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Abstract

In this report a general approach to algebraic multigrid methods for
problems arising from the finite element discretization of a second order,
self-adjoint, elliptic partial differential equation is proposed. Special at-
tention is paid to the coarsening process and the transfer operators. In
order to construct a more flexible method an auxiliary matrix is intro-
duced which represents a virtual finite element mesh. In addition this
auxiliary matrix is related to the degrees of freedom of the system matrix.
The coarsening is performed on the auxiliary matrix, and after defining
appropriate transfer operators for the system and the auxiliary matrix, a
coarse system can be constructed by Galerkin’s method. Moreover, a nec-
essary condition imposed on the corresponding transfer operators is given
such that the properties of the fine level system hands over to a coarse
level system. It turns out that this approach is a generalization of many
existing algebraic multigrid methods. Numerical examples are given which
show the efficiency and flexibility of the proposed method.
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1 Introduction

A finite element (FE) discretization of a second order self-adjoint, elliptic bound-
ary value problem leads usually to a linear (or linearized) system of equations

thh = ih’ (1)

where K € RV»*Nh is a symmetric positive definite (SPD) sparse system matrix,
I, € R the right hand side and u, € R the solution vector. The number
N, of unknowns in (1) behaves asymptotically like N, = O(h™ %), with d =
1,2, 3 the spatial dimension and h the mesh-size parameter. Therefore the linear
system is usually very large. The condition number of the system matrix K}, is
typically of order x(K}) = O(h~?), which is the reason for the slow convergence
of classical iterative solvers. Consequently, the efficient and fast solution of (1) is
an important aspect of the FE-method and therefore optimal solvers, i.e., CPU-
time and memory consumption are proportional to N, are of interest. Krylov
subspace methods together with multigrid methods fulfill these requirements (see
[16, 17]).

Algebraic multigrid (AMG) methods are of special interest if geometric multi-
grid can not be applied. There are at least two reasons for using AMG:

e The discretization provides no hierarchy of FE-meshes.

e The coarsest grid of a geometric multigrid method is too large to be solved
efficiently by a direct or classical iterative solver.

In contrast to geometric multigrid methods, where a grid hierarchy is required
explicitly, AMG is able to construct a matrix hierarchy and the corresponding
transfer operators by only knowing the system matrix. A lot of numerical stud-
ies have shown that the convergence rate of AMG is comparable with geometric
multigrid methods although it can not be proved in general. Applications of AMG
methods in various practical (engineering) areas are given in [12, 13, 18, 19, 20].

The first serious approach to AMG was made 1982 by Brandt, McCormick
and Ruge in [5] and an improved version of it can be found in [6]. This method is
mainly concerned with SPD matrices K}, which are additionally M-matrices. In
this approach the smoother is usually fixed (e.g. Gauss-Seidel point relaxation)
and the prolongation operator is constructed such that the error which is not
affected by the smoother is in the range of the prolongation operator. This
objective can be well realized for M-matrices [32, 30, 4, 31] but it turned out
that it is hard to fulfill for general SPD matrices. A review of this AMG method
is made in [33, 34] including also a proposal for the remedy of the M-matrix
property. In spite of the fact that this method works well for M-matrices, the
setup time (i.e., the construction of the matrix hierarchy with the corresponding



transfer operators) and the application as a preconditioner requires plenty of
CPU-time for practical problems.

To overcome these drawbacks Braess [3] suggested a quit simple AMG method,
where the preconditioner can be constructed and applied very fast. The method
benefits from the piecewise constant interpolation and consequently there is less
fill in on the coarser levels which in turn implies a fast application. On the other
hand this method fails at hand, if anisotropic structures are considered due to
the poor prolongation. A related work is given in [21] by Kickinger, where an
improved prolongation was proposed. In a subsequent work the agglomeration
technique was combined with a block-smoother (see [22]).

Vanek, Mandel and Brezina developed and analyzed a new technique in [35,
23] and [38]. The idea is to construct a ’tentative’ prolongation operator, which
already takes care of the kernel of Kj, (without essential boundary conditions)
and improve it by some smoothing steps (usually one damped Jacobi step is
used). The smoothing step provides to pull energy out of the basis function.
This approach is called ’smoothed aggregation’.

