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1 IntroductionA �nite element (FE) discretization of a second order self-adjoint, elliptic bound-ary value problem leads usually to a linear (or linearized) system of equationsKhuh = fh ; (1)where Kh 2 RNh�Nh is a symmetric positive de�nite (SPD) sparse system matrix,fh 2 RNh the right hand side and uh 2 RNh the solution vector. The numberNh of unknowns in (1) behaves asymptotically like Nh = O(h�d), with d =1; 2; 3 the spatial dimension and h the mesh-size parameter. Therefore the linearsystem is usually very large. The condition number of the system matrix Kh istypically of order �(Kh) = O(h�2), which is the reason for the slow convergenceof classical iterative solvers. Consequently, the e�cient and fast solution of (1) isan important aspect of the FE-method and therefore optimal solvers, i.e., CPU-time and memory consumption are proportional to Nh, are of interest. Krylovsubspace methods together with multigrid methods ful�ll these requirements (see[16, 17]).Algebraic multigrid (AMG) methods are of special interest if geometric multi-grid can not be applied. There are at least two reasons for using AMG:� The discretization provides no hierarchy of FE-meshes.� The coarsest grid of a geometric multigrid method is too large to be solvede�ciently by a direct or classical iterative solver.In contrast to geometric multigrid methods, where a grid hierarchy is requiredexplicitly, AMG is able to construct a matrix hierarchy and the correspondingtransfer operators by only knowing the system matrix. A lot of numerical stud-ies have shown that the convergence rate of AMG is comparable with geometricmultigrid methods although it can not be proved in general. Applications of AMGmethods in various practical (engineering) areas are given in [12, 13, 18, 19, 20].The �rst serious approach to AMG was made 1982 by Brandt, McCormickand Ruge in [5] and an improved version of it can be found in [6]. This method ismainly concerned with SPD matrices Kh, which are additionally M-matrices. Inthis approach the smoother is usually �xed (e.g. Gauss-Seidel point relaxation)and the prolongation operator is constructed such that the error which is nota�ected by the smoother is in the range of the prolongation operator. Thisobjective can be well realized for M-matrices [32, 30, 4, 31] but it turned outthat it is hard to ful�ll for general SPD matrices. A review of this AMG methodis made in [33, 34] including also a proposal for the remedy of the M-matrixproperty. In spite of the fact that this method works well for M-matrices, thesetup time (i.e., the construction of the matrix hierarchy with the corresponding2



transfer operators) and the application as a preconditioner requires plenty ofCPU-time for practical problems.To overcome these drawbacks Braess [3] suggested a quit simple AMGmethod,where the preconditioner can be constructed and applied very fast. The methodbene�ts from the piecewise constant interpolation and consequently there is less�ll in on the coarser levels which in turn implies a fast application. On the otherhand this method fails at hand, if anisotropic structures are considered due tothe poor prolongation. A related work is given in [21] by Kickinger, where animproved prolongation was proposed. In a subsequent work the agglomerationtechnique was combined with a block-smoother (see [22]).Vanek, Mandel and Brezina developed and analyzed a new technique in [35,23] and [38]. The idea is to construct a 'tentative' prolongation operator, whichalready takes care of the kernel of Kh (without essential boundary conditions)and improve it by some smoothing steps (usually one damped Jacobi step isused). The smoothing step provides to pull energy out of the basis function.This approach is called 'smoothed aggregation'.A complete new idea was realized by Jones et al. at the Lawrence LivermoreNational Laboratory, called AMGe. This method basically assumes access to theelement sti�ness matrices and is able to construct a measure for the 'algebraicsmooth error'. In addition an improved prolongation operator can be constructed,which relies not on the M-matrix property. For the construction and analysis ofAMGe see [7, 15]. An element sti�ness matrix free version, i.e., working with theassembled system matrix, is given in [14].In recent time Wagner [37] develops an AMG method that is applicable alsofor non-symmetric problems. The key point in this approach is to �nd the twoneighbors to a given node, which produce the best possible prolongation. Theprolongation weights are computed by local minimization problems and a coars-ening is done in a similar way. This approach provides a parallel AMG methodin a natural way and it can be used additionally for scalar as well as for blocksystem of equations.Another approach to overcome the M-matrix property is depicted in [26, 27]which is called 'element preconditioning'. This approach assumes access to theelement sti�ness matrices, and constructs for every element sti�ness matrix aspectral equivalent element sti�ness matrix with the right sign condition. If theelement sti�ness matrices are assembled, we end up with a spectrally equivalentM-matrix Bh with respect to Kh. Applying AMG of Ruge and St�uben to Bhresults in a preconditioner for Kh.The above methods are closely related to an H1(
)-elliptic problems or prob-lems with additional properties (e.g. M-matrix). The edge element FE-discretizationin magnetic �eld computations yield a special matrix which has to be treated verycarefully. AMG methods for this kind of problems are given in [2, 28].The AMG techniques are partly able to deal with matrices Kh stemming fromFE-discretization of a system of partial di�erential equations (see [35, 14, 21, 33])3



