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Abstract. This paper deals with the application of hybridized mixed meth-
ods for discretizing the Helmholtz problem. Starting from a mixed formulation,
where the flux is considered a separate unknown, we use Raviart-Thomas finite
elements to approximate the solution. We present two ways of hybridizing the
problem, which means breaking the normal continuity of the fluxes and then
imposing continuity weakly via functions supported on the element faces or
edges. The first method is the Ultra-Weak Variational Formulation, first in-
troduced by Cessenat and Després [7]; the second one uses Lagrange multipliers
on element interfaces. We compare the two methods, and give numerical re-
sults. We observe that the iterative solvers applied to the two methods behave
well for large wave numbers.

1. Introduction

If we wish to solve the Helmholtz equation with a large wave number κ (see
(1) for the definition of this parameter) using an h-version finite element scheme
in Rd, d = 2, 3, the dimension of the linear system must grow faster than O(κd)
to maintain accuracy because of pollution error (see [19]). Thus we have to solve
a large sparse and indefinite matrix problem. Standard iterative solution tech-
niques usually perform more poorly as κ increases (for example, using a standard
multigrid scheme, the coarsest grid has a mesh size of the order O(1/κ)). Al-
though more exotic multigrid schemes have been applied [12], they also require
more iterations at higher wave numbers. In this paper we will investigate hy-
bridized Raviart-Thomas methods for the Helmholtz equation with a view to
obtaining linear systems that can be solved more efficiently. In numerical experi-
ments, we observe that the appropriate iterative solver converges in a number of
iterations that is bounded independent of κ.

To formulate a model Helmholtz equation, let Ω ⊂ Rd, d = 2, 3 be a bounded
domain with boundary Γ = ∂Ω, which is assumed to be a Lipschitz polyhedron
(polygon in two dimensions) that can be covered by tetrahedral elements in three
dimensions (or triangles in two dimensions). By n we denote the unit outward
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normal. We consider the following boundary value problem for the scalar field
u : Ω → C

(1)
∆u + κ2u = 0 in Ω,

1

iκ

∂u

∂n
− ηu = Q

[

1

iκ

∂u

∂n
+ ηu

]

+ g on Γ.

We assume that the wave number κ is a real parameter. On the boundary,
η ∈ L∞(Γ) is a real valued, uniformly bounded and strictly positive function, Q
is real valued and piecewise constant with |Q| ≤ 1, and g ∈ L2(Γ) is the given,
possibly complex valued, boundary data. Provided Q 6= 1 we may rewrite this
boundary condition as

∂u

∂n
− iκ

1 + Q

1 − Q
ηu =

iκ

1 − Q
g.

This shows that the second equation in (1) is a standard impedance boundary
condition as long as Q 6= 1. For special choices of Q, we obtain Dirichlet, Neu-
mann and absorbing boundary conditions:

• Q = 1: Dirichlet, u = − 1
2η

g,

• Q = −1: Neumann, 1
iκ

∂u
∂n

= g/2,

• Q = 0: absorbing, 1
iκ

∂u
∂n

− ηu = g.

The solution of problem (1) can be approximated using a mixed method with
the standard Raviart-Thomas finite element space for the fluxes, and a discontin-
uous space for the scalar field. The hybrid methods we shall examine are modi-
fications of this scheme. By hybridization, we mean that we break all continuity
assumptions on the fluxes, and then reimpose them via new unknowns associ-
ated with facets or edges between elements. We derive two different methods to
reenforce the required continuity. One method is motivated by the Ultra Weak
Variational Formulation (UWVF) of the Helmholtz equation [7, 8, 11], but using
mixed finite element spaces. The second method is a more direct hybridization
similar to those already developed for Laplace’s equation [2, 5, 9]. For our second
method, we propose to use a preconditioned conjugate gradient (CG) method to
solve the resulting complex-symmetric problem. We observe good behavior of
the preconditioner with respect to the wave number and the polynomial degree
of the finite element space.

Another reason for studying the UWVF hybridized Raviart-Thomas scheme
is that it can then be seamlessly coupled to a standard UWVF that uses plane
wave ansatz functions element by element. This allows the use of standard finite
elements on small elements and plane waves on larger elements and is useful, for
example, when geometric mesh refinement towards singularities of the solution is
used. Large, plane-wave elements can be used away from the singularity, whereas
polynomial finite elements may be better suited in the vicinity of the singularity.
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Thereby, one can improve convergence around the singularity, while serious ill-
conditioning of the system matrix is avoided. We present some numerical results
for a combined method later in the paper.

We should note that there are many other ways to use discontinuous basis
functions, and to hybridize the methods. An important paper on plane wave
based discontinuous Galerkin methods (of which the UWVF is a special case,
but outside the theoretical analysis) can be found in [16]. Coupling of plane wave
and polynomial based methods is possible in the framework of that paper. Other
methods that can couple plane wave and polynomial basis functions include the
partition of unity finite element method [3, 23], and the discontinuous enrichment
approach [13, 14].

Throughout the following, for a complex quantity z ∈ C, let z denote its
complex conjugate. For any Hilbert space X, let 〈·, ·〉X denote its inner product
and ‖ · ‖X be the corresponding norm. For a linear operator F : X → X, its
adjoint is denoted by F ∗. For a domain A, let L2(A) be the complex Lebesgue
space. It is equipped with the complex inner product 〈u, v〉L2(A) := (u, v)A :=
∫

A
uv dx and the induced norm ‖u‖L2(A) = ‖u‖A. By H1(A) we denote the

standard, complex valued Sobolev space of weakly differentiable functions. Let
H1/2(∂A) be its trace space. Moreover, we need the space of functions with weak
divergence

H(div; A) := {σ ∈ [L2(A)]d : div σ ∈ L2(A)},

and for suitably smooth domains

H0(div; A) := {σ ∈ [L2(A)]d : div σ ∈ L2(A), σ · n = 0 on ∂A}.

The remainder of this paper is organized as follows: In Section 2, a mixed vari-
ational formulation of the Helmholtz problem is stated. Existence and uniqueness
for the mixed system are verified, and a standard method using Raviart-Thomas
finite elements is applied. We also describe the continuous UWVF. In Section
3, the polynomial UWVF and the facet-based hybridization method are intro-
duced, and are shown to be equivalent to the original Raviart-Thomas method. A
comparison shows that the two methods are related by a change of variables. In
Section 4, iterative methods for the solution of the respective systems of equations
are proposed. Finally, numerical tests are presented in Section 5.

2. Variational methods for the Helmholtz problem

In this section we shall recall two variational methods for approximating the
solution of (1). First we outline a standard mixed approach using Raviart-Thomas
elements. Then we recall the UWVF.

2.1. A mixed method based on Raviart-Thomas elements. We now recall
a standard mixed formulation of the Helmholtz equation suitable for discretiza-
tion by Raviart-Thomas elements. We want to find the scalar field u and the
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vector-valued flux field v = − 1
iκ
∇u. We denote the Neumann trace, which is the

normal component of the flux vector v, by vn := v · n on Γ.
Since we are using a standard mixed method, the Neumann boundary condi-

tions is a special case since it is essential and needs to be enforced on the trial
and test spaces. Therefore we assume that −1 < Q ≤ 1 ruling out this case.

Then the boundary value problem for the Helmholtz equation (1) can be writ-
ten in mixed form as

(2)

−iκu = div v in Ω,

−iκv = ∇u in Ω,

−vn − ηu = Q[−vn + ηu] + g on Γ.

