
E�cient Contact Solvers Based on DomainDecomposition TechniquesJ. Sch�oberl�, Linzjoachim@numa.uni-linz.ac.atAbstractThis paper deals with the construction of e�cient algorithms for the solutionof the �nite dimensional constrained minimization problem arising from the �niteelement discretization of contact problems.Dualization techniques have been used to decrease the problem size from the largenumber of unknowns in the domain to the much smaller number of inequalities at theboundary. The disadvantage of this direct Schur-complement approach is the needof the inversion of the sti�ness matrix.Domain decomposition techniques meet very similar requirements. A globalboundary value problem is decoupled into local subproblems, and one interface prob-lem at the (coupling) boundary. Two complementary approaches are the Dirichletmethod and the Neumann method. The �rst one requires preconditioners for localDirichlet problems and for the interface problem in H+1=2, and extension operatorsfrom the boundary into the domain. The second one needs preconditioners for localNeumann problems, and for the interface problem in H�1=2. E�cient multi-levelalgorithms for all components are available in literature.In this paper it is shown how to use exactly these components for the constructionof solvers for contact problems. New results for the analysis of convergence are pre-sented. At least at uniformly re�ned meshes, we can prove optimal time complexity.Numerical results show high e�ciency also on adaptively re�ned 3d meshes.AMS Subject Classi�cations: 73T05, 35J85, 65N55, 65F35, 65K10Key words: contact problem, variational inequality, domain decomposition, precon-ditioning.1 IntroductionThe contact problem is an important problem in computational mechanics. Elastic bodiesare deformed due to volume and surface forces, but the bodies should not penetrate eachother. A simpli�ed problem is the Signorini problem, where one body should not penetratea given, rigid obstacle. Both lead to unilateral boundary conditions, the contact conditions.We refer to [24], [7], [5], [19], [8], [18], [13] for mathematical modeling, analysis and �niteelement discretization.In this paper we are interested in fast, iterative algorithms for solving the arising �nitedimensional constrained minimization problem.�This research has been supported by the Austrian Science Foundation - 'Fonds zur F�orderung derwissenschaftlichen Forschung (FWF)' - under project grant P10643-TEC and P11215.1



There are classical iterative methods like point projection methods and point over-relaxation methods [8]. These methods su�er from slow convergence rates on �ne meshes.By conjugate gradient like methods the speed of convergence can be improved [6], but stillthe number of necessary iterations depends on the mesh size. Multigrid methods have beensuccessfully applied to obstacle problems with inequality constraints in the whole domainby [11], [21], [14], [15] and to Signorini's problem in [20].In this paper we describe di�erent realizations of the preconditioned projection methodoriginally investigated in this context in [23]. This method is e�cient, i�� the relative condition number of the system matrix A with respect to the precondi-tioning matrix C is small,� the operation C�1 � v is fast executable,� the projection P with respect to the C energy norm onto the feasible set K is fastcomputable.Multigrid preconditioners as well as domain decomposition preconditioners have been de-veloped to satisfy the �rst two requirements quite well. We discuss, how to combine stan-dard multigrid and domain decomposition components to ful�ll all three requirements.This enables us to reuse available e�cient implementations. The basic idea is an approx-imative decoupling of the many equations in the domain from the still a lot, but muchless inequalities on the boundary. The decoupling is done by two approaches dual to eachother. One is connected with Dirichlet domain decomposition, the other one with Neumanndomain decomposition techniques.The theoretical estimates prove optimal time and memory complexity on uniformlyhierarchical re�ned meshes. Numerical experiments indicate also e�cient behavior onadaptively re�ned meshes.The rest of the paper is organized as follows. In Section 2 the problem and discretizationis given. Section 3 shortly present domain decomposition techniques, Sections 4 and 5 givethe two realizations of the projection algorithm. Finally, in Section 6 numerical results arepresented.2 Problem DescriptionThe problem of Signorini is sketched in the picture
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and formulated in classical form as follows. The domain 
 is supposed to be bounded inRd,d = 2 or 3 with a Lipschitz-continuous boundary @
 = �D [ �N [ �C with meas(�D) 6= 0and meas(�C) 6= 0. Further, n is the unit normal vector, u is the (unknown) displacement�eld, e(u) is the strain operator e(u) = 0:5(ru+ruT ), D is the tensor of elastic coe�cientsand � is the (unknown) stress tensor. Given functions are the volume force f , the surface
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traction g and the gap g to the rigid obstacle. The equations with boundary conditionsread as � �De(u) = 0 in 
;�div � = f in 
;u = 0 on �D;�n = g on �N ;�n� (nT�n)n = 0 on �C ;uTn � g; nT�n � 0; (uTn � g) (nT�n) = 0 on �C : (1)The weak form of (1) is discretized by the �nite element method on a mesh with totallyN nodes and NC nodes at the boundary �C . We obtain the �nite dimensional ConstrainedMinimization Problem (CMP)Find u 2 K : J (u) = infv2K J (v) ; with J (v) := 12vTAv � fTv: (2)The sti�ness matrix A is symmetric and positive de�nite of dimension RdN , f is the loadvector. The convex set of feasible functions K � V := RdN is de�ned byK = fv 2 V : Bv � gg ; (3)where � is meant component-wise. The matrix B of dimension NC � dN is de�ned suchthat for all nodes xi on the contact boundary and for all v 2 V there holds(Bv)i = n(xi)Tv(xi); (4)and gi = g(xi).By means of the matrix B we can de�ne the corresponding mixed form as �nd u 2V; p 2 � := (R+0 )NC such that Au + BTp = f;Bu � g;(Bu� g)Tp = 0: (5)The mixed form (5) includes more general discretizations than nodal inequalities. We canuse di�erent �nite element spaces for the approximation of the dual variables, see [1] forMortar techniques. The mixed form is also suited for body-body contact problems, whereeach restriction involves more mesh points. We will construct iterative solvers for bothforms.For the solution of CMPs one can use the preconditioned projection algorithm. Let Cdenote the symmetric, positive de�nite preconditioning matrix with the spectral bounds�C � A � �C;where A > B (A � B) means, that A�B is positive de�nite (positive semide�nite). De�nethe projection PKC : V ! K asPKC (u) := argminv 2 K kv � ukC; (6)where kvkC denotes the energy norm (vTCv)1=2. Let � be a damping parameter 0 � � ���1. Then the preconditioned projection method is de�ned as3