and to handle non-symmetric matrices Kh arising from convection di�usion prob-lems (see [21, 25, 33, 10, 29, 13, 37]). Other interesting AMG approaches can befound in [11, 24, 36, 9] and references therein.All presented methods need inherently the e�cient interplay of smoothingand coarse grid correction, which are the key ingredients for multigrid methods.One crucial point in the construction of AMG methods is the numerical e�ortof the coarsening process and the construction of appropriate transfer operators.The challenge is to construct an AMG method with a good convergence rate butrather low costs in the setup and in the application. Therefore we concentrateon the coarsening and the transfer operators in this report. For the other twomain ingredients (smoother and coarse grid operator) the standard approachesare used, i.e., point-, block Gauss-Seidel and Galerkin's method. For the rest ofthis report a two grid method is described and therefore the subscripts h andH are related to �ne and coarse grid quantities, respectively. Furthermore thesuperscripts sys, ker and aux stands for 'system', 'kernel' and 'auxiliary' quan-tities, respectively. The sub- and superscripts are suppressed whenever this ispossible without confusion. In order to construct a more 
exible and e�cientcoarsening strategy, we introduce an auxiliary matrix Bh which represents a vir-tual FE-mesh. For instance, Bh is a nodal distance matrix which also re
ects theunderlying partial di�erential equation. In this way Bh re
ects anisotropies inthe FE-mesh and in the operator. Obviously, this information has to be providedbut this additional information is usually available in standard FE-codes.After computing Bh on the given grid, a standard coarsening is performed onBh and additionally appropriate transfer operators are de�ned. Then a coarsegrid auxiliary matrix BH is computed via the Galerkin method which is inter-preted as a virtual FE-mesh on the coarse level. We have to mention, that theauxiliary matrix Bh is constructed such that the degrees of freedom of the systemmatrix are properly related to the entries of the auxiliary matrix and consequentlythe coarsening of Bh can be taken for Kh. Finally, transfer and smoothing oper-ators for Kh can be constructed and a coarse grid matrix KH is computed withGalerkin's method. Once the matrices are de�ned on a coarser level, the setupprocess is applied recursively.Another key point for AMG methods is the prolongation operator. Therefore,we assume to know which underlying variational form (without essential bound-ary conditions) is under consideration. This is equivalent to know the null spaceof the main part of the partial di�erential equation. By this knowledge, a neces-sary condition on the prolongation operator is posed and prolongation operatorsfor di�erent variational forms are presented.The report is organized as follows: In Sec. 2 the considered problem classesand notations are introduced. Further we discuss the components of an AMGmethod in Sec. 3 followed by Sec. 4 presenting some numerical studies. Finally,further remarks are given and conclusions are drawn.4