For the variational formulation of this problem we need the following spaces

U = L2(Ω) and V =
{

v ∈ H(div; Ω) | vn ∈ L2(Γ)
}

where the norm on V is given by

‖v‖2
V = ‖∇ · v‖2

L2(Ω) + ‖v‖2
L2(Ω) + ‖vn‖

2
L2(Γ).

The weak solution (u, v) ∈ U × V satisfies

(3)
(iκu, ξ)Ω + (div v, ξ)Ω = 0 ∀ξ ∈ U,

−(u, div τ )Ω + (iκv, τ )Ω − ( q
η
vn, τ n)∂Ω = ( 1

η(1+Q)
g, τ n)∂Ω ∀τ ∈ V,

where q = 1−Q
1+Q

.

Lemma 1. Suppose Ω is a Lipschitz domain. For g ∈ L2(Γ) and |Q| < 1, there
exists a unique solution to the mixed variational problem (3). If Q = 1 a unique
solution exists provided κ is not a Dirichlet eigenvalue for the domain.

Remark 2. The existence of a unique solution u to the Helmholtz problem with
Robin-type boundary conditions is well established, see e.g. [20]. We provide
an alternative proof that shows the well-posedness of the solution of the mixed
problem directly.

Proof. We prove uniqueness of the solution (u,− 1
ik
∇u) by showing that the ho-

mogenous problem with right hand side g = 0 delivers only the trivial solution.
Testing the first equation with ξ = div τ for some τ ∈ H(div; Ω), we obtain

(u, div τ )Ω = −(
1

iκ
div v, div τ )Ω.

Inserting this into the second line of (3), we get

(4) (
1

iκ
div v, div τ )Ω + (iκv, τ )Ω − (

q

η
vn, τ n)∂Ω = 0.

Testing for τ = v, and taking the real part, we immediately see that wherever
|Q| < 1 we have vn = 0 on Γ. If Q = 1 we cannot conclude that vn = 0.
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Now take τ = curl φ for some smooth scalar field φ. This implies

(iκv, curl φ)Ω = 0,

and Stokes’ theorem yields

(curl v, φ)Ω + (v × n, φ)∂Ω = 0.

From this we obtain curl v = 0 and v × n = 0, which means that v is a gradient
of a function with vanishing trace. Thus we may write

v =
1

iκ
∇w.

For this w, equation (4) implies

0 = (div∇w, div τ )Ω − κ2(∇w, τ )Ω

= (div∇w + κ2w, div τ )Ω.

Suppose |Q| < 1, then because div : H(div; Ω) → L2(Ω) is surjective [15], we
obtain that w is a solution to the Helmholtz problem with vanishing Dirichlet
and Neumann traces w = 1

iκ
∂w
∂n

= 0. This implies w = 0 and thereby uniqueness.
If Q = 1 we know that w satisfies the Helmholtz equation with vanishing Dirichlet
data. Thus provided κ is not an eigenvalue, we again verify uniqueness.

We now prove existence. Selecting ξ = div τ in the first equation of (3) and
using the resulting identity in the second equation shows that v ∈ V satisfies

(5) (div v, div τ )Ω−κ2(v, τ )Ω−iκ(
q

η
vn, τ n)∂Ω = (

iκ

η(1 + Q)
g, τn)∂Ω ∀τ ∈ V.

For the rest of the proof we shall assume for concreteness that d = 3. Then
choosing τ = curl q for some q ∈ H0(div; Ω)∩H(curl; Ω) shows that (v, curl q) =
0, so that curl v = 0 as we might expect. Thus we define

V (0) = H(div; Ω) ∩ H(curl0; Ω)

where H(curl0; Ω) = {v ∈ H(curl; Ω) | curl v = 0}. Then we can pose (5) with
V (0) in place of V . The advantage is now that by Theorem 3.47 of [21], the
imbedding of V (0) into [L2(Ω)]3 is compact. Hence problem (5) with V (0) in place
of V gives rise to an operator equation involving a compact perturbation of the
identity. In this case, the Fredholm alternative shows that the previously proved
uniqueness implies the existence of a solution to (5) and hence to the full mixed
system. �

To discretize the problem, we need to define suitable discrete spaces Vh ⊂ V ,
Uh ⊂ U . In this paper these are constructed using standard Raviart-Thomas
finite elements. Therefore, we use a conforming and regular finite element mesh
Th = {Tj : j ∈ Jh} consisting of tetrahedra in case of Ω ⊂ R3 or triangles for
Ω ⊂ R2, such that Ω =

⋃

j∈Jh
T j . Here the mesh size h is the maximum diameter

of all mesh elements. Let Fh = {Fij = ∂Ti∩∂Tj}∪{Fj = ∂Tj ∩Γ} denote the set
of element interfaces or facets. Then Fh corresponds to the set of edges in two
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dimensions or faces in three dimensions. Let nj denote the unit outward normal
of an element Tj .

We need to assume that the mesh is chosen so that Q is constant on each
boundary face of the mesh (it can vary from face to face).

On an element Tj we define

(6) Uj,h = P p(Tj)

to consist of piecewise polynomial functions of maximum degree p. Then the
global finite element space Uh ⊂ U is given by

Uh =
{

uh ∈ L2(Ω) | uh|Tj
∈ Uh,j for j ∈ Jh

}

so that no inter-element continuity is assumed. For the vector variables we define
the local space

(7) Vh,j = RTp(Tj)

where the Raviart-Thomas space RTp, was introduced in [24, 22]. It consists
of piecewise polynomial, vector-valued finite elements of degree p + 1, for which
the normal component is of degree p on each face (or along each edge in two
dimensions). Then the global space Vh ⊂ V is defined by

Vh =
{

vh ∈ H(div; Ω) | vh|Tj
∈ Vh,j for j ∈ Jh

}

.

Note that functions in the global Raviart-Thomas space Vh, have normal compo-
nents that are continuous across element interfaces. The degrees of freedom of a
function vh ∈ Vh are of two types. For example, in three dimensions, one type is
associated with faces F of a tetrahedron T :

∫

F

vnp ds, ∀p ∈ P p(F ) and for all faces F of T,

and other type is associated with the interior of T :
∫

T

v · q dx ∀q ∈ [P p−1(T )]3.

Similarly, in two dimensions, degrees of freedom can be associated with edges or
triangles. We shall use the fact that basis functions associated with the interior of
the element (for p ≥ 1) have vanishing normal component on all faces. Similarly
basis functions associated with a given face (or edge in two dimensions) have
vanishing normal component on all other faces (resp. edges).

The next theorem shows that for h small enough, we have existence and unique-
ness of a solution to the discrete problem (8 - 9).

Lemma 3. Suppose either |Q| < 1 or Q = 1 and κ is not a Dirichlet eigenvalue
for the domain. Then provided that the mesh size h is small enough, the discrete



HYBRIDIZING RAVIART-THOMAS ELEMENTS FOR THE HELMHOLTZ EQUATION 7

Raviart-Thomas problem of finding (uh, vh) ∈ Uh × Vh such that

(iκuh, ξh)Ω + (div vh, ξh)Ω = 0(8)

−(uh, div τ h)Ω + (iκvh, τ h)Ω − (
q

η
vh,n, τ h,n)∂Ω = (

1

η(1 + Q)
g, τ h,n)∂Ω(9)

for all (ξh, τ h) ∈ Uh × Vh has a unique solution. Moreover, for h → 0 the finite
element solution converges to the solution of the Helmholtz equation.

Proof. For a Dirichlet boundary condition, this theorem follows from the uniform
spectral convergence results for Raviart-Thomas elements in [4]. Their analysis
does not handle the case when |Q| < 1 because of the impedance boundary
condition. To prove this case we first notice that the Raviart-Thomas spaces are
a stable pair of spaces for the problem when κ = i since the appropriate inf-
sup and coercivity results are known (see for example [5]). By verifying discrete
compactness for these spaces and boundary conditions along the lines of the
proof of similar results for edge elements (see [21]) we can then apply the theory
of collectively compact operators to derive the result. �

2.2. The Ultra-Weak Variational Formulation. We now recall a second,
rather different, variational method called the UWVF of the Helmholtz equation
[7]. In this method we consider a piecewise defined function uj on Tj , j ∈ Jh

which satisfies the Helmholtz equation locally on each element

∆uj + κ2uj = 0 in Tj .

