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Abstract. A posteriori error estimates without generic constants
can be obtained by a comparison of the finite element solution with
a feasible function for the dual problem. A cheap computation
of such functions via equilibration is well-known for scalar equa-
tions of second order. We simplify and modify the equilibration
such that it can be applied to Maxwell’s equations and edge ele-
ments. The construction is more involved for edge elements since
the equilibration has to be performed on subsets with different di-
mensions. For this reason, Raviart–Thomas elements are extended
in the spirit of distributions.

1. Introduction

Recently, a posteriori error estimates without constants have at-
tracted much interest; see Ainsworth and Oden [1], Neittaanmäki and
Repin [17], Vejchodský [20], Luce and Wohlmuth [13] and also Lade-
veze and Leguillon [12]. At first glance they look like estimators which
use local Neumann problems as introduced by Bank and Weiser [5], but
they are based on a comparison of primal and dual forms of the varia-
tional problems. Following Prager and Synge (1949) in the special case
of the Poisson equation −∆u = f in Ω, one compares a finite element
approximation uh ∈ H1(Ω) and a function σ ∈ H(div) which satisfies
the equilibrium condition div σ+ f = 0. In principle, the latter can be
obtained via mixed methods, but in practical computations a feasible
function σ is constructed by an equilibration of ∇uh.

The equilibration can be done by solving local problems; see [1,
Chapter 6.4]. The solution of local problems by polynomials of suf-
ficiently high order is avoided in [20] by the combination with a variant
of the hypercircle method and in [13] by the introduction of a dual
mesh. We will go a different way in order to avoid generic constants

1991 Mathematics Subject Classification. 65N30.
Key words and phrases. a posteriori error estimates, Maxwell equations.
The second author acknowledges support from the Austrian Science Foundation

FWF within project grant Start Y-192, “hp-FEM: Fast Solvers and Adaptivity”.
1



2 DIETRICH BRAESS AND JOACHIM SCHÖBERL

in the main term of the upper estimate. A small portion of the error
that results from the data oscillation is estimated in the classical man-
ner. So the local problems become transparent, and a generalization to
other types of elliptic problems is now natural (although not trivial).
In the 2D case there is even a simple geometrical interpretation of the
resulting equilibration procedure.

In the present paper we also establish a posteriori error estimators for
Maxwell’s equations with similar properties. There is an analogue to
the result of Prager and Synge although we have to deal with different
Sobolev spaces and edge elements. The equilibration in H(curl), how-
ever, is more involved since the splitting of the residual currents into
local divergence-free currents has to be done with more constraints.
Moreover, the constraints refer to currents on geometrical objects with
different dimensions.

To overcome these obstacles we proceed as we have shown for the
Poisson equation. We extend the Raviart–Thomas elements and Nédélec
elements to finite element spaces such that the differential operators
curl and div act on distributions. We show that the differential opera-
tors and the extended spaces still form exact sequences. The sequences
generalize the de Rham sequences and the discrete analoga that were
frequently used in the last years for constructing and understanding
new finite element spaces [2, 3, 11].

In Section 2 we write the equilibration procedure for the (scalar)
Poisson equation in our setting in order to make the reader familiar
with a technique of avoiding generic constants. The resulting local
problems will differ from those in the literature. The distributional
Raviart–Thomas elements and the corresponding Nédélec elements are
introduced in Section 3. Details are provided for the 2-dimensional case
while the discussion of the 3-dimensional case is treated more briefly.
Section 4 contains the application to a posteriori error estimators for
Maxwell’s equations.

The Sobolev spaces H1(Ω), H1
0 (Ω), H(div,Ω) and H(curl,Ω) are de-

fined as usual. The specification of the domain will be often suppressed
when there is no danger of ambiguity.

2. Equilibrated Residual Error Estimates for Scalar

Equations

In this section we consider the scalar equation

−∆u = f (2.1)

on a polygonal domain Ω in 2-space or 3-space. Moreover, let u = 0
on a non-empty subset ΓD ⊂ ∂Ω and ∂u/∂n = 0 on ΓN := ∂Ω\ΓD.
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The application of a result by Prager and Synge for getting a poste-
riori error estimates is well known although the presentation in the
literature differs very much; see [18, 1, 12, 17, 15, 13, 20]. We provide
the essential ideas for achieving estimates without generic constants
for the scalar equation (2.1), and establish a framework with simpler
local problems which will be appropriate for Maxwell’s equations in
Section 4. For convenience, we restrict ourselves to the Poisson equa-
tion in this section. The generalization to equations with piecewise
constant coefficients will be clear from the considerations in Section 4.

The finite element solutions are determined on a triangulation of
Ω into triangles or tetrahedra, Ω̄ = ∪TT , and we decompose the L2-
functional 〈f, v〉 =

∑
T

∫
T
fv . Let

Mk
−1 := {v ∈ L2(Ω); v|T ∈ Pk}, Mk

0 := Mk
−1 ∩ C

0(Ω)

be the sets of polynomial Lagrange finite elements on the triangulation
above, and let uh ∈ Vh := M1

0 (with the essential boundary conditions
incorporated) be the finite element solution for linear elements, i. e.

(∇uh,∇v) = (f, v) for v ∈ Vh . (2.2)

The distribution

fh := −∆uh (2.3)

is a functional on H1(Ω) and evaluates to

〈fh, v〉 = (∇uh,∇v) =
∑

T

{
−

∫

T

∆uh v +

∫

∂T

∂uh

∂n
v

}

=
∑

F

∫

F

fh,F v .

Here F runs over the faces of the elements (and over the edges in the
2D-case, resp.), and

fh,F =
[∂uh

∂n

]
:=

∂uh,l

∂nl
+
∂uh,r

∂nr
.

We introduce the corresponding integrals over elements and faces

f̂
T

=

∫

T

f , f̂
F

h =

∫

F

fh,F . (2.4)

Since we treat here the d-dimensional case for d = 2 and d = 3 simul-
taneously, we use the letter F for the d − 1-dimensional simplices. In
general, contributions of tetrahedral/triangular elements, faces, edges
and vertices are distinguished by the labels T , F , E, and V , respec-
tively.
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2.1. The Theorem of Prager and Synge.

