,β − βh)|||h + ‖q − qh‖h ≤ Ch‖(f,f)‖−1,t.(2.32)

The proof follows [14], where also some refined estimates were proven.
For the multigrid analysis we additionally need estimates for the discrete solution

with an inconsistent right hand side given by the following method
Method 2.2. Given the loading (f,f) ∈ L2(Ω) × [L2(Ω)]2, find (w∗

h,β∗
h) ∈

Wh × Vh such that

Ah(w∗
h,β∗

h; v,η) = (f, v) + (f ,η) ∀(v,η) ∈ nWh × Vh.(2.33)

The inconsistent right hand side does not spoil the O(h) convergence in discrete
energy norms:

Theorem 2.7. For the solution (w∗
h,β∗

h) of (2.33) it holds

|||(w − w∗
h,β − β∗

h)|||h ≤ Ch‖(f,f)‖−1,t.(2.34)

Proof. The difference between the solutions (wh,βh) of (2.22) and (w∗
h,β∗

h) of
(2.33) is due to the consistency term. For (v,η) ∈ Wh × Vh there holds

Ah(wh − w∗
h,βh − β∗

h, v,η)

= −
∑

K∈Ch

αh2
Kt2(t2 + αh2

K)−1(f ,Lη)K −
∑

K∈Ch

(t2 + αh2
K)−1αh2

K(f ,∇v − η)K

≤ c
∑

K∈Ch

hK‖f‖0,K ‖η‖1,K + c
∑

K∈Ch

hK‖f‖0,K (t2 + αh2
K)−1/2‖∇v − η‖0,K

≤ ch ‖f‖0 |||(v,η)|||h.

Now choose (v,η) = (wh − w∗
h,βh − β∗

h), apply the stability estimate (2.31), and
divide by one factor |||(wh − w∗

h,βh − β∗
h|||h to observe

|||(wh − w∗
h,βh − β∗

h)|||h ≤ c h ‖f‖0.
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The rest follows from Theorem 2.6 and the triangle inequality.
The multigrid analysis will also require the following improved error estimates in

weaker norms:
Theorem 2.8. For the solutions (wh,βh) of (2.22) and (w∗

h,β∗
h) of (2.33), there

holds

‖(w − wh,β − βh)‖1,t ≤ Ch2‖(f,f)‖−1,t.(2.35)

and

‖(w − w∗
h,β − β∗

h)‖1,t ≤ Ch2‖(f,f)‖−1,t(2.36)

Proof. Step 1. Let For (l, l) given, let (z,θ) ∈ H1
0 (Ω)× [H1

0 (Ω)]2 be the solution
to the problem

a(θ,η) + t−2(∇z− θ,∇v− η) = (l, v) + (l,η) ∀(v,η) ∈ H1
0 (Ω)× [H1

0 (Ω)]2.(2.37)

Denoting r = t−2(∇z − θ), the regularity estimate (2.13) gives

‖(z,θ)‖3,t + ‖r‖0 ≤ C‖(l, l)‖−1,t.(2.38)

Note also that it holds

r|K = (t2 + αh2
K)−1

(
∇z − θ + αh2

K(l−Lθ)
)
|K ∀K ∈ Ch.(2.39)

As in Theorem 2.3 we now have

Ah(z,θ; v,η) = Lh(v,η) ∀(v,η) ∈ Wh × Vh,(2.40)

with

Lh(v,η) = (l, v) + (l,η)−
∑

K∈Ch

αh2
Kt2(t2 + αh2

K)−1(l,Lη)K(2.41)

−
∑

K∈Ch

(t2 + αh2
K)−1αh2

K(l,∇v − η)K .