Then, to have a solution of the global problem, we need to enforce continuity of
u and 1

iκ
∂u
∂n

across element interfaces. Using impedance traces, we require on each
face Fij (or edge) between elements Ti and Tj :

(

1

iκ

∂ui

∂ni
+ ηui

)
∣

∣

∣

∣

∂Ti

=

(

−
1

iκ

∂uj

∂nj
+ ηuj

)
∣

∣

∣

∣

∂Tj

,(10)

(

1

iκ

∂ui

∂ni
− ηui

)
∣

∣

∣

∣

∂Ti

=

(

−
1

iκ

∂uj

∂nj
− ηuj

)
∣

∣

∣

∣

∂Tj

.(11)

Here we have extended η from L∞(Γ) to L∞(Fh) by unity (or in fact by a
positive bounded function). The boundary condition on Fj ⊂ Γ reads

1

iκ

∂uj

∂n
− ηuj = Q

[

1

iκ

∂uj

∂n
+ ηuj

]

+ g on Fj .

We introduce the space X of impedance traces on element interfaces

X := Πj∈Jh
Xj , Xj := L2(∂Tj).
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For a general vector function X ∈ X, the jth component, where j ∈ Jh, of X is
denoted by Xj ∈ Xj . We define the inner product on X

〈X ,Y〉X :=
∑

j∈Jh

〈Xj,Yj〉Xj
,

〈Xj,Yj〉Xj
:=

∫

∂Tj

1

η
XjYj ds.

When performing integration only on the boundary Γ, we write 〈·, ·〉X,Γ for

〈X ,Y〉X,Γ :=
∑

j∈Jh

∫

∂Tj∩Γ

1

η
XjYj ds.

Note that any X ∈ X has two values Xi,Xj on each facet Fij = ∂Ti ∩ ∂Tj ,
corresponding to the two adjacent elements, and one value Xj on each boundary
facet Fj ⊂ Γ.

On this space, we define two operators. The first, Π : X → X, interchanges
the two values of X on internal facets Fij . On boundary facets Fj , it helps to
take care of the boundary condition:

(ΠjX )|Fij
= Xi|Fij

for Fij ∈ Fh internal,
(ΠjX )|Fj

= −QXj |Fj
for Fj ∈ Fh, Fj ⊂ Γ.

The second operator, F : X → X, maps incoming to outgoing impedance traces.
It is defined element by element. For Tj ∈ Th, the jth component FjXj depends
only on Xj. We can compute it using an auxiliary function wj ∈ H1(Tj), that
satisfies the adjoint Helmholtz equation, for which the incoming impedance trace
is given by Xj :

(12)
∆wj + κ2wj = 0 in Tj,
1

iκ

∂wj

∂nj
+ ηwj = Xj on ∂Tj .

Then we define FjXj to be the outgoing trace

FjXj := −
1

iκ

∂wj

∂nj
+ ηwj on ∂Tj .

To rewrite the continuity conditions on the impedance fluxes (10), (11), let X ∈ X
be the function consisting of impedance traces of the solution u,

Xj =

(

1

iκ

∂uj

∂nj

+ ηuj

)
∣

∣

∣

∣

∂Tj

.

Then we have for an element Tj

FjXj =

(

−
1

iκ

∂uj

∂nj

+ ηuj

)
∣

∣

∣

∣

∂Tj

.
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On internal facets Fij and boundary facets Fj , Π evaluates to

(ΠjX )|Fij
=

(

1

iκ

∂ui

∂ni
+ ηui

)
∣

∣

∣

∣

Fij

, (ΠjX )|Fj
= −Q

(

1

iκ

∂uj

∂nj
+ ηuj

)
∣

∣

∣

∣

Fj

.

Therefore we can rewrite the continuity conditions (10), (11) and the impedance
boundary condition in a single equation

FX − ΠX + g̃ = 0,

where g̃ ∈ X is the extension by zero of g to the faces of the mesh away from the
boundary.

The following fundamental properties of Π and F were shown in [6, 7].

Lemma 4. (Cessenat and Després) Let Π : X → X, F : X → X be defined as
above. There holds

• If |Q| ≤ 1, then ‖Π‖X→X ≤ 1.
• If κ ∈ R, then F is an isometry, F ∗F = id.

Operating by F ∗, we obtain the ultra-weak variational formulation (UWVF)
of the Helmholtz equation

X − F ∗ΠX = −F ∗g̃.

The corresponding Galerkin formulation is to seek X ∈ X such that

〈X ,Y〉X − 〈ΠX , FY〉X = −〈g̃, FY〉X ∀Y ∈ X.

Cessenat and Després [7] show that this problem has a unique solution for |Q| < 1.

3. Hybridization techniques

In this section, we present two ways of hybridizing the Raviart-Thomas method.
First, we consider a method based on a finite element implementation of the
UWVF, where the unknowns correspond to in- and outgoing fluxes ±vn + ηu
[7]. Then we derive a method where we regain normal continuity of the flux field
by means of Lagrange multipliers and use consistent penalty terms to improve
stability. The new unknowns resemble the scalar field u and the normal flux vn

on element interfaces. We observe that the two formulations are equivalent to
the original Raviart-Thomas method, and that the UWVF is a special case of
the Lagrange multiplier based method.

3.1. The discrete finite element UWVF. To discretize the UWVF Cessenat
and Després use plane waves on each element, and we shall describe this method
briefly in Section 4.3. In this section we investigate instead a new method based
on mixed finite elements. We first construct a finite element subspace Xh ⊂ X.
We choose Xh = Πj∈Jh

Xh,j, where Xh,j is the space of piecewise polynomials of
degree p on the facets of element Tj :

Xh,j = {ξh ∈ L2(∂Tj) | ξh|F ∈ P p(F ), for each face (edge) F of Tj}.
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Note that equivalently

Xh,j = {ξh ∈ L2(∂Tj) | ξh = vh,n for some vh ∈ RTp(Tj)}.

Next we replace F by a finite element approximation Fh using mixed finite ele-
ments. The computation of Fh can be done locally on each element, and the jth
component of FhYh depends only on Yh,j.

We define the discrete operator Fh : X → X component-wise using the local
spaces defined in Section 2.1. For Yj ∈ Xj , let (uh,j, vh,j) ∈ Uh,j × Vh,j be such
that for all ξh,j ∈ Uh,j, τ h,j ∈ Vh,j

(iκuh,j, ξh,j)Tj
+ (div vh,j, ξh,j)Tj

= 0,(13)

(uh,j, div τ h,j)Tj
− (iκvh,j, τ h,j)Tj

−(
1

η
vh,j,nj

, τ h,j,nj
)∂Tj

= (
1

η
Yj, τ h,j,nj

)∂Tj
.(14)

Then we define
Fh,jYj = Yj + 2vh,j,nj

.

Note that, since normal traces of RTp functions are in the space P p on each face
used to construct Xh,j we have Fh : Xh → Xh. This holds even if p varies from
element to element.

The finite element discrete UWVF is now to find a Galerkin approximation
Xh ∈ Xh such that

(15) 〈Xh,Yh〉X − 〈ΠXh, FhYh〉X = −〈g̃, FhYh〉X ∀Yh ∈ Xh.