A complete new idea was realized by Jones et al. at the Lawrence Livermore
National Laboratory, called AMGe. This method basically assumes access to the
element stiffness matrices and is able to construct a measure for the 'algebraic
smooth error’. In addition an improved prolongation operator can be constructed,
which relies not on the M-matrix property. For the construction and analysis of
AMGe see [7, 15]. An element stiffness matrix free version, i.e., working with the
assembled system matrix, is given in [14].

In recent time Wagner [37] develops an AMG method that is applicable also
for non-symmetric problems. The key point in this approach is to find the two
neighbors to a given node, which produce the best possible prolongation. The
prolongation weights are computed by local minimization problems and a coars-
ening is done in a similar way. This approach provides a parallel AMG method
in a natural way and it can be used additionally for scalar as well as for block
system of equations.

Another approach to overcome the M-matrix property is depicted in [26, 27]
which is called ’element preconditioning’. This approach assumes access to the
element stiffness matrices, and constructs for every element stiffness matrix a
spectral equivalent element stiffness matrix with the right sign condition. If the
element stiffness matrices are assembled, we end up with a spectrally equivalent
M-matrix Bj, with respect to Kj. Applying AMG of Ruge and Stiiben to By
results in a preconditioner for K.

The above methods are closely related to an H*(2)-elliptic problems or prob-
lems with additional properties (e.g. M-matrix). The edge element FE-discretization
in magnetic field computations yield a special matrix which has to be treated very
carefully. AMG methods for this kind of problems are given in [2, 28].

The AMG techniques are partly able to deal with matrices K} stemming from
FE-discretization of a system of partial differential equations (see [35, 14, 21, 33])
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and to handle non-symmetric matrices K} arising from convection diffusion prob-
lems (see [21, 25, 33, 10, 29, 13, 37]). Other interesting AMG approaches can be
found in [11, 24, 36, 9] and references therein.

All presented methods need inherently the efficient interplay of smoothing
and coarse grid correction, which are the key ingredients for multigrid methods.
One crucial point in the construction of AMG methods is the numerical effort
of the coarsening process and the construction of appropriate transfer operators.
The challenge is to construct an AMG method with a good convergence rate but
rather low costs in the setup and in the application. Therefore we concentrate
on the coarsening and the transfer operators in this report. For the other two
main ingredients (smoother and coarse grid operator) the standard approaches
are used, i.e., point-, block Gauss-Seidel and Galerkin’s method. For the rest of
this report a two grid method is described and therefore the subscripts h and
H are related to fine and coarse grid quantities, respectively. Furthermore the
superscripts sys, ker and aux stands for 'system’, ’kernel’ and ’auxiliary’ quan-
tities, respectively. The sub- and superscripts are suppressed whenever this is
possible without confusion. In order to construct a more flexible and efficient
coarsening strategy, we introduce an auxiliary matrix B, which represents a vir-
tual FE-mesh. For instance, By, is a nodal distance matrix which also reflects the
underlying partial differential equation. In this way B, reflects anisotropies in
the FE-mesh and in the operator. Obviously, this information has to be provided
but this additional information is usually available in standard FE-codes.

After computing By, on the given grid, a standard coarsening is performed on
B;, and additionally appropriate transfer operators are defined. Then a coarse
grid auxiliary matrix By is computed via the Galerkin method which is inter-
preted as a virtual FE-mesh on the coarse level. We have to mention, that the
auxiliary matrix By, is constructed such that the degrees of freedom of the system
matrix are properly related to the entries of the auxiliary matrix and consequently
the coarsening of Bj, can be taken for K. Finally, transfer and smoothing oper-
ators for K, can be constructed and a coarse grid matrix Kp is computed with
Galerkin’s method. Once the matrices are defined on a coarser level, the setup
process is applied recursively.

Another key point for AMG methods is the prolongation operator. Therefore,
we assume to know which underlying variational form (without essential bound-
ary conditions) is under consideration. This is equivalent to know the null space
of the main part of the partial differential equation. By this knowledge, a neces-
sary condition on the prolongation operator is posed and prolongation operators
for different variational forms are presented.

The report is organized as follows: In Sec. 2 the considered problem classes
and notations are introduced. Further we discuss the components of an AMG
method in Sec. 3 followed by Sec. 4 presenting some numerical studies. Finally,
further remarks are given and conclusions are drawn.



