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Abstract

The aim of this paper is to discuss simulation methods of diffraction
of electromagnetic waves on biperiodic structures. The region with compli-
cated structures is discretised by Nédélec Finite Elements. In the unbounded
homogeneous regions above and below, a plane wave expansion containing
the exact far-field pattern is applied. A consistent coupling is achieved by
the method of Nitsche. By numerical experiments we investigate the speed
of convergence depending on the mesh refinement, the element order and
the number of evanescent waves.

1 Introduction

In this paper we consider the scattering of an electromagnetic wave at a periodic
or biperiodic structure called grating. At a large distance above or below, the
field essentially consists of a finite number of plane waves (or modes). The direc-
tions of these modes follow directly from the period of the grating [7, 27], but the
computation of the corresponding intensities requires the solution of Maxwell’s
equations. Such diffraction gratings are widely used in physics. While in the
past spectroscopy was the major application, there are many promising develop-
ments in optics nowadays, like antireflection surfaces, waveguide couplers or the
EUV-technology, where gratings play an essential role. A nice introduction to the
diffraction problem is given in the books of Petit [25] and Nevière & Popov [23].
In literature, there exists a large variety of numerical methods to solve such prob-
lems. In our paper paper we apply the finite element method (FEM), see also
[1, 2, 4, 13, 31, 3, 28]. The structure is subdivided into simple elements, and the
field is approximated by piecewise polynomials, satisfying continuity constraints
across element interfaces. The FEM is most flexible in modeling complicated,
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possibly curved geometries. In the rigorous coupled wave method (RCW), see
[19, 18, 23], the domain is sliced into layers, and on each layer, the solution is
expanded into plane waves. The special structure allows a fast application of the
transfer operators. Further alternatives are finite-difference methods [22, 35, 25],
integral equation methods [25, 26], the boundary variation method [8, 9] or the
curvilinear coordinate method (C-method) [10, 15].
Bloch - Floquet theory allows to reduce the problem on the periodic grating to the
unit cell with quasi periodic boundary conditions [14, 6, 17]. One crucial task is
to treat the infinite domains above and below the grating. Commonly used pos-
sibilities are the perfectly matched layers (PML) technique [3, 28], or transparent
boundary conditions [1, 2, 4, 13, 31], derived by integral equation methods. The
second method can be efficiently implemented on uniform grids by the fast Fourier
transform. Our new approach is based on the method of Nitsche [24, 34, 11] and
works with a priori independent approximation spaces for the near and the far-
field. Continuity is obtained by the variational formulation. This allows us to
work with finite elements in the complicated grating region, while propagating
and evanescent waves are best suited for describing the far-field. Substrate layers
modeled with the transfer-matrix-method [23, 27] fit well into this concept. The
implementation requires the evaluation of integrals of products of the different ba-
sis functions, which is done by standard numerical integration rules. In order to
achieve high accuracy, high order Nédélec elements [21, 20, 33, 36, 12] are used.
The paper is organized as follows: In Section 2 the diffraction problem is described
to the reader, and a plane wave expansion (Rayleigh expansion) is stated for the
far-field region. In Section 3 the variational formulation is derived for the near
field region, and quasi periodic boundary conditions are incorporated in order to
reduce the problem onto a unit cell. The coupling between these two regions with
Nitsche’s method concludes this section. Section 4 studies the modeling of sub-
strate layers and the paper finishes with some numerical experiments in the last
section.

2 Preliminaries

First we start with some definitions. The domain ΩI := {(x, y, z) : a < z < b} for
a < b represents the interior domain, the exterior domains are defined according
to Figure 1 as Ω+ := {(x, y, z) : z > b} and Ω− = {(x, y, z) : z < a} and we set
Ω± := Ω+ ∪ Ω−. In order to calculate the diffraction and transmission pattern of
gratings, we consider a structure in R3, which is periodic in x and y direction with
periodes dx and dy. By using this periodicity, material parameters like the electric
permittivity ε and the magnetic permeability µ are invariant under translation in
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Figure 1: geometry of the problem

x and y direction

ε(x + ndx, y + mdy, z) = ε(x, y, z),

µ(x + ndx, y + mdy, z) = µ(x, y, z)

with n, m ∈ Z. In the domain ΩI ε(x) and µ(x) are piecewise constant functions.
The permeability µ is assumed to be real and positive and ε is a complex-valued
function. Introducing a complex permittivity, we are able to describe absorption
(and emission) by the material. In the far-field region, which is represented by
the domains Ω+ and Ω−, the functions ε(x) and µ(x) are constant with values
ε+, µ+ and ε−, µ− respectively. The material in the domain Ω+ is assumed to be
absorption free with a real valued ε+.