Step 2. Next, we let z̃ ∈ Wh and θ̃ ∈ Vh be the the solution of

Ah(z̃, θ̃; v,η) = Lh(v,η) ∀(v,η) ∈ Wh × Vh,(2.42)

and define r̃ by

r̃|K = (t2 + αh2
K)−1

(
∇z̃ − θ̃ + αh2

K(l−L θ̃)
)
|K ∀K ∈ Ch.(2.43)

Hence, it holds

Ah(z − z̃,θ − θ̃; v,η) = 0 ∀(v,η) ∈ Wh × Vh,(2.44)

and

|||(z − z̃,θ − θ̃)|||h + ‖r − r̃‖h ≤ Ch‖(l, l)‖−1,t.(2.45)
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From this it also follows that( ∑
K∈Ch

h2
K‖L θ̃‖2

0.K

)1/2 + ‖ r̃‖h ≤ Ch‖(l, l)‖−1,t.(2.46)

Step 3. We choose v = w − wh and η = β − βh in (2.40) and obtain

(l, w − wh) + (l,β − βh) = Ah(z,θ;w − wh,β − βh)

+
∑

K∈Ch

αh2
Kt2(t2 + αh2

K)−1(l,L (β − βh))K(2.47)

+
∑

K∈Ch

(t2 + αh2
K)−1αh2

K(l,∇(w − wh)− (β − βh))K .

From (2.22) and (2.28) we have

Ah(w − wh,β − βh; z̃, θ̃) = 0.(2.48)

Using the symmetry of Ah we then get

(l, w − wh) + (l,β − βh)(2.49)

= Ah(z − z̃,θ − θ̃;w − wh,β − βh) +
∑

K∈Ch

αh2
Kt2(t2 + αh2

K)−1(l,L (β − βh))K

+
∑

K∈Ch

(t2 + αh2
K)−1αh2

K(l,∇(w − wh)− (β − βh))K .

The first term above we estimate using Theorem 2.6 and (2.45)

|Ah(z − z̃,θ − θ̃;w − wh,β − βh)|
≤ C‖(z − z̃,θ − θ̃)‖h|||(w − wh,β − βh)|||h
≤ Ch2‖(l, l)‖−1,t‖(f,f)‖−1,t.

The second term is treated as follows

|
∑

K∈Ch

αh2
Kt2(t2 + αh2

K)−1(l,L (β − βh))K |(2.50)

≤ Ch‖l‖0

( ∑
K∈Ch

h2
K‖L (β − βh)‖2

0,K

)1/2(2.51)

≤ Ch2‖(l, l)‖−1,t‖(f,f)‖−1,t,

where the last step follows from Theorem 2.6 and a scaling argument. The last term
is readily estimated

|
∑

K∈Ch

(t2 + αh2
K)−1αh2

K(l,∇(w − wh)− (β − βh))K |

≤ Ch‖l‖0|||(w − wh,β − βh)|||h(2.52)
≤ Ch2‖(l, l)‖−1,t‖(f,f)‖−1,t.

The estimate (2.35) now follows by combining (2.49) – (2.52).
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Step 4. Finally, we turn to the estimate for (w−w∗
h,β−β∗

h). From (2.40) we get

(l, w − w∗
h) + (l,β − β∗

h) = Ah(z,θ;w − w∗
h,β − β∗

h)

+
∑

K∈Ch

αh2
Kt2(t2 + αh2

K)−1(l,L (β − β∗
h))K(2.53)

+
∑

K∈Ch

(t2 + αh2
K)−1αh2

K(l,∇(w − wh)− (β − β∗
h))K .

Next, adding and subtracting Ah(z̃, θ̃;w − w∗
h,β − β∗

h) gives

(l, w − w∗
h) + (l,β − β∗

h) = Ah(z − z̃,θ − θ̃;w − w∗
h,β − β∗

h)(2.54)

+
∑

K∈Ch

αh2
Kt2(t2 + αh2

K)−1(l,L (β − β∗
h))K

+
∑

K∈Ch

(t2 + αh2
K)−1αh2

K(l,∇(w − wh)− (β − β∗
h))K

+Ah(z̃, θ̃;w − w∗
h,β − β∗

h).

Using (2.45), (2.46) all except the last term are estimated as in Step 3. This last term
we treat using (2.42), (2.33) and (2.24)

Ah(z̃, θ̃;w − w∗
h,β − β∗

h) = Ah(z̃, θ̃;w,β)−Ah(z̃, θ̃;w∗
h,β∗

h)
= Fh(z̃, θ̃)− (f, z̃) + (f , θ̃)(2.55)

= −
∑

K∈Ch

αh2
Kt2(t2 + αh2

K)−1(f ,L θ̃)K −
∑

K∈Ch

(t2 + αh2
K)−1αh2

K(f ,∇z̃ − θ̃)K .