For the analysis of the discrete UWVF, we introduce an operator Ah,j : Uh,j ×
Vh,j → Uh,j × Vh,j, which corresponds to the left hand side of (13)-(14), and
Bj : Uh,j × Vh,j → Xh,j, which is related to its right hand side via

〈Ah,j(uh, vh); ξh, τ h〉Uj×Vj
:= (iκuh + div vh, ξh)Tj

+ (uh, div τ h)Tj
− (iκvh, τ h)Tj

−(
1

η
vh,nj

, τ h,nj
)∂Tj

, ∀τ h ∈ Vh,j, ξh ∈ Uh,j,

〈Bh,j(uh, vh),Yh〉Xj
:= (

1

η
vh,nj

,Yh)∂Tj
, ∀Yh ∈ Xh,j.

Then, for Yj ∈ Xh,j, we can rewrite the local system (13)-(14) as

(16) 〈Ah,j(uh,j, vh,j); ξh,j, τ h,j〉Uj×Vj
= 〈B∗

h,j(Yj); ξh,j, τ h,j〉Uj×Vj

for all ∀ξj,h ∈ Uh,j and τ h,j ∈ Vh,j. Thereby Fh,j can be written explicitly as

Fh,jYh,j = (id + 2Bh,jA
−1
h,jB

∗

h,j)(Yh,j).

Lemma 5. If h is small enough, the discrete operator Fh : Xh → Xh is well
defined and is an isometry.

Remark 6. The space X can be written X = Xh⊕X⊥

h where X⊥

h is the orthogonal
complement of Xh using the inner product for X. For a function Y ∈ X⊥

h , we
have Fh(Y) = Y. Thus Fh is an isometry on X also.
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Proof. The restriction on h is needed to ensure that the local mixed problem (13)-
(14) has a solution. For Yh ∈ Xh, we evaluate ‖FhYh‖

2
X =

∑

j∈Jh
‖Fh,jYh,j‖

2
Xj

.

On an element Tj ∈ Th, let (uh,j, vh,j) = A−1
h,jB

∗
h,jYh,j be the local solution of

(13)-(14), then

‖Fh,jYh,j‖
2
Xj

= (
1

η
(Yh,j + 2vh,j,nj

),Yh,j + 2vh,j,nj
)∂Tj

=

∫

∂Tj

1

η
|Yh,j|

2 +
4

η
|vh,j,nj

|2 + 4
1

η
Re

(

Yh,j vh,j,nj

)

dx.(17)

To evaluate the last term above, we investigate the local problem further. Setting
τ h,j = vh,j, and ξh,j = −uh,j in (13)-(14) and adding the resulting equalities, we
obtain
∫

T

uh,jdiv vh,j−uh,j div vh,j−iκ|uh,j|
2−iκ|vh,j|

2 dx =

∫

∂Tj

1

η
(Yh,j+vh,j,nj

)vh,j,nj
ds.

As the left-hand side of this equation is purely imaginary, by taking the real part
we get

∫

∂Tj

1

η
Re(Yh,j vh,j,nj

) ds = −

∫

∂Tj

1

η
|v,hj,nj

|2 ds.

Inserting this into equation (17) shows

‖Fh,jYh,j‖
2
Xj

= ‖Yh,j‖
2
Xj

.

Therefore Fh is an isometry on Xh. �

Theorem 7. If the mesh size h is small enough and the polynomial degree p is
the same on all elements, the discrete UWVF (15) has a unique solution. The
local solution (uh, vh) computed from the impedance traces Xh coincides with the
solution of the standard Raviart-Thomas system.

Remark 8. This theorem can be extended to the case of variable order elements
provided a single polynomial degree is chosen for each face (or edge). We choose
pij on Fij and then if Xi ∈ Xh,i we have Xi|Fij

∈ P pij(Fij) and if Xj ∈ Xh,j

we also have Xj|Fij
∈ P pij(Fij). In addition the finite element space Uh,i and

Vh,i have to be chosen as a stable mixed pair of spaces such that if τ h ∈ Vh,i

then τ h,i,ni
|Fij

∈ P pij(Fij). The construction of such elements is possible in the
framework of hp-mixed methods [10]. We shall not give details of the variable
degree scheme here since it very much complicates notation.

Proof. Due to the fact that Fh is an isometry, F ∗
hFh = id, we obtain directly from

equation (15) that

〈FhXh, FhYh〉X − 〈ΠXh, FhYh〉X = −〈g̃, Fh(Yh)〉X

But Fh : Xh → Xh (and is invertible) and Π : Xh → Xh since we have assumed
that the polynomial degree is the same on all elements and Q is constant on each
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face, so that we have

FhXh − ΠXh = −Phg̃

where Ph : X → Xh is the orthogonal projection (weighted by 1/η).
On an interior facet Fij = ∂Ti ∩ ∂Tj this implies

Fh,jXh,j = Xh,i and Fh,iXh,i = Xh,j.

Let (uh,i, vh,i) ∈ Uh,i × Vh,i, and (uh,j, vh,j) ∈ Uh,j × Vh,j denote the finite ele-
ment solutions for the local problem (13)-(14) on Ti and Tj with boundary data
Xh,i,Xh,j respectively. Then the above equations can be rewritten as

Xh,j + 2vh,j,nj
= Xh,i and Xh,i + 2vh,i,ni

= Xh,j,

which implies normal continuity of the composite function vh defined by vh|Tj
=

vh,j for each j. Therefore, vh lies in the global Raviart-Thomas space Vh. It
remains to show, that the composite functions (uh, vh) ∈ Uh × Vh satisfy the
discrete mixed system (8)-(9).

One immediately sees that the first equation in the mixed formulation (8) is
equivalent to equation (13). Now let τ h,ij be a standard basis function of Vh

associated with an internal facet Fij so that its normal trace vanishes on all
facets F 6= Fij . Then equation (14) evaluated on Ti and Tj gives

(18)
(uh,i, div τ h,ij)Ti

− (iκvh,i, τ h,ij)Ti
= ( 1

η
(Xh,i + vh,i,ni

), τ h,ij,ni
)Fij

,

(uh,j, div τ h,ij)Tj
− (iκvh,j, τ h,ij)Tj

= ( 1
η
(Xh,j + vh,j,nj

), τ h,ij,nj
)Fij

.

Adding these equations, and using the fact that the composite function vh is
normal continuous, we obtain

(uh, div τ h,ij)Ti∪Tj
− (iκvh, τ h,ij)Ti∪Tj

= (
1

η
(Xh,i − Xh,j + 2vh,ni

), τ h,ij,ni
)Fij

= 0.

Therefore the global Raviart-Thomas equation (9) is satisfied for τ h = τ h,ij. For
internal basis functions (having vanishing normal traces on all faces), it is obvious
that (9) is equivalent to equation (14).

On a boundary facet Fj ⊂ Γ, we have ΠjXh = −QXh,j, and therefore Fh,jXh,j =
−QXh,j − Phg̃, which implies

Xh,j + 2vh,j,nj
= −QXh,j − Phg̃ on Γj .

Let now τ h,j be a Raviart-Thomas basis function with non vanishing normal
component on Fj (and zero on all others). Then equation (14) reads

(uh,j, div τ h,j)Tj
− (iκvh,j, τ h,j)Tj

= (
1

η

(

Xh,j + vh,j,nj

)

, τ h,j,nj
)Fj

= (−
q

η
vh,j,nj

−
1

η

1

1 + Q
Phg̃, τ h,j,nj

)Fj

= (−
q

η
vh,j,nj

−
1

η

1

1 + Q
g, τh,j,nj

)Fj
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where the last equality holds because Ph is defined face by face due to the dis-
continuous basis functions in Xh,j. This means that the Raviart-Thomas system
is satisfied for τ h,j.