2.1 Maxwell’s equations

If there are no current-sources and no free charges in the grating, the electromag-
netic fields for all points x ∈ R3 can be described by the time-harmonic Maxwell’s
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equations

∇× E(x) = iωµ(x)H(x), (1)

∇×H(x) = −iωε(x)E(x), (2)

where E(x) and H(x) denote the electric and magnetic field vectors, and ω repre-
sents the angular frequency. Eliminating the magnetic field, we end up with the
second order equation

∇×
[

1

µ
∇× E

]
= ω2εE. (3)

2.2 Rayleigh expansion for the far-field

In the following discussion an arbitrary coefficient, which has the value a+ in Ω+

and a− in Ω− is denoted as a±. In the domains Ω+ and Ω− where ε(x) and µ(x)
are constant scalar functions, equation (3) reduces to

∇× (∇× E) =
(
k±
)2

E in Ω±,

The coefficient (k±)
2

:= ω2 (ν±)
2

is the absolute value of the wavevector including
the refractive index ν± :=

√
ε±µ± with a non negative imaginary part Im(ν±) ≥ 0

and for Im(ν±) = 0 the real part has to be positive Re(ν±) > 0. Fundamental
solutions of this equation are plane waves

E(x) = Aei(αx+βy+γz)

satisfying the constraint

α2 + β2 + γ2 = k2 with α, β, γ ∈ C.

The parameters α, β and γ describe the components of the wavevector k which
indicates the direction of propagation of the plane wave, and A is a constant vector
representing the amplitude. By taking the divergence of equation (2), it follows
immediately that εE is divergence free. Consequently the vector-product k ·A has
to be zero and the electric field vector is orthogonal to the wavevector.
The electric field of the incident light can be expressed as a plane wave with the
wavevector

k+
00 = (α+

0 , β+
0 , γ+

00) = k+ (cos θ cos φ, cos θ sin φ,− sin θ). (4)

Here θ ∈ [0, π
2
) and φ ∈ [0, 2π) are the angles of incidence. Combining this with

the theory of Bloch Floquet [14, 6, 17]

E(x + dxex) = ρxE(x), (5)

E(x + dyey) = ρyE(x), (6)
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Figure 2: the Rayleigh expansion

with the unit vectors in x- and y-direction ex and ey, and ρx, ρy given by the
incoming wave, we get a further restriction for the wavevectors of our plane waves

α±n = α+
0 + n

2π

dx

, (7)

β±m = β+
0 + m

2π

dy

, (8)

γ±nm =

√
(k±)2 − (α±n )2 − (β±m)2, (9)

where n, m ∈ Z. For non-absorbing materials, the variables α±n and β±m are sup-
posed to be real, but γ±nm can be complex. The squareroot is defined such that for
the real part of γ±nm Re(γ±nm) ≥ 0 is valid. If the imaginary part of γ±nm is different
from zero the wave is evanescent and damped in z−direction.

Collecting this, we obtain the Rayleigh expansion of the field in the exterior
domains Ω±

E(x) =
∞∑

n,m=−∞

A±
nmei(α±n x+β±my−γ±nmz) +

∞∑
n,m=−∞

B±
nmei(α±n x+β±my+γ±nmz). (10)

The plane waves of the first sum are propagating into negative z−direction and
those of the second one into positive z−direction. As plotted in Figure 2 we
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assume that only the incident wave is propagating from above towards the grating.
Consequently all A+

nm except for m = n = 0 are zero. In the domain Ω− no incident
wave from below is expected, thus all B−

nm are zero. Hence the field in the exterior
domains is defined as

E(x) =

{
Ein(x) + E+(x) in Ω+

E−(x) in Ω− (11)

with

Ein(x) = A+
00e

i(α+
0 x+β+

0 y−γ+
00z), (12)

E+(x) =
∞∑

n,m=−∞

B+
nmei(α+

n x+β+
my+γ+

nmz), (13)

E−(x) =
∞∑

n,m=−∞

A−
nmei(α−n x+β−my−γ−nmz). (14)

2.3 Reflection and transmission coefficients

The Rayleigh coefficients of the reflected and transmitted plane waves are closely
related to the reflection and transmission coefficients R and T of this waves. These
coefficients can be interpreted as the fraction of energy transported by such a
diffracted mode and the incident energy. In the following discussion complex con-
jugation of a quantity a is denoted as a.
For an arbitrary electric field E(x) with harmonic time dependence and the corre-
sponding magnetic field H(x) the time average of the Poynting vector S(x), which
specifies the energy flow (or more precisely the density of this flow), is defined as
[7, 16]

S(x) =
c

8π
Re
(
E(x)×H(x)

)
,

where c denotes the speed of light. Assuming that the electric field is a plane wave
i.e. E(x) = ER eik·x, we end up with a constant Poynting vector

S =
c

8π
|ER|2Re

(
1

ωµ
k

)
.