2 Problem Formulation and Notations

Let us consider the variational form:
FindueV: a(u,v) = (F,v) YweV, (2)

with a(-,-) : Vx Vi R is a symmetric, non-negative bilinear form in a Sobolev
space V. In addition, FF € V* is a linear functional with the dual space of V
denoted by V* and the duality product (-,-) : V* x V— R. The computational
domain Q C R? (d = 1,2, 3) is assumed to be a bounded domain with polygonal
Lipschitz boundary 09Q. If a(-,-) is coercive, then existence and uniqueness is
obtained by the Lax-Milgram Lemma (see e.g. [8]). If this is not the case, then
the kernel of a(-,-), i.e.,

Vo ={ueV|a(u,v) =0V eV}, (3)
can be expressed as

by introducing a bounded, linear operator A : QQ C V — V applied to the basis Q.
If in addition

<F,U>:0 Yv €V

is assumed then the uniqueness of (2) is achieved. Notice, the kernel of the
bilinear form is of special interest for the construction of an AMG method.
During this report three different variational forms a(-, -) are considered, which
stem from a self-adjoint, linear, elliptic partial differential equation of second or-
der. In particular they are related to the Electrostatic Equation, to the Linearized
Elasticity Equations and to the Magnetostatic FEquations, subsequently.

Example 2.1. Let us consider the variational formulation (Electrostatic Equa-
tion)
a(u,v) = / grad v’ D(z) grad u dz + / ouv dx (4)
Q Q
with D(z) € R™?® be SPD and o > 0. An appropriate Sobolev space for (4) is
given by
V=HY Q) ={uec L*Q)| gradu € L*(Q)}.

Further, let A be the identity operator and Q = span{1}. Then the kernel is given
by

{AQ:span{l} o=0
VO —
0 o>0.



Example 2.2. The next variational form is related to Linearized Elasticity Equa-
tions), which reads as

a(u,v) :/QGT(U)E(x)e(u) dx (5)

9% 9 _ T
’LUZth E l‘) € R be SPD, G(U) = (611, €99, €33, €12, €21, €23, €32, €13, 631) and

€i(u) = 3 g;" + au] ) The Sobolev space is given by V= (HY(Q))", p=3 (The
2D case is given in an analogous way). Again, let A be the identity operator and
1 0 0 0 —7 y
Q = span o, (1,10}, =z ],10],|—=x ,
0 0 1 -y X 0

with (x,y,z)7 € R¥, x, y and z € RM» are the x—, y— and z-coordinates of
the grid points, respectively. Then the kernel is given by

V, = AQ.

Further we assume an operator D(x) € R¥? that provides approzimately the
principle stress (or strain) in a point x.

Example 2.3. An other very important variational form is given by

au,v) :/curlvTD(x) Curludx+/auvdx (6)
0 0

with D(z) € R4 be SPD and o > 0. Equation (6) is closely related to Magne-
tostatic Equations. An appropriate Sobolev space is given by

V = Hy(curl, Q) = {u € (L*(Q)¢| curlu € (L*(Q))?,u x @ =0 on 00} ,

with 1 the unit outward vector. For o = 0 the kernel is non-trivial and consists
of all gradient fields if the domain ) is simply connected. By defining A = grad
and Q = H} () = {u € H'(Q) |u(z) =0,z € 90} this kernel can be written as

_JAQ o0=0
VO_{@ o>0.

The conforming FE-discretization is based on the regular partitioning 7, of 2
into finite elements [8]. The FE-bases ® has local support and span the FE-space
V, = span® C V and additionally we a assume Q, = span ¥ C Q for a given
bases W. Therefore, (2) changes into

Find up, € V, CV 1 a(up,vp) = (Fyuy) Yo, €V,

6



which is equivalent to the linear equation (1) by the FE-isomorphism

Gh 2Vh'—>Vh,

sys

with V}, = RV . For Q, C Q we define in an analogous way an isomorphism

Gr.,. Qn Qy,

with (), being an appropriate parameter space. After the definition of FE-spaces
the discrete mapping A, : @, — Vj, which maps the discrete kernel into the
discrete space, is defined by

Ang, = (GY,) " AGL.,q, Vg, €Qn

sYs

and thus the discrete kernel reads as

Voo = {w, € Vil G(G?ysﬂha Gl w,) =0V, € Vi}

sys
= {Qh € Qh ‘ a(AGZergha Gh Qh) =0 vﬂh € Vh} = Ath .

sys

By defining coarser spaces Vg C V, and Qg C @Q, and the appropriate FE-
isomorphisms GZ  and GE | Ay : Qu — Vi is defined by

SYs ker»
Amq, = (GE)"ANGlLq, Vg, €Qn.