Theorem 1. (Theorem of Prager and Synge) Let σ ∈ H(div), σ ·n = 0
on ΓN while v ∈ H1(Ω), v = 0 on ΓD and assume that

div σ + f = 0. (2.5)

Furthermore, let u be the solution of the Poisson equation (2.1). Then,

‖∇u−∇v‖2 + ‖∇u− σ‖2 = ‖∇v − σ‖2. (2.6)

A proof can be found in [18, 8]; see also Theorem 10.
Now we are looking for a cheap construction of a function σ that

satisfies (2.5).
First we assume that f is constant on each element. Then there is a

function σ as required in the Raviart–Thomas space RT :

RT−1 := {τ ∈ [L2(Ω)]d; τ |T = aT + bTx, aT ∈ Rd, bT ∈ R ∀T},

RT := RT−1 ∩H(div).

If we solve the original equation (2.1) by the mixed method with the
Raviart–Thomas element [8, p. 146], then we would yield the function
σ ∈ RT with (2.5) for which

‖∇uh − σ‖

is minimal. Indeed, it follows from (2.6) that this is equivalent to the
minimization of ‖∇u − σ‖, and here the minimum is attained at the
solution of the mixed method of Raviart–Thomas. This procedure,
however, would be too expensive for computing a posteriori error es-
timates. We rather construct a solution of (2.5) from the given finite
element solution uh by a local procedure usually called equilibration.
We perform the construction in the broken Raviart–Thomas spaceRT−1

defined above and not on the continuous level. Specifically, we do it for
the difference σ−∇uh ∈ RT−1, since the latter admits a decomposition
into functions with local support.

2.2. Equilibration. In our context we write the residual as

f − fh = − div σ∆ where σ := ∇uh + σ∆. (2.7)

Given a vertex V of the mesh, we assign to it the patch ωV := ∪{T, V ∈
∂T}. The correction σ∆ will be constructed from the solutions of local
problems on patches:

σ∆ =
∑

V

σωV
. (2.8)
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Here V runs over all vertices of the triangulation, and the support of
σωV

is contained in ωV . – From (2.3) and (2.7) it follows that σ :=
∇uh + σ∆ ∈ H(div) satisfies div σ+ f = 0, and by Theorem 1 we have

‖∇u−∇uh‖L2
≤ ‖σ∆‖L2

,

i. e. an upper bound with constant one.
Now we turn to the construction of σωV

in the 3D-case. We recall
that f is assumed to be constant on each element. Let V be a node
of the mesh and ψV be the linear nodal function with ψV (V ) = 1 and
ψV (x) = 0 for x ∈ Ω\ωV . From the characterization (2.2) of uh as a
finite element solution and by partial integration we obtain

∑

T⊂ωV

∫

T

fψV =
∑

T⊂ωV

∫

T

∇uh∇ψV =
∑

F⊂ωV

∫

F

[∂uh

∂n

]
ψV .

Since ψV is piecewise linear, we have for d = 3 the equations
∫

T
ψV dx =

1
d+1

∫
T
dx = 1

4
|T | and

∫
F
ψV dx = 1

d

∫
F
dx = 1

3
|F |. Hence,

1

4

∑

T⊂ωV

∫

T

f =
1

3

∑

F⊂ωV

∫

F

fh,F

or with the notation (2.4)

1

4

∑

T⊂ωV

f̂
T

=
1

3

∑

F⊂ωV

f̂
F

h . (2.9)

Now, we fix the local source term fωV
by defining its element and edge

contributions:

f̂
T

ωV
:=

∫

T

fψV =
1

4
f̂

T

, (2.10)

f̂
F

ωV
:= −

1

3
f̂

F

h .

Since each tetrahedron has 4 vertices and each face has 3 vertices, this
is a decomposition of the global residual

f − fh =
∑

V

fωV
.

It follows from (2.9) that the decomposition satisfies
∑

T

f̂
T

ωV
+

∑

F

f̂
F

ωV
= 0 (2.11)

for each V , i.e. 〈fωV
, 1〉 = 0.
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Remark 2. There are some modifications at the vertices on the bound-
ary of Ω. If ∂ωV ∩ ∂Ω ⊂ ΓN , there is no change apart from the ge-
ometry. If V ∈ ΓD, then there is no test function associated with the
vertex, and (2.11) does not hold for the vertex V . In this case, however,
there is no boundary condition on ∂ωV ∩ ΓD when we construct σωV

.
There is no problem. – Thus we will ignore adaptations at boundaries
in the sequel.

We obtain σωV
in the broken RT space with support in ωV and

div σωV
+ fωV

= 0

by applying the following lemma to the patches ωV . Specifically, each
σωV

is a solution of a local variational problem on a small patch. By
summing over all patches a solution σ∆ of (2.7) is constructed.

Lemma 3. Let ω = ∪TT ⊂ Rd, d = 2 or 3, be simply connected, and let
∪FF = ∪T∂T\∂ω be a decomposition of the interelement boundaries.
If the distribution g,

〈g, v〉 :=
∑

T

∫

T

gTv +
∑

F

∫

F

gFv (2.12)

with piecewise constant functions gT , gF satisfies 〈g, 1〉 = 0, then there
exists σ ∈ RT−1 such that

σ · n = 0 on ∂ω,

div σ = gT in T, (2.13)

[σ · n] = gF on F.

Moreover, there exists a constant c depending only on the shape param-
eter of the mesh such that

‖σ‖2
0 ≤ c

(∑

T

h2
T‖gT‖

2
L2(T ) +

∑

F

hF‖gF‖
2
L2(F )

)
.

