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Abstract—

We propose a new method for treating transmission conditions on non-matching meshes. The
basic method is a hybrid version of Nitsche’s method. By introducing a scalar potential on the
interface we obtain a robust method for the low frequency limit. In order to simplify numerical
integration, we use smooth B-spline basis functions on the interface. We present the formulation
for scalar potential problems and for time-harmonic Maxwell’s equations. A simple well logging
example is used to benchmark the algorithm.

1. INTRODUCTION

The finite element modeling can often be simplified by allowing independent meshes for different
parts. Typical examples are rotating parts in electric machines, or a logging while drilling (LWD)
tool moving through the bore-hole. The difficulty is an accurate discretization of the transmission
conditions on the interface. Since interpolation methods lose accuracy, mortar methods became
popular in recent years [11, 3]. Here, the continuity of the primal field is enforced by an additional
equation, and a Lagrange parameter at the interface must be added. The resulting linear system
has saddle point structure. In theory, it is tricky to prove stability, and finite element spaces must
be chosen carefully. In practice, it’s non-trivial to implement the numerical integration over non-
matching meshes, in particular for 3D applications. The Nitsche method is an alternative to the
mortar method. Here, no additional Lagrange parameter comes in, and the saddle point problem
can be avoided [8, 2]. The price to pay are additional boundary terms in the variational formulation.
We choose a hybrid formulation with additional variables at the interface as in [6]. We propose to
use smooth B-spline basis functions on the interface to simplify numerical integration.

2. THE POISSON EQUATION

We decompose the domain Ω into non-overlapping sub-domains Ω1 and Ω2, and call the common
interface γ. For introducing the method, we start with the Dirichlet problem for the Poisson
equation

−∆u = f in Ω1 ∪ Ω2,

u = 0 on ∂Ω,

and the transmission conditions

u|Ω1
= u|Ω2

, (1)

∂u

∂n1 |Ω1

= −
∂u

∂n2 |Ω2

on γ. (2)

The idea of the Nitsche method is to multiply by test-functions v, and integrate by parts on the
sub-domains:

∫

Ωi

∇u · ∇v −

∫

∂Ωi

∂u

∂n
v =

∫

Ωi

fv for i ∈ {1, 2}

Next, we introduce an additional independent variable λ on the interface, which shall be the
restriction of u1 = u2 on the interface. We define the function spaces

V := {v ∈ H1(Ω1) × H1(Ω2) : v = 0 on ∂Ω},

W := {µ ∈ L2(∂Ω1 ∪ ∂Ω2) : µ = 0 on ∂Ω).
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Note that functions form V are piece-wise in H1, but may be discontinuous across the interface.
Functions in W are single-valued on the interface. The solution (u, λ) satisfies the variational
equation: find u ∈ V and λ ∈ W such that

2
∑

i=1

{
∫

Ωi

∇u · ∇v −

∫

∂Ωi

∂u

∂n
(v − µ) −

∫

∂Ωi

∂v

∂n
(u − λ) +

αp2

h

∫

∂Ωi

(u − λ)(v − µ)

}

=

∫

Ω

fv

for v ∈ V and µ ∈ W . For the true solution the terms involving u − λ vanish. Furthermore,
∑

i

∫

∂Ωi

∂u
∂n

µ cancel due to the transmission condition (2) and the essential boundary condition on
the test function µ.

The left hand side defines the bilinear-form A(., .), which depends on the chosen finite element
space. Here, p denotes the polynomial degree, and h is the mesh size. The parameter α must be
chosen sufficiently large, and is typically set as α = 10. The bilinear-form is symmetric and coercive
with respect to the norm defined by

|||(u, λ)|||2 =

2
∑

i=1

{

‖∇u‖2
Ωi

+
p2

h
‖u − λ‖2

∂Ωi

}

.

The key to prove coercivity is to bound the mixed term by the diagonal terms, i.e., the inequality

2
∑

i=1

∫

∂Ωi

∂u

∂n
(v − µ) ≤ c(|||(u, λ)|||2 + |||(v, µ)|||2)

on the finite element space. This is standard in discontinuous Galerkin methods [1].
The formulation allows to use independent meshes in both sub-domains, and another discrete

space on the interface. It requires to integrate basis functions on the boundary of the domain
meshes against basis functions defined on an interface mesh. Gauss integration rules are exact
for piecewise polynomials on the mesh, but converge very slowly if the interface functions are not
smooth or even not continuous. Then an intersection mesh should be used. But, this is difficult to
generate, in particular for curved 3D domains. We propose a different strategy: Since the interface
domain is often simple, e.g., a cylinder, we can use a structured mesh and high order B-spline basis
functions [5]. The use of Gauss integration on the boundary mesh is not exact, but still of high
order for the smooth basis functions on the interface.