Knowing the Poynting vector we are now able to calculate the reflection or trans-
mission coefficient of the grating for a certain diffracted mode. In doing so, we have
to divide the energy of the reflected wave going through an area A(x, y) parallel
to the plane of the grating (the x − y plane) by the energy of the incident wave
going through the same area. The energy flow E through this area is defined as

E =

∫
A(x,y)

S · ez dA,
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the vector (0, 0, 1)T denoted by ez. The reflection coefficient Rnm and the trans-
mission coefficient Tnm respectively for any order of diffraction n, m can then be
obtained via

Rnm =
|B+

nm|2 Re(γ+
nm)

|A+
00|2 Re(γ+

00)
, Tnm =

|A−
nm|2 µ+ Re(γ−nm)

|A+
00|2 µ− Re(γ+

00)
.

3 Problem formulations and discretization

In the previous section we stated a plane wave ansatz for the solution of equation
(3) in the domains Ω+ and Ω− including the unknown coefficients A−

nm and B+
nm.

By solving equation (3) in the interior domain ΩI with finite elements and by cou-
pling the solution to the plane waves of the domains Ω+ and Ω−, these coefficients
can be calculated.
Since we have a periodic structure, we restrict the infinite domain ΩI to the unit-
cell ΩI

p of the grating (compare Figure 1). We denote the restrictions of Ω+ and
Ω− as Ω+

p and Ω−
p . Γ+ and Γ− represent the interfaces between these domains,

and they are defined as Γ+ := Ω
I

p ∪ Ω
+

p and Γ− := Ω
I

p ∪ Ω
−
p . The two periodic

boundaries perpendicular to the x−axis are called Γl
x and Γr

x, whereas Γl
y and Γr

y

describe the boundaries orthogonal to the y−axis.

3.1 Classical formulation of the problem

According to the theory of Bloch-Floquet [14, 6, 17] the solution in the domain ΩI
p

in a periodic structure is quasi-periodic and the equations (5) and (6) are valid.
As the incident plane wave has to fullfill this quasi-periodicity, we are able to
specify the corresponding factors ρx = e−iα+

0 dx for x-direction and ρy = e−iβ+
0 dy

for y-direction. This leads us to the formulation of the quasi periodic boundary
conditions for the tangential component of the electric and magnetic field

n× EI(x) = ρxn× EI(x + exdx) ∀x ∈ Γl
x, (15)

n× 1

µ

(
∇× EI(x)

)
= ρxn×

1

µ

(
∇× EI(x + exdx)

)
∀x ∈ Γl

x, (16)

n× EI(x) = ρyn× EI(x + eydy) ∀x ∈ Γl
y, (17)

n× 1

µ

(
∇× EI(x)

)
= ρyn×

1

µ

(
∇× EI(x + eydy)

)
∀x ∈ Γl

y (18)

with the outer-normal-vector to the surface Γl
x and Γl

y, respectively, denoted as n.
On the boundaries Γ+ and Γ− the finite element solution of the domain ΩI

p has to
match the plane wave solutions of the domains Ω+

p and Ω−
p . On these interfaces
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the tangential component of the magnetic and electric fields have to be continuous,
which are the interface conditions

n× EI(x) = n× (Ein(x) + E+(x)) ∀x ∈ Γ+, (19)

n× 1

µ

(
∇× EI(x)

)
= n× 1

µ

(
∇× (Ein(x) + E+(x))

)
∀x ∈ Γ+, (20)

n× EI(x) = n× E−(x) ∀x ∈ Γ−, (21)

n× 1

µ

(
∇× EI(x)

)
= n× 1

µ

(
∇× E−(x)

)
∀x ∈ Γ−, (22)

with the electric fields E+ and E− obtained by (10) and the outer-normal-vector
n.
Summarizing this we end up with the formulation of the classical problem in the
domain ΩI

p:

Problem 1. [classical formulation] Find a vector-valued function E(x) which sat-
isfies

∇× 1

µ(x)
(∇× EI(x)) = ω2ε(x)EI(x) in ΩI

p. (23)

under the quasi-periodic boundary conditions (15)-(18), the interface conditions
(19)-(22) and the ansatz (11)-(14) on Ω±.