Next, we assume transfer operators P,*° : Vi — Vj, and PF" : Qg — Q) to be
given with full rank, then the kernel of the coarse space is given by

Vorr = {QH | P;ySQH S %h} ) (7)
in the case of using Galerkin’s method for the coarse grid operator, i.e.,
Ky = (P K, P .

Remark 2.4. The challenging task is to ensure Ay Qu = Vou under the assump-
tion that A,Qy = Von. This property is closely related to the transfer operators
PY* and PFer.

The system matrix is stored in such a way, that the p unknowns related to a
node (edge) are stored in a sub-matrix k;;, i.e.,

Ky = (kij)i,jzl,...,Mh , kij c RP*P

with M), the number of nodes (edges). Thus the number of unknowns is given
by Nj = My, - p. Further we call matrices A and B € R™*™ spectral equivalent
if there exists lower and upper constants v, 7 € R™, respectively, such that

v+ (Bu,u) < (Au,u) <7-(Bu,u) YueR"
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with (-, -) the Euclidean inner product. This abbreviated by v-B < A < %-B. For
SPD matrices A we can define the energy norm ||u/|% = (Au,u). The transposed
of a matrix A is denoted by A”. The condition number of an SPD matrix is x(A)
and we use the fact that

)‘max(A)

A =3 @) S

’

[= [

with Amax(A), Amin(A) are the maximal and minimal eigenvalue of A, respectively.
Finally, we define the set Z,, = {A € R™"™ |a; > 0,a;; <0 Vi # j}.

3 Components of an AMG Method

3.1 The Auxiliary Matrix

Let us assume a system matrix K stemming from an FE-discretization with
FE-mesh w), = (w}, wy,), with w} the set of nodes and wj, the set of edges in the
FE-mesh. In the following we construct an auxiliary matrix B, € RM»*Mr yith
the following properties:

bi; <0 i o
(Bh)ij = ' i# o Vi, j € wy
_Zl;éibilzo L=

and the entries of By, should be defined in a way such that
1. the distance between two geometric grid points is reflected and
2. the operator D(z) from (4)-(6) is reflected.

Remark 3.1.

1. By € Zy, by construction.
2. The matrixz pattern of By, can be constructed via several objectives:

(a) By reflects the geometric FE-mesh, i.e., |bi;| # 0 < (i,7) is an edge
in the FE-mesh.

(b) By, has the same pattern as Ky, i.e., ||ki;|]| # 0 < |b;| # 0, with || - ||
be an arbitrary matriz norm.

Example 3.2. Let D(z) € R™? (d =1,2,3), the coefficient matriz of the varia-
tional form (4), (5) or (6), be SPD. Further let a;; € R? be the geometric vector
that connects node 1 with node j for i # j, i.e., a;; s a geometric edge in the
FE-mesh (see Fig. 1). Note, that ||a||3, represents the length of a;; with respect
to the || - || p-norm. By defining b;; = —m for i # j results in an appropriate

auziliary matriz (see Example 3.3).



Example 3.3. Let us consider the variational form (4) with

D)= (o 1)

o = 0 and a quadratic finite element with side length h = 1 (see Fig. 1) with
bilinear FE-functions.

h ag4

h

a2 2

1

Figure 1: Quadratic finite element.

The element stiffness matriz K 1is given by

242.€¢2 1-2-¢2 24 —1-¢€
K’"—l- 1—2-¢ 242 —1—-€¢ —24¢
h ™ ¢ —24€ —1—€ 2422 1—-2.¢

—1—-€2 —24€ 1—-2-€2 242.¢

and it can be seen, that for e < 1 positive off diagonal entries appear which may
cause difficulties in classical AMG methods. With an auzxiliary matriz, presenting
the same non-zero pattern as the system matriz, the problem is better reflected.
The element matriz Bj, becomes (using the method of Example 3.2)

E+e+1 —€—¢ —e—1 —€

B — 1L | =€ —¢ €+e+l —e —e—1
h ™ 2 4 ¢ —e—1 —€ E+et+l —€—¢
—€ —e—1 —e2—€¢ E+e+1

Now, the FE-mesh and the operator anisotropy are represented in the right way,

as one would expect. In this case, a standard coarsening finds at hand the ‘strong
directions’.