2 Problem Formulation and NotationsLet us consider the variational form:Find u 2 V : a(u; v) = hF; vi 8v 2 V ; (2)with a(�; �) : V �V 7! R is a symmetric, non-negative bilinear form in a Sobolevspace V. In addition, F 2 V� is a linear functional with the dual space of Vdenoted by V� and the duality product h�; �i : V� � V 7! R. The computationaldomain 
 � Rd (d = 1; 2; 3) is assumed to be a bounded domain with polygonalLipschitz boundary @
. If a(�; �) is coercive, then existence and uniqueness isobtained by the Lax-Milgram Lemma (see e.g. [8]). If this is not the case, thenthe kernel of a(�; �), i.e.,V0 = fu 2 V j a(u; v) = 0 8v 2 Vg ; (3)can be expressed as V0 = �Q = f�u j u 2 Qg ;by introducing a bounded, linear operator � : Q � V 7! V applied to the basis Q .If in addition hF; vi = 0 8v 2 V0is assumed then the uniqueness of (2) is achieved. Notice, the kernel of thebilinear form is of special interest for the construction of an AMG method.During this report three di�erent variational forms a(�; �) are considered, whichstem from a self-adjoint, linear, elliptic partial di�erential equation of second or-der. In particular they are related to the Electrostatic Equation, to the LinearizedElasticity Equations and to the Magnetostatic Equations, subsequently.Example 2.1. Let us consider the variational formulation (Electrostatic Equa-tion) a(u; v) = Z
 grad vTD(x) gradu dx+ Z
 �uv dx (4)with D(x) 2 Rd�d be SPD and � � 0. An appropriate Sobolev space for (4) isgiven by V = H1(
) = fu 2 L2(
) j gradu 2 L2(
)g :Further, let � be the identity operator and Q = spanf1g. Then the kernel is givenby V0 = (�Q = spanf1g � = 0; � > 0 :5



Example 2.2. The next variational form is related to Linearized Elasticity Equa-tions), which reads as a(u; v) = Z
 �T (v)E(x)�(u) dx (5)with E(x) 2 R9�9 be SPD, �(u) = (�11; �22; �33; �12; �21; �23; �32; �13; �31)T and�ij(u) = 12 �� @ui@xj + @uj@xi �. The Sobolev space is given by V = (H1(
))p, p = 3 (The2D case is given in an analogous way). Again, let � be the identity operator andQ = span8<:0@1001A ; 0@0101A ; 0@0011A ; 0@ 0z�y1A ; 0@�z0x 1A ; 0@ y�x0 1A9=; ;with (x;y; z)T 2 RNh , x, y and z 2 RMh are the x�, y� and z-coordinates ofthe grid points, respectively. Then the kernel is given byV0 = �Q :Further we assume an operator D(x) 2 Rd�d that provides approximately theprinciple stress (or strain) in a point x.Example 2.3. An other very important variational form is given bya(u; v) = Z
 curl vTD(x) curlu dx+ Z
 �uv dx (6)with D(x) 2 Rd�d be SPD and � � 0. Equation (6) is closely related to Magne-tostatic Equations. An appropriate Sobolev space is given byV = H0(curl;
) = fu 2 (L2(
))d j curlu 2 (L2(
))d ; u� ~n = 0 on @
g ;with ~n the unit outward vector. For � = 0 the kernel is non-trivial and consistsof all gradient �elds if the domain 
 is simply connected. By de�ning � = gradand Q = H10 (
) = fu 2 H1(
) j u(x) = 0 ; x 2 @
g this kernel can be written asV0 = (�Q � = 0; � > 0 :The conforming FE-discretization is based on the regular partitioning �h of 
into �nite elements [8]. The FE-bases � has local support and span the FE-spaceVh = span� � V and additionally we a assume Qh = span	 � Q for a givenbases 	. Therefore, (2) changes intoFind uh 2 Vh � V : a(uh; vh) = hF; vhi 8vh 2 Vh ;6



which is equivalent to the linear equation (1) by the FE-isomorphismGhsys : Vh 7! Vh ;with Vh = RNh . For Qh � Q we de�ne in an analogous way an isomorphismGhker : Qh 7! Qh ;with Qh being an appropriate parameter space. After the de�nition of FE-spacesthe discrete mapping �h : Qh 7! Vh, which maps the discrete kernel into thediscrete space, is de�ned by�hqh = (Ghsys)�1 �Ghkerqh 8qh 2 Qhand thus the discrete kernel reads asV0h = fuh 2 Vh j a(Ghsysuh; Ghsysvh) = 0 8vh 2 Vhg= fqh 2 Qh j a(�Ghkerqh; Ghsysvh) = 0 8vh 2 Vhg = �hQh :By de�ning coarser spaces VH � Vh and QH � Qh and the appropriate FE-isomorphisms GHsys and GHker, �H : QH 7! VH is de�ned by�HqH = (GHsys)�1 �GHkerqH 8qH 2 QH :Next, we assume transfer operators P sysh : VH 7! Vh and P kerh : QH 7! Qh to begiven with full rank, then the kernel of the coarse space is given byV0H = fvH jP sysh vH 2 V0hg ; (7)in the case of using Galerkin's method for the coarse grid operator, i.e.,KH = (P sysh )T Kh P sysh :Remark 2.4. The challenging task is to ensure �HQH = V0H under the assump-tion that �hQh = V0h. This property is closely related to the transfer operatorsP sysh and P kerh .The system matrix is stored in such a way, that the p unknowns related to anode (edge) are stored in a sub-matrix kij, i.e.,Kh = (kij)i;j=1;::: ;Mh ; kij 2 Rp�pwith Mh the number of nodes (edges). Thus the number of unknowns is givenby Nh = Mh � p. Further we call matrices A and B 2 Rm�m spectral equivalentif there exists lower and upper constants 
, �
 2 R+ , respectively, such that
 � hBu; ui � hAu; ui � �
 � hBu; ui 8u 2 Rm7



