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The contact problem is an important problem in computational mechanics. Elastic bodies
are deformed due to volume and surface forces, but the bodies should not penetrate each
other. A simplified problem is the Signorini problem, where one body should not penetrate
a given, rigid obstacle. Both lead to unilateral boundary conditions, the contact conditions.
We refer to [24], [7], [5], [19], [8], [18], [13] for mathematical modeling, analysis and finite
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Abstract

This paper deals with the construction of efficient algorithms for the solution
of the finite dimensional constrained minimization problem arising from the finite
element discretization of contact problems.

Dualization techniques have been used to decrease the problem size from the large
number of unknowns in the domain to the much smaller number of inequalities at the
boundary. The disadvantage of this direct Schur-complement approach is the need
of the inversion of the stiffness matrix.

Domain decomposition techniques meet very similar requirements. A global
boundary value problem is decoupled into local subproblems, and one interface prob-
lem at the (coupling) boundary. Two complementary approaches are the Dirichlet
method and the Neumann method. The first one requires preconditioners for local
Dirichlet problems and for the interface problem in H+'/2, and extension operators
from the boundary into the domain. The second one needs preconditioners for local
Neumann problems, and for the interface problem in H~'/2. Efficient multi-level
algorithms for all components are available in literature.

In this paper it is shown how to use exactly these components for the construction
of solvers for contact problems. New results for the analysis of convergence are pre-
sented. At least at uniformly refined meshes, we can prove optimal time complexity.
Numerical results show high efficiency also on adaptively refined 3d meshes.
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Introduction

element discretization.

In this paper we are interested in fast, iterative algorithms for solving the arising finite

dimensional constrained minimization problem:.
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There are classical iterative methods like point projection methods and point over-
relaxation methods [8]. These methods suffer from slow convergence rates on fine meshes.
By conjugate gradient like methods the speed of convergence can be improved [6], but still
the number of necessary iterations depends on the mesh size. Multigrid methods have been
successfully applied to obstacle problems with inequality constraints in the whole domain
by [11], [21], [14], [15] and to Signorini’s problem in [20].

In this paper we describe different realizations of the preconditioned projection method
originally investigated in this context in [23]. This method is efficient, iff

e the relative condition number of the system matrix A with respect to the precondi-
tioning matrix C' is small,

e the operation C~! x v is fast executable,

e the projection P with respect to the C' energy norm onto the feasible set K is fast
computable.

Multigrid preconditioners as well as domain decomposition preconditioners have been de-
veloped to satisfy the first two requirements quite well. We discuss, how to combine stan-
dard multigrid and domain decomposition components to fulfill all three requirements.
This enables us to reuse available efficient implementations. The basic idea is an approx-
imative decoupling of the many equations in the domain from the still a lot, but much
less inequalities on the boundary. The decoupling is done by two approaches dual to each
other. One is connected with Dirichlet domain decomposition, the other one with Neumann
domain decomposition techniques.

The theoretical estimates prove optimal time and memory complexity on uniformly
hierarchical refined meshes. Numerical experiments indicate also efficient behavior on
adaptively refined meshes.

The rest of the paper is organized as follows. In Section 2 the problem and discretization
is given. Section 3 shortly present domain decomposition techniques, Sections 4 and 5 give
the two realizations of the projection algorithm. Finally, in Section 6 numerical results are
presented.

2 Problem Description

The problem of Signorini is sketched in the picture

Surface Tractionon Iy

Dirichlet

Boundary Iy, | Elastic Body Q

Contact Boundary I'c

Rigid Obstacle

and formulated in classical form as follows. The domain € is supposed to be bounded in R,
d = 2 or 3 with a Lipschitz-continuous boundary 02 = I'p UT'y UT ¢ with meas(T'p) # 0
and meas(I'¢) # 0. Further, n is the unit normal vector, u is the (unknown) displacement
field, e(u) is the strain operator e(u) = 0.5(Vu+Vu®), D is the tensor of elastic coefficients
and o is the (unknown) stress tensor. Given functions are the volume force f, the surface



traction g and the gap ¢ to the rigid obstacle. The equations with boundary conditions
read as

oc—De(u) = 0 in €
—dive = f in €,
u = 0 on TI'p,
on = g on [y, (1)
on— (nfon)n = 0 on [g,
un <g, nTon >0, (u'n<g)(n"on) = 0 on lec.

