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Abstract. A finite element method with optimal convergence on non-smooth three
dimensional domains requires anisotropic mesh refinement towards the edges. Multigrid
methods for anisotropic tensor product meshes are available and are based either on
line (or plane) smoothers or on semi-coarsening strategies. In this paper we suggest
and analyze a new multigrid scheme combining semi-coarsening and line smoothers to
obtain a solver of optimal algorithmic complexity for anisotropic meshes along edges.
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1 Introduction

The finite element simulation of three dimensional problems described by partial
differential equations is a challenging task. To keep the simulation time low at
least two aspects have to be taken into account. First, the underlying triangula-
tion has to be efficient for approximating the (unknown) solution, and, second,
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the chosen algorithm for solving the large scale system of equations should be of
optimal algorithmic complexity.

For two dimensional elliptic problems optimal triangulations for low order
finite elements can be achieved by isotropic mesh refinement based on a posteriori
error indicators [Ver96]. The corresponding approach in three dimensions does
in general not lead to optimal triangulations in the sense of an energy error of
order N~?/3, p being the polynomial degree. Besides local refinement towards
the corners optimal triangulations require anisotropic mesh refinement towards
the edges of the geometry [Ape99, AN98, ANS00].

Multigrid methods (see [Hac85, Bra93| and many references therein) are algo-
rithms of optimal (this means linear) complexity for the solution of the systems
of linear equations obtained by the finite element method. Multigrid methods
have been suggested and analyzed for anisotropic problems with tensor product
structure. One approach is to take care of the strong connections by properly
designed line or plane smoothers [Wit89, Hac89, Ste93, BZ00], another is to build
up the hierarchy of triangulations by semi-coarsening [Zha95, GO95b, MXZ95].

Semi-coarsening and line/plane smoothing can be combined. In [BH99], for
example, a certain class of singular perturbed problems is considered, and it is
suggested to use semi-coarsening with respect to the “harmless” coordinate and
line relaxation in the direction of the singular perturbation. In the case of edge
singularities, the edge direction could be considered as the harmless direction
but then we need a good plane smoother in the orthogonal direction. Since this
strategy is not easy to implement for a hierarchical smoother, we propose to use
a line smoother in edge direction and semi-coarsening in the orthogonal plane
which turns out to be easy to implement and efficient in application. In this
paper we prove robust V-cycle convergence rates of the suggested scheme. The
framework is due to Braess and Hackbusch [BH83].

We note that this multigrid method is essentially a two-dimensional standard
multigrid where the third dimension is treated only in the smoother. The two-
dimensional method with mesh refinement towards singular corners is analyzed in
[Yse86]. While in that paper regularity and interpolation results have been cited
from [BKP79, Kon67] we cannot use results from literature immediately. The
reason is that the two-dimensional plane with mesh refinement is only a trace of
the three-dimensional domain where the problem is posed. In order to circumvent
the loss of regularity due to trace theorems we introduce an intermediate semi-
discrete space V, see (15), and prove regularity of an auxiliary problem and
interpolation results ourselves.

The rest of the paper is organized as follows. In Section 2 the investigated
problem is formulated. Section 3 introduces the multigrid scheme. The multigrid
analysis is performed in Section 4, two proofs are postponed to Sections 5 and 6.
In Section 7 we give numerical results confirming our theory and show further
applications of the developed multigrid scheme.