Example 3.4. Let us consider a stiffness matriz arising from linear elasticity,
thus (Kp)i; = kij € RP*P (p=2,3). Then b;; = —||k;;|| fori # j is an appropriate
auxiliary matrix.

Example 3.5. The last example is related to Maxwell’s equations and an edge
element discretization. In this case the FE-mesh has to be represented by the
auziliary matriz. Using the method of Example 3.2 and D(x) of Example 3.3 we
get the following element matrix

e+1 —e¢ —1 0

1 — e+1 0 -1

r_— _.
Bh_e —1 0 e+ 1 —€
0 —1 —e e+1

The entries (BJ)14, (BJ)2s, (B})a1 and (BJ)sa are zero, i.e., there is no diagonal
edges in the virtual FE-mesh related to Fig. 1 (see [28]).

Remark 3.6.

1. We can think of By, as related to elements, such that an element agglom-
eration is performed (see [15]). This can be realized by defining a distance
between two elements (e.g. one over the geometric distance of the barycen-
ter, for elements in a neighborhood).

2. The geometric information is required on the finest grid only. By Galerkin’s
method we get a coarse auxiliary matriz, if the transfer operators for the
auxiliary matriz are defined properly.

3.2 The Coarsening Process

The auxiliary matrix may look artificial but a closer look shows that By, represents
a virtual FE-mesh in the following sense: If a point j is 'far’ away from ¢, then
the auxiliary matrix has a small negative entry. On the other hand if a point
j is ‘close’ to i, then the auxiliary matrix has a large negative entry. As it
was mentioned above the matrix B, € Z);, and therefore the setup for By is
straightforward. The crucial point is the identification of the entries of By, (virtual
FE-mesh) for more than one degree of freedom per node (edge).

Let us remember the necessary steps for a matrix By, € Zy,. We know that
such a matrix represents a virtual FE-mesh w;, = (w}, w;). Such an FE-mesh can
be split into two disjoint sets of nodes, i.e.,

n __ n n n n o __
wp = wg Uwk, wtNwp =10

with sets of coarse grid nodes wp and fine grid nodes wf. The splitting will be
usually performed such that no coarse grid nodes are connected and there should
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be as much coarse grid nodes as possible. This can be achieved by using the
following sets

Ni = {jewp|lbyl #0,i # 5}
Sy, = {j € N;||bij| > coarse(By),i # j}
and by taking one specific cut-off (coarsening) function

1bii||bj;|  see [35
coarse(By,) = < 0 - max;; |b;| see [31]
6 see [21]
with an appropriate 6 € [0, 1]. Further we define some local sets
we=whNN;}, wh=wkNN}
and we assume a disjoint’ splitting ()7 (My = |w?|) with
Mu
LI =0 and |JI =wy.
i=1
By defining an appropriate prolongation PP for By, a coarse auxiliary matrix is
computed by
By = (P))' By by}
and By represents a virtual FE-mesh wy = (W}, w§), with w} = wg.

Remark 3.7.
1. In this discussion it is always assumed that the coarse grid degrees of freedom
are numbered first.

2. By, represents a virtual FE-mesh and therefore it can be related to the degrees
of freedom in the original matriz. Consequently it is very important that
the prolongation operators PP, P;** and PFe" are consistent, i.e.,

(a) if Lagrange FE-functions are used, then ||k;;|| # 0 < |b;;| # 0 fori # j
on all levels.

(b) if Nédélec FE-functions are used then bjj i > j (or i < j) represents
an edge in a virtual FE-mesh (see [28]).

3. If Ky, € Zy, stems from a scalar problem then we can take Bj, = K) which
results in a classical AMG method, e.g. [31] (small positive off-diagonal
entries of Kp, are admissible).