Since we have existence and uniqueness of the global discrete problem for suf-
ficiently small mesh size h, we obtain unique local solutions (uh,j, vh,j) by re-
striction to element Tj . Then Xh,i|Fij

and Xh,j|Fij
are determined uniquely by

(18). �

3.2. Facet-based hybridization. In this subsection we derive another, more
standard, discrete hybrid problem formulation. As for the discrete Raviart-
Thomas problem, we use spaces of piecewise polynomial functions to approximate
(u, v). But, in contrast to the Raviart-Thomas case, we do not require continuity
of the normal flux vh,n across element interfaces. Using the local spaces Uh,j, Vh,j

(see (6) and (7)), define

Uh := Πj∈Jh
Uh,j, Ṽh := Πj∈Jh

Vh,j.

To derive equations for the discrete variables, we multiply the mixed version of
the Helmholtz equation (2) by test functions (τ h, ξh) ∈ Ṽh ×Uh and integrate by
parts on each element. Then

−(iκu, ξh)Ω − (div v, ξh)Ω = 0,

−
∑

j∈Jh

(u, div τ h,j)Tj
+ (iκv, τ h)Ω +

∑

j∈Jh

(u, τh,j,nj
)∂Tj

= 0.

The discrete problem is now obtained by replacing u and v above with uh ∈ Uh

and vh ∈ Ṽh. In addition, we enforce continuity of vh,n by means of a Lagrangian
multiplier. Therefore, we introduce a discretization of the trace of the scalar field
u|F for each face in the mesh denoted uF

h . This is defined on the set of element
facets Fh. In particular we define the space

UF
h := {ξF

h ∈ L2(F) : ξF
h |Fij

∈ P p(Fij)}.

Then (uh, vh, u
F
h ) ∈ Uh × Ṽh × UF

h satisfy

−(iκuh, ξh)Ω − (div vh, ξh)Ω = 0,

−
∑

j∈Jh

(uh, div τ h,j)Tj
+ (iκvh, τ h)Ω +

∑

j∈Jh

(uF
h , τ h,j,nj

)∂Tj
= 0,

for all (ξh, τ h) ∈ Uh × Ṽh.
The normal continuity of the flux across an internal facet Fij can now be

imposed by

(vh,j,nj
+ vh,i,ni

, ξF
h )Fij

= 0 ∀ξF ∈ UF .

On the outer boundary, we have, due to the generalized impedance boundary
condition,

(vh,n + ηuF
h , ξF

h )Γ = (−Q
[

−vh,n + ηuF
h

]

− g, ξF
h )Γ ∀ξF

h ∈ UF .
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Reordering these terms element by element, we obtain

∑

j∈Jh

(vh,j,nj
, ξF

h )∂Tj
+ (

η

q
uF

h , ξF
h )Γ = −(

1

1 − Q
g, ξF

h )Γ ∀ξF
h ∈ UF .

In summary, we obtain a system, equivalent to the Raviart-Thomas system, of
finding (uh, vh, u

F
h ) ∈ Uh × Ṽh × UF

h such that

−(iκuh, ξh)Ω − (div vh, ξh)Ω = 0 ∀ξh ∈ Uh

−
∑

j∈Jh

(uh,j, div τ h,j)Tj
+ (iκvh, τ h)Ω +

∑

j∈Jh

(uF
h , τ h,j,nj

)∂Tj
= 0 ∀τ h ∈ Ṽh

∑

j∈Jh

(vh,j,nj
, ξF

h )∂Tj
+ (η

q
uF

h , ξF
h )Γ = −( 1

1−Q
g, ξF

h )Γ

∀ξF
h ∈ UF

h .

Numerical tests of this scheme (not shown) show poor convergence of the iterative
schemes we tried (preconditioned Conjugate Gradients). Therefore to stabilize
the method we then introduce a second scalar-valued unknown vF

h on the set of
facets, which corresponds to the normal flux. Because the outward unit normal
changes its sign when switching from element Ti to a neighboring element Tj, also
the normal flux vh,n flips sign. We put an index n to indicate this direction also
for the trace field vF

h . This means, on facet Fij , we have vF
h,ni

= −vF
h,nj

. Let V F
h

be the space of all such functions, which are piecewise P p

V F
h := {τF

h ∈ L2(F) : τF
h,ni

= −τ F
h,nj

∈ P p(Fij)}.

For later analysis, note that both UF
h and V F

h are subspaces of Xh used in the
discrete UWVF. Moreover, each X ∈ Xh can be written as a composition Xh =
ηuF

h + vF
h,n, where uF

h is the average of the two-valued function Xh, and vF
h,n

corresponds to the jump, provided η is constant on each face (or edge).
Since the normal traces of RTp finite element functions in Vh span this space,

we can add a consistent stabilization term

−
∑

j∈Jh

(vh,j,nj
− vF

h,nj
, τ h,j,nj

− τF
h,nj

)∂Tj
,

and obtain an equivalent equation.
An abstract formulation of this problem is to find (uh, vh, u

F
h , vF

h ) ∈ Uh × Ṽh ×
UF

h × V F
h such that

Bh(uh, vh, u
F
h , vF

h ; ξh, τ h, ξ
F
h , τF

h ) = −(
1

1 − Q
g, ξF

h )Γ
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for all (ξh, τ h, ξ
F
h , τF

h ) ∈ Uh × Ṽh × UF
h × V F

h where

Bh(uh, vh, u
F
h , vF

h ; ξh, τ h, ξ
F
h , τF

h ) =
∑

j∈Jh

{

− (iκuh,j + div vh,j, ξh,j)Tj
−

(uh,j, div τ h,j)Tj
+ (iκvh,j, τ h,j)Tj

+ (uF
h , τ h,j,nj

)∂Tj
+

(vh,j,nj
, ξF

h )∂Tj
− (

1

η
(vh,j,nj

−vF
h,nj

), τ h,j,nj
−τF

h,nj
)∂Tj

}

+ (
η

q
uF

h , ξF
h )Γ.

Using the operators Ah,j, Bh,j defined in the previous subsection, we see

Bh(uh, vh, u
F
h, v

F
h; ξh, τ h, ξ

F
h, τ

F
h ) =

∑

j∈Jh

{

〈A∗

h,j(−uh,j, vh,j);−ξh,j, τ h,j〉Uj×Vj
+

〈vF
h+ηuF

h , Bh,jτ h,j〉Xj
+ 〈Bh,jvh,j, ηξF

h 〉Xj
+ 〈Bh,j(vh,j − vF

h ), τF
h 〉Xj

}

+

〈
η

q
uF

h , ηξF
h 〉X,Γ.

In this formulation, the degrees of freedom for uh and vh are associated element
by element. This means that they can be eliminated locally. On element Tj , we
solve the sub-system

〈A∗

h,j(−uh,j, vh,j);−ξh, τ h,j〉Uj×Vj
= −〈B∗

h,j(v
F
h + ηuF

h ), τ h,j〉Vj
,

which yields the solution

(−uh,j, vh,j) = −(A∗

h,j)
−1B∗

h,j(v
F
h + ηuF

h ).

Hence, the global problem reduces to the Schur complement system

(19) 〈Sh(u
F
h , vF

h ); ξF
h , τF

h 〉X = −〈
1

1 − Q
g, ηξF

h 〉X,Γ,

where the Schur operator Sh is defined by the relation

〈Sh(u
F
h , vF

h ); ξF
h , τF

h 〉X = −
∑

j∈Jh

{

〈Bh,j(A
∗

h,j)
−1B∗

h,j(v
F
h + ηuF

h ), τF
h+ ηξF

h 〉Xj
+

〈vF
h , τF

h 〉Xj

}

+ 〈ηuF
h ,

η

q
ξF
h 〉X,Γ.