Next, we use (2.46)

|
∑

K∈Ch

αh2
Kt2(t2 + αh2

K)−1(f ,L θ̃)K |(2.56)

≤ Ch‖f‖0

( ∑
K∈Ch

h2
K‖L θ̃‖2

0.K

)1/2 ≤ Ch2‖(l, l)‖−1,t‖(f,f)‖−1,t.

From (2.43) and (2.46) we get

|
∑

K∈Ch

(t2 + αh2
K)−1αh2

K(f ,∇z̃ − θ̃)K |(2.57)

= |
∑

K∈Ch

αh2
K

(
f , r̃ + αh2

K(t2 + αh2
K)−1(L θ̃ − l)

)
K
|

≤ Ch‖f‖0‖r̃‖h + Ch‖f‖0

( ∑
K∈Ch

h2
K‖L θ̃‖2

0,K

)1/2 + Ch2‖f‖0‖l‖0

≤ Ch2‖(l, l)‖−1,t‖(f,f)‖−1,t.(2.58)

The asserted estimate (2.36) now follows by combining the estimates in this step.

3. The multigrid method. In this section we prove that a simple multigrid
method leads to a solver with optimal complexity and which is robust with respect
to the parameter t.
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The stabilized bilinear-form Ah depends on the underlying mesh. Thus, the
sequence of meshes lead to different operators on each level. Hence, we apply the
non-nested framework from [6] and adapt the notation from [5], Section 4.

We assume that we have a sequence of hierarchically refined meshes which we
denote by C1, C2, . . . CJ . On each level k, 1 ≤ k ≤ J , the finite element spaces are
denoted by Wk × Vk. We note that the spaces are nested, i.e.,

Wk−1 × Vk−1 ⊂ Wk × Vk

such that no special grid transfer operators have to be defined. On each level we
denote the bilinear form by

Ak : (Wk × Vk)× (Wk × Vk) → IR

in accordance to (2.23).
Since, we assume a hierarchy of meshes they are all uniform and we denote the

corresponding mesh-size with hk (or h when it is irrelevant which level is in question).
On each level k, an inner product (·; ·)k : (Wk ×Vk)× (Wk ×Vk) → IR is defined

as

(z, δ; v,η)k := h2
k(hk + t)−2 (z, v) + h2

k (δ,η),

and ‖ · ‖k denotes the corresponding norm. We define the operator Ak : Wk × Vk →
Wk × Vk by

(Ak(z, δ); v,η)k = Ak(z, δ; v,η) ∀(v,η) ∈ Wk × Vk.

Furthermore, we define the projections Pk−1 : Wk × Vk → Wk−1 × Vk−1 and Qk−1 :
Wk × Vk → Wk−1 × Vk−1 by

Ak−1(Pk−1(z, δ); v,η) = Ak(z, δ; v,η) ∀(v,η) ∈ Wk−1 × Vk−1,

and

(Qk−1(z, δ); v,η)k−1 = (z, δ; v,η)k ∀(v,η) ∈ Wk−1 × Vk−1.

Finally, let Rk : Wk × Vk → Wk × Vk be the smoothing operator defined by a scaled
Jacobi iteration or by a Gauss-Seidel iteration. A symmetrized smoothing iteration is
defined by setting R

(l)
k = Rk if l is odd, and R

(l)
k := Rt

k if l is even. Here, (·)t denotes
the adjoint operator with respect to (·; ·)k.

We define the multigrid operator BJ by induction. Set B1 = A−1
1 . For k =

2, . . . , J we define Bk : Wk × Vk → Wk × Vk as follows.

Algorithm 3.1. With gk ∈ Wk ×Vk we define Bkgk by the following algorithm.
Initialize x0

k ∈ Wk × Vk as x0
k = 0

for l = 0 . . .mk − 1 do

xl+1
k := xl

k + R
(l)
k (gk −Akxl

k)
xmk+1

k = xmk

k + Bk−1Qk−1(gk −Akxmk

k )
for l = mk+1 . . . 2mk do

xl+1
k := xl

k + R
(l−1)
k (gk −Akxl

k)
Bkgk := x2mk+1

k .
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We assume that the number of smoothing steps depends on the level as mk =
2J−k. This is the so called variable V-cycle multigrid algorithm.