3. MAXWELL’S EQUATIONS

We consider the time harmonic Maxwell’s equations in vector potential formulation

curlµ−1 curlu + κu = j in Ωi, (3)

with κ = iωσ − ω2ǫ, and
E = −iωu, H = µ−1 curlu.

The transmission conditions for the tangential components of the electric and magnetic field are

u1 × n1 = −u2 × n2,

µ−1
1 curlu1 × n1 = −µ−1

2 curlu2 × n2.

Proceeding as in the scalar case, one obtains
∫

Ωi

{µ−1 curlu · curl v + κu · v} +

∫

∂Ωi

µ−1 curlu · (v × n) =

∫

Ωi

j · v (4)

and the variational formulation: find (u, λ) such that

2
∑

i=1

{

∫

Ωi

µ−1{curlu · curl v + κu · v} +

∫

∂Ωi

µ−1 curlu · [(v − µ) × n] +

∫

∂Ωi

µ−1 curl v · [(u − λ) × n] +
αp2

µh

∫

∂Ωi

[(u − λ) × n] · [(v − µ) × n]

}

=

∫

Ω

j · v,
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where u, v ∈ H(curl, Ω1) × H(curl, Ω2), and λ, µ are tangential vector valued fields on the
interface. For simplification let us assume κ ∈ R

+ and small. Then, the bilinear-form is coercive
with respect to the norm

|||(u, λ)|||2 =
2

∑

i=1

{

µ−1‖ curlu‖2
Ωi

+ κ‖u‖2
Ωi

+
p2

µh
‖(u − λ) × n‖2

∂Ωi

}

.

An important point for discretizing low frequency problems with small κ is to treat the gradient
sub-space. Let u = ∇φ; the energy norm of u should scale as

‖u‖2 = µ−1‖ curlu‖2 + κ‖u‖2 = κ‖∇φ‖2 = O(κ).

But, the penalty term ‖(u − λ) × n‖ scales like O(1) and thus is an over-penalization for gradient
fields. The goal is now to modify the formulation to have separate penalization terms for gradient
and rotational components.

First, we derive a relation for scalar test functions on the boundary. Set v = ∇ψ in (4) and
obtain

∫

Ωi

κu · ∇ψ +

∫

∂Ωi

µ−1 curlu · (∇ψ × n) =

∫

Ω

j · ∇ψ. (5)

Apply the div operator on the sub-domains Ωi to equation (3), and test by ψ to obtain

∫

Ωi

div(κu)ψ =

∫

Ωi

div j ψ.

Integration by parts on the sub-domains leads to

−

∫

Ωi

κu · ∇ψ +

∫

∂Ωi

κunψ = −

∫

Ωi

j · ∇ψ +

∫

∂Ωi

jnψ (6)

Adding equations (5) and (6) we obtain

2
∑

i=1

{
∫

∂Ωi

µ−1 curlu · (∇ψ × n) +

∫

∂Ωi

κunψ

}

=

2
∑

i=1

∫

∂Ωi

jnψ (7)

Note that ψ is evaluated only on the boundary of the sub-domains Ωi, and thus it is enough to
define ψ only on the boundary.

We introduce a new scalar field variable φγ ∈ W on the interface, which shall be the scalar
potential of a Helmholtz-type decomposition of u on the interface. We set φi = φγ|∂Ωi

on the
sub-domain boundaries. Instead of posing continuity for u × n, we pose it for (u − ∇φ) × n and
φ separately. This allows different scalings for the gradient part and the rotational part. In a first
step, we redefine the interface vector variable as the rotational part, i.e., λ × n = (u − ∇φ) × n,
and add a penalty term also for φ = φγ :

2
∑

i=1

{

∫

Ωi

{µ−1 curlu · curl v + κuv} +

∫

∂Ωi

µ−1 curlu [(v − µ) × n] +

∫

∂Ωi

µ−1 curl v [(u −∇φ − λ) × n] +
αp2

µh

∫

∂Ωi

[(u −∇φ − λ) × n][(v −∇ψ − µ) × n] +

αp2

h

∫

∂Ωi

κ(φ − φγ)(ψ − ψγ)

}

=

∫

Ω

jv

The skew terms do not lead to a symmetric bilinear-form. Now, we subtract relation (7), and use
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κun − jn continuous following from the transmission conditions to obtain