Lemma 9. Provided h is sufficiently small, the hybridized discrete Helmholtz
problem (19) has a unique solution. The flux approximation lies in the global
Raviart-Thomas space, vh ∈ Vh. The formulation is equivalent to the Raviart-
Thomas method.

Proof. As we have seen when deriving the above system, it is equivalent to the
Raviart-Thomas case. The flux function vh has a continuous normal component
across element interfaces, therefore it lies in the global Raviart-Thomas space. �
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3.3. Comparison of the hybridization strategies. In this subsection, we
compare the two methods we considered so far in this section. We will see that
they are closely related by a change of variables, if η is piecewise constant on Γ.
Already in [16], the UWVF was analyzed in a DG framework. We see a similar
relation for the polynomial-based versions proposed above.

Throughout the following, let η be piecewise constant, and constant on each
facet in the mesh. The function Xh ∈ Xh will denote a solution to the discrete
ultra-weak variational formulation, we shall then construct a pair (uF

h , vF
h ) and

show that the pair is a solution to the corresponding hybridized finite element
problem. We first investigate the relationship of these solutions on an interior
facet.

Let Fij = ∂Ti ∩∂Tj be an internal facet. Consider a solution Xh to the UWVF
problem. Obviously, there exist unique (uF

h , vF
h ) ∈ UF

h × V F
h such that

(20) Xh,j = −vF
h,nj

+ ηuF
h , Xh,i = −vF

h,ni
+ ηuF on Fij .

We show that these (uF
h , vF

h ) satisfy the corresponding hybridized equation. As
Fij is a facet in the interior, if we use functions Yh ∈ Xh that vanish on faces
away from Ti and Tj the ultra-weak equation reads

〈Xh,Yh〉X − 〈ΠXh, Fh(Yh)〉X = 0.

Recalling that Xh,j = −vF
h,nj

+ ηuF
h , we see that ΠXh,j = Xh,i = vF

h,nj
+ ηuF

h .

Testing with Yh,i = Yh,j = ηξF
h , which is continuous across Fij , we obtain

0 =
∑

k=i,j

〈−vF
h,nk

+ ηuF
h , ηξF

h 〉X − 〈vF
h,nk

+ ηuF
h , (id + 2Bh,kA

−1
h,kB

∗

h,k)(ηξF
h )〉X

=
∑

k=i,j

−〈2vF
h,nk

, ηξF
h 〉X − 〈2Bh,k(A

−1
h,k)

∗B∗

h,k(v
F
h,nk

+ ηuF
h ), ηξF

h 〉X .

As vF
h,nk

flips sign when switching between Ti, Tj, the first term cancels out, and
we obtain

(21) 0 =
∑

k=i,j

〈Bh,k(A
−1
h,k)

∗B∗

h,k(v
F
h,nk

+ ηuF
h ), ηξF

h 〉X .

Now, we test for the jumping function Yh,i = τF
h,ni

,Yh,j = τ F
h,nj

= −Yh,i.

0 =
∑

k=i,j

〈−vF
h,nk

+ ηuF
h , τF

h,nk
〉X − 〈vF

h,nk
+ ηuF

h , (id + 2Bh,kA
−1
h,kB

∗

h,k)τ
F
h,nk

〉X

=
∑

k=i,j

−〈2vF
h,nk

, τF
h,nk

〉X − 〈2Bh,k(A
−1
h,k)

∗B∗

h,k(v
F
h,nk

+ ηuF
h ), τF

h,nk
〉X .(22)

Adding the two equations (21), (22), we get an equivalent equation to the hy-
bridized Helmholtz system (19).
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Now, we consider a facet Fj lying on the boundary Γ. Let again Xh be a
solution to the UWVF problem. Then we can find unique (uF

h , vF
h ) such that

(23) Xh,j = −vF
h,nj

+ ηuF
h , vF

h,nj
+ ηuF

h = −Q(−vF
h,nj

+ ηuF
h ) − Phg̃.

This implies ΠXh = −Q(−vF
h,nj

+ ηuF
h ) = vF

h,nj
+ uF

h +Phg̃. For the test function
Yh, we use

Yh = τF
h,nj

+ ηξF
h , −τ F

h,nj
+ ηξF

h = 0.

With these choices the ultra-weak equation (15) transforms to

〈−vF
h,nj

+ ηuF
h , τF

h,nj
+ ηξF

h 〉X − 〈vF
h,nj

+ ηuF
h , (id + 2Bh,jA

−1
h,jB

∗

h,j)(τ
F
h,nj

+ ηξF
h )〉X .

Using vF
h,nj

= − 1
1−Q

Phg̃−
η
q
uF

h and τF
h,nj

= ηξF
h according to our choice, we obtain

−2〈Bh,j(A
−1
h,j)

∗B∗

h,j(v
F
h,nj

+ ηuF
h ), τF

h,nj
+ ηξF

h 〉X

−2〈vF
h,nj

, τF
h,nj

〉X + 2〈
η

q
uF

h , ηξF
h 〉X,Γ = −2〈

1

1 − Q
Phg̃, ηξF

h 〉X,Γ

= −2〈
1

1 − Q
g, ηξF

h 〉X,Γ,

where the last equality holds because η is constant on each facet and which is
equivalent to the hybridized problem (19). These steps can be reversed to prove
that any solution of the hybridized system gives rise to a solution of the finite
element UWVF.

The equivalence of the two methods and an easy link between the variables has
thus been established. Since the final solution of both methods is the solution
of the Raviart-Thomas method solution this is scarcely surprising, however the
direct identification of variables provided in (20) and (23) shows that even the
auxiliary variables are linked.

4. Solver strategies

In this section, we propose strategies for solving the equations arising from
the discrete UWVF and the hybridized Raviart-Thomas formulation. The fi-
nite element UWVF results in a non-symmetric linear system, on which we use
a preconditioned GMRES method. On the other hand, the hybridized system
is complex symmetric. We observed good convergence behavior of a precondi-
tioned CG method. For the preconditioner, we use a multiplicative Schwarz block
preconditioner described in more detail shortly.

For the UWVF, one can also use traces of plane wave functions for the finite
element space, as done in [7]. We shall indicate how to couple the finite ele-
ment UWVF and plane wave UWVF later in this section, thereby exploiting the
benefits of both.
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4.1. Solving the UWVF equations. We first derive a matrix problem corre-
sponding to the discrete finite element UWVF equation (15) by choosing a basis
{Xjk : j ∈ Jh, k ∈ I(j)} for the finite element space Xh. For Xjk the first index
j denotes to which element Tj the basis function is associated, while k ∈ I(j)
is the local degree of freedom on Tj. To obtain a basis for the full trace space
P p(F ) on an element facet F , we propose to use Legendre polynomials along the
edges in two space dimensions. In the three dimensional case, we construct a
polynomial basis for P p on the triangle using the Duffy transform. For Xh ∈ Xh

we can determine a unique vector ~X = (xjk) such that

Xh =
∑

j∈Jh

∑

k∈I(j)

xjkXjk.

Then we can rewrite problem (15) as the problem of finding ~X such that

Dh
~X − Ch

~X = ~F .

Here Dh is a block-diagonal, symmetric, positive definite sparse matrix defined
by

(Dh)ij,kl = 〈Xkl, Xij〉X ,

whereas Ch is given by

(Ch)ij,kl = 〈ΠXkl, Fh(Xij)〉X ,

and ~F = (f
ij
) is the right hand side, f

ij
= 〈g̃, Fh(Xij)〉X .

As suggested in [7], we use the inverse of Dh for preconditioning. As this matrix
is block-diagonal, a multiplication by D−1

h can be done in optimal complexity. The
preconditioned equation reads

(24) (I − D−1
h Ch) ~X = D−1

h
~F .