4. If Ky, stems from an FE-discretization of a scalar boundary value problem
and we construct a preconditioner By, € Zy, such that y,-By, < Kj, < 72-By,
0 < v < 7, based on the element stiffness matrices, then the technique is
equal to the element preconditioning technique (see [26, 27]).
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3.3 The Prolongation Operator

In most AMG-approaches the kernel of the underlying operator is not, or only
implicitly considered. In many AMG approaches the constant functions are pre-
served, which is closely related to the variational form (4). But this prerequisite
is not sufficient for (5) or (6). It is of great importance for multilevel methods
that the characteristics of the discretized operator are the same on all levels, e.g.,
especially, the kernel has to be preserved. Consequently, AMG-methods have to
meet this requirement, too. The following theorem provides a necessary condition
for the prolongation operator.

Theorem 3.8. Let Vg, Vi, Qu, Qn, Ag and Ay, be defined as in Sec. 2. More-
over, P;"" : Vi — Vi, and PF : Qg — Qu are matrices with full rank. If the
equation

P Apq, = MPyq, Vg, € Qn (8)
holds and additionally
Vg, € Qnig, € Qu 1 q, = P,fergH
18 fulfilled, then
Vo = ApQu
15 valid.

Proof. The proof splits into two parts:

1. We show that AyQpy C Voi. Let us take an arbitrary but fixed q, € Qu
and recall the definition of Vo (7). Thus we get

P}fySAHgH = Ahp}fergH,

which is true because of (8). Consequently we obtain Ang, € Von.

2. We show that Vo € AgQpn. We take a vy € Vo and perform the following
calculation

Puy = Apg, = ApPFerq = P Ang,, -

Iy

Because P;”* is assumed to have full rank we conclude that v, = Apqn,
which is the desired result.

O
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Example 3.9. The first ezample is given by a Poisson type problem (4). In our
setting we define P;** = PF" = PP and then one verifies easily the assumptions
of Theorem 3.8, if P, is appropriately chosen, e.g

1 i=7€uwh

sysy _kij-l—cij
(Ph ) - kii+cii
0 else

i€whj e wh (9)

with

Kip -
Z Zqu kpq + km

pEw

An other possibility for this case is a simple prolongation

1 i=j€wh
(P)ij = | rrwm € Wi J € SN (10)
0 else

which again fulfills Theorem 3.8.

Example 3.10. The preliminaries for Theorem 3.8 can not be shown for linear
elasticity . It is known from geometric multigrid, that at least linear functions
have to be prolongated exactly, in order to preserve the kernel. For AMG methods
this is hardly possible. Anyway, we propose an interpolation which shows a good
convergence behavior. We choose again P** = PFm = PB with

m oi=jeuwn
(Py¥)ij = § =k (kij+cij) i€ Wh, j €wh (11)

0 else

with I7 € R™™ the identity matriz and

1y
Z Z kpq kipkp; -
prF qewo
An other possibility for this case is the analogue to prolongation (10)
I =7 € wd
(P¥)ij = e 1P i €Wl jES)NWE (12)

IS} Nwg| n
0 else.
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Example 3.11. In [28] an appropriate setting for the prolongation operators Pygyq
and Pyer = Pp is suggested if V = Hy(curl,Q), A = grad, Q = H{.

+1 i=j € wg, i,j have the same orientation
(P"*)ij =R =1 i=j€ws,i,j have not the same orientation (13)

0 else

and P = PP is given by

1 i=j€wt i,jell
pkerl’,: [OXIRS] h
(P )J {0 else.

4 Numerical Studies

The AMG techniques are used as a preconditioner for the preconditioned con-
jugate gradient (PCG) method (see [16, 17]). The iteration was stopped if an
error reduction in the preconditioner energy norm by a factor of 10~% has been
achieved. We used a V(2,2)-cycle and solved the coarsest grid with a Cholesky
factorization (degrees of freedom < 500). All calculations were done on an SGI
Octane 300 MHz workstation. In the subsequent sections the following short-cuts
are used:

e ’iter’: number of iterations in the PCG-method,
e ‘setup’: CPU-time (seconds) for the construction of the matrix hierarchy,

e ’‘solver’: CPU-time (seconds) for the solution time of the PCG-method.