Choose u1 2 Kfor k = 1; 2; : : : letuk+1 = PKC (uk + �C�1(f � Auk))Except for diagonal preconditioners C, the projection PKC itself is not explicit available,but has to be approximated by an iterative algorithm. We will achieve an e�cient method,i� the inner iteration for the evaluation of the projection PKC is much cheaper than the sameiteration applied for the projection PKA . We do not want to perform the inner iterationuntil it \converged", but it has to reduce the error by a �xed factor �P < 1. This leads usto theAlgorithm 1 (Approximative Projection Method)Choose an arbitrary u1 2 K.For k = 1; 2; : : : do~uk = uk + �C�1 �f � Auk�,uk+1 = ~P (~uk).The proof of the following result of convergence can be found in [23]:Theorem 1 (Energy convergence rate estimate)Let uk be the sequence generated by Algorithm 1. The relaxation parameter � is chosenin the interval (0; 1=�]. The approximative projection ~P ful�llsk ~P (~uk)� ~ukk2C � �Pkuk � ~ukk2C + (1� �P ) kP (~uk)� ~ukk2C ; (7)with �P 2 [0; 1). Then the estimateJ(uk+1) � �J(uk) + (1� �) J(u) (8)holds for every k 2 N with the convergence rate� = 1� ��2 (1� �P ) � 1: (9)The error in A-energy norm is bounded byku� ukk2A � 2�k�1 �J(u1)� J(u)� : (10)3 Domain decomposition techniquesIn this section we will brie
y explain some concepts of both major types of non-overlappingdomain decomposition, of the Dirichlet version as well as the Neumann version. It isenough to consider the 2 sub-domain case, where the domain is split as 
 = 
1 [ 
2, andthe coupling boundary is given as �C = 
1 \ 
2:
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3.1 Dirichlet domain decompositionWe present the preconditioner developed in [10]. Let A be the �nite element matrix froman elliptic, second order problem. We renumber the nodes by counting �rst the nodes atthe coupling boundary (:C), and than the inner nodes and nodes at natural boundaries(:I). We split accordingly the space V = RN intoV = VC � VIand the matrix A =  ACC ACIAIC AII ! :The simple block diagonal preconditioner C = diag(ACC ; AII) would lead to a general-ized condition number �(C�1A) growing as the mesh size decreases. Let SD denote theboundary Schur complement SD = ACC � ACIA�1II AIC : (11)For Dirichlet domain decomposition one introduces an extension operator E : VC ! V anda basis transformation T which split into the blocksE =  ICEI ! and T =  IC 0EI II ! : (12)The extension operator should approximate the solution of local Dirichlet problems in thesense that kEvCkA � cE infwI2VIw=(vC;wI ) kwkA = cE kvCkSDholds with a small constant cE � 1. This means, that the matrix ETAE is spectrallyequivalent to the Schur complement S with constants 1 and c2E. Further, we need apreconditioner CI for the local Dirichlet sub-problems with matrix AI and the so calledSchur complement preconditioner CC for the matrix ETAE. We assume the spectralinequalities �CCC � ETAE � �CCC ;�ICI � AI � �ICI : (13)Using these components, we can de�ne the approximative additive Dirichlet domain de-composition preconditioner byC�1 =  IC 0EI II ! C�1C 00 C�1I ! IC ETI0 II ! ; (14)for which the spectral inequalities �C � A � �Chold with the constants� = �1�q1� c�2E �minf�C ; �Ig and � = �1 +q1� c�2E �max f�C ; �Ig :On hierarchical re�ned meshes, all components are available in optimal time complexityand with bounds independent of the mesh size. As preconditioner CI in the domain, asymmetric multigrid preconditioner [2], [17] can be used. Optimal components for theSchur complement preconditioner CC and for the extension operator in 2D and 3D areconstructed by multi-level techniques [4], see [25] for the Schur complement preconditionerand [22] for the extension operator. In [9] additional smoothing improves the constant cE.The operation C�1C � v is implemented within O(NC) arithmetical operations.5