3.2 The weak formulation

Now we are able to state the variational formulation for the described problem in
the domain ΩI

p. Starting with equation (23), multiplying it with a testfunction,
integrating it over the whole domain ΩI

p and integrating by parts, we end up with
the variational equation∫

ΩI
p

1

µ

(
∇× EI

)
·(∇× v) dx+

∫
∂ΩI

p

[
n× 1

µ

(
∇× EI

)]
·v dx−

∫
ΩI

p

ω2εEI ·v dx = 0

(24)
for EI(x) ∈ H(curl, ΩI

p) =
{
v ∈ (L2(Ω

I
p))

3 : curl v ∈ (L2(Ω
I
p))

3
}

and all v(x) ∈
H(curl, ΩI

p).
Here we have still to keep the quasi-periodic boundary conditions (15)-(18) and
the interface conditions (19)-(22) in mind.
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3.3 Incorporation of quasi-periodic boundary conditions

The next step is to incorporate the quasi-periodic boundary conditions (15)-(18).
First we define the periodic space

V I
p := {v ∈ H(curl, ΩI

p) : n× v(x) = ρxn× v(x + exdx) ∀x ∈ Γl
x,

n× v(x) = ρyn× v(x + eydy) ∀x ∈ Γl
y} (25)

with the outer-normal-vector n to Γl
x and Γl

y. The periodic constraints (15) and
(17) are essential ones and they are incorporated directly into the testspace. The
conditions (16) and (18) are natural and they are included in weak sense.

Lemma 1. Any function EI ∈ V I
p satisfying the variational equation∫

ΩI
p

1

µ

(
∇× EI

)
·(∇× v) dx+

∫
Γ±

[
n× 1

µ

(
∇× EI

)]
·v dx−

∫
ΩI

p

ω2εEI ·v dx = 0

(26)
for all v ∈ V I

p fullfills the differential equation (23) together with the quasi-periodic
boundary conditions (15)-(18).

Proof. The conditions (15) and (17) are fullfilled by the definition of V I
p .

Integration by parts yields∫
ΩI

p

(
∇× 1

µ
(∇× EI)− ω2εEI

)
· v dx−

∫
Γl

x∪Γr
x

(
n× 1

µ
(∇× EI)

)
· v dx

−
∫

Γl
y∪Γr

y

(
n× 1

µ
(∇× EI)

)
· v dx = 0.

By choosing v such that n× v|Γp = 0 with Γp = Γl
x ∪ Γr

x ∪ Γl
y ∪ Γr

y we obtain

∇× 1

µ

(
∇× EI

)
− ω2εEI = 0 (27)

Next we choose v such that n× v|Γl
y∪Γr

y
= 0. Exchanging the outer-normal-vector

on Γr
x in the corresponding integral by the negative outer-normal-vector on Γl

x and
using ρxn× v(x) = n× v(x + dxex) from the definition of the space, we observe

0 =−
∫

Γl
x

1

µ

(
∇× EI(x)

)
· (v(x)× n) dx

+

∫
Γl

x

ρx
1

µ

(
∇× EI(x + dxex)

)
· (v(x)× n) dx

0 =−
∫

Γl
x

(
n× 1

µ
(∇× EI(x))− n× 1

µ
(∇× EI(x + dxex))

)
· v(x) dx = 0.

This results in condition (16). Choosing a testfunction v such that n×v|Γl
x∪Γr

x
= 0

we obtain condition (18).
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3.4 Incorporation of the interface conditions by Nitsche’s
Method

The final step is the incorporation of the interface conditions into our variational
formulation (26). The polynomial solution in the domain ΩI

p has to be coupled
across the interfaces Γ+ and Γ− to the plane wave solution (10), and we have to
fullfill the interface conditions (19)-(22). Furthermore the given incident plane
wave is incorporated. First we introduce some notations:
The wavevectors k+

nm := (α+
n , β+

m, γ+
nm) and k−nm := (α−n , β−m,−γ−nm) are defined

according to the equations (7)-(9), and k+
0 denotes the wavevector of the incoming

wave from equation (4). Using this we are able to introduce the plane wave spaces

V + =
{
v : v =

∞∑
n=−∞

∞∑
m=−∞

B+
nmeik+

nm·x, B+
nm ∈ R3, B+

nm · k+
nm = 0

}
,

V − =
{
v : v =

∞∑
n=−∞

∞∑
m=−∞

A−
nmeik−nm·x, A−

nm ∈ R3, A−
nm · k−nm = 0

}
on the domains Ω+ and Ω−, respectively. We define the scalar products(

u,v
)

ΩI
p

:=

∫
ΩI

p

u · v dx and
〈
u,v

〉
Γ±

:=

∫
Γ+∪Γ−

u · v dx.