The weak form of (1) is discretized by the finite element method on a mesh with totally
N nodes and N¢ nodes at the boundary I'. We obtain the finite dimensional Constrained
Minimization Problem (CMP)
1
Findu € K: J(u)=inf J(v), with J(v):= §UTAU — M. (2)
The stiffness matrix A is symmetric and positive definite of dimension R%, f is the load
vector. The convex set of feasible functions K C V := R4 is defined by

K={veV:Bv>g}, (3)

where > is meant component-wise. The matrix B of dimension Ng x dN is defined such
that for all nodes z; on the contact boundary and for all v € V' there holds

(Bv)i = n(x:)"v(w:), (4)
and g; = g(z;).

By means of the matrix B we can define the corresponding mixed form as find u €
V, p e A:= (R§)Nc such that

Au + B'p = f,
Bu > g, (5)
(Bu—g)"p = 0.

The mixed form (5) includes more general discretizations than nodal inequalities. We can
use different finite element spaces for the approximation of the dual variables, see [1] for
Mortar techniques. The mixed form is also suited for body-body contact problems, where
each restriction involves more mesh points. We will construct iterative solvers for both
forms.

For the solution of CMPs one can use the preconditioned projection algorithm. Let C
denote the symmetric, positive definite preconditioning matrix with the spectral bounds

aC<A<Lac,

where A > B (A > B) means, that A— B is positive definite (positive semidefinite). Define
the projection PX : V — K as

PX(u) := argmin ||v — ul|¢, (6)
ve kK

where ||v||¢ denotes the energy norm (v”Cwv)Y/2. Let 7 be a damping parameter 0 < 7 <
@ !. Then the preconditioned projection method is defined as



Choose u' € K
for k=1,2,... let
ubtl = PE(uf + 7C7L(f — Aub))

Except for diagonal preconditioners C, the projection PX itself is not explicit available,
but has to be approximated by an iterative algorithm. We will achieve an efficient method,
iff the inner iteration for the evaluation of the projection PZ is much cheaper than the same
iteration applied for the projection PX. We do not want to perform the inner iteration
until it “converged”, but it has to reduce the error by a fixed factor pp < 1. This leads us
to the

Algorithm 1 (Approximative Projection Method)

Choose an arbitrary u' € K.
For k=1,2,... do

i =k +rCL(f — Auk),
uktl = ]S(ﬂk)

The proof of the following result of convergence can be found in [23]:

Theorem 1 (Energy convergence rate estimate)
Let u* be the sequence generated by Algorithm 1. The relaxation parameter 7 is chosen

in the interval (0,1/a]. The approximative projection P fulfills
|P(a*) = a* (13 < pellu® = @& + (1 = pp) [|P(a*) — "2, (7)
with pp € [0,1). Then the estimate
J () < pJ(uf) + (1 = p) J (u) (8)

holds for every k € N with the convergence rate

The error in A-energy norm is bounded by

Ju— b < 20 (T = T(w). (10)

3 Domain decomposition techniques

In this section we will briefly explain some concepts of both major types of non-overlapping
domain decomposition, of the Dirichlet version as well as the Neumann version. It is
enough to consider the 2 sub-domain case, where the domain is split as Q = Q; U s, and
the coupling boundary is given as I'c = Q; N Qy:

Q, Q,

e




3.1 Dirichlet domain decomposition

We present the preconditioner developed in [10]. Let A be the finite element matrix from
an elliptic, second order problem. We renumber the nodes by counting first the nodes at
the coupling boundary (.c), and than the inner nodes and nodes at natural boundaries
(.1). We split accordingly the space V = R" into

V=V V;

Acc Act
A= .
( A An >

The simple block diagonal preconditioner C' = diag(Acc, Arr) would lead to a general-
ized condition number k(C~'A) growing as the mesh size decreases. Let Sp denote the
boundary Schur complement

and the matrix

Sp = Acc — Aci A Arc. (11)

For Dirichlet domain decomposition one introduces an extension operator £ : Vo — V and
a basis transformation 7" which split into the blocks

[ Ic ([ Ic O
E_<E1> and T_<E1 II>' (12)

The extension operator should approximate the solution of local Dirichlet problems in the
sense that
[Bvella < cp inf [lw]a=cgllvollsy
w=(ve,wr)

holds with a small constant ¢z > 1. This means, that the matrix ETAFE is spectrally
equivalent to the Schur complement S with constants 1 and c%. Further, we need a
preconditioner C; for the local Dirichlet sub-problems with matrix A; and the so called
Schur complement preconditioner C¢ for the matrix ETAE. We assume the spectral
inequalities

QCCC S ETAE

a;Cr < Af

Using these components, we can define the approximative additive Dirichlet domain de-
composition preconditioner by

4 _(Ic 0 czto0 Io ET
¢ _<E1 11>< 0o Ct 0 Iy )’ (14)

for which the spectral inequalities

aC’C’Ca

aCh. (13)

<
<

aC<A<al
hold with the constants

a= (1 —y/1— 0;32> min{ac,;} and @@= <1 +4/1— c§2> max {qc, a} .