Proof. First we reduce the given equations to a problem without face
terms. We choose σ1 ∈ RT−1 by setting

σ1 · n = −
1

2
gF at internal interfaces

and σ1 · n = 0 on ∂ω. Thus, the face contributions of div σ1 coin-
cide with the face contributions of g, and the difference is the regular
function

g − div σ1 ∈ M0
−1 and

〈
g − div σ1, 1

〉
= 0.
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From Remark 2.1 in [3] we know that the sequence

RT0,0
div
−→ M0

−1

R

1
−→ R (2.14)

is exact, where RT0,0 := {τ ∈ RT−1, τ · n = 0 on ∂ω} and the second
mapping is defined by

∫
1 : g 7→ 〈g, 1〉. Thus there exists σ0 ∈ RT such

that
div σ0 = g − div σ1 in ω,

σ0 · n = 0 on ∂ω.

Setting σ := σ0 + σ1 we obtain a solution of (2.13). The stability
estimate will be proven in Section 3.4 for more general cases. �

The first result of the lemma can be understood as an extension
of (2.14) being an exact sequence. Details will be given in the next
section.

2.3. Data Oscillation. Eventually, we want to abandon the assump-
tion that f is piecewise constant. Let f̄ be the L2 projection of f
onto piecewise constant functions. The preceding investigation applies
to the error if the right-hand side of (2.1) is replaced by f̄ . In or-

der to guarantee (2.11) we have to define f̂
T

ωV
by the first expression in

(2.10) and cannot use the simple factor 1/4. This is no drawback, since∑
V

∫
T
fψV = |T |f̂T implies (2.11). Moreover the integrals

∫
T
fψV have

been computed with the assembling of the finite element equations.
Now the difference between the solution for f and f̄ can be bounded

by

ch‖f − f̄‖. (2.15)

This effect of the data oscillation is well-known [8, p. 171]. We em-
phasize that the constant c depends on the shape of the elements, but
it does not depend on the domain Ω. Since (2.15) is a term of higher
order, we admit a generic constant here.

2.4. Efficiency. By construction the error estimate

‖∇(u− uh)‖ ≤ ‖σ∆‖ + ch‖f − f̄‖

is reliable. By Lemma 3 ‖σ∆‖ can be bounded by the terms hT‖fT‖

and h
1/2
f ‖fh,F‖, i.e. by the ingredients of the well-known residual error

estimator. Thus ‖σ∆‖ is bounded by a multiple of that estimator.
Since the residual error estimator is efficient, the same holds for the
estimates determined by equilibration.

The results of this section are summarized for the Poisson equation
in d-space as follows.
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Theorem 4. For each node V there exists a broken RT-function σωV

with support in ωV and

div σωV
= 1

|T |

∫
T
fψV in T ⊂ ωV ,

[σωV
· n] = −1

d
[∇uh · n] on F ⊂ ωV ,

σωV
· n = 0 on ∂ωV .

Choose σωV
with (quasi-) minimal L2-norm, and let σ∆ :=

∑
V σωV

.
Then we have the a posteriori error estimate

c0‖σ
∆‖ − ch‖f − f̄‖ ≤ ‖∇(u− uh)‖ ≤ ‖σ∆‖ + ch‖f − f̄‖. (2.16)

3. Distributional Finite Element de Rham Sequences

In the treatment of the scalar equation we already encountered dis-
tributional finite elements. In this section, we introduce and study
exact sequences of finite elements which contain more distributional
terms and are suitable for Maxwell’s equations.

We start with the two dimensional case and continue with three
dimensional finite elements.

Let Ω be a simply connected domain in R2. In 2D, we write curl for
the differential operator ( ∂

∂y
,− ∂

∂x
). Then, the de Rham sequence

R −→ H1 curl
−→ H(div)

div
−→ L2 −→ 0 (3.1)

is an exact sequence [2]. This means that

• the operator curl has a trivial kernel in H1/R;
• the kernel {σ ∈ H(div) : div σ = 0} of the operator div is

exactly the range of the operator curl;
• the range of the operator div is exactly L2.

An analogous property holds for the spaces with zero boundary con-
ditions H1

0 and H0(div) := {σ ∈ H(div) : σ · n = 0 on ∂Ω}:

0 −→ H1
0

curl
−→ H0(div)

div
−→ L2

R

1
−→ R −→ 0. (3.2)

As usual, the space L2,0 := {f ∈ L2 :
∫

Ω
f = 0} of functions with zero

mean values is identified with L2/R. We focus on sequences without
boundary conditions, i.e., on sequences of type (3.1) in the following
introductory discussion although we will deal later also with general-
izations of (3.2).

Note that we find the right-hand part of the last exact sequence on
the discrete level in (2.14) and (??).
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3.1. First Distributional Triangular Elements. The exact se-
quence property is inherited on the discrete level when we choose piece-
wise linear and continuous Lagrangian elements M1

0 for modeling H1,
the Raviart–Thomas elements RT for H(div), and piecewise constant,
non-continuous elements M0

−1 for L2, [7, p. 175]:

R −→ M1
0

curl
−→ RT

div
−→ M0

−1 −→ 0. (3.3)

Figure 2. Classical finite element spaces in the sequence (3.3).

Let u ∈ M1
0, σ ∈ RT , and f ∈ M0

−1. Their natural degrees of
freedom are nodal values û V := u(V ), edge integrals of the normal

components σ̂ E :=
∫

E
σ · n, and element integrals f̂

T

:=
∫

T
f , respec-

tively. Note that an orientation is associated to each edge for defining
the normal components of RT functions.

The representation of the differential operators with respect to these
degrees of freedom depends only on the element topology and is inde-
pendent of the shape of the elements. In terms of degrees of freedom
we find

σ = curl u as σ̂ E = û VE,1 − û VE,2 ,

where VE,1 and VE,2 are the two vertices of the edge E, ordered con-
sistently with the previously defined normal vector. Similarly, the ex-
pression

f = div σ reads as f̂
T

=
∑

E⊂T

±σ̂ E ,

where the sign depends on the orientation of the normal vector. Specif-
ically, the sign is positive for normal vectors pointing to the outside of
the triangle.