Keeping the incoming plane wave in mind, the incorporation of the interfacecon-
ditions (19)-(22) with Nitsche’s method [24, 34, 11] yields the following problem-
formulation:

Problem 2. Find
(
EI ,E±) = u ∈ V = V I

p × V ± = V I
p × V + × V − such that

a(u, v) = f(v) ∀v = (vI ,v±) ∈ V (28)

with the bilinear-form

a(u, v) =
(
µ−1(∇× EI),∇× vI

)
ΩI

p

−
(
ω2εEI ,vI

)
ΩI

p

−
〈
µ−1(∇× E±), (n× vI − n× v±)

〉
Γ±

−
〈
µ−1(∇× E±),n× v±

〉
Γ±

−
〈
(n× EI − n× E±), µ−1(∇× v±)

〉
Γ±

+ η
〈
(n× EI − n× E±), (n× vI − n× v±)

〉
Γ±

(29)
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where we assume the stabilizing parameter η to be sufficiently large. The linear-
form contains the incident wave Ein := A+

00e
ik+

0 ·x as

f(v) =
〈
µ−1(∇× Ein),n× vI

〉
Γ±

−
〈
n× Ein, µ

−1(∇× v+)
〉

Γ±

+ η
〈
n× Ein(n× vI − n× v+)

〉
Γ±

.

The following Lemma states consistency of this Problem and the classical for-
mulation in Problem 1 with its exact solution EI and E±according to definition
(11).

Lemma 2. The exact solution u = (EI , E+, E−) solves the discrete variational
problem

a(u, v) = f(v) ∀v ∈ V.

Proof. Inserting u = (EI ,E+ + Ein − Ein, E−) into a(u, v) − f(v), and knowing
from the interface condition (19) and (21) that n × EI − (n × E+ + Ein) = 0 on
Γ+ and n× EI − n× E− = 0 on Γ−, we arrive at:

a(w, v)− f(v) =
(
µ−1(∇× EI),∇× vI

)
ΩI

p

−
(
ω2εEI ,vI

)
ΩI

p

−
〈
µ−1(∇× (E+ + Ein)), (n× vI − n× v±)

〉
Γ+
−
〈
µ−1(∇× (E+ + Ein)),n× v±

〉
Γ+

−
〈
µ−1(∇× E−), (n× vI − n× v±)

〉
Γ−

−
〈
µ−1(∇× E−),n× v±

〉
Γ−

a(w, v)− f(v) =
(
µ−1(∇× EI),∇× vI

)
ΩI

p

−
(
ω2εEI ,vI

)
ΩI

p

−
〈
µ−1(∇× (E+ + Ein)),n× vI

〉
Γ+
−
〈
µ−1(∇× E−),n× vI

〉
Γ−

.

With the help of condition (20) and (22) we can replace n× µ−1(∇× (E+ + Ein))
by n× µ−1(∇× EI) and n× µ−1(∇× E−) by n× µ−1(∇× EI), and we obtain

a(w, v)− f(v) =
(
µ−1(∇× EI),∇× vI

)
ΩI

p

−
(
ω2εEI ,vI

)
ΩI

p

+
〈
n× µ−1(∇× EI),vI

〉
Γ±

.

By Lemma 1 we know, that this expression is zero.

Remarks:

• Using this method, the Rayleigh coefficients of the reflected (B+
nm) and trans-

mitted waves (A−
nm) appear as additional unknowns in the variational equa-

tion (28).
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• The incident plane wave A+
00e

ik+
0 ·x is incorporated directly into the testspace

by homogenizing the problem.

• During the assembling of the stiffnessmatrix we can evaluate the curl of a
plane wave instead of the curl of polynomial basis functions, i.e. ∇ × E±

instead of ∇× EI in the domain ΩI
p, which is cheaper. The curl of a plane

wave is proportional to the cross product of wavevector and plane wave.
Evaluating the curl is then equivalent to the evaluation of the basisfunction.