On hierarchical refined meshes, all components are available in optimal time complexity
and with bounds independent of the mesh size. As preconditioner C; in the domain, a
symmetric multigrid preconditioner [2], [17] can be used. Optimal components for the
Schur complement preconditioner C'c and for the extension operator in 2D and 3D are
constructed by multi-level techniques [4], see [25] for the Schur complement preconditioner
and [22] for the extension operator. In [9] additional smoothing improves the constant cg.
The operation C5' x v is implemented within O(N¢) arithmetical operations.
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3.2 Neumann domain decomposition

For Neumann domain decomposition one does not incorporate continuity across the in-
terface into the continuous or finite element space, but ensure it by the linear restriction
u|g, = u|g, on T'c. This leads to the block diagonal matrix

AL
= )

where the blocks A’ are the sub-domain finite element matrices with Neumann boundary
conditions at I'c. The blocks are split into boundary and inner unknowns as

w=(% ),
Aje Afy

The restriction is formulated by means of the matrix

B=(B" -BY) with BY=(BY 0).

On matching grids, the block Bg) simplifies to I-. Thus, we obtain the mixed problem

T, _
AR (13
u = 0.

This saddle point problem can be solved by some version of inexact Uzawa algorithm, see
e.g. [3]. First, a preconditioner to the matrix A is needed. Again, a multigrid precondi-
tioner can be used. One has to be careful, because some of the blocks AY) can be only
semi-definite even if the global problem is elliptic. In this case, one has to work with pro-
jections to the rigid body motions. The second preconditioner is needed for the Neumann
Schur-complement

2 2 . ) .
Sy = BAT'B" =3 BO[AW7[BWT = S BY (50~ [BY]" (16)
j=1 j=1

with sub-domain Schur complements S0 = AY), — AW 40011 40).

Optimal preconditioners for the Neumann Schur-complement Sy are constructed very
recently in [16].

It is interesting to note, that due to the inner iterations in the contact algorithm, the
required Schur complement preconditioners exchange.

4 Projection Algorithms based on Dirichlet domain
decomposition

In this section we will apply the Dirichlet DD preconditioner for the projection method.
The first two requirements, namely condition numbers independent of the mesh-size and
fast execution of the preconditioning operation are fulfilled for this preconditioner. To
construct the projection we use the basis transformation matrix T of (12) and express the
solution u by

u = T1.



Therefore, @ is the solution of the CMP

inf J(0)
veK
with K = T7'K and .
T(AY N . A T T ~ T s
J(v)—J(Tv)—Qv T i‘lTU fFTo
A

fT
If C' is a preconditioner for A, then also C' = TTCT is one for A with the same bounds.
For the DDD-preconditioner (14), the transformed C has the block diagonal structure

A Ce O
(T a)
Because vy can be chosen arbitrarily in a linear space, the set K reduces to K:

- _ I 0 v
R A Y C JP

Now, we apply the approximative projection method to the transformed system:
ittt = g (ak + 707 (f - Aat)) (17)

We use the abbreviation X o
i=d+rC7 (f - Adr).
To apply Theorem 1 the approximative projection ]5]? has to fulfill

1Pk (@) — allg, < (1= pp) || Pk (@) — @l + pplla® — a3, (18)

where PE is the exact projection with respect to the C inner product. Because the inner
product matrix C is block diagonal, and the restrictions involve unknowns only on the
contact boundary, the projection reduces to

- =G/~ -
Plg (@) = (PKg (UC);UI) :
Inequality (18) is implied by the corresponding inequality for the boundary projection
pCc (~ ~ Co (~ ~ N -
I1PKS (ae) = aclle, < (1= pp) [|1PKS (ac) — acllé, + prllac — dclz, - (19)

By means of the quadratic functional

1 _
Jc(?)c) = 5 UgCCUC — uchvc (20)
equation (19) can be written as
Je (PES (i) < (1= pp) Je (PES (ic)) + pp Je (iifs) (21)

This problem can be solved by n steps of the projection method with trivial precondi-
tioner Io:



0_ ok
we = U¢

fort=0,...,n—1do
witl = PII(OC (wi + 7,Co(uk, — wl))
]5[?((:(@0) = w"
If we chose the optimal damping parameter 7; = A\nax(Cc) ' and n > cx(Cc¢), than we
obtain from Theorem 1, that (21) holds with
pp < (1= 0.56(Cc) 1) (@) < e /2 < 1.