with h�; �i the Euclidean inner product. This abbreviated by 
 �B � A � �
 �B. ForSPD matrices A we can de�ne the energy norm kuk2A = hAu; ui. The transposedof a matrix A is denoted by AT . The condition number of an SPD matrix is �(A)and we use the fact that �(A) = �max(A)�min(A) � �

 ;with �max(A), �min(A) are the maximal and minimal eigenvalue of A, respectively.Finally, we de�ne the set Zm = fA 2 Rm�m j aii � 0 ; aij � 0 8i 6= jg.3 Components of an AMG Method3.1 The Auxiliary MatrixLet us assume a system matrix Kh stemming from an FE-discretization withFE-mesh !h = (!nh ; !eh), with !nh the set of nodes and !eh the set of edges in theFE-mesh. In the following we construct an auxiliary matrix Bh 2 RMh�Mh withthe following properties:(Bh)ij = (bij � 0 i 6= j�Pl 6=i bil � 0 i = j 8i; j 2 !nhand the entries of Bh should be de�ned in a way such that1. the distance between two geometric grid points is re
ected and2. the operator D(x) from (4)-(6) is re
ected.Remark 3.1.1. Bh 2 ZMh by construction.2. The matrix pattern of Bh can be constructed via several objectives:(a) Bh re
ects the geometric FE-mesh, i.e., jbijj 6= 0 , (i; j) is an edgein the FE-mesh.(b) Bh has the same pattern as Kh, i.e., kkijk 6= 0 , jbijj 6= 0, with k � kbe an arbitrary matrix norm.Example 3.2. Let D(x) 2 Rd�d (d = 1; 2; 3), the coe�cient matrix of the varia-tional form (4), (5) or (6), be SPD. Further let aij 2 Rd be the geometric vectorthat connects node i with node j for i 6= j, i.e., aij is a geometric edge in theFE-mesh (see Fig. 1). Note, that kak2D represents the length of aij with respectto the k � kD-norm. By de�ning bij = � 1kak2D for i 6= j results in an appropriateauxiliary matrix (see Example 3.3). 8



Example 3.3. Let us consider the variational form (4) withD(x) = �1 00 �� ;� = 0 and a quadratic �nite element with side length h = 1 (see Fig. 1) withbilinear FE-functions.
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Figure 1: Quadratic �nite element.The element sti�ness matrix Krh is given byKrh = 1� �0BB@2 + 2 � �2 1� 2 � �2 �2 + �2 �1� �21� 2 � �2 2 + 2 � �2 �1� �2 �2 + �2�2 + �2 �1� �2 2 + 2 � �2 1� 2 � �2�1� �2 �2 + �2 1� 2 � �2 2 + 2 � �21CCAand it can be seen, that for �� 1 positive o� diagonal entries appear which maycause di�culties in classical AMG methods. With an auxiliary matrix, presentingthe same non-zero pattern as the system matrix, the problem is better re
ected.The element matrix Brh becomes (using the method of Example 3.2)Brh = 1�2 + � �0BB@�2 + �+ 1 ��2 � � ��� 1 ����2 � � �2 + � + 1 �� ��� 1��� 1 �� �2 + �+ 1 ��2 � ��� ��� 1 ��2 � � �2 + �+ 11CCA :Now, the FE-mesh and the operator anisotropy are represented in the right way,as one would expect. In this case, a standard coarsening �nds at hand the 'strongdirections'. 9