3.2 Neumann domain decompositionFor Neumann domain decomposition one does not incorporate continuity across the in-terface into the continuous or �nite element space, but ensure it by the linear restrictionuj
1 = uj
2 on �C . This leads to the block diagonal matrixA =  A(1) 00 A(2) ! ;where the blocks Aj are the sub-domain �nite element matrices with Neumann boundaryconditions at �C . The blocks are split into boundary and inner unknowns asA(j) =  A(j)CC A(j)CIA(j)IC A(j)II ! :The restriction is formulated by means of the matrixB = �B(1) �B(2)� with B(j) = �B(j)C 0� :On matching grids, the block B(j)C simpli�es to IC . Thus, we obtain the mixed problemAu + BTp = f;Bu = 0: (15)This saddle point problem can be solved by some version of inexact Uzawa algorithm, seee.g. [3]. First, a preconditioner to the matrix A is needed. Again, a multigrid precondi-tioner can be used. One has to be careful, because some of the blocks A(j) can be onlysemi-de�nite even if the global problem is elliptic. In this case, one has to work with pro-jections to the rigid body motions. The second preconditioner is needed for the NeumannSchur-complementSN = BA�1BT = 2Xj=1B(j)[A(j)]�1[B(j)]T = 2Xj=1B(j)C [S(j)]�1[B(j)C ]T (16)with sub-domain Schur complements S(j) = A(j)CC � A(j)CI [A(j)II ]�1A(j)IC .Optimal preconditioners for the Neumann Schur-complement SN are constructed veryrecently in [16].It is interesting to note, that due to the inner iterations in the contact algorithm, therequired Schur complement preconditioners exchange.4 Projection Algorithms based on Dirichlet domaindecompositionIn this section we will apply the Dirichlet DD preconditioner for the projection method.The �rst two requirements, namely condition numbers independent of the mesh-size andfast execution of the preconditioning operation are ful�lled for this preconditioner. Toconstruct the projection we use the basis transformation matrix T of (12) and express thesolution u by u = T û:6



Therefore, û is the solution of the CMP infv̂2K̂ Ĵ(v̂)with K̂ = T�1K and Ĵ(v̂) = J(T v̂) = 12 v̂T T TAT| {z }Â v̂ � fTT| {z }f̂T v̂:If C is a preconditioner for A, then also Ĉ = T TCT is one for Â with the same bounds.For the DDD-preconditioner (14), the transformed Ĉ has the block diagonal structureĈ =  CC 00 CI ! :Because vI can be chosen arbitrarily in a linear space, the set K̂ reduces to K:K̂ = T�1K = ( IC 0�EI II ! vCvI ! : BCvC � g) = K:Now, we apply the approximative projection method to the transformed system:ûk+1 = ~P ĈK �ûk + �Ĉ�1 �f̂ � Âûk�� : (17)We use the abbreviation ~u = ûk + �Ĉ�1 �f̂ � Âûk� :To apply Theorem 1 the approximative projection ~P ĈK has to ful�llk ~P ĈK (~u)� ~uk2̂C � (1� �P ) kP ĈK (~u)� ~uk2̂C + �Pkûk � ~uk2̂C ; (18)where P ĈK is the exact projection with respect to the Ĉ inner product. Because the innerproduct matrix Ĉ is block diagonal, and the restrictions involve unknowns only on thecontact boundary, the projection reduces to~P ĈK (~u) = � ~PCCKC (~uC) ; ~uI� :Inequality (18) is implied by the corresponding inequality for the boundary projectionk ~PCCKC (~uC)� ~uCk2CC � (1� �P ) kPCCKC (~uC)� ~uCk2CC + �PkûkC � ~uCk2CC : (19)By means of the quadratic functionalJC(vC) := 12 vTCCCvC � ~uTCCCvC (20)equation (19) can be written asJC � ~PCCKC (~uC)� � (1� �P ) JC �PCCKC (~uC)�+ �P JC �ûkC� : (21)This problem can be solved by n steps of the projection method with trivial precondi-tioner IC : 7