An element f in M0
−1 generates the regular distribution

〈f, v〉 =
∑

T

∫

T

fT v.
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For our purposes we introduce the space M0
−3 of distributions involving

element, edge, and vertex terms:

〈f, v〉 =
∑

T

∫

T

fTv +
∑

E

∫

E

fEv +
∑

V

fV v(V ). (3.4)

The functions fT and fE are constant on each triangle and edge, respec-
tively. The subspace of distributions of the form (3.4) with vanishing
vertex terms is denoted as M0

−2.
First, we restrict ourselves to those distributions with element and

vertex terms, i.e. with fV = 0 for all V ; see also (2.12). In this
context we recall the extension of the Raviart–Thomas space to the
broken Raviart–Thomas space, and obtain the first distributional de
Rham sequence

R −→ M1
0

curl
−→ RT−1

div
−→ M0

−2 −→ 0. (3.5)

Figure 3. Distributional finite element spaces in the sequence (3.5).
The middle lines of the edges represent the edge terms in (3.4).

The sequence (3.5) is well defined. This is clear for the curl operator.
To verify it for the divergence, let σ ∈ RT−1, and define f = div σ in
distributional sense by

〈f, v〉 := −〈σ,∇v〉 for v ∈ C∞
0 .

Integration by parts leads to

〈f, v〉 = −
∑

T

∫

T

σ · ∇v

=
∑

T

∫

T

divT σ v −

∫

∂T

σ · n v

=
∑

T

∫

T

divT σ v −
∑

E

∫

E

∑

T :E⊂T

σT · nE v.

Here the normal vectors are defined element by element and as usual
in the outgoing direction; cf. Figure 3. Thus the image div σ belongs
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to M0
−2, and the relation f = div σ evaluates to two relations

fT = divT σT and fE = −
∑

T :E⊂T

σT · nE . (3.6)

Since σ ∈ RT−1 is determined by the fluxes on each side of the edges,
we have in terms of degrees of freedom

f̂
T

=
∑

E⊂T

σ̂T

E and f̂
E

= −
∑

T :E⊂T

σ̂T

E.

Theorem 5. The sequence (3.5) is exact.

Proof. We recall that the classical sequence (3.3) is exact [2, 7, 9, 11,
14].

Due to (3.6) the properties σ ∈ RT−1 and div σ = 0 imply that
σ ∈ RT . Hence, the divergence is defined as usual in H(div) and
vanishes. Now the exactness of (3.3) guarantees that Raviart–Thomas
elements with vanishing divergence are curls of functions in M1

0.
The surjectivity of the divergence onto M0

−2 is also obtained from
the exactness (3.3) by similar arguments as for the reduction in the
proof of Lemma 3 (cf. also the reduction in the proof of the next
theorem). �

3.2. Second Distributional Triangular Elements. For the treat-
ment of Maxwell’s equations, we need another extension of the se-
quence. Distributional elements on edges are added to the finite ele-
ments that model H(div). Moreover, the full set M0

−3 of distributions
of the form (3.4) enter into the theory.

The associated sequence will be called the second distributional de
Rham sequence:

R −→ M1
−1

curl
−→ RT−2

div
−→ M0

−3 −→ 0. (3.7)

f

f

T

V
fE

Figure 4. Distributional finite element spaces in the sequence (3.7).
The arrows along the edges represent the edge and the vertex terms in
(3.8).
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The space M1
−1 consists of piecewise linear and non-continuous finite

elements. The degrees of freedom are the values ûT

V at the three
vertices of each triangle; see Figure 4.

The corresponding Raviart–Thomas distributions are of the form

〈σ, v〉 =
∑

T

∫

T

σT · v +
∑

E

∫

E

σE · v,

where σT = ~a + b~x, and σE = (a + bx)~τE are 1D Raviart–Thomas
elements mapped to the edge where ~τE is a tangential vector. The
degrees of freedom are

σ̂T

E =

∫

E

σT · nE and σ̂E

V = σE(V ) · nV . (3.8)

Here nV is the vector pointing outwards at the vertex V of an edge E.
The representation of the operation f = div σ in terms of the degrees

of freedom is

f̂
T

=
∑

E⊂T

σ̂T

E,

f̂
E

=
∑

V ∈E

σ̂E

V −
∑

T :E⊂T

σ̂T

E, (3.9)

f̂
V

= −
∑

E:V ∈E

σ̂E

V .

Remark 6. In contrast to the previous case, div σ = 0 is now possible
for elements σ which are not in the classical Raviart–Thomas space
RT . The distributional parts of div σ may add to zero in (3.9). Nev-
ertheless, there is a geometrical understanding. We may blow up the
edges to slim rectangles; see Figure 5. If the divergence vanishes in the
distributional sense, the total flow over the boundary of a slim rectangle
(and not only over the boundary of the triangles) is zero.

The imagination with the slim rectangles has another advantage.
The (classical) Raviart–Thomas elements in 2-space are given by the
fluxes on the edges. Now all the degrees of freedom of the distribu-
tional Raviart–Thomas elements are fluxes on edges, i.e., they live on
1-dimensional objects. The terms on the right-hand side of (3.9) are
fluxes over boundaries of triangles, slim rectangles, or the central area
in Figure 5.

The differential operation σ = curl u reads as

σ̂T

E = ûT

VE,1 − ûT

VE,2

σ̂E

V = ûT1

V − ûT2

V ,
(3.10)
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Figure 5. Slim rectangles in the sense of Remark 6.

where T1 is the left and T2 is the right triangle when looking into the
direction of nv.

Theorem 7. The second distributional de Rham sequence is exact.

Proof. We start with proving that the operator div is a mapping onto
M0

−3. Given f ∈ M0
−3, we first choose σ2 such that the vertex terms

of div σ2 coincide with the vertex terms of f . To this end we set

σ̂2
E

V

= −
1

NV
f̂

V

,

where NV is the number of edges sharing the vertex V . From (3.9)3 we
know that

f − div σ2 ∈ M1
−2.

By the first distributional exact sequence, there exists σ1 ∈ RT−1 such
that div σ1 = f − div σ2. Hence,

div(σ1 + σ2) = f.