2 Problem Formulation and Discretization

Let Q = G x Z where G C R? is a polygonal domain and Z is a real interval.
By the local nature of corner singularities (and then edge ones for ), we may
suppose that G has possibly one corner with interior angle w > 7 at the origin,
the other interior angles being smaller than w. The corresponding edge of €2 is
part of the z-axis and will be called the singular edge of 2. Spatial variables
are written as (z,2) = (x1,29,2) with x € G and 2z € Z. Accordingly, the
gradient is split into partial derivatives as V = (9,,0,). Let V := H} () be the
usual Sobolev space. We consider the Poisson equation with Dirichlet boundary
conditions whose variational form is: Find v € V' such that

A(u,v) = f(v) VoeV (1)

with the symmetric, continuous and elliptic bilinear form A(.,.), and the contin-
uous linear form f(.) on V, namely

Alu,v) = / Vu-Vudz and f(v):= / fodz.
Q Q
The energy norm is defined as [ju||4 := A(u, u)"/?.
The domain 2 is covered by a tensor product triangulation 7 = 7, ®7,, where
7. and T, are conforming triangulations of G and Z, respectively [Cia78]. The
two dimensional triangulation 7, is assumed to fulfill the bounded minimal angle
condition. The triangulation 7, is arbitrary. We define the mesh size functions

hig=hr.(z,z) = diam 7T, forxel, €T, z € Z, (2)
hr.=hp.(x,2) = diamT, forreG, 2T, €T, (3)
for plane and edge directions. The positive integer L denotes the final refine-
ment level of the multigrid hierarchy defined below. We do not assume relations

between hy , and hy , and thus anisotropic triangulations are included.
We introduce the piecewise affine finite element spaces

Mé(%) = {U € CO(G) : U‘BG = Oau‘Tz € Pl VTz € 7;}:
MYT.) = {ueC%Z):ulopz =0,ulr, e P'VT, € T.}

with the nodal bases {gpiL’x}fiLl‘” and {gpiL,z}fiLl‘z and space dimensions Np,, and

Nr, .. Then the tensor product bilinear finite element space is defined by
Vi = My(Te) © My(T) = {u = Zui,jwi,z(fv)@i,z(@} :
i,

The finite element approximation u;, € Vj, of the variational problem (1) is defined
by Galerkin projection

A(UL,UL) = f(UL) VUL € VL. (4)
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Finally, we define the distance to the singular edge of Q (the singular point
of G, respectively) by
r=r(z2) =r(r) = || (5)

For the following a priori estimate we refer to [Ape99, AN9S|:

Theorem 1 (A priori estimate). Let (z7, zr) denote the center of the element
T € T. Assume that the mesh sizes fulfill

hy,o(x, 2)
hr.(x, 2)

hL T(SET)ﬁ v (ZE, Z) el e T, (6)
hr, V(z,z) eT €T

121

with the global (positive) mesh size parameter hy. The grading parameter [3 is
fizxed and is assumed to fulfill

1.2

w-2p_2<ﬂ<1. (7)

Then there holds the a priori error estimate

[l = unlle < ifl fllop (8)
for p > 2. The number of elements is of optimal order h;®.

The condition (7) shortens for p = 2 to the slightly weaker assumption
1- T <p<i, 9)
w

but the estimate (8) has been proved in this case in [Ape99] for certain mixed
boundary conditions only. For the Dirichlet problem just the result as stated in
the theorem has been obtained yet. But we underline that our multigrid theory
is also valid under the weaker assumption (9).

3 Multigrid Algorithm

The multigrid algorithm requires a sequence of triangulations 77,75, ..., Tr. We
may and will assume that the triangulations and the generated finite element
spaces are nested. The proposed refinement strategy is to perform first full re-
finement in z-direction, and then generate the hierarchy of meshes by refinement
in the z-plane. Each triangulation in the hierarchy has the tensor product struc-
ture

T=T.0T 1<I<L.

This means that there is the full refinement in z-direction for all levels [, 1 <[ <
L. We define the mesh size functions h;, and h;, in analogy to (2) and (3). We



assume that the triangulations 7;, fulfill the bounded minimal angle condition.
Further, the grading of the meshes fulfills

hiw = hio(z,2) =~ hyr(zr)? V(z,2) €T €T, (10)

with the global mesh size parameter h; of level [, and (3 from (9). The ratio of
successive parameters h;_q/h; is assumed to be bounded.