We solve the preconditioned linear system (24) by a GMRES method.
The original papers of Cessenat and Després advocated solving (24) by a

damped fixed point iteration. The following lemma ensures convergence of such
a method also for the FE-UWVF.

Lemma 10. Let λ be an eigenvalue of D−1
h Ch. For h small enough, it satisfies

|λ| ≤ 1

and λ 6= 1.

Proof. Clearly, an eigenvalue λ is a generalized eigenvalue for an eigenvector ~X,

Ch
~X = λDh

~X.

Due to the definitions of the matrices Ch, Dh, this implies

〈F ∗

hΠXh,Yh〉X = λ〈Xh,Yh〉X .

As Fh is an isometry in X, and ‖Π‖X→X ≤ 1, we see |λ| ≤ 1. The fact that λ = 1
is excluded follows from the unique solvability of the discrete equation (15). �
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4.2. Solving the hybridized system. In the same way as for the UWVF equa-
tions, we derive a matrix problem corresponding to the hybridized scheme for a
specific finite element basis. We choose bases {UF

i }, {V F
i } for UF

h , V F
h respec-

tively. This defines a vector representation ~u = (ui), ~v = (vi) of uF
h , vF

h , such
that

uF
h =

∑

i

uiU
F
i , vF

h =
∑

i

viV
F
i .

We can rewrite the Schur complement system (19) as

Sh(~u, ~v) = ~Fh,

where the matrix and vector entries are given by evaluation of Sh and the right
hand side against basis functions UF

i , V F
i .

To solve the discrete linear system arising from the hybridized Helmholtz equa-
tion, we use a preconditioned CG method. We obtained good convergence results
when using an additive Schwarz type block preconditioner. The blocks we use
contain all degrees of freedom corresponding to one element. For an element Ti,
we define the index set ITi

such that it contains all indices of basis functions
corresponding to the facets of element Ti. Let Ei denote the restriction matrix
for element Ti, i.e., to the index set ITi

. Then the vector representations (~uF , ~vF )
can be decomposed (non-uniquely) into element vectors ~uF

i , ~vF
i such that

(~uF , ~vF ) =
∑

i∈Jh

ET
i (~uF

i , ~vF
i ).

The additive Schwarz preconditioner S̃−1 is applied via

S̃−1(~ξF
i , ~τF

i ) =
∑

i∈Jh

EiS
−1
i ET

i (~ξF
i , ~τF

i ), Si = EiShE
T
i .

4.3. Coupling to plane waves. As proposed by Cessenat and Després [7], we
can also discretize the UWVF-space X using impedance traces of plane wave
functions. On a plane wave element Ti with boundary ∂Ti, we use the following
basis functions Xij

Xij :=
( 1

iκ

∂

∂ni

+ η id
)

eij,

eij(x) := exp(iκdij · x), dij := (cos(2jπ/pi), sin(2jπ/pi))
T .

As plane wave functions are solutions to the adjoint problem (12), the application
of Fh to Xij on ∂Ti reduces to

Fh,i(Xij) =
(

−
1

iκ

∂

∂ni
+ η id

)

eij.

A general rule of thumb (in two dimensions and for high κ) is to choose the order
of the finite element basis functions element by element so that on Ti pi = chiκ+1,
with c = O(1), for both polynomial and plane wave ansatz functions (see [1] for
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an analysis of dispersion for high order finite elements on rectangles where this
relation is proved).

On large elements, one can save a considerable number of degrees of freedom
when using plane wave ansatz functions compared to polynomials. On the other
hand, on small elements the plane waves are almost linearly dependent. However,
the two different types of finite elements can be coupled in a straightforward
way. This way, we can exploit the benefits of both, using plane waves for large
elements of high order, and polynomials for those of low order. An example of
this technique is shown in Section 5.2.

5. Further Numerical results

In this section, we give some computational results in two and three space
dimensions that illustrate the behavior of our hybridization strategies.

5.1. Propagation in a simple domain. For our first example, we prescribe the
incoming impedance trace 1

ik
∂u
∂n
−u on the boundary of a unit square, such that the

solution is given by u = exp(iκd ·x), where d = (cos(1), sin(1)). We discretize the
domain by an unstructured triangular mesh containing 904 elements, with mesh
size h = 0.05. We test both methods for different values of κ. We use polynomial
finite element spaces of uniform order p = 1 and p = 3. In the UWVF, we
also use plane-wave elements with 10 directions as discussed in Section 4.3, and a
variable-order approach where the order is defined element-wise by p = 1+1.5hκ.
Then, we use polynomial elements up to order 4, and plane-wave elements for
the higher orders. As discussed in the previous section, we apply a GMRES/CG
solver to the respective preconditioned systems.

We compare the convergence of the iterative solvers for the two methods for
different wave lengths and mesh sizes. In Table 1, we give the numbers of iter-
ations needed to reduce the error by a factor of 10−8. For p = 1, κ = 80 the
plane wave solution is not resolved by the finite element functions. Then the
GMRES method for the ultra-weak equation does not converge within 1000 iter-
ations (for more details on computational aspects of the UWVF see [18]). When
damping the hybridized system as described in Section 5.3, we obtain a solution
to the discrete equations within approximately 31 iterations. In Figure 1, we plot
the discretization error ‖u − uh‖L2 against the number of degrees of freedom for
the above problem. We use elements of orders zero or one on an unstructured,
globally refined triangular mesh. As expected, we obtain linear or quadratic con-
vergence with respect to the mesh size. In Figure 2, we plot the error versus
the wave-number κ for a fixed mesh, again using elements of order 0 or 1. As
expected, the error increases with κ (as a result of dispersion error) even though
the number of iterations needed to obtain the solution is almost independent of
κ (see Table 1). When we use p = 1 + hκ in our calculations, we see that the
dispersion error is controlled, and the global L2 error does not increase when κ
is growing.
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UWVF hybrid
κ p = 1 p = 3 p = 10 var. p p = 1 p = 3
5 405 547 589 403 49 51
10 368 485 461 364 49 49
20 343 406 363 380 43 41
40 315 377 316 385 39 39
80 — 359 325 295 – 37

Table 1. Number of iterations in GMRES/CG method when ap-
proximating the problem discussed in Section 5.1.
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Figure 1. Error ‖u− uh‖L2 versus the number of degrees of free-
dom for the problem in Section 5.1: left p = 0, right p = 1. As
expected we obtain first order accuracy when p = 0 and second
order when p = 1, and the error increases with wave-number κ.

In [1] it was shown, that on rectangular, tensor product elements the primal p-
version finite element method converges as (κhe/(2(2p+1)))2p+1. Now, we choose
κ in the above problem such that κhe/(2(2p + 1)) = c for a polynomial degree
p varying from one to 16. We choose the constant c ∈ [0.5, 1.5], and plot the
respective error curves in Figure 3. For c small enough, we observe the expected
exponential convergence.

5.2. Coupling the finite element and plane wave UWVF. We compute the
solution of the Helmholtz equation on a 2D L-shaped domain with wave-number
κ = 100 as shown in Figure 4. We assume a Dirichlet condition on the inner
boundary part of the L-shape, and a transparent boundary condition everywhere
else. At the corner point, a singularity of the solution occurs. We use a triangular
mesh of mesh size 0.3, and a geometric refinement towards the reentrant corner.
On each element, we compute its order by p = chκ + 1 for c ≃ 1. This way we
get the number of degrees of freedom per wavelength, which was observed to be
necessary to resolve the wave-like character of the solution. A reference solution
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Figure 2. Error ‖u − uh‖L2 versus wave-number κ when p = 0
(333,056 dofs), and p = 1: (499,584 dofs). As expected the error
increases with κ, even though the number of GMRES/CG itera-
tions is essentially independent of κ (see Table 1). For p = 1 + hκ,
the error even decreases slightly.