• The bilinearform (29) shows that the stiffnessmatrix, except to the contri-

bution of the integral
〈
µ−1(∇ × E±),n × v±

〉
Γ±

, is hermitian. Here, the

product of two plane waves is integrated over the interface. Because of∫ d

0

ei(k0+n 2π
d

)xe−i(k0+m 2π
d

)xdx = δnmd

with the Kronecker Delta δnm, there is only a contribution of this non hermi-
tian term to the diagonal of the stiffness matrix. Hence the stiffnessmatrix
can be decomposed into an hermitian and a diagonal matrix.

4 The modeling of substrate layers

In practical applications there are often layers between the grating and the semi-
infinite substrate. One possibility to take them into account is to include these
layers into the Finite Element Domain ΩI

p, which may result in a large number
of unknowns. An alternative would be to include these layers into the boundary
conditions. In this case we have to allow for waves which are reflected by the layers,
and consequently incident waves from below the grating are present. The aim of
this section is to express the Rayleigh coefficients of the waves leaving the layers
and propagating towards the grating (BF in Figure 3) in terms of the coefficients
of the waves leaving the grating and propagating towards the stack (AF in Figure
3) via the transfer matrix method [23, 27]. Doing this we are able to incorporate
the substrate layers directly into the function space.
In the following discussion the layers are assumed to be parallel to the x−y plane.

The permittivity ε jumps on the layer interfaces while µ is assumed to be constant
in the whole stack. Because the material parameters are constant in every layer,
the field there can be written as a sum of plane waves. Knowing that diffraction of
a plane wave at a plane surface results in one reflected and one transmitted wave,
the sum of plane waves in every layer reduces to an up going and a down going
wave, if there is only one wave incidenting onto a stack of layers.
Since the polarization of the electromagnetic field is not changed by a plane surface
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Figure 3: a stack of substrate layers

for TE and TM polarized light, it is convenient to split the incident field into a TE
and a TM contribution. In the TE-case the electric field is parallel to the surface
of the layer, while the magnetic field is perpendicular to the wavevector and the
electric field. In the TM-case the situation is vice versa.

4.1 TE-modes

First we consider the j−th layer of the stack between z = zj and z = zj−1 (compare
Figure 3) with thickness δj = zj−1 − zj. For TE-modes the electric field E‖ is
parallel to layers and it can be decomposed as

E‖(x, y, z) = Aje
i(αjx+βjy−γjz) + Bje

i(αjx+βjy+γjz).

Using this representation we can describe the electric field and its normal flux at
the boundaries below and on top of the layer(

E‖
∂E‖
∂z

)∣∣∣∣
z=zj

=

(
1 1

−iγj iγj

)(
Aje

i(αjx+βjy−γjzj)

Bje
i(αjx+βjy+γjzj)

)
, (30)(

E‖
∂E‖
∂z

)∣∣∣∣
z=zj−1

=

(
1 1

−iγj iγj

)(
κ 0
0 1

κ

)(
Aje

i(αjx+βjy−γjzj)

Bje
i(αjx+βjy+γjzj)

)
,

with κ := e−iγjδj . With these equations, we obtain the propagation relation(
E‖
∂E‖
∂z

)∣∣∣∣
z=zj−1

= Mj

(
E‖
∂E‖
∂z

)∣∣∣∣
z=zj
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for the field and its normal flux on the boundaries with the propagation matrix

Mj :=

(
1 1

−iγj iγj

)(
κ 0
0 1

κ

)(
1 1

−iγj iγj

)−1

.

Now we consider a stack of m parallel layers with the interfaces corresponding
to the discrete z−values z0, z1 . . . zm. Because the tangential component of the
electric field (here E‖) and its normal derivative are continuous across a plane
interface, we obtain the matrix connecting the field above the stack at z = z0 with
the field below at z = zm by simple matrixmultiplication(

E‖
∂E‖
∂z

)∣∣∣∣
z=z0

=
m∏

j=1

Mj

(
E‖
∂E‖
∂z

)∣∣∣∣
z=zm

In combination with equation (30) and assuming no incident wave from below the
grating (BS = 0 in Figure 3), we end up with a linear relation between AF and
BF .