This proves that the divergence operator is surjective and the exactness
of the second operator.

Next, consider σ ∈ RT−2 with div σ = 0. We construct a function
u2 ∈ M1

−1 such that the edge terms of curl u2 coincide with the edge
terms of the given σ. This is done by a local construction for each
vertex. Given a vertex V , we conclude from the vertex part of div σ
that ∑

E:V ∈E

σ̂E

V = 0.

Now, enumerate the triangles sharing the vertex V from 1 to NV . Enu-
merate the edges such that Ei is between triangle Ti and Ti+1mod NV

.
We set

u2
T1

(V ) = 0 and u2
Ti+1

(V ) = u2
Ti

(V ) + σ̂Ei

V .
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Since the vertex currents sum up to 0, it follows that

u2
T1

(V ) = u2
TNV

(V ) + σ̂ENV

V

.

By construction, the edge terms of curl u2 coincide with the edge terms
of σ. Thus, the difference satisfies

σ − curl u2 ∈ RT−1 and div(σ − curl u2) = 0.

We know from Theorem 5 that there exists u1 ∈ M1
0 such that curl u1 =

σ − curl u2, and u = u1 + u2 is the desired function in M1
−1. �

3.3. Distributional Tetrahedral Elements. The three-dimensional
de Rham sequence contains an additional space. In the case of zero
boundary conditions it reads

0 −→ H1
0

grad
−→ H0(curl)

curl
−→ H0(div)

div
−→ L2

R

1
−→ R −→ 0. (3.11)

The canonical lowest order finite elements inherit the exact sequence
property

0 −→ M1
0

grad
−→ Nd

curl
−→ RT

div
−→ M0

−1

R

1
−→ R −→ 0, (3.12)

see [14]. Here, Nd consists of the lowest order Nédélec elements.
We define the space M0

−4 of scalar distributions of the form

〈f, v〉 =
∑

T

∫

T

fTv +
∑

F

∫

F

fF v +
∑

E

∫

E

fEv +
∑

V

fV v(V ), (3.13)

where fT , fF , and fE are piecewise constant functions on tetrahedra,
faces, and edges, respectively. The fV are real numbers. The sub-
spaces M0

−1 ⊂ M0
−2 ⊂ M0

−3 of lower distributional orders are defined
to contain

only element terms,

element and face terms, and

element, face, and edge terms, respectively.

Moreover, we define the space RT−3 of H(div) distributions of the form

〈σ, v〉 =
∑

T

∫

T

σT · v +
∑

F

∫

F

σF · v +
∑

E

∫

E

σE · v, (3.14)

where σT , σF , and σE are in the Raviart–Thomas element space on
tetrahedra T , triangular faces F in 3D space, and edges E in 3D.
The degrees of freedom are the normal fluxes through the boundary.
Specifically, we take the normal flux σ̂T

F of σT through the face F ⊂
∂T , the normal flux σ̂F

E of σF through the edge E ⊂ ∂F , and the flux
σ̂E

V of σE into the vertex V of E. The degrees σ̂F

E of a face flux are
depicted in Figure 6.
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Figure 6. Raviart Thomas face distribution

Only element and face distributions are required for modeling the
space H(curl),

〈H, v〉 =
∑

T

∫

T

HT · v +
∑

F

∫

F

HF · v. (3.15)

These distributions generate the space Nd−2, and Nd−1 is the sub-space
with vanishing face terms. The finite element functions are spanned in
each tetrahedron and triangle by Nédélec shape functions. Their de-
grees of freedom are the tangential components along the tetrahedral
and triangular edges. Note that there are jumps of the tangential com-
ponents of a distributional Nédélec function between the tetrahedra,
and individual values of the components are given on common edges.

Now we are ready to formulate three sequences for distributional
finite element spaces in R3. They differ by the order of the distributions.
We focus on the spaces with boundary conditions (but the sequences
for the versions without boundary conditions are also exact):

0 −→ M1
0

grad
−→ Nd0

curl
−→ RT−1

div
−→ M0

−2

R

1
−→ R −→ 0, (3.16)

0 −→ M1
0

grad
−→ Nd−1

curl
−→ RT−2

div
−→ M0

−3

R

1
−→ R −→ 0, (3.17)

0 −→ M1
−1

grad
−→ Nd−2

curl
−→ RT−3

div
−→ M0

−4

R

1
−→ R −→ 0.(3.18)

The first sequence (3.16) was already used for the construction of the
equilibrated fluxes for the scalar equation in the previous section. The
second sequence (3.17) will be used to construct the equilibrated mag-
netic fields for Maxwell’s equations. The third one is formulated only
for completeness.
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Lemma 8. The sequences (3.16), (3.17), and (3.18) are exact.

Proof. We start with the first sequence. The exactness of RT−1
div
−→

M0
−2

R

1
−→ R was already proven in Lemma 3. Since div σ = 0 for σ ∈

RT−1 implies that σ ∈ RT , the exactness of the rest of the sequence
follows from the exactness of the standard finite element sequence.

We continue with the sequence (3.17). Given f ∈ M0
−3 that contains

element, face, and edge terms, we construct a σ ∈ RT−2 such that
div σ = f . We define the edge degrees of freedom for an auxiliary σ1

by

σ̂1
F

E

:=
1

NE
f̂

E

,

where NE is the number of faces sharing the edge E. Thus, the edge
terms of div σ1 are equal to the edge terms of f , and thus f − div σ ∈
M0

−2. The first distributional sequence yields the existence of a σ2 ∈
RT−1 satisfying div σ2 = f − div σ1, and we have

div(σ1 + σ2) = f.

We turn to the middle part of (3.17). Given σ ∈ RT−2 with div σ = 0,
we construct a function H ∈ Nd−1 such that curlH = σ . From the
edge part of the divergence it follows that

∑
F :E⊂F σ̂F

E = 0. We fix
an edge E, and enumerate the tetrahedra and faces around the edges
such that face Fi is between Ti and Ti+1. Also here, element indices
are taken modulo NE . We define an H1 by

Ĥ1
T1

E

:= 0 and Ĥ1
Ti+1

E

:= Ĥ1
Ti

E

+ σ̂Fi

E.