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 1  10

er
ro

r

polynomial degree p

c = 0.5
c = 0.8
c = 1.0
c = 1.2
c = 1.5

Figure 3. Error ‖u − uh‖L2 versus polynomial degree p, wave
number κ such that κhe/(2(2p + 1)) = c. We see the exponential
convergence for c small enough.

can be computed using high order standard Raviart-Thomas elements and mesh
refinement. This is shown in the top row of pictures in Figure 4. A blowup of
the solution near the reentrant corner shows why mesh refinement is needed.

In the middle row of pictures we use a typical plane wave UWVF grid without
mesh refinement towards the singularity. Clearly the solution near the singularity
is not well approximated. If the mesh is refined towards the singularity, the plane
wave UWVF can approximate the solution (see for example [17]), but there is
no advantage to plane wave bases on small elements, so we instead polynomial
elements for those elements where the order is small (i.e. hi is small), and plane-
wave elements everywhere else. For our example, the orders varied between one
and fifty, we obtained a total of only 4463 face-based degrees of freedom. In
the bottom row of Figure 4, we display the solution u and the absolute value of
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the gradient in the vicinity of the singular point with this combined approach.
When using polynomial elements only, we needed far more memory resources.
To obtain a solution of similar accuracy as for the coupled approach, we used a
finer mesh (h ≃ 0.1), and elements of polynomial order up to 6, which resulted
in 37832 coupling degrees of freedom.

5.3. Damping of unresolved waves. Due to the oscillatory behavior of solu-
tions to the Helmholtz equation, a sufficiently large number of degrees of freedom
per wavelength is necessary to resolve the solution (at least π for a very high or-
der finite element method [1]). As the wave number κ increases, it may not
be possible to perform the calculations with sufficient accuracy due to hardware
and/or time limitations. Then a method, where unresolved components of the
solution are damped, is desirable. Due to the fact that the UWVF-operator Fh

is an isometry from the trace space Xh into itself, the original method does not
provide such a damping effect.

For the facet-based hybridization, we obtain a damping scheme, when adding
a consistent stabilization term

BS
h (uh, vh, u

F
h , vF

h ; ξh, τ h, ξ
F
h , τF

h ) :=

Bh(uh, vh, u
F
h , vF

h ; ξh, τ h, ξ
F
h , τF

h ) −
∑

j∈Jh

(η(uh − uF
h ), ξh − ξF

h )∂Tj
.(25)

This method can be useful, when a good approximation of the solution is only
needed locally on a small portion of the underlying domain, and no accuracy
is necessary in the remaining part. As an example, we use a circular domain
Ω of radius one, where we have some incoming impedance trace prescribed on
a concentric circular hole of radius 0.05. On the outside, we assume absorbing
boundary conditions. Now, we divide this ring into two parts Ω1, Ω2 by a further
concentric circle of radius 0.3. We use a mesh which has maximum mesh size
h1 = 0.05 in the inner part Ω1, and mesh size h2 = 0.25 in the outer part Ω2.
This mesh consists of 892 triangular elements. We calculate the solution, using
Raviart-Thomas elements of orders one to four. Then, the wave is sufficiently
well resolved on the inner part, but not on the outer ring. We calculate the error
arising on the inner ring, ‖u − uh‖Ω1

, using both the original and the damping
method. In Table 2, we see that the results are much better for the damping
scheme. In this case, also the CG method converges faster. In Figure 5, we plot
the solution uh and its absolute value |uh| for both schemes, using order p = 3.
One can see the better quality of the solution when the damping term is added.

5.4. A three dimensional example. As an example in three space dimensions,
we consider an object enclosed in the unit sphere. The wave number is set to
κ = 40. On a small part of the boundary, we assume a source generated by an
inhomogeneous Dirichlet condition. The rest of the boundary is governed by an
absorbing boundary condition. We observe the field scattered on the object. We
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Figure 4. Results for the L-shaped domain. In the top row we
show a reference solution computed using variable order Raviart-
Thomas elements. In the middle row we show the traditional plane
wave UWVF solution on an unrefined grid. Grid refinement is
necessary for the UWVF to obtain accuracy and in the bottom
row we show the solution computed using the plane wave UWVF on
large elements, and low order Raviart-Thomas functions on small
elements. Left: solution u, right: |v| around singularity.
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error (CG-it.)
p dofs damping original
1 5424 0.19005 (33) 0.275907 (58)
2 8136 0.0627521 (90) 0.176839 (114)
3 10848 0.0528101 (103) 0.193589 (125)
4 13560 0.0473072 (103) 0.157117 (129)

Table 2. Here we show the effect of adding the damping term in
(25) when the wave is under-resolved in a part of the domain Ω2.
We compare the error ‖u − uh‖Ω1

on the remaining part, and give
the number of CG iterations needed for an error reduction of 10−10.

Figure 5. Here we show the effect of adding the damping term in
(25) when the wave is under-resolved (i.e. an insufficient number
of unknowns per wavelength). In the top row we show our original
hybridization scheme with no damping (left: u, right : |u|). In
the bottom row we show the corresponding results with damping
added. When the damping term is included the iterative scheme
converges more rapidly.

expect singularities of the solution on the reentrant edges arising at edges of the
object. We do a two-level geometric mesh refinement towards these parts. We
apply the facet-based hybridization method. We solve on a mesh consisting of a
hybrid mesh of 14082 elements, using RT5/P

5 elements. This leads to 5828748
degrees of freedom, 1315956 of which are facet-based. We need 204 iterations
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Figure 6. Solution uh in the interior (right), trace uF
h on the boundary

Figure 7. Absolute value of flux |vh|, zoom to singularity

to reach an error reduction of 10−10. Figure 6 shows the scalar field uh in the
interior and its trace uF

h on the object. In Figure 7, we plot the absolute value
of the flux, zooming to the singularity.

6. Conclusion

We have presented two methods for solving the Helmholtz equation with a
large wave number κ. One is an Ultra Weak Variational Formulation, the other
one stems from a hybridization approach similar to those developed for Laplace’s
equation. Both methods are based on a mixed formulation of the problem, and
using Raviart-Thomas finite elements. We showed that the two schemes are
equivalent up to a change of variables.

In our numerical examples, we saw that the approximation properties for both
the h and p version of the finite element method are as expected. We obtain
optimal algebraic convergence when doing uniform mesh refinement. When in-
creasing p proportional to κ, we see the expected exponential convergence.

We solve both systems by iterative methods, namely a preconditioned GMRES
method for the UWVF, and a preconditioned CG method for the hybridized equa-
tions. In the first case, we used a mass matrix as a preconditioner, as originally
proposed by Cessenat and Déspres. For the hybridized equations, we propose
an additive Schwarz block preconditioner. In both cases, we observe that the
number of iterations is independent of κ. However, the iteration counts obtained
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for the second scheme were much smaller than for the first, presumably due to a
better preconditioner.

In the UWVF approach, the Raviart-Thomas based method can be easily cou-
pled to an UWVF using plane waves. This can be useful when singularities in
the solution are to be resolved by geometric grid refinement: By using polynomi-
als/plane waves on small/large elements, serious ill-conditioning of the matrix is
avoided, while a huge number of degrees of freedom can be saved.
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[3] I. Babuška and J. Melenk. The Partition of unity method. Int. J. Numer. Methods Eng.,
40:727–758, 1997.

[4] D. Boffi, F. Brezzi, and L. Gastaldi. On the problem of spurious eigenvalues in the approx-
imation of linear elliptic problems in mixed form. Math. Comput., 69:121–40, 2000.

[5] F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element Methods. Springer, New York,
1991.

[6] O. Cessenat. Application d’une nouvelle formulation variationnelle aux équations d’ondes
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