4.1 Anisotropic Scalar Equation

Let us consider the variational form (4) on Q C R? be the unit square,

7=(o %)

and o0 = 10~*. We assume homogeneous Neumann boundary conditions on 9.
Further, the FE-discretization was done with bilinear FE-functions. The arising
linear equation is solved on one hand by the new method based on an auxiliary
matrix constructed via the method given in Example 3.2 and on the other hand by
the classical Ruge/Stiiben method. We used in both cases a Block-Gauss-Seidel
smoother with maximal block size 3 per node patch. The prolongation for the
AMG method based on the auxiliary matrix is given in (10) and the prolongation
for the classical AMG method is due to (9).
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| N» | e [iter [ setup (sec) | solver (sec) |

10201 11 4.57 3.31

40401 | 1071 | 12 23.40 19.87
90601 12 04.78 46.78
10201 29 2.00 13.94
40401 | 1072 | 78 9.03 88.53
90601 84 24.12 228.27
10201 91 1.87 21.50
40401 | 1073 | 103 8.44 118.36
90601 167 18.57 441.84

Table 1: Results for the anisotropic 2D problem with classical AMG.

| N» | e [iter [ setup (sec) | solver (sec) |
10201 15 1.28 2.72
40401 | 1071 | 14 5.12 11.63
90601 24 11.57 44.90
10201 9 1.37 1.75
40401 | 1072 | 12 0.28 10.37
90601 14 12.06 27.61
10201 10 1.36 1.90
40401 [ 1073 | 11 0.26 9.50
90601 13 12.12 25.82

Table 2: Results for the anisotropic 2D problem with auxiliary matrix.

The results are depicted in Tab. 2 and Tab. 1 for the new and the classical
AMG method, respectively.

It can be seen, that the new method performs much better than the classical
method. In addition the new method is robust with respect to the anisotropic
parameter, whereas the classical method fails in the sense of required PCG it-
erations, in the case of ¢ < 1072, The classical AMG method works well, if the
anisotropy is moderate (¢ = 107'). Let us further mention that the operator
complexity, i.e.,

l
2.i-1 NNE;
NNE,

with NN FE; is the number of non-zero entries on level ¢ of the system matrix and
¢ the number of levels, is considerable less in the new method than in the classical
one.

15



Next, we are concerned with the 3D case of the variational form (4) on Q be
an L-shaped domain,

2+¢ —€ 2—¢€
D=| —e¢ 24+€¢ —-2+4¢€],
2—€¢ —24¢ 4+c¢

o = 0 and homogeneous Dirichlet boundary conditions. For an FE-discretization
we use linear tetrahedra. The prolongation operator for both methods is given
in (10) and a block Gauss-Seidel smoother is used with maximal block size 10.
Again, the auxiliary matrix is constructed as mentioned in Example 3.2.

The results for different € are given in Tab. 3 and Tab. 4 for the classical and
the new method, respectively.

| N, | e [iter | setup (sec) | solver (sec) |
2025 Y 0.37 0.70
14161 [ 1073 | 9 3.45 15.28
105633 16 32.65 242.19
2025 Y 0.35 0.69
14161 | 10° 8 3.32 12.49
105633 11 28.92 156.09
2025 6 0.41 0.81
14161 | 1013 | 11 3.58 18.77
105633 19 32.99 291.36

Table 3: Results for an anisotropic problem in 3D with classical AMG.

N, | e [iter | setup (sec) | solver (sec) |
2025 Y 0.53 0.72
14161 [ 1073 | 9 4.09 14.55
105633 14 35.53 195.67
2025 Y 0.50 0.75
14161 | 10° 8 4.05 12.47
105633 10 34.52 137.66
2025 7 0.63 1.29
14161 | 10%3 | 13 5.15 24.68
105633 23 43.18 372.02
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Both methods are similar compared to each other. The reason therefore is that
they detect approximately the same strong connections, i.e., the nodes which are
potential candidates for prolongation. In this case, where the anisotropy is not
aligned with the grid, an optimal solver is hard to realize.

4.2 Static Linear Elasticity Equations

The linear elasticity equations of (5) gives rise to block-system of equations.
Subsequently, a cantilever beam and a crank shaft are presented. For further
discussion the following abbreviations are used: type=1 is related to the new
AMG method and prolongation given in (12), type=2 is due to the classical
method with prolongation given in (12) and type=3 is related to the classical
method with prolongation given in(11).