Theorem 3.1. Assume that the Reissner Mindlin plate problem satisfies the
regularity estimate (2.13). Then the multigrid algorithm provides an optimal precon-
ditioner BJ , i.e.

cond(BJAJ) ≤ C.

The constant C does neither depend on the number of levels, nor on the parameter t.
Proof. We apply Theorem 4.6 from [5]. It is easily checked that there holds an

inverse inequality

Ak(vk,ηk; vk,ηk) ≤ λk ‖(vk,ηk)‖2
k ∀(v,η) ∈ Wk × Vk

with λk ' h−4
k . We have to check that the following conditions hold for all (v,η) ∈

Wk × Vk:
• (A.4) :

(Rk(vk,ηk); vk,ηk)k ≥ ch4
k ‖(vk,ηk)‖k,(3.1)

where Rk := (I −RkAk)(I −Rt
kAk)A−1

k is the symmetrized smoother.
• (A.10) with the choice α = 1/2:

Ak((I − Pk−1)(vk,ηk); vk,ηk) ≤ ch2
k ‖Akv‖k Ak(vk,ηk; vk,ηk)1/2(3.2)

for all (v,η) ∈ Wk × Vk.
These conditions are proven in Lemma 3.2 and Lemma 3.5 below.

Lemma 3.2 (Smoothing Property). Let the smoother be defined by a properly
scaled Jacobi iteration, or by the symmetrized Gauss-Seidel iteration. Then the con-
dition (3.1) is satisfied.

Proof. We apply Theorem 5.1 and Theorem 5.2 from [5], respectively. For this
we have to show that the decomposition

(vk,ηk) =
dimWk∑

i=1

(vi, 0) +
dimV k∑

i=1

(0,ηi)

into the one dimensional spaces generated by the finite element basis functions is
stable with respect to the ‖ · ‖k-norm, i.e.,

dimWk∑
i=1

‖(vi, 0)‖2
k +

dimV k∑
i=1

‖(0,ηi)‖2
k ≤ c ‖(v,η)‖2

k.

This holds since both components of ‖ · ‖k are simply scaled L2-norms. Furthermore,
we need that the number of overlapping finite element functions is uniformly bounded.

Lemma 3.3 (Approximation property). Let (zk, δk) ∈ Wk ×Vk be given. Define
the coarse grid functions (zk−1, δk−1) ∈ Wk−1 × Vk−1 by the projection

Ak−1(zk−1, δk−1; vk−1,ηk−1) = Ak(zk, δk; vk−1,ηk−1)(3.3)

for all (vk−1,ηk−1) ∈ Wk−1×Vk−1. Then the following approximation estimate holds:

‖(zk − zk−1, δk − δk−1)‖1,t ≤ Ch2
k sup

(v,η)∈Wk×V k

Ak(zk, δk; v,η)
‖(v,η)‖1,t
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Proof. Let (zk, δk) ∈ Wk × Vk be given. Let Πk and Πk be Clément projection
operators. Define g ∈ L2(Ω) and g ∈ [L2(Ω)]2 by

(g, v) + (g,η) := Ak(zk, δk;Πkv,Πkη). ∀ v ∈ L2(Ω), ∀η ∈ [L2(Ω)]2.(3.4)

There holds

‖(g, g)‖−1,t := sup
(v,η)∈Wk×V k

(g, v) + (g,η)
‖(v,η)‖1,t

= sup
(v,η)∈Wk×V k

Ak(zk, δk;Πkv,Πkη)
‖(v,η)‖1,t

= sup
(v,η)∈Wk×V k

Ak(zk, δk;Πkv,Πkη)
‖(Πkv,Πkη)‖1,t

‖(Πkv,Πkη)‖1,t

‖(v,η)‖1,t

= sup
(v,η)∈Wk×V k

Ak(zk, δk; v,η)
‖(v,η)‖1,t

‖(Πk ,Πk)‖1,t

Since Πk is bounded in the L2-norm as well as in the H1-seminorm, and Πk is bounded
in the L2-norm, the compound operator is bounded with respect to ‖ · ‖1,t.