We mention two methods to generate the sequence of meshes fulfilling (10).
The first one is to split each triangle of 7;_; into 4 triangles, and move only
nodes along edges towards the singular corner. Another possibility, the so-called
dyadic partitioning, is to use local mesh refinement of 7., where the elements
with hy,r(zr)™ > Cyhy (with a suitably defined constant Cj) are marked for
refinement. Both methods have advantages. The first one enables a more efficient
data structure, the second one is related to a posteriori mesh size control.

We define the sequence of nested finite element spaces

and the linear operator A; : V; = V] by
(Ayug, v)o = Ay, vy) Vu,v €V,

l=1,2,..., L. Additionally, we define for u; € V, the Ly and energy projections
QZ:VL—>V}andPl:VL—>V}by

(Quur,v)o = (up,v)o Yy €V,
A(HUL;UZ) = A(’LLL,’Ul) \V/’Ul € ‘/Za

l=1,...,L. For1<I[<k<L there holds the equation

H == A;lQlAk on Vk

The smoother of the considered multigrid scheme is a line Jacobi or symmetric
line Gauss-Seidel iteration along mesh lines in z-direction. Let {©%} be the
nodal basis of SI(T;) and Ny, = dim S}(7;). We define on each level [ the
subspaces

Vii:=span{p;} @ My(T.), i=1,..., N,

and the corresponding energy projections F;; : V; = V,;, determined for v, € V}
by
AP, v5) = A(wg, ) Vo € Vi

Then the (damped) line Jacobi smoother

Nl,z

S =1-— TZPM
i=1
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with a suitable damping parameter 7 ~ 1 can be written as
Sy=1-71D;"A.

The operator Dz_l is indeed the inverse of a selfadjoint and positive definite
operator D, : V; — V}. It leads to the inner product

Dy (up,vp) == (Dyug, v1)o Vu,v €V,

and the associated norm ||| p, := Dj(u;, w)"?. By the technique of [BP92]
the analysis of the present paper hands over to the symmetric multiplicative
counterpart. The multiplicative version does not need damping at all.

Since the spaces are nested, the grid transfer operators are canonically de-
fined by embedding. As usual, we define the V-cycle multigrid preconditioning
operators Cz_l : Vi = V; by induction beginning with Cy = A;. For [ > 1 and
f € V; we define C’l_lf = Zomy1 Where xq = 0,

€T, = ZEi_1+TDl_1(f—All‘i_1), i:1,2,...,m,
Tm+1 = T + ClillQl—l(f - All‘m) (11)
xr, = SCi,1+TDf1(f—Al$i,1), 1=m+2,m+3,...,2m+ 1.
First m steps of pre-smoothing are performed, then the coarse grid correction
takes place, finally m steps of post-smoothing are applied. The selfadjoint oper-

ator C; ! can be used in the multigrid iteration with iteration matrix I — C;'Ay,
or as preconditioner in the conjugate gradient iteration.

4 Multigrid Analysis

In this section we analyze the convergence of the multigrid scheme formulated
above. In order to apply the multigrid framework of Braess and Hackbusch
[BH83], see also Theorem 3.6 in [Bra93|, we need first to verify the approximation

property
la = Pl < Cllulh Ve Vi 1=2,3,... L (12)

see Theorem 5. The V-cycle convergence rate estimate is then a corollary. We
start with three lemmata.

Lemma 2 (Representation of D;-norm). For the norm induced by the line
Jacobi preconditioner Dy there holds the following equivalence:

udllh, = g wlls + 10:umlly Y € Vi (13)



Proof. Let u; € V. The decomposition u; = Zf\lf w; with u;; € Vj; is unique.
By the additive Schwarz method ([GO95a] use the most similar notation) we

obtain
Nl,z

B, = D il
=1

Inverse inequalities applied to the basis functions cpf’x give

Nl,z
> (10213 + 10:17)
=1
Nl,z

>~ (ki eil3 + 19:04]1).