Example 3.4. Let us consider a sti�ness matrix arising from linear elasticity,thus (Kh)ij = kij 2 Rp�p (p = 2; 3). Then bij = �kkijk for i 6= j is an appropriateauxiliary matrix.Example 3.5. The last example is related to Maxwell's equations and an edgeelement discretization. In this case the FE-mesh has to be represented by theauxiliary matrix. Using the method of Example 3.2 and D(x) of Example 3.3 weget the following element matrixBrh = 1� �0BB@� + 1 �� �1 0�� � + 1 0 �1�1 0 �+ 1 ��0 �1 �� � + 11CCA :The entries (Brh)14, (Brh)23, (Brh)41 and (Brh)32 are zero, i.e., there is no diagonaledges in the virtual FE-mesh related to Fig. 1 (see [28]).Remark 3.6.1. We can think of Bh as related to elements, such that an element agglom-eration is performed (see [15]). This can be realized by de�ning a distancebetween two elements (e.g. one over the geometric distance of the barycen-ter, for elements in a neighborhood).2. The geometric information is required on the �nest grid only. By Galerkin'smethod we get a coarse auxiliary matrix, if the transfer operators for theauxiliary matrix are de�ned properly.3.2 The Coarsening ProcessThe auxiliary matrix may look arti�cial but a closer look shows that Bh representsa virtual FE-mesh in the following sense: If a point j is 'far' away from i, thenthe auxiliary matrix has a small negative entry. On the other hand if a pointj is 'close' to i, then the auxiliary matrix has a large negative entry. As itwas mentioned above the matrix Bh 2 ZMh and therefore the setup for Bh isstraightforward. The crucial point is the identi�cation of the entries of Bh (virtualFE-mesh) for more than one degree of freedom per node (edge).Let us remember the necessary steps for a matrix Bh 2 ZMh. We know thatsuch a matrix represents a virtual FE-mesh !h = (!nh ; !eh). Such an FE-mesh canbe split into two disjoint sets of nodes, i.e.,!nh = !nC [ !nF ; !nC \ !nF = ;with sets of coarse grid nodes !nC and �ne grid nodes !nF . The splitting will beusually performed such that no coarse grid nodes are connected and there should10



be as much coarse grid nodes as possible. This can be achieved by using thefollowing sets N ih = fj 2 !nh j jbijj 6= 0 ; i 6= jgSih = fj 2 N ih j jbijj > coarse(Bh) ; i 6= jgand by taking one speci�c cut-o� (coarsening) functioncoarse(Bh) = 8><>:� �pjbiijjbjjj see [35]� �maxl 6=i jbljj see [31]� see [21]with an appropriate � 2 [0; 1]. Further we de�ne some local sets!iC = !nC \N ih; !iF = !nF \N ihand we assume a 'disjoint' splitting (I ih)MHi=1 (MH = j!nC j) withI ih \ Ijh = ; and MH[i=1 I ih = !nh :By de�ning an appropriate prolongation PBh for Bh a coarse auxiliary matrix iscomputed by BH = (PBh )TBhPBhand BH represents a virtual FE-mesh !H = (!nH ; !eH), with !nH = !nC .Remark 3.7.1. In this discussion it is always assumed that the coarse grid degrees of freedomare numbered �rst.2. Bh represents a virtual FE-mesh and therefore it can be related to the degreesof freedom in the original matrix. Consequently it is very important thatthe prolongation operators PBh , P sysh and P kerh are consistent, i.e.,(a) if Lagrange FE-functions are used, then kkijk 6= 0, jbijj 6= 0 for i 6= jon all levels.(b) if N�ed�elec FE-functions are used then bij i > j (or i < j) representsan edge in a virtual FE-mesh (see [28]).3. If Kh 2 ZNh stems from a scalar problem then we can take Bh � Kh whichresults in a classical AMG method, e.g. [31] (small positive o�-diagonalentries of Kh are admissible).4. If Kh stems from an FE-discretization of a scalar boundary value problemand we construct a preconditioner Bh 2 ZNh such that 
1�Bh � Kh � 
2�Bh,0 < 
1 � 
2, based on the element sti�ness matrices, then the technique isequal to the element preconditioning technique (see [26, 27]).11