We pose the plate problem: find (z, δ) ∈ H1
0 (Ω)× [H1

0 (Ω)]2 such that

A(z, δ; v,η) = (g, v) + (g,η)

Using that (Πk ,Πk) is a projection on Wk × Vk, we recast (3.4) as

Ak(zk, δk; v,η) = (g, v) + (g,η) ∀ (v,η) ∈ Wk × Vk.

This means that (zk, δk) is the finite element solution obtained by Method 2.2 (where
the consistency terms on the right hand side were dropped.) Theorem 2.8 provides
the estimate

‖(z − zk, δ − δk)‖1,t ≤ ch2
k ‖(g, g)‖−1,t.

Using (3.3), we observe that

Ak−1(zk−1, δk−1; v,η) = (g, v) + (g,η) ∀ (v,η) ∈ Wk−1 × Vk−1,

and again Theorem 2.8 proves

‖(z − zk−1, δ − δk−1)‖1,t ≤ ch2
k−1 ‖(g, g)‖−1,t.

From the triangle inequality we obtain the result

‖(zk−1 − zk, δk−1 − δk)‖1,t ≤ ch2
k ‖(g, g)‖−1,t

≤ ch2
k sup

(v,η)∈Wk×V k

Ak(zk, δk; v,η)
‖(v,η)‖1,t

.

The norms ‖ · ‖k and Ak(·, ·)1/2 can be embedded into a scale of norms. For this
we set

|||(v,η)|||0 := ‖(v,η)‖k and |||(v,η)|||2 := Ak(v,η; v,η)1/2.
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Intermediate norms are defined by interpolation [7, Chapter 12], i.e.

|||(v,η)|||s := ‖(v,η)‖[|||·|||0,|||·|||2]s/2
s ∈ (0, 2).

Furthermore, the scale is extended by duality to the range (2, 4]

|||(v,η)|||2+s := sup
(z,δ)

Al(v,η; z, δ)
|||(z, δ)|||2−s

s ∈ (0, 2].

In particular there holds

|||(v,η)|||4 = sup
(z,δ)

Ak(v,η; z, δ)
|||(z, δ)|||0

= sup
(z,δ)

(Ak(v,η); z, δ)k

‖(z, δ)‖k
= ‖Ak(v,η)‖k.

Lemma 3.4. The discrete 1-norm and the continuous 1-norm satisfy the following
relation:

|||(v,η)|||1 ≤ C‖(v,η)‖1,t ∀ (v,η) ∈ Wk × Vk.(3.5)

Proof. Let (v,η) ∈ Wk ×Vk. By the definition of the ‖ · ‖1,t norm, there exists a
decomposition v = v0 + vr such that

‖v0‖1 + t−1‖vr‖0 + ‖η‖0 ≤ ‖(v,η)‖1,t.

Although v is a finite element function, its decomposition will in general not remain
in the finite element space. To return to the finite element space, we define Clément
projection operators Πk : L2(Ω) → Wk and Πk : [L2(Ω)]2 → Vk with the following
approximation properties:

‖v −Πkv‖s ≤ hm−s
k ‖v‖m, 0 ≤ s ≤ 1, 0 ≤ m ≤ 2, s ≤ m,

‖η −Πkη‖s ≤ hm−k
k ‖η‖m, 0 ≤ s ≤ m ≤ 1.

Now, the finite element function (v,η) is decomposed into two finite element
functions via

(v,η) = (Πkv0,Πk∇Πkv0) + (Πkvr,η −Πk∇Πkv0).(3.6)

Applying the triangle inequality leads to

|||(v,η)|||1 ≤ |||(Πkv0,Πk∇Πkv0)|||1 + |||(Πkvr,η −Πk∇Πkv0)|||1.(3.7)

We estimate both terms by using that |||·|||1 is the interpolation norm between |||·|||0
and |||·|||2 with parameter 1/2. For v0 ∈ H2

0 (Ω), the continuity and approximation
properties of Πk and an inverse inequality implies

|||(Πkv0,Πk∇Πkv0)|||22 = ‖Πk∇Πkv0‖2
1 + (h + t)−2‖(I −Πk)∇Πkv0‖2

0

≤ ‖Πk∇v0‖2
1 + ‖Πk∇(v0 −Πkv0)‖2

1

+(h + t)−2‖(I −Πk)∇v0‖2
0 + (h + t)−2‖(I −Πk)∇(I −Πk )v0‖2

0

≤ ‖v0‖2
2.
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With an inverse inequalities and L2-continuity we obtain

|||(Πkv0,Πk∇Πkv0)|||20 = h2‖Πk∇Πkv0‖2
0 + h2(h + t)−2‖Πkv0‖2

0

≤ ‖v0‖2
0.