w0 = ûkCfor i = 0; : : : ; n� 1 dowi+1 = P ICKC �wi + �iCC(ukC � wi)�~PCCKC (~uC) := wnIf we chose the optimal damping parameter �i = �max(CC)�1 and n � c�(CC), than weobtain from Theorem 1, that (21) holds with�P � (1� 0:5�(CC)�1)c�(CC) � e�c=2 < 1:Now, we can state the whole algorithm in nodal coordinates:Algorithm 2 (Dirichlet Projection Method)Choose an arbitrary u1 2 K.For k = 1; 2; : : : dowI = C�1I (0 II)(f � Auk)gC = CCukC + �ET (f � Auk)w0C = ukCfor j = 0; : : : ; n� 1 dowj+1C = P ICKC �wjC + �i(gC � CCwjC)�uk+1 = uk + �(0 II)TwI + EwnCTheorem 2Algorithm 2 has optimal time complexity on uniformly re�ned hierarchical meshes. Thismeans, the time complexity for reducing the iteration error by a factor of ", is O(N j log "j)independent of the number of levels.Proof: The computational costs are no(co + nici), with the number of outer and inneriterations no and ni, respectively, the costs co in the outer loop and the costs ci per innerloop. Because �(C�1A) = O(1), and �P < 1 independent of the level, no = O(j log "j).Because components of optimal time complexity are used, no = O(N) = O(h�d) andni = O(NC) = O(h�d+1). The condition number �(CC) and thus ni is O(h�1). Summingup, we get the total cost O(log "(h�d + h�1h�d+1)) = O(N log ").5 Projection Algorithms based on Neumann domaindecompositionThe mixed form (5) is best suited for the solver based on Neumann domain decompositiontechniques. By the exact elimination of the primal variable u, one obtains the equivalent,dual form p = argminq 2 � J�(q) (22)with the dual functionalJ�(q) = 12qTBA�1BT q � qT (BA�1f � g): (23)It has been suggested to use quadratic programming methods for the minimization of thismuch smaller problem of dimension NC . But, this functional requires the operation A�1,which is not fast available. 8



To overcome this di�culty, we use the Augmented Lagrangian technique. We add aconvex function in v and q the minimum of which in v equals 0 for every �xed q. Weassume, that the preconditioner C for the matrix A is scaled such that �min(C�1A) > 1.Then C�1 � A�1 is positive de�nite. So, we obtain the equivalent problem(u; p) = argminv2Vp2� 12 kAv +BT q � fkC�1�A�1 + J�(q): (24)The �rst nice feature is, that the matrix A and the vector F of the quadratic form, whichevaluate toA =  AC�1A� A (AC�1 � I)BTB(C�1A� I) BC�1BT ! and F =  (AC�1 � I)fBC�1f � g ! (25)are fast applicable or computable, respectively. It was observed in [3], that the matrix Ais spectrally equivalent to the block preconditioning matrix eCeC =  A� C 00 BA�1BT !with condition number �( eC�1A) asymptotically as good as the condition number �(C�1A).The block A�C cancels out in the �rst row of A as well as in F . In [23] similar estimatesare given for the block diagonal matrix 
(A� C) 00 BC�1BT ! (26)with preconditioner Schur complement BC�1BT and 
 � �max(C�1A). In both cases, theSchur complement BA�1BT or preconditioner Schur complement BC�1BT can be replacedby the Schur complement preconditioner C�1C . If we use the scaling of (26) we obtain the�nal preconditioner C =  
(A� C) 00 C�1C ! : (27)With the notation U = (u; p) and K = V � � we can apply the approximative projectionalgorithm to the Augmented Lagrangian functional (24)Uk+1 = ~P CK �Uk + �C�1(F �AUk)� :Now, the (approximative) projection involves only the smaller number of dual unknowns.It can be implemented by n steps of the projection method with matrix C�1C and innerproduct IC .Summing up, we developed the following algorithm. Now, we allow preconditioners Cwith general scaling 
C < A � 
C:Algorithm 3 (Neumann Projection Method)Choose arbitrary u1 2 V , p1 2 �.For k = 1; 2; : : : dow = C�1(f � Auk � BTpk)d = C�1C pk + �(Bw � 
(g �Buk))For j = 0; : : : ; n� 1 dopk+ j+1n = P IC� �pk+ jn + �i(d� C�1C pk+ jn )�uk+1 = uk + �
�1w 9