i=1

a1,

12

By mapping techniques one verifies the Ly stability of the splitting (see [Bra93],
Chapter 5)

Nl,a: Nl,a: 2
S et ~ || D et Vee R VT, € T, (14)
i=1 =1 OsTZ

Since the equivalence is local, we may insert the element-wise constant weight
hi . Summing over the elements T, € 7, , gives

Nl,:l: Nl,z 2
1 i2 1

E :th,xci(pl,zHO,G = E :hl,xcz’%@z,z

i=1 i=1 0.G

Set now wu; =: ¢;(2)¢] (). Integration over z € Z leads to

Nl,z

D g unilly = 1Ay gwlls.
1=1

By inserting 0,u;; =: ci(z)gof,x into (14), summing over the elements T, € 7;,,
and integrating over z € Z we obtain

Nl,ac

> 10.ull§ = [10-wll,
=1

and the proof is complete. O

The sequence of nested spaces V] is contained in the semi-discrete space

V= H(G) @ MN(T,). (15)



For our analysis we consider a subspace of V/,

Vi o= {ueV:|ully+ < oo}
[l = (P70, Vullg + |77 0,ullg

with # € R and r defined in (5).

We remark that 0,,u does not appear in || . ||y+ since this derivative is not
contained in L%*(Q2). Moreover, the first order term is stronger than [|0,Vul|o
since we are interested in the case 3 < 1. The following two lemmata could also
be proved without this term. The regularity result was then slightly shorter to
prove but the prize consisted in more effort for proving the interpolation result.
We decided to use the norm as defined above because it is the simpler of the two
versions.

Lemma 3 (Regularity). Let u € V be the solution of the variational problem
A(u,v) = (f,v)g  VYveV (16)

with f such that v°f € Ly, 1 — w/w < B < 1. Then there holds the reqularity
estimate

lullv+ =17 flo. (17)

Note that the restriction 3 < 1 ensures that f € H~'(Q) and therefore the
right hand side of (16) makes sense.

Lemma 4 (Interpolation error estimate). There ezists an interpolation op-
erator I) : V't — V} such that the interpolation error satisfies

||u—[lu||,4 j hl ||U||V+ VUE V+.
The proofs of Lemmata 3 and 4 are postponed to Sections 5 and 6.

Theorem 5 (Approximation Property). The approzimation property (12) is
fulfilled for the considered multigrid method (11).

Proof. We use the equivalence (13) and obtain
lur = Piovunl [, 2= ||y (w = Paun) [+ 110: (we — Pryun) 5.
The second term of the right hand side is simply estimated by
10 (wr — Pryw)lo < [Jwr — Pyl 4 < || a-

It remains to show
[y g (s — Proyug) o = flw]|a (18)



As usual we formulate a dual problem. Since V; C V for all [, we can define
w €V by B
Alw,v) = (hl_ﬁ(ul — Pw),v)o VoeV =W

Since by definition (10) of Ay,
P ki (= Py [lo < b iy (ur = Pioyug) o < o0 (19)
we can apply Lemma 3 and conclude, by using again (19),
[wllve = By g (w = Prg) flo-

Here, no special consideration of the origin is necessary. We continue with
Galerkin orthogonality, approximation, and regularity:

1B (= Pow)[l§ = A(w,w — Pyw)
Alw = I yw,w — Proquy)

lw = Tywllaflw = Pioywl|a

hl[wllv+ l[wl| 4

1Ay g (wr = Pioyur)llo [l 4

LA T IA

Dividing by one factor gives (18) and thus the desired approximation property.
O

Theorem 6 (Convergence rate estimate). For the V-cycle multigrid algo-
rithm (11) with m pre- and m post-smoothing steps there holds the convergence

rate estimate o
I—C:7'Arlla < .
7= ClAla < g

(20)

Proof. The result follows from the general multigrid theory of Braess and Hack-
busch [BH83], see also Theorem 3.6 in [Bra93], by using the approximation prop-
erty (12) which is proved in Theorem 5. O