Since div σ = 0, we end up with Ĥ1
TN+1

E

= 0 after a complete cycle.

The residual σ−curlH1 is divergence free, and it is contained in RT−1.
We apply the first distributional sequence to ensure the existence of
an H2 ∈ Nd0 such that

curl(H1 +H2) = σ.

To complete the second part, we pick an H ∈ Nd−1 such that curlH =
0. By definition H ∈ L2 holds as well as curlH = 0 ∈ L2, thus
H ∈ H(curl). This implies that the tangential components of H are
continuous, i.e., H ∈ Nd. By the exactness of the standard sequence,
there exists a ϕ ∈ M1

0 such that gradϕ = H .

We skip the proof of the third sequence, since it follows the same
lines and it was added only for completeness. �
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3.4. Stability of Inverses. For f ∈ M0
−4, σ ∈ RT−3, H ∈ Nd−2, and

u ∈ M1
−1 we define the mesh-dependent norms

‖f‖2
0,h :=

∑

T

‖fT‖
2
L2(T ) +

∑

F

hF‖fF‖
2
L2(F ) +

∑

E

h2
E‖fE‖

2
L2(E)

+
∑

V

h3
V |fV |

2,

‖σ‖2
0,h :=

∑

T

‖σT‖
2
L2(T ) +

∑

F

hF‖σF‖
2
L2(F ) +

∑

E

h2
E‖σE‖

2
L2(E) ,

‖H‖2
0,h :=

∑

T

‖HT‖
2
L2(T ) +

∑

F

hF‖HF‖
2
L2(F ) ,

‖u‖2
0,h :=

∑

T

‖uT‖
2
L2(T ) .

Lemma 9. The right inverses of the differential operators constructed
above satisfy the norm estimates

‖σ‖0,h ≤ ch ‖f‖0,h, where div σ = f,

‖H‖0,h ≤ ch ‖σ‖0,h, where curlH = σ,

‖u‖0,h ≤ ch ‖H‖0,h, where ∇u = H.

Proof. By transformation to the reference element (using standard, co-
variant, or the Piola transformation), one easily proves that

‖f‖2
0,h ≃ h−3

{∑

T

(
f̂T

T )2
+

∑

F

(
f̂F

F)2
+

∑

E

(
f̂E

E)2
+

∑

V

(
fV

)2
}

‖σ‖2
0,h ≃ h−1

{∑

T

∑

F⊂T

(
σ̂T

F
)2

+
∑

F

∑

E⊂F

(
σ̂F

E
)2

+
∑

E

∑

V ∈E

(
σ̂E

V
)2

}

‖H‖2
0,h ≃ h1

{∑

T

∑

E⊂T

(
ĤT

E)2
+

∑

F

∑

E⊂F

(
ĤF

E)2
}

‖u‖2
0,h ≃ h3

{∑

T

∑

V ∈T

(
ûT

V
)2

}
.

Define f̂ as the vector containing all degrees of freedom. The relation

div σ = f

can be written as singular, but consistent matrix equation for the co-
efficient vectors

Bdivσ̂ = f̂ ,

where the matrix Bdiv is defined according to (3.9). All matrix elements
are either +1, −1, or 0. The matrix depends only on the topology of
the mesh. Assuming a patch of shape regular elements, there is only
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a finite number of possible topologies, and thus there exists a common
constant c such that

‖σ̂ ‖Rn ≤ c ‖f̂ ‖Rn

Together with the norm equivalences there follows the statement. �

Similar arguments on matrices with entries +1, −1, and 0 in this
context can be found in [13].

4. Equilibration in H(curl)

We consider the curl-curl equation for the vector potential: Find
u ∈ H(curl) such that

(µ−1 curl u, curl v) = (j, v) for v ∈ H(curl).

The given current density j is supposed to be divergence free. More-
over, we assume that j is element-wise constant. Thus, j can be rep-
resented by means of Raviart–Thomas functions.

We are interested in a posteriori error estimates of the finite element
discretization uh with Nédélec elements of lowest order,

(µ−1 curl uh, curl v) = (j, v) for v ∈ Nd.

The magnetic field H defined as

H := µ−1 curl u (4.1)

satisfies Ampère’s law

curlH = j. (4.2)

The magnetic field Hh obtained from the finite element discretization,

Hh := µ−1 curl uh,

leads in general to a different current density

jh := curlHh. (4.3)

For piecewise linear vector potentials uh, the magnetic flux Hh is piece-
wise constant, and the discrete curl, i.e. jh, is a face-based RT distri-
bution.

4.1. An Equation of Prager–Synge Type. The following result
will be the basis of the error estimate. It is the analogue to Theorem 1.

Theorem 10. Assume that v ∈ H(curl) satisfies the boundary condi-
tions and that H̃ ∈ H(curl) satisfies Ampère’s law curl H̃ = j. Then

‖µ−1/2 curl(u−v)‖2
0 +‖µ1/2(H− H̃)‖2

0 = ‖µ−1/2(curl v−µH̃)‖2
0 . (4.4)
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Proof. Integration by parts yields the orthogonality relation
∫

Ω

curl(u− v)(H − H̃)

=

∫

Ω

(u− v) curl(H − H̃) +

∫

∂Ω

[(u− v) × n] · (H − H̃)

=

∫

Ω

(u− v)(j − j) = 0.

By applying the Binomial formula to µ−1/2 curl(u− v) + µ1/2(H̃ −H)
and noting that µH = curl u we obtain (4.4). �

The lemma above will be applied to v := uh. In order to achieve a
good candidate for H̃ we have to solve curl(H̃ − Hh) = j − jh . For
this reason we are going to construct a correction H∆ such that

j − jh = curlH∆.

Again, we construct HωV
locally on the vertex patch ωV such that we

obtain a decomposition

H∆ =
∑

HωV
.