Now, we can state the whole algorithm in nodal coordinates:

Algorithm 2 (Dirichlet Projection Method)

Choose an arbitrary u' € K.
Fork=1,2,... do

wr = Cr (0 Ir)(f — AuF)

Jgo = Cculé + TET(f — Auk)

wd = uk,

forj=0,...,n—1do '
wit = P (wé + 7i(9c — ché))

bt =k 4+ 7(0 I Twr + Bwd,

Theorem 2

Algorithm 2 has optimal time complexity on uniformly refined hierarchical meshes. This
means, the time complexity for reducing the iteration error by a factor of £, is O(N|loge|)
independent of the number of levels.

Proof: The computational costs are n,(c, + n;c;), with the number of outer and inner
iterations n, and n;, respectively, the costs ¢, in the outer loop and the costs ¢; per inner
loop. Because x(C~'A) = O(1), and pp < 1 independent of the level, n, = O(|logz]).
Because components of optimal time complexity are used, n, = O(N) = O(h™%) and
n; = O(N¢) = O(h=%1). The condition number x(C¢) and thus n; is O(h~"). Summing
up, we get the total cost O(loge(h™% + h~th=4t1)) = O(Nloge).

5 Projection Algorithms based on Neumann domain
decomposition

The mixed form (5) is best suited for the solver based on Neumann domain decomposition
techniques. By the exact elimination of the primal variable u, one obtains the equivalent,
dual form

p = argmin J*(q) (22)
qgeA
with the dual functional
1
J(q) = s¢'"BAT'B"q—¢"(BA™'f — ). (23)

2

It has been suggested to use quadratic programming methods for the minimization of this
much smaller problem of dimension Nc. But, this functional requires the operation A~!,
which is not fast available.



To overcome this difficulty, we use the Augmented Lagrangian technique. We add a
convex function in v and ¢ the minimum of which in v equals 0 for every fixed q. We
assume, that the preconditioner C' for the matrix A is scaled such that Ay, (C71A) > 1.
Then C~!' — A~ is positive definite. So, we obtain the equivalent problem

. ]- *
(u,p) = argmin 3 || Av+ Bg  flle-raes + T*(a). (24)
IS
pEA

The first nice feature is, that the matrix A and the vector F of the quadratic form, which
evaluate to

[ ACT'A—A (AC-' - D)BT ((AC - I)f
“4_<1%01A—I) BC-'BT ) and '7_< BC'f—g ) (25)

are fast applicable or computable, respectively. It was observed in [3], that the matrix A
is spectrally equivalent to the block preconditioning matrix C

s_(A-C o0
“\ 0o BapT

with condition number /@(C~_1A) asymptotically as good as the condition number x(C~'A).
The block A — C' cancels out in the first row of A as well as in F. In [23] similar estimates
are given for the block diagonal matrix

<WA50)BCEBT> (26)

with preconditioner Schur complement BC~'BT and 7 > Apax(C~'A). In both cases, the
Schur complement BA~!' BT or preconditioner Schur complement BC~! BT can be replaced
by the Schur complement preconditioner C;'. If we use the scaling of (26) we obtain the

final preconditioner
J(A-C 0
c:<7(0 )CE>' (27)

With the notation & = (u,p) and K =V x A we can apply the approximative projection
algorithm to the Augmented Lagrangian functional (24)

Ut = PE(UF + rCH(F — AUb)).

Now, the (approximative) projection involves only the smaller number of dual unknowns.
It can be implemented by n steps of the projection method with matrix C,' and inner
product Ic.

Summing up, we developed the following algorithm. Now, we allow preconditioners C'
with general scaling

70 < AL<HC.
Algorithm 3 (Neumann Projection Method)

Choose arbitrary u' € V, p' € A.
Fork=1,2,... do
w=C~(f — AuF — BTpk)
d = COg'p* +7(Bw — (g — Bu"))
Forj=0,....,n—1do |
P = Pl (pME 4 ri(d — Og ')
uFt = ukF T lw




Theorem 3

Algorithm 2 has optimal time complexity on uniformly refined hierarchical meshes. This
means, the time complexity for reducing the iteration error by a factor of £, is O(N|loge|)
independent of the number of levels.