5 Regularity

Proof of Lemma 3. The lemma will be proved in three steps: partial Fourier de-
composition, regularity of the Fourier coefficients, and Fourier composition. Let
{e;}Y+ be the Fourier basis in M}(7,), that means, e; = e;(z) are the eigensolu-
tions of

(€5, v")o,z = A€, v)oz Vo€ My(T2)

with (e;, e;)0,z = 0i; and (e}, €)o,z = A;d;;. Inserting u = SN wi(w)ei(2) into
(16) yields that u,(z) is solution of

(Dptti, Opv)0.c + A (us, v)o.a = (fis v)oq Vo € Hy(G),

9



T3

x = (x1,12)

T1

Figure 1: Tllustration of the notation.

with fi = (f, e:)o,z and rf f; € Ly(G).

Introduce now a cut-off function £ € C*(Ry), &(r) € [0,1], £&(r) = 1 for
r < rg, £&(r) = 0 for r > ry > rq, see Figure 1 for an illustration. Then we
consider the function @; = &(r)u; which satisfies

(81&2; aanv)(],G + )\12(&2; U)O,G = (fla U)U,G Vv S H&(G):
with fz = &(r)fi — 20,u;0,E(r) — uw;02£(r) and rﬂfi € Ly(G). Observe that
t; = f; = 0 for r > ry. Thus we can extend u; and f; by 0 and consider instead
of G the infinite cone K := {(rcos¢,rsing) e R: 0 <r < 00,0 < ¢ < w}. After

the change of variables n = A\;z we obtain that U;(n) = @;(x) is solution of the
following problem:

(00U, 03V )0, + (Ui, Vo = (\2F, V)ox YV € Hy(K).
We can now use the regularity result in Proposition 1.1 of [NP94, page 385],
_ , T
Uy <IN Bl 618 -1] < ™.

where the space Ef(K) is the completion of C§°(K \ 0) with respect to the norm

Ul = 35 [ 0+ o7 DU dy

laf<t

10



[NP94, page 300], p := |n|. By transforming the norms back one obtains
N
1€y uly = Z/ (r?10%a, > + (r 22 + r2772)|8,w)?) d
i=1 "G
N.
= S [ 0
i=1 T K
N.
2SS [ PINCRE
i=1 VK

N,
_ 203 N.Qd
;LTM|x
< [let) P f2

By using that (1 — &(r))u vanishes near the corner, and hence is regular, the
desired result is proved. O

DN

6 Interpolation

Proof of Lemma /4. Let Zj, : HY(G) — M{(T.) be the Scott-Zhang interpolation
operator [SZ90]. For an arbitrary triangle T, € 7, and for m = 0,1, £ = 1,2,
p € [1,0¢] the error estimate

= Zyttlm, 2T PR Ul 7 (21)

,T

is satisfied [SZ90], with T}, being the union of 7, and the triangles adjacent to 7.
Denote by {¢;}%, the nodal basis in M}(7;) and split u with respect to this
basis,

w= wle)es)

Note that the u; are here different from them in Section 5. Then we define the
interpolation operator I; : V" — V] by

N,

L= (Zus) (2)i(2).

=1

For an arbitrary element T = T, x (2j,2j11), T € Tia, (25,2511) € T,

introduce T' := T, x (2;, 2j41). Divide now the set 7, into two subsets, 7, =
77,R U 77,37
Tior = {T €T : inf |z| >0},
z,z)eT
T.s = {T €7 : inf |z|=0},
(z,2)€T

11



namely elements away from the edge and elements close to the edge.
For elements T' € T, p we obtain from (21) the estimates