The interpolation space [L2(Ω),H2
0 (Ω)]1/2 is H1

0 (Ω). Thus, we apply operator inter-
polation to the linear operator v 7→ (Πkv,Πk∇Πkv) and obtain

|||(Πkv0,Πk∇Πkv0)|||1 ≤ ‖v0‖1 ≤ ‖(v,η)‖2
1,t.(3.8)

We continue with the second term of (3.7). From

|||(Πkvr,η − Πk∇Πkv0)|||22 = ‖(η −Πk∇Πkv0)‖2
1 + (h + t)−2‖∇Πkvr − η + Πk∇Πkv0‖2

0

≤ h−2{‖η‖2
0 + ‖v0‖2

1}+ (h + t)−2{h−2‖vr‖2
0 + ‖η‖2

0 + ‖v0‖2
1}

≤ h−2{‖v0‖2
1 + t−2‖vr‖2

0 + ‖η‖2
0}

≤ h−2‖(v,η)‖2
1,t

and

|||(Πkvr,η −Πk∇Πkv0)|||20 = h2‖η −Πk∇Πkv0‖2
0 + h2(h + t)−2‖Πkvr‖2

0

≤ h2 {‖η‖2
0 + t−2‖vr‖2

0 + ‖v0‖2
1}

≤ h2 ‖(v,η)‖2
1,t

we can conclude that

|||(Πkvr,η −Πk∇Πkv0)|||21 ≤ ‖(v,η)‖2
1,t.

Lemma 3.5. The approximation property (3.2) holds.
Proof. Applying Lemma 3.4 twice and Lemma 3.3 we obtain

|||(wk − wk−1,βk − βk−1)|||1 ≤ c ‖(wk − wk−1,βk − βk−1)‖1,t

≤ ch2 sup
(v,η)

Ak(wk,βk; v;η)
‖(v,η)‖1,t

≤ ch2 sup
(v,η)

Ak(wk,βk; v;η)
|||(v,η)|||1

= ch2 |||(wk,βk)|||3.

This combined with

Ak(wk − wk−1,βk − βk−1;wk,βk) ≤ |||(wk − wk−1,βk − βk−1)|||1 |||(wk,βk)|||3
≤ ch2 |||(wk,βk)|||23
≤ ch2 |||(wk,βk)|||2 |||(wk,βk)|||4
= ch2Ak(wk,βk;wk,βk)1/2 ‖Ak(wk,βk)‖k

gives the asserted estimate (3.2)
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t = 0.1 t = 0.0001
Level Elements cond.numb. cg cond.numb. cg
2 8 1.51 7 2.91 7
4 128 2.63 13 7.28 21
6 2048 3.32 14 8.88 27
8 32768 3.20 13 7.60 23

Table 4.1
Computational results

4. Computational results. We applied the proposed multigrid algorithm to a
unit-square model problem. The plate is fully clamped on the boundary. The right
hand side is the uniform load f = 1. The first mesh C1 consists of two triangles; the
subsequent meshes C2, . . . , CJ are obtained by regular refinement of one triangle into
four.

We applied a conjugate gradient iteration with a multigrid preconditioner. We
used the variable V-cycle with 2k−J alternating Gauss-Seidel presmoothing and post-
smoothing steps on the kth level. Furthermore, we have computed the condition
number of the preconditioned system matrix by the Lanczos algorithm.

Table 4.1 shows the condition number, and the required number of cg iterations
for a relative reduction of the error by a factor of 10−8. The error reduction was
measured in the norm (Br, r)1/2. We clearly see that the condition numbers and
iteration numbers are bounded uniformly with respect to h and t. Note that the
condition number of the matrix A behaves like h−2(h+ t)−2 which was as high as 109.
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