The construction will be independent of the material parameter µ, and
µ will enter only at the final end when Theorem 10 will be applied.

4.2. The Discrete Current. The distribution jh is evaluated by us-
ing partial integration and recalling that Hh is piecewise constant

〈jh, v〉 = 〈curlHh, v〉 = (Hh, curl v)

=
∑

T

∫

T

curlHh · v dx+
∑

F

∫

F

[Hh × n] · v ds

=
∑

F

([Hh × n], v)F .

The discrete current distributions are

jh,F = [Hh × n]. (4.5)

Both currents, the prescribed current j as well as the discrete current
jh can be represented by distributional Raviart–Thomas elements of
order 1. Both currents are divergence free.

We utilize the properties of the Galerkin orthogonality, namely
〈
j − jh, ϕ

E
〉

= 0 (4.6)

for each Nédélec basis functions ϕE associated with the generic edge
E. Let V1 and V2 be its two vertices. Given an edge E of an element
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T , the basis function can be expressed on the simplex T in terms of
the barycentric coordinates

ϕE = λ1∇λ2 − λ2∇λ1 ;

see [14, (5.47)]. We recall that j as well as ∇λi are constant on the
element and evaluate the contribution of j on an element T sharing the
edge E:

∫

T

j · ϕE =

∫

T

j · (λ1∇λ2 − λ2∇λ1)

= (j · ∇λ2)

∫

T

λ1 − (j · ∇λ1)

∫

T

λ2

=
|T |

4

{
j · ∇λ2 − j · ∇λ1

}
.

Now, observe that ∇λi is proportional to the normal vector on the face
Fi which lies opposite to vertex Vi, and the factor is the inverse of the
height of the element over the face Fi:

∇λi = −h−1
i ni = −

|Fi|

3|T |
ni.

Thus, the element contributions evaluate to

∫

T

j · ϕE =
1

12

{
|F1| j · n1 − |F2| j · n2

}

=
1

12

{∫

F1

j · n−

∫

F2

j · n
}

=
1

12

{
ĵT

F1

− ĵT

F2
}
. (4.7)

Note that the fluxes through element faces are the degrees of freedom
of the Raviart–Thomas elements.

Similarly, the contributions of jh on a face F is determined

∫

F

jh,F · ϕE =
1

6

{∫

E1

jh · n−

∫

E2

jh · n
}

=
1

6

{
ĵh,F

E1

− ĵh,F

E2
}

where V1, V2 are the end points of E, and E1, E2 are the edges of the
face F which lie opposite to the vertices above. The normal vectors to
the edges refer to the plane F and are vectors in F .
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E
E

T
T,2

T,1

V2

1/6 −1/6

1/6
−1/6

V1

−1/2

1/2

Figure 7. Factors in relation (4.10) referring to an edge
and adjacent triangles. The edge terms refer to j and the
vertex terms to jh.

The integrals above are inserted in (4.6) to derive a relation between
the original and the discrete current

1

12

∑

T :E⊂T

{∫
FT,1

j · n−
∫

FT,2
j · n

}

=
1

6

∑

F :E⊂F

{∫
EF,1

jh · n−
∫

EF,2
jh · n

} (4.8)

or
1

12

∑

T :E⊂T

{
ĵT

FT,1 − ĵT

FT,2
}
−

1

6

∑

F :E⊂F

{
ĵh,F

EF,1
− ĵh,F

EF,1
}

= 0. (4.9)

4.3. Equilibration in 2D. The basic relation for the 2D model that
corresponds to (4.9) can be established in the same way

1

6

∑

T :E⊂T

{
ĵT

ET,1 − ĵT

ET,2
}

+
1

2

{
ĵh,E

V1

− ĵh,E

V2
}

= 0. (4.10)

As above, V1, V2 are the end points of the edge E under consideration,
and ET,1, ET,2 are the edges of the triangle T that lie opposite to them;
see Figure 7. (The sign of the second term in (4.10) differs from that
in (4.9), since V1, V2 refer directly to the points and not to objects
opposite to them.)

We proceed with the 2D case and are going to decompose the residual
current into local, divergence free currents, i.e.,

j − jh =
∑

V

jωV
.
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We consider a generic node V and the patch ωV := ∪{T, V ∈ ∂T}.
Let T be a triangle in ωV and E be an edge of the triangle sharing
the vertex V . The edge of the triangle T opposite to V is denoted as
ET,O. It is located on the boundary of ωV . The third edge is denoted
as ET,P . We define the local current jωV

on T by

ĵωV ,T

E

:=
1

2
ĵT

E

+
1

6
(ĵT

ET,O
− ĵT

ET,P
) ,

ĵωV ,T

EP

:=
1

2
ĵT

ET,P
+

1

6
(ĵT

ET,O − ĵT

E

) , (4.11)

ĵωV ,T

EO

:= 0.

Obviously, the setting is symmetric with respect to the two edges that
share the vertex V , but the representation with respect to a given edge
E will be more useful in the sequel. Moreover, the flow is fixed such
that the flow on the boundary of ωV is zero.

Next, let E be an edge in the patch ωV that connects V with a
point VO on ∂ωV . The vertex distributional parts are now fixed and
evaluated from the fluxes on E via

ĵωV ,E

V

:= −ĵh,E

V

, (4.12)

ĵωV ,E

VO

:= 0 .

By definition, this current has also zero flow on ∂ωV .