For the cantilever beam we assume a Poisson ratio 0.3 and an FE-discretization
with bilinear FE-functions on a rectangular grid with ratio 1 : e. Additionally,
homogeneous Dirichlet boundary conditions are assumed on one side of the beam
and free boundary conditions on the rest of the boundary, see Fig 2. First,

Figure 2: Cantilever Beam in 2D.

the results for ¢ = 1 are presented in Tab. 5. The classical AMG method with
harmonic extension operator (type 3) performs best, because the kernel of the
operator (without essential boundary conditions) is represented well, which is not
true for the other type of prolongation operators.

The results for the cantilever beam with € = 10" are listed in Tab. 6. In this
case the classical method is much better than the new AMG method. The rea-
son therefore is again the better prolongation operator, as it was mentioned above.

To finish this subsection we present a 3D case which is related to a crank-
shaft. The geometry is given in Fig. 3 and the input data was the same as for the
cantilever beam. The results are depicted in Tab. 7 and show that both methods
perform comparable well. As for the cantilever beam the classical method with
the harmonic extension for the prolongation operator is the best method in that
comparison.
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| N, | type | iter | setup (sec) | solver (sec) |
20402 15 1.79 3.67
80802 1 21 7.21 21.57
181202 22 16.29 51.29
20402 12 1.11 3.00
80802 2 14 4.48 14.61
181202 15 9.96 35.40
20402 11 1.28 2.77
80802 3 11 5.11 11.64
181202 12 11.44 28.70

Table 5: Results for the Cantilever Beam with ¢ = 1.

| N, | type | iter | setup (sec) | solver (sec) |
20402 113 7.00 54.74
80802 1 109 30.80 224.27
181202 140 71.57 654.36
20402 20 1.58 15.68
80802 3 65 6.26 87.71
181202 81 13.57 244.43

Table 6: Results for the Cantilever Beam with ¢ = 107!,

‘ N, ‘ type ‘ iter ‘ setup (sec) ‘ solver (sec) ‘
3039 8 2.45 0.89
17769 1 16 12.98 10.63
118359 23 110.0 118.86
3039 8 0.63 0.82
17769 2 16 6.18 10.63
118359 23 13.52 118.75
3039 7 0.67 0.73
17769 3 11 2.18 7.38
118359 19 17.53 96.83

Table 7: Results for the Crank Shaft in 3D.




Figure 3: Crank Shaft in 3D.

4.3 Static Linear Maxwell Equations

The last numerical example is due to the variational form (6). In this case
the proposed AMG method needs inherently the auxiliary matrix in order to
construct an appropriate prolongation (13) and smoothing operator [1]. For more
details see [28]. We consider a static linear magnetic field problem in 3D with
geometry Q C R? given in Fig. 4. Further we assume homogeneous Dirichlet
boundary conditions,

b {100-133 in air

1073 I3 in ferromagnetics

and ¢ = 10~*. The results are given in Tab. 8. In this case we detect a stronger
dependency on the mesh parameter A, but this is due to the non optimal pro-
longation operator. Nevertheless, this method is much better than standard pre-
coditioners, i.e., incomplete Cholesky Factorization or even classical AMG which
does not work for this example.

| N, | iter | setup (sec) | solver (sec) |
8714 14 2.49 0.53
65219 | 28 44.01 4.17
004246 | 63 792.49 34.49

Table 8: Results for the magnetic valve with new AMG method.
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Figure 4: Magnetic valve in the linear static case.

5 Conclusions and Further Remarks

In this report a general AMG method for SPD problems, which arise from an FE-
discretization of second order, self-adjoint, elliptic partial differential equations,
was presented. We concentrated on the coarsening process and the prolongation
operator. For the coarsening process an auxiliary matrix was introduced which
is related to a virtual FE-mesh. A hierarchy of virtual FE-meshes (auxiliary
matrices) was constructed and the degrees of freedom of the original problem are
related properly to the auxiliary matrix. We suggested a necessary condition for
the prolongation operator in order to preserve the properties of the underlying
operator (i.e., especially the kernel). This condition is not sufficient to obtain
an optimal solver. Nevertheless, this condition can be used as a starting point
for non-standard problems, as it was done for edge element FE-discretizations.
The proposed approach is general and can be easily implemented in standard
FE-codes. In addition it has a great potential for practical applications, because
optimal solvers can be constructed rather simple for a wide range of problems.
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