102 (u = L) [fo,r

102 (u = Lw)[lo.r

A

I

I A

Jj+1

> b2 0n(ui = Znui)l|or,
=5

Jj+1

> P 0uily g,

i=j

hl’xHaguHO,T’
h P2 (ujr — ) = Zo(wjer — u))llor,
h;1/2hl,z||a’r(uj+1 - U])HU,Tm

hl,xnaxazuno,f-

That means, by using (10) and r(z7) ~ r(z) for z € T,

o =Tl =D B IVOull} 7 < billullZ, (22)
TTi.r

TeT,r

where we have also used that only a finite number of T overlap in any point.
For elements T' € 7, s we derive estimates in a weighted space, namely

102 (u = L) lo.r

I A

LA TA

12

j+1
> h2110n (ui = Zowi) oz,
=
j+1

> h0suillog,
i=j

[10zullo,7
gl sl z,

T
hullr?= Oyl 7,

which is valid due to r < hy,, 7(z7) =~ by, (thus hll’;ﬁ ~ h;), and 3 < 1. Moreover

we get

10 (u = Lu)flor

A TA TA R

12

h P2 (i = ug) = Zo(wjer — ug)llor,

b, Y2 Tl 2y |0 (s — ui)lloq 7,

he 2T 2l g 7, 100 (w0 = ) o 7,
hy NP 0,0, ull 7

hl||7‘ﬁaa;azu||oj“'

12
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Figure 2: Mesh with 8 uniform layers and 5013 nodes

Consequently, we get

> =Ll = b fullf (23)
TeT,s
With (22) and (23) the lemma is proved. O

7 Numerical Results

For verification of the analysis and to demonstrate the performance of the method,
we present the following numerical results. We consider the three dimensional
[L-shaped domain

Q=Gx(0,1), with G = (-1,1)*\[0,1]%

An initial triangulation was generated with 16 nodes and 6 prismatic elements.
For the first tests (Tables 1 and 2), the elements were successively bisected in ver-
tical direction until the triangulation 7; was obtained. For further tests (Table 3),
we first split the prisms at z = 0.05, and proceeded with bisecting as before. The
hierarchy of triangulations was obtained by bisecting the whole stack of elements
based on a priori element markers. All those elements T € 7T, were refined for
which
hT,l,r;ﬂ > 0.3 qrgg%{hT/,xr;ﬁ}

holds. We chose the refinement factor 4 = 1/2, which fulfills the condition
[ > 1/3 to ensure an asymptotically optimal discretization error. Pictures of the
meshes are shown in Figure 2 and Figure 3.

13
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Figure 3: Mesh with boundary layer at z = 0.05 and 5013 nodes

For preconditioning the resulting finite element system, the multigrid scheme
(11) was applied with one multiplicative pre-smoothing and one reverse-order
multiplicative post-smoothing step. For comparison, we did all computations
also with a multigrid method with the standard point smoother on the same

hierarchy of meshes.
First we computed the condition numbers xK{C;' A} of the preconditioned

matrix. In addition, we solved the Poisson problem
—Au =11n Q, u =0 on 012,

and used the multigrid preconditioner in the conjugate gradient method to reduce

the residual error (measured by {/rTC;'r) by a factor of 1078, Tables 1, 2 and 3
show the results for various numbers of layers in vertical direction and numbers
of nodes. Processor time refers to an SGI Octane R 10000, 250 MHz.

The tests show the excellent performance of our multigrid method. The it-
eration numbers are independent of the refinement depth, and also independent
of the mesh in edge direction. In comparison, the point smoother has problems
with strongly anisotropic meshes, expressed through a large condition number
and a large number of CG iterations.

References

[AN98] Th. Apel and S. Nicaise. The finite element method with anisotropic
mesh grading for elliptic problems in domains with corners and edges.

Math. Methods Appl. Sci., 21:519-549, 1998.

14



Point Smoother

Line Smoother

Nodes | k{C;'Az} | CG its. | Time[sec] | k{C; A} | CG its. | Time [sec]
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Point Smoother Line Smoother

Nodes | k{C; Az} | CG its. | Time[sec] | k{C; AL} | CG its. | Time [sec]
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