Theorem 3Algorithm 2 has optimal time complexity on uniformly re�ned hierarchical meshes. Thismeans, the time complexity for reducing the iteration error by a factor of ", is O(N j log "j)independent of the number of levels.Proof: Similar to proof of Theorem 2.6 Numerical ResultsWe have applied the algorithm based on Neumann domain decomposition for the solutionof the following problem of Signorini. A sphere is pressed against a plane:
f


 = C(0; 0; 0; 0:5)�C = @
E = 1; � = 0:2f = (0; 0;�1E � 3)The problem of the rigid body motions was solved by adding the small regularisationterm " (u; v)L2 with " = 10�3 to the bilinear form.We used a V -cycle multigrid preconditioner C with 3 Gauss-Seidel pre-smoothing stepsand 3 backward Gauss-Seidel post-smoothing steps. Due to the non-nested boundaryapproximations, the convergence rate of standard multigrid would depend on the smallparameter ". To overcome this di�culty, we used special grid transfer operations preserv-ing linear functions, and therefore mapping coarse grid rigid body motions to �ne gridrigid body motions. As boundary preconditioner we used the BPX preconditioner. Theprojection was implemented by the conjugate gradient like inner iteration of [6].The initial mesh was constructed from a cube. Each face was split into two triangles,and each triangle was connected by a tetrahedron to the center. The following loop wasperformed.� Solve the CMP up to an relative error of 10�4 using the Neumann DD approach.� Apply the residual error estimator [26] for the linearized problem with �xed contactnodes. Mark all elements with element error more then 10 % of the maximal error.� Do adaptive mesh re�nement. All marked elements will be re�ned. In addition thered and green closures are formed.� Prolongate the old solutions to the next mesh, where it will be used as initial guess.Displacement variables are prolongated naturally, the dual variable p, the contactstress, is prolongated by injection.We used the �nite element code FEPP and one R10000/195 MHz processor of an SGIOrigin 2000 machine. In the table below we give for each level of re�nement the totalnumber of nodes (N), the number of nodes at the contact boundary (NC), which is equalto the number of inequalities, the number of outer iterations (its) needed to reduce theerror by a factor of 10�4, the average number of inner iteration (av. ni), the total timespent in the solver Tsolve at each level, and the time spent in the projection Tproj.10



level N NC its av. ni Tsolve Tproj1 9 8 11 12.6 0.0 0.02 35 26 7 3.6 0.0 0.03 87 48 8 1.6 0.1 0.14 129 65 14 27.8 0.3 0.25 395 136 14 37.6 0.9 0.46 1113 286 16 78.1 3.2 1.67 3219 653 15 103.0 9.4 3.98 11074 1640 18 106.4 57.0 13.29 29234 3276 19 120.2 178.2 36.710 59354 5157 19 121.2 434.1 61.211 157805 10003 21 138.0 1385.6 174.112 305404 17950 20 165.7 2812.5 356.2According to the analysis, the number of outer iterations is bounded. The number ofinner iterations increases, but the time spent for the projection is much below the totaltime, which is spent mainly for the preconditioning operation C�1 � v. Certainly due toleaving the cache, the needed time per node increases a little.In addition to linear elements, we also used 10-node tetrahedra with quadratic shapefunctions. The results are given in the table below.level N NC its av. ni Tsolve Tproj1 9 8 11 12.6 0.0 0.02 35 26 8 3.9 0.0 0.03 138 70 12 20.5 0.3 0.14 416 150 14 33.4 1.1 0.45 833 254 15 53.8 2.7 1.06 2726 598 22 82.9 14.2 4.77 6591 1158 19 117.8 42.2 11.48 18346 2422 19 177.3 134.7 35.39 39772 4630 20 180.5 340.5 79.210 136446 12870 24 248.8 1887.1 383.9The pictures below show the mesh of 10-node tetrahedra at level 8 and the accordingcontact stress:
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As mentioned above, the mixed form and the derived algorithm are also well suitedfor body-body contact problems. Preliminary results are available by B. Hackl and W.Hinterberger, more details can be found in [12]. Two rolls are in contact along a smallstrip. The smaller roll is loaded by given surface traction, and it is asked for its verticaldisplacement. The adaptive mesh with 46611 Nodes and the isosurface of the von-Misesstress is drawn below:
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