4.2 TM-modes

For TM-modes the situation is similar. Now the magnetic field is parallel to the
layers, and the z− component is zero. Unlike to the TE case in the TM case the

tangential magnetic field H‖ and 1
k2

j

∂H‖
∂n

have to be continuous across interfaces

where kj := ωνj is the absolute value of the wavevector with the refractive index

of the layer j called νj. Now the normal flux
∂H‖
∂n

jumps at the layer-interfaces.
This different interfaceconditions can be included by introducing matrices Dij

describing the behavior on the interface(
H‖
∂H‖
∂z

)∣∣∣∣
z=z0

= M1D12M2D23 . . . Mm

(
H‖
∂H‖
∂z

)∣∣∣∣
z=zm

with

Dij :=

(
1 0

0
k2

i

k2
j

)
=

(
1 0

0
ν2

i

ν2
j

)
.

As in the TE-case we are now able to find a relation between the incoming and
the outgoing Rayleigh coefficient of the magnetic field, which is equivalent to the
relation of the electric Rayleigh coefficients.

Technical remark:
We end up in both, the TE- and the TM-case with a system of two equations(

AF

BF

)
= M

(
AS

0

)
, (31)
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where M contains the product of all propagation matrices. With this notation we
arrive at the notation

BF = ϑAF =
M21

M11

AF .

The disadvantage of this approach is that for absorbing layers one has to deal
with large numbers in the propagation matrices Mj and consequently in M , which
reduces the accuracy of ϑ. One possibility to work around this problem is to start
with an arbitrary value for AS, for example one. Next we can evaluate the left hand
side of equation (31) by multiplying the vector on the right hand side with one
propagation matrix after the other. Thus only the ratio of two matrixelements is
necessary for the computation of ϑ, we are allowed to normalize the two-component
vector after every matrix multiplication, and we can avoid large numbers.

If we choose basis functions of the plane wave testspace below the grating which
are either TE or TM, we are able to calculate the factor ϑ linking an unknown
belonging to an up-going plane wave with one corresponding to a downgoing wave.
The implementation is done by substituting BF as ϑAF in the assembly procedure.

5 Numerical results

The numerical results in this section are calculated using finite element code Net-
gen/Ngsolve of Schöberl (see http://www.hpfem.jku.at or [32]). The linear sys-
tem of equations is solved with the direct solver PARDISO [29, 30].

5.1 Example 1: a lamellar grating

First we study a two dimensional benchmark problem from literature [15, 3]. The
grating is lamellar (compare Figure 4) with a period of 1µm into x-direction. The
width of the grooves is 0.5µm and their depth 1µm. Above the grating we assume
vacuum with refractive index one, and below the grating the refractive index is
0.22 + 6.71i, which represents a highly conducting material. The grating is illumi-
nated by light with a wavelength of 1µm under an angle of 30◦ to normal incidence.
On the left hand side of Figure 4 the transverse component of the electric field
is plotted for TE incidence. At the corners of the grating profile we applied a
geometric refinement of order one. The geometric refinement was done by using
a general coarse mesh, and by cutting off these vertices at a geometric refinement
factor of 0.125. For a polynomial order 12 of the testfunctions, which corresponds
to 15 849 unknowns, the resulting intensity 0.7342789 of the reflection of order -1
is close to the results of [15, 3].
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Figure 4: Real part of the electric field for TE modes (left) and the magnetic field
for TM modes (right) for example 1
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Figure 5: L2-error as a function of degrees of freedom for the TE- (left) and the
TM-case (right) for different levels of geometric refinement in example 1

Due to singularities at the cornerpoints of the grating profile a finer mesh and a
geometric refinement of level 5 was used in the TM case. The strong decay of the
solution in the absorbing material, which becomes visible on the right hand side of
Figure 4, makes it necessary to refine the mesh in this area. For polynomial order
6, which leads to 23 122 degrees of freedom the intensity of 0.8484817 for the zero
order reflection is also in good agreement to the results appearing in literature
[15, 3].
Next we investigate the dependence of the solution from the number of geometric

refinement levels on the cornerpoints of the grating profile and on the polynomial
order or the degrees of freedom, respectively. Therefore we calculate the L2-error
by integrating the absolute difference of the actual far-field-solution and a refer-
ence solution, calculated with higher accuracy over the boundaries Γ+ and Γ−.
In Figure 5 the error is plotted as a function of the number of unknowns. The
underlying mesh is uniform and the number of degrees of freedom is varied by
changing the polynomial order of the testfunctions. Each point in Figure 5 corre-
sponds to a certain polynomial order. The curves show some typical features. In
the pre-assymptotic range, at small polynomial orders, the convergence behaves
exponentially. Due to a fixed mesh refinement, the rate slows down to algebraic
convergence. The left plot of Figure 5 indicates that for TE-modes one level of
geometric refinement is sufficient to reach small errors. The situation is different
in the TM-case. Because of the singularities in the cornerpoints of the grating
profile geometric refinement has a large influence on the error of the solution.
In Figure 6 we consider the dependence of our solution on the position of the artifi-