Proof: Similar to proof of Theorem 2.

6 Numerical Results

We have applied the algorithm based on Neumann domain decomposition for the solution
of the following problem of Signorini. A sphere is pressed against a plane:

Q= C(0,0,0;0.5)
Te =00

E=1 v=02
f=1(0,0,—1E — 3)

/1177777771777

The problem of the rigid body motions was solved by adding the small regularisation
term ¢ (u,v)r, with ¢ = 1072 to the bilinear form.

We used a V-cycle multigrid preconditioner C' with 3 Gauss-Seidel pre-smoothing steps
and 3 backward Gauss-Seidel post-smoothing steps. Due to the non-nested boundary
approximations, the convergence rate of standard multigrid would depend on the small
parameter . To overcome this difficulty, we used special grid transfer operations preserv-
ing linear functions, and therefore mapping coarse grid rigid body motions to fine grid
rigid body motions. As boundary preconditioner we used the BPX preconditioner. The
projection was implemented by the conjugate gradient like inner iteration of [6].

The initial mesh was constructed from a cube. Each face was split into two triangles,
and each triangle was connected by a tetrahedron to the center. The following loop was
performed.

e Solve the CMP up to an relative error of 10=* using the Neumann DD approach.

e Apply the residual error estimator [26] for the linearized problem with fixed contact
nodes. Mark all elements with element error more then 10 % of the maximal error.

e Do adaptive mesh refinement. All marked elements will be refined. In addition the
red and green closures are formed.

e Prolongate the old solutions to the next mesh, where it will be used as initial guess.
Displacement variables are prolongated naturally, the dual variable p, the contact
stress, is prolongated by injection.

We used the finite element code FEPP and one R10000/195 MHz processor of an SGI
Origin 2000 machine. In the table below we give for each level of refinement the total
number of nodes (IV), the number of nodes at the contact boundary (N¢), which is equal
to the number of inequalities, the number of outer iterations (its) needed to reduce the
error by a factor of 107, the average number of inner iteration (av. n;), the total time
spent in the solver Ty,,. at each level, and the time spent in the projection T,,,;.
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level N Ne |its | av. n; | Towe | Tproj
1 9 8 11| 12.6 0.0 0.0
2 35 26 7 3.6 0.0 0.0
3 87 48 8 1.6 0.1 0.1
4 129 65 14 | 27.8 0.3 0.2
5 395 136 | 14 | 37.6 0.9 0.4
6 1113 286 | 16 | 78.1 3.2 1.6
7 3219 653 | 15 | 103.0 9.4 3.9
8 11074 | 1640 | 18 | 106.4 57.0 | 13.2
9 29234 | 3276 | 19 | 120.2 | 178.2 | 36.7
10 59354 | 5157 | 19 | 121.2 | 434.1 | 61.2
11 | 157805 | 10003 | 21 | 138.0 | 1385.6 | 174.1
12 | 305404 | 17950 | 20 | 165.7 | 2812.5 | 356.2

According to the analysis, the number of outer iterations is bounded. The number of
inner iterations increases, but the time spent for the projection is much below the total
time, which is spent mainly for the preconditioning operation C~! x v. Certainly due to

leaving the cache, the needed time per node increases a little.

In addition to linear elements, we also used 10-node tetrahedra with quadratic shape

functions. The results are given in the table below.

level N Ne |its | av. n; | Toowe | Tproj
1 9 8 11| 12.6 0.0 0.0
2 35 26 8 3.9 0.0 0.0
3 138 70 12| 20.5 0.3 0.1
4 416 150 | 14| 334 1.1 0.4
5 833 254 | 15| 53.8 2.7 1.0
6 2726 598 | 22| 82.9 14.2 4.7
7 6591 1158 | 19 | 117.8 422 | 11.4
8 18346 | 2422 | 19 | 177.3 | 134.7| 35.3
9 39772 | 4630 | 20 | 180.5 | 340.5 | 79.2
10 | 136446 | 12870 | 24 | 248.8 | 1887.1 | 383.9

The pictures below show the mesh of 10-node tetrahedra at level 8 and the according

contact stress:
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As mentioned above, the mixed form and the derived algorithm are also well suited
for body-body contact problems. Preliminary results are available by B. Hackl and W.
Hinterberger, more details can be found in [12]. Two rolls are in contact along a small
strip. The smaller roll is loaded by given surface traction, and it is asked for its vertical
displacement. The adaptive mesh with 46611 Nodes and the isosurface of the von-Mises
stress is drawn below:
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