2
∑

i=1

{

∫

Ωi

{µ−1 curlu · curl v + κuv} +

∫

∂Ωi

µ−1 curlu [(v −∇ψ − µ) × n] +

∫

∂Ωi

µ−1 curl v [(u −∇φ − λ) × n] +
αp2

µh

∫

∂Ωi

[(u −∇φ − λ) × n][(v −∇ψ − µ) × n] +

−

∫

∂Ωi

κun(ψ − ψγ) −

∫

∂Ωi

κvn(φ − φγ) +
αp2

h

∫

∂Ωi

κ(φ − φγ)(ψ − ψγ)

}

=

2
∑

i=1

{

∫

Ωi

jv −

∫

∂Ωi

jnψ

}

As in the scalar case, one can easily show coercivity on the finite element space with respect to the
semi-norm

|||(u, λ, φ, φγ)|||2 :=
2

∑

i=1

{

µ−1‖ curlu‖2
Ωi

+ κ‖u‖2
Ωi

+
p2

µh
‖(u −∇φ − λ) × n‖2

∂Ωi
+

κp2

h
‖φ − φγ‖

2
∂Ωi

}

.

Now, the penalization of the gradient field φ is of order κ, and only the rotational part u −∇φ is
penalized of order 1.

We propose to discretize u by Nedelec finite elements [7] of order p, φ by continuous, scalar finite
elements of order p + 1 on ∂Ωi, φγ by tensor product B-splines of order m, and λ by Nedelec-type
B-splines satisfying an exact sequence [4]. The full finite element error analysis fill be given in a
subsequent paper.

4. A NUMERICAL EXAMPLE

To demonstrate the feasibility of the proposed method the simplified logging-while-drilling (LWD)
tool shown in Fig.1 has been analyzed numerically. Two identical conducting loops, i.e. a sending
and a receiving antenna, represent the sensor. In general several finite element meshes might be
created of both the sensor and the surrounding mud and formation to simulate the LWD tool in use.
The present formulation avoids repeated complete modeling of all domains by means of separate
non matching meshes which can be merged together with the Nitsche method.

Although the geometry of the problem is rotational symmetric, the problem was modeled in
3D. All dimension are given in inches. The transmitter-receiver spacing is 46”, and the operating
frequency ranges from 20 kHz to 2.0MHz. The electric conductivities of the tool body, the borehole
mud and the formation have been selected with 1.0 · 106 S/m, 1.0 S/m and 0.01 S/m, respectively.
A releative electric permittivity of εr = 26.67 for 2MHz has been considered for the borehole mud
and the formation. The releative electric permittivity was determined with εr = 38.63 for 400kHz
and all smaller frequencies. The relative permeability was chosen with µr = 1.0 throughout the
problem region. Due to the high conductivity of the tool body, it has been eliminated in the model
by using a proper surface impedance boundary condition. The transmitter is excited by an electric
current of 1.0 A, and the induced voltage in the receiver is computed.

For that, we have performed computations with first and second order Nédélec elements of the
second type, see Table 1 and Table 2. Once we used a standard method with a conforming mesh
across the interface. Then we used the proposed Nitsche method, with 5 B-splines of order 5
in azimuthal direction, and 150 B-splines of order 5 in axial direction. We can observe that the
difference between the standard method and the Nitsche method is much less than the difference
between first and second order elements. We conclude that the error due to the proposed Nitsche
method is small for LWD tool simulations of this type.

5. CONCLUSION

We have developed domain decomposition techniques based on Nitsche’s method to discretize trans-
mission conditions on non-matching meshes. Due to the use of a scalar potential on the interface,
the method is robust at low frequencies. The algorithm was tested on a simple well logging appli-
cation, where independent meshes for the tool-borehole volume and the formation were used.
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Figure 1: Sketch of the LWD tool (rotated) with dimensions in inches.

frequency [kHz] standard, rec volt [nV] Nitsche, rec volt [nV]
185 810 dofs 195 383 dofs

20 25.44 − i 18.38 25.43 − i 18.37
100 71.68 − i 197.5 71.65 − i 197.3
400 124.9 − i 963.0 124.9 − i 962.3
2000 −635.9 − i 5295 −634.8 − i 5255

Table 1: Numerical results for first order elements.

frequency [kHz] standard, rec volt [nV] Nitsche, rec volt [nV]
733 881 dofs 736 939 dofs

20 24.99 − i 18.47 24.98 − i 18.47
100 70.25 − i 196.7 70.23 − i 196.7
400 121.7 − i 957.9 121.7 − i 957.7
2000 −648.1 − i 5256 −647.9 − i 5255

Table 2: Numerical results for second order elements.
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