3.3 The Prolongation OperatorIn most AMG-approaches the kernel of the underlying operator is not, or onlyimplicitly considered. In many AMG approaches the constant functions are pre-served, which is closely related to the variational form (4). But this prerequisiteis not su�cient for (5) or (6). It is of great importance for multilevel methodsthat the characteristics of the discretized operator are the same on all levels, e.g.,especially, the kernel has to be preserved. Consequently, AMG-methods have tomeet this requirement, too. The following theorem provides a necessary conditionfor the prolongation operator.Theorem 3.8. Let VH , Vh, QH , Qh, �H and �h be de�ned as in Sec. 2. More-over, P sysh : VH 7! Vh and P kerh : QH 7! Qh are matrices with full rank. If theequation P sysh �HqH = �hP kerh qH 8qH 2 QH (8)holds and additionally 8qh 2 Qh 9qH 2 QH : qh = P kerh qHis ful�lled, then V0H = �HQHis valid.Proof. The proof splits into two parts:1. We show that �HQH � V0H . Let us take an arbitrary but �xed qH 2 QHand recall the de�nition of V0H (7). Thus we getP sysh �HqH = �hP kerh qH ;which is true because of (8). Consequently we obtain �HqH 2 V0H .2. We show that V0H � �HQH . We take a vH 2 V0H and perform the followingcalculation P sysh vH = �hqh = �hP kerh qH = P sysh �HqH :Because P sysh is assumed to have full rank we conclude that vH = �HqH ,which is the desired result.
12



Example 3.9. The �rst example is given by a Poisson type problem (4). In oursetting we de�ne P sysh = P kerh = PBh and then one veri�es easily the assumptionsof Theorem 3.8, if P sysh is appropriately chosen, e.g(P sysh )ij = 8><>:1 i = j 2 !nC�kij+cijkii+cii i 2 !nF ; j 2 !iC0 else (9)with cij = Xp2!iF kip � kpjPq2!iC kpq + kpi :An other possibility for this case is a simple prolongation(P sysh )ij = 8><>:1 i = j 2 !nC1jSih\!nC j i 2 !nF ; j 2 Sih \ !nC0 else (10)which again ful�lls Theorem 3.8.Example 3.10. The preliminaries for Theorem 3.8 can not be shown for linearelasticity . It is known from geometric multigrid, that at least linear functionshave to be prolongated exactly, in order to preserve the kernel. For AMG methodsthis is hardly possible. Anyway, we propose an interpolation which shows a goodconvergence behavior. We choose again P sysh = P kerh = PBh , with(P sysh )ij = 8><>:Inn i = j 2 !nC�k�1ii �kij + cij� i 2 !nF ; j 2 !iC0 else (11)with Inn 2 Rn�n the identity matrix andcij = Xp2!iF � Xq2!iC kpq��1kipkpj :An other possibility for this case is the analogue to prolongation (10)(P sysh )ij = 8><>:Inn i = j 2 !nC1jSih\!nC j � Inn i 2 !nF ; j 2 Sih \ !nC0 else : (12)
13



Example 3.11. In [28] an appropriate setting for the prolongation operators Psysand Pker = PB is suggested if V = H0(curl;
), � = grad, Q = H10 .(P sysh )ij = 8><>:+1 i = j 2 !eC ; i; j have the same orientation�1 i = j 2 !eC ; i; j have not the same orientation0 else (13)and P kerh = PBh is given by(P kerh )ij = (1 i = j 2 !nC ; i; j 2 I ih0 else :4 Numerical StudiesThe AMG techniques are used as a preconditioner for the preconditioned con-jugate gradient (PCG) method (see [16, 17]). The iteration was stopped if anerror reduction in the preconditioner energy norm by a factor of 10�8 has beenachieved. We used a V(2,2)-cycle and solved the coarsest grid with a Choleskyfactorization (degrees of freedom � 500). All calculations were done on an SGIOctane 300 MHz workstation. In the subsequent sections the following short-cutsare used:� 'iter': number of iterations in the PCG-method,� 'setup': CPU-time (seconds) for the construction of the matrix hierarchy,� 'solver': CPU-time (seconds) for the solution time of the PCG-method.4.1 Anisotropic Scalar EquationLet us consider the variational form (4) on 
 � R2 be the unit square,D = �1 00 ��and � = 10�4. We assume homogeneous Neumann boundary conditions on @
.Further, the FE-discretization was done with bilinear FE-functions. The arisinglinear equation is solved on one hand by the new method based on an auxiliarymatrix constructed via the method given in Example 3.2 and on the other hand bythe classical Ruge/St�uben method. We used in both cases a Block-Gauss-Seidelsmoother with maximal block size 3 per node patch. The prolongation for theAMG method based on the auxiliary matrix is given in (10) and the prolongationfor the classical AMG method is due to (9).14