cial interfaces Γ±. For distances of 0.02, 0.1, 0.3 and 0.6µm between the boundaries
Γ± and the grating the error is plotted as a function of the number of plane waves
used in the calculation. The error is represented by the difference of the zero order
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Figure 6: error as function of the number of plane waves for different distances of
the boundaries Γ± of the grating in example 1

reflected intensity and its exact value. Generally we can remark that the smaller
the distance between the boundary and the grating, the more basisfunctions are
needed to describe the far-field. If the unit cell is cut in a small distance of the
grating the local field in the grating influences strongly the field at Γ±, and we
have to include apart from two propagating waves a large number of evanescent
basis functions. In a large distance we can consider just a few of these evanescent
modes, and the far-field can be described almost by propagating waves.

5.2 Example 2: a large unit cell

In this example we examine the same lamellar grating as above, but now the unit
cell is chosen much larger than in the last example. In order to show that we
are able to treat large two dimensional problems with a small ratio of wavelength
to periode, we chose a unit cell consisting of 100 periodes of the grating, while
the wavelength is kept constant. For such a grating about 400 plane wave basis
functions are needed to describe transmission and reflection. In Figure 7 the field
distribution in a part of the unit cell is plotted. The corresponding calculation
was performed with a mesh of about 16 000 elements and a polynomial order of
8, which is equivalent to 970 000 unknowns. On a Intel 2 GHz PC the reflected
intensities for this geometry were computed with an accuracy up to five digits
within 530 seconds.
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Figure 7: electric field distribution of the supercell in example 2

5.3 Example 3: a three dimensional example

Finally we consider a crossed grating, periodic in x- and y-direction. The unit
cell (compare Figure 8) is assumed to have a side length of 0.6µm. The strong
absorbing silicon substrate with refractive index 4.76+5.00i and a 1µm thick layer
of SiO2 with refractive index 1.50 (green in Figure 8) are incorporated as substrate
layers into the boundary conditions. On top of the SiO2 is a 0.08µm thick weakly
absorbing layer with refractive index 2.62 + 0.48i. Into a photoresist (orange in
Figure 8) with thickness 0.3µm and refractive index 1.68 + 0.003i cylindric holes
with radius 0.15µm are etched. The refractive index of these holes and the medium
above the grating is assumed to be one.
The grating is illuminated by light propagating parallel to the xz-plane under an
incident angle of 30◦. The electric field is polarized in the xz-plane. In the simula-
tion, we use high order Nédélec finite elements [21, 20, 33, 36, 12], which provide
tangential continuous functions and thus they are well suited to satisfy the phys-
ical constraint of a tangential continuous electric field. In Figure 8 the real part
of the x-component of the electric field distribution for a wavelength of 0.3µm is
plotted. In this picture some physical features can be seen. In the regions with
an higher refractive index, like the photoresist (orange), the wavelength is much
smaller than above the grating, and the damping of the field in the absorbing layer
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Figure 8: geometry of example 3 and the x-component of the electric field solution

(blue) becomes visible.
For the described setting we vary the wavelength between 0.2µm and 0.8µm for

different meshes and polynomial orders. The results for the zero order reflected
intensity are compared in Figure 9 with a reference solution computed by an RCW
code [5]. In the left hand plot the solution for a mesh of 835 elements and a poly-
nomial order of two (which results in 9 100 unknowns) is plotted (green) together
with the RCW solution (red). Because of the good agreement between these two
curves in the large-wavelength-region the solution can be there approximated for
our mesh with small polynomial orders.
For small wavelength the situation is different. In this case we investigated two
possibilities to improve our approximation. On the one hand the mesh can be
refined, while the polynomial order is kept constant. The blue line on the left
hand plot in Figure 9 which was obtained by a finer mesh with 4787 elements
and a polynomial order of 2 (about 48 000 unknowns) shows some features of the
reference solution, but the approximation is still bad. On the other hand the
polynomial order can be increased for the coarse mesh. Using the old mesh and
a polynomial order of four, which is equivalent to the number of unknowns used
above, we obtain the black line in Figure 9. The black curve seems to be a much
better approximation, and for wavelength larger than 0.3µm it is almost identical
to the reference solution (red).
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Figure 9: Zero order reflected intensity as a function of wavelength compared with
a reference solution for example 3
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