Lemma 11. If jωV
is defined by (4.11) and (4.12), then div jωV

= 0
and we have a decomposition

j − jh =
∑

V

jωV
. (4.13)

Proof. Let T be a triangle with edge E whose endpoints are V1 and V2.
When we sum over all patches, only the patches with centers V1 and

V2 contribute to the sum of ĵωV ,T

E

. Recalling (4.11) we have
∑

V

ĵωV ,T

E

= ĵωV1
,T

E

+ ĵωV2
,T

E

=
1

2
ĵT

E

+
1

2
ĵT

E

= ĵT

E

since the terms with the factor 1/6 in (4.11) cancel in the sum. More-

over, only the patch with center V contributes to the sum of ĵωV ,E

V

,
Hence, ∑

V ′

ĵω
V ′ ,E

V

= ĵωV ,E

V

= −ĵh,E

V

.
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T

T,OE
T,PE

E

V

OV

Figure 8. Some notation for the local current jωV

The last two equations show that (4.13) holds.
We consider now the divergence of jωV

and do it recalling (3.9). By
adding the terms in (4.11) it follows that

d̂iv jωV

T

=
∑

E:E⊂T

ĵωV ,T

E

= ĵωV ,T

E

+ ĵωV ,T

ET,P

+ ĵωV ,T

ET,O

=
1

2
ĵT

E

+
1

6
(ĵT

ET,O
− ĵT

ET,P
)

+
1

2
ĵT

ET,P
+

1

6
(ĵT

ET,O − ĵT

E

) + 0

=
1

3

{
ĵT

E

+ ĵT

ET,O
+ ĵT

ET,P
}

=
1

3

∫

∂T

j · n =
1

3

∫

T

div j = 0. (4.14)

We obtain the edge terms from (4.11) and (4.12)

d̂iv jωV

E

= ĵωV ,E

V

+ ĵωV ,E

VE,O

−
∑

T :E⊂T

ĵωV ,T

E

= −ĵh,E

V

+ 0 −
∑

T :E⊂T

{1

2
ĵT

E

+
1

6

(
ĵT

ET,O
− ĵE

ET,P
)}
. (4.15)

Since the normal components of j are continuous, we have
∑

T :E⊂T
1
2
ĵT

E

=

0. From div jh = 0 it follows that ĵh,E

V

+ ĵh,E

VO
= 0, and we continue
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with

d̂iv jωV

E

= −
1

2

(
ĵh,E

V

− ĵh,E

VO
)
−

∑

T :E⊂T

1

6

(
ĵT

ET,O − ĵE

ET,P
)

= 0.

Here we applied the Galerkin equation (4.10) to V1 = V and to V2 = VO.
Finally, the vertex terms are given by the flow into the center of the

patch. From the definition (4.12) we have

d̂iv jωV

V

=
∑

E:V ∈E

ĵωV ,E

V

=
∑

E:V ∈E

−̂jh,E

V

= −d̂iv jh
V

= 0. (4.16)

This concludes the proof of div jωV
= 0. �

We note that (4.16) can be obtained from (4.14) and (4.15) by virtue
of arguments in the spirit of Remark 6. Since the current vanishes on
∂ωV and the divergence on the triangles and the slim rectangles is zero,
the total flux into V must also be zero. (This argument is also helpful
in the 3-dimensional case.)

Since jωV
is in RT−2 with vanishing boundary values, we can apply

the second distributional de Rham sequence to find an HωV
in the

scalar non-continuous P 1 space M1
−1 with vanishing boundary values

such that

curlHωV
= jωV

.

Recalling (3.10) we see that HωV
is easily determined.

Remark 12. Since the right-hand side of (4.15) vanishes, we conclude
from (4.15) that the current jh can be expressed in terms of j. There-
fore, jh, jωV

, and the a posteriori error bound can be determined before
the computation of the finite element solution. Moreover, the current
of the decomposition is computed very locally, i.e. jωV ,T depends only
on jT and V , and jωV ,E depends only on jh,E and V .

4.4. Equilibration in 3D. We consider the construction in the 3-
dimensional case very briefly. We construct the local current on the
patch around a generic vertex V . Regard a tetrahedron T , a face F and
an edge E such that V ∈ E ⊂ F ⊂ T . Let FT,O be the face opposite to
V , let FT,P be the face containing V and opposite to E, and let FT,Q

be the remaining face containing E. Similarly, let EF,O be the edge of
the face opposite to V and EF,P the edge of F containing the vertex
V . The face terms on a tetrahedron depend only on j in T ; cf. (4.11).
We set

ĵωV ,T

F

:=
1

3
ĵT

F

+
1

12
ĵT

FT,O −
1

24

{
ĵT

FT,P
+ ĵT

FT,Q
}
. (4.17)
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By symmetry, this defines also the fluxes through FT,P and FT,Q. More-
over, the flux on the boundary of the patch is set to zero

ĵωV ,T

FT,O

:= 0.

Contrary to the 2D case, the fluxes through faces depend not only
on fluxes in faces, but involve also element terms. We set

ĵωV ,F

E

:= −
{1

2
ĵh,F

E

+
1

6
ĵh,F

EF,O
−

1

6
ĵh,F

EF,P

}

+
∑

T :F⊂T

1

24

{
ĵT

FT,O − ĵT

FT,P

}
. (4.18)

Again, fluxes through the outer face are set to zero, i.e. ĵωV ,F

EF,O

= 0.

Lemma 13. This is a local, divergence free decomposition of the resid-
ual, i.e.,

j − jh =
∑

V

jωV
,

and

div jωV
= 0.

We abandon the proof that proceeds along the lines of the proof of
Lemma 11.

The results of this section are summarized for the Maxwell equation
in 3-space as follows.

Theorem 14. For each node V there exists a broken Nédélec-function
HωV

with support in ωV such that

curlHωV
= jωV

holds in distributional sense, where jωV
is defined by (4.17) and (4.18).

Choose HωV
with (quasi-) minimal L2-norm, and let H∆ :=

∑
V HωV

.

Then the postprocessed magnetic flux H̃ = µ−1 curl uh +H∆ satisfies
Ampère’s law curl H̃ = j, and we have the a posteriori error estimate

c0‖µ
1/2H∆‖ ≤ ‖µ−1/2 curl(u− uh)‖ ≤ ‖µ1/2H∆‖. (4.19)

Proof. The reliability follows from Lemma 13, the exactness of the
second distributional de Rham sequence (3.17), and Theorem 10. The
efficiency estimate follows from the stability of the right inverse, Lemma
9, and the efficiency of the residual error estimator analyzed in [6]. �
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