Nh � iter setup (sec) solver (sec)10201 11 4.57 3.3140401 10�1 12 23.40 19.8790601 12 54.78 46.7810201 59 2.00 13.9440401 10�2 78 9.03 88.5390601 84 24.12 228.2710201 91 1.87 21.5040401 10�3 103 8.44 118.3690601 167 18.57 441.84Table 1: Results for the anisotropic 2D problem with classical AMG.Nh � iter setup (sec) solver (sec)10201 15 1.28 2.7240401 10�1 14 5.12 11.6390601 24 11.57 44.9010201 9 1.37 1.7540401 10�2 12 5.28 10.3790601 14 12.06 27.6110201 10 1.36 1.9040401 10�3 11 5.26 9.5090601 13 12.12 25.82Table 2: Results for the anisotropic 2D problem with auxiliary matrix.The results are depicted in Tab. 2 and Tab. 1 for the new and the classicalAMG method, respectively.It can be seen, that the new method performs much better than the classicalmethod. In addition the new method is robust with respect to the anisotropicparameter, whereas the classical method fails in the sense of required PCG it-erations, in the case of � � 10�2. The classical AMG method works well, if theanisotropy is moderate (� = 10�1). Let us further mention that the operatorcomplexity, i.e., Pì=1NNEiNNE1with NNEi is the number of non-zero entries on level i of the system matrix and` the number of levels, is considerable less in the new method than in the classicalone. 15



Next, we are concerned with the 3D case of the variational form (4) on 
 bean L-shaped domain, D = 0@2 + � �� 2� ��� 2 + � �2 + �2� � �2 + � 4 + � 1A ;� = 0 and homogeneous Dirichlet boundary conditions. For an FE-discretizationwe use linear tetrahedra. The prolongation operator for both methods is givenin (10) and a block Gauss-Seidel smoother is used with maximal block size 10.Again, the auxiliary matrix is constructed as mentioned in Example 3.2.The results for di�erent � are given in Tab. 3 and Tab. 4 for the classical andthe new method, respectively.Nh � iter setup (sec) solver (sec)2025 5 0.37 0.7014161 10�3 9 3.45 15.28105633 16 32.65 242.192025 5 0.35 0.6914161 100 8 3.32 12.49105633 11 28.92 156.092025 6 0.41 0.8114161 10+3 11 3.58 18.77105633 19 32.99 291.36Table 3: Results for an anisotropic problem in 3D with classical AMG.
Nh � iter setup (sec) solver (sec)2025 5 0.53 0.7214161 10�3 9 4.09 14.55105633 14 35.53 195.672025 5 0.50 0.7514161 100 8 4.05 12.47105633 10 34.52 137.662025 7 0.63 1.2914161 10+3 13 5.15 24.68105633 23 43.18 372.02Table 4: Results for an anisotropic problem in 3D with auxiliary matrix.16



Both methods are similar compared to each other. The reason therefore is thatthey detect approximately the same strong connections, i.e., the nodes which arepotential candidates for prolongation. In this case, where the anisotropy is notaligned with the grid, an optimal solver is hard to realize.4.2 Static Linear Elasticity EquationsThe linear elasticity equations of (5) gives rise to block-system of equations.Subsequently, a cantilever beam and a crank shaft are presented. For furtherdiscussion the following abbreviations are used: type=1 is related to the newAMG method and prolongation given in (12), type=2 is due to the classicalmethod with prolongation given in (12) and type=3 is related to the classicalmethod with prolongation given in(11).For the cantilever beam we assume a Poisson ratio 0.3 and an FE-discretizationwith bilinear FE-functions on a rectangular grid with ratio 1 : �. Additionally,homogeneous Dirichlet boundary conditions are assumed on one side of the beamand free boundary conditions on the rest of the boundary, see Fig 2. First,
PSfragreplacements � 1

Figure 2: Cantilever Beam in 2D.the results for � = 1 are presented in Tab. 5. The classical AMG method withharmonic extension operator (type 3) performs best, because the kernel of theoperator (without essential boundary conditions) is represented well, which is nottrue for the other type of prolongation operators.The results for the cantilever beam with � = 10�1 are listed in Tab. 6. In thiscase the classical method is much better than the new AMG method. The rea-son therefore is again the better prolongation operator, as it was mentioned above.To �nish this subsection we present a 3D case which is related to a crank-shaft. The geometry is given in Fig. 3 and the input data was the same as for thecantilever beam. The results are depicted in Tab. 7 and show that both methodsperform comparable well. As for the cantilever beam the classical method withthe harmonic extension for the prolongation operator is the best method in thatcomparison. 17



Nh type iter setup (sec) solver (sec)20402 15 1.79 3.6780802 1 21 7.21 21.57181202 22 16.29 51.2920402 12 1.11 3.0080802 2 14 4.48 14.61181202 15 9.96 35.4020402 11 1.28 2.7780802 3 11 5.11 11.64181202 12 11.44 28.70Table 5: Results for the Cantilever Beam with � = 1.Nh type iter setup (sec) solver (sec)20402 113 7.00 54.7480802 1 109 30.80 224.27181202 140 71.57 654.3620402 50 1.58 15.6880802 3 65 6.26 87.71181202 81 13.57 244.43Table 6: Results for the Cantilever Beam with � = 10�1.Nh type iter setup (sec) solver (sec)3039 8 2.45 0.8917769 1 16 12.98 10.63118359 23 110.0 118.863039 8 0.63 0.8217769 2 16 6.18 10.63118359 23 13.52 118.753039 7 0.67 0.7317769 3 11 2.18 7.38118359 19 17.53 96.83Table 7: Results for the Crank Shaft in 3D.
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Figure 3: Crank Shaft in 3D.4.3 Static Linear Maxwell EquationsThe last numerical example is due to the variational form (6). In this casethe proposed AMG method needs inherently the auxiliary matrix in order toconstruct an appropriate prolongation (13) and smoothing operator [1]. For moredetails see [28]. We consider a static linear magnetic �eld problem in 3D withgeometry 
 � R3 given in Fig. 4. Further we assume homogeneous Dirichletboundary conditions,D = (100 � I33 in air10�3 � I33 in ferromagneticsand � = 10�4. The results are given in Tab. 8. In this case we detect a strongerdependency on the mesh parameter h, but this is due to the non optimal pro-longation operator. Nevertheless, this method is much better than standard pre-coditioners, i.e., incomplete Cholesky Factorization or even classical AMG whichdoes not work for this example.Nh iter setup (sec) solver (sec)8714 14 2.49 0.5365219 28 44.01 4.17504246 63 792.49 34.49Table 8: Results for the magnetic valve with new AMG method.
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Figure 4: Magnetic valve in the linear static case.5 Conclusions and Further RemarksIn this report a general AMG method for SPD problems, which arise from an FE-discretization of second order, self-adjoint, elliptic partial di�erential equations,was presented. We concentrated on the coarsening process and the prolongationoperator. For the coarsening process an auxiliary matrix was introduced whichis related to a virtual FE-mesh. A hierarchy of virtual FE-meshes (auxiliarymatrices) was constructed and the degrees of freedom of the original problem arerelated properly to the auxiliary matrix. We suggested a necessary condition forthe prolongation operator in order to preserve the properties of the underlyingoperator (i.e., especially the kernel). This condition is not su�cient to obtainan optimal solver. Nevertheless, this condition can be used as a starting pointfor non-standard problems, as it was done for edge element FE-discretizations.The proposed approach is general and can be easily implemented in standardFE-codes. In addition it has a great potential for practical applications, becauseoptimal solvers can be constructed rather simple for a wide range of problems.References[1] D. Arnold, R. Falk, and R. Winther,Multigrid in H(div) and H(curl), Numer.Math. 85 (2000), 197{218.[2] R. Beck, Algebraic multigrid by component splitting for edge elements onsimplicial triangulations, Preprint SC 99-40, Konrad-Zuse-Zentrum f�ur In-formationstechnik Berlin, December 1999.20
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