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where Keh 2 RNeh�Neh is a symmetric positive de�nite (SPD) sparse system matrix,uh 2 RNeh the solution vector, and fh 2 RNeh the load vector. Additionally Kehresults from the �nite element (FE) discretization of the bilinear formZ
 � rot ~A � rot~v dx + Z
 � ~A � ~v dx 8~v 2 H0(rot;
) ; (2)which is discretized with H0(rot;
)-conforming �nite elements introduced byN�ed�elec in [17], i.e., edge elements (the index \e" indicates the discretization byedge elements). Consequently fh stems from the linear formZ
 ~J � ~v dx 8~v 2 H0(rot;
) ;where ~J is a given function. The computational domain 
 � R3 is assumed tobe bounded with a Lipschitz boundary @
. Furthermore, � and � are piecewiseconstant, strictly positive functions. The number N eh of unknowns in (1) behavesasymptotically as N eh = O(h�d) with the mesh size parameter h, and thus thelinear system is usually very large.If � � 0 then (2) represents a static, magnetic �eld problem arising from theMaxwell's equations (see [12]). Therein ~A is related to a magnetic vector poten-tial, that means rot ~A represents the magnetic 
ux. In this case a gauge conditionhas to be assigned to ~A, i.e., div ~A = 0 and the right hand side is assumed tobe divergence free, i.e., div ~J = 0. This is necessary to ensure uniqueness ofthe solution. In this paper we assume � > 0 in order to circumvent the gaugecondition. Let us additionally mention that the convergence rate of the proposedmethod do not depend on a lower bound of �.Solving (1) by means of multilevel methods the kernel of the rot-operator,have to be taken into account carefully. A geometric multilevel method was setup by R. Hiptmair in [11] the �rst time. An other approach was discussed in[1]. For applications on the geometric multigrid technique in the function spaceH(rot;
) we refer to [11, 3, 1, 16, 20].An algebraic multigrid approach for the solution of (1) requires in additionto the available components of the geometric multigrid also a proper coarseningstrategy. In spite of the fact that the FE-matrix Keh is SPD, the classical ap-proaches of [5, 6, 7, 8, 15, 18, 19, 22] and variants of it fail for the problem athand. All these methods are designed for SPD problems which either stems froman FE-discretization for H1-elliptic problems or needs beside the SPD propertyspecial characteristics of the system matrix (e.g. M-matrix property). A �rstAMG approach to solve (1) can be found in [2]. The key idea of Beck was tosplit the H(rot;
) function into a (H1)3 function and a gradient function, andapply classical AMG for all components. This di�ers from our approach, sincewe apply the coarsening directly for the one space H(rot;
).2



The challenge for the construction of an AMG method is to cope with thekernel of the rot-operator. Therfore we propose the following technique:1. Construct a \node to edge" map in order to know which edges belong to anode.2. Fix the coarse grid unknowns by a coarsening technique.3. De�ne a prolongation operator which maps the kernel of the coarse spaceinto the kernel of the �ne space.4. Calculate the coarse grid matrix by Galerkin's method.5. Take an appropriate smoother for the regarded problem class.A pivotal point is the construction of the \node to edge" map, to be able tode�ne the coarse edges and to construct the prolongation and the smoother forKeh. A possibility to construct a \node to edge" map is to de�ne an auxiliarymatrix Knh 2 RNnh �Nnh which stems from the bilinear formZ
 � gradu � grad v dx+ Z
 �u � v dx ; (3)using linear nodal FE-functions. In addition, the matrix Knh is calculated onthe same computational domain 
 (i.e., on the same FE-mesh, where only asimplicial one is used in this paper) and parameters �; � de�ned in (2). Theindex \n" indicates a nodal FE-discretization. For description we always use atwo grid method and therefore the indices h and H are related to the �ne andcoarse grid quantities, respectively. Each o�-diagonal entry of Knh is related to anedge in the FE-mesh. Consequently, a \node to edge" map is given in a naturalway. In order to get a matrix hierarchy for Keh we perform a setup (i.e., coarsegrid selection, construction of a prolongation operator and a coarse grid operator)for the auxiliary matrix Knh . The resulting coarse grid matrix KnH gives rise to a\node to edge" map on the coarse level. These coarse edges are degrees of freedomon the coarse grid for KeH . Consequently, an appropriate prolongation operatorfor the edge FE-space and a suitable smoothing iteration can be de�ned with thebene�t of the \node to edge" map. The coarse grid matrix KeH is computed byGalerkin's method. By recursion, the multigrid method is de�ned as usual.The paper is organized as follows: In Sec. 2 a brief overview on Maxwell'sequation and its discretization by edge elements is given. In Sec. 3 the AMGmethod is motivated for SPD matrices which stem from nodal FE-functions.After that an AMG method for (1) is presented, i.e., the coarsening process, thede�nition of the prolongation operator and the smoother are designed in a purealgebraic way. Numerical studies are presented in Sec. 4 which show the e�ciencyof the proposed technique. Finally, further remarks are given and conclusions aredrawn. 3



2 Problem FormulationLet us consider the partial di�erential equationrot � rot ~A+ � ~A = ~J in 
i � R3 (4)with boundary conditions ~A� ~n = 0 on �Band appropriate interface condition on �I . In (4) 
 = 
1 [ 
2 is the boundedcomputational domain with su�cient smooth boundary @
 = �B and interface�I (see Fig. 1). The piecewise constant functions � and � are assumed to bestrictly positive. ~n is dedicated to the unit outward vector and ~J is related toan appropriate given right hand side. As we mentioned it very brie
y in the
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Figure 1: Principle structure of the considered problem class.introduction this setting is closely related to 3D static magnetic �eld problemsarising from the Maxwell's equations. This can be seen by introducing a magneticvector potential for the magnetic 
ux ~B, i.e.,~B = rot ~A :If the high frequency displacement current and all time derivatives are neglectedand furthermore � � 0 then we end up with the magnetostatic equation. Byinterpreting � as the reluctivity and ~J as the current density the physical relationis given. For further discussion we always have this physical interpretation inmind but set � > 0 to a small value compared to �. This regularization guaranteesa unique solution, and does not much a�ect the quantity of interest, the magnetic
ux ~B.A natural choice for the weak formulation is the function space V = H0(rot;
)which is de�ned byH0(rot;
) = f~v 2 (L2(
))3 j rot~v 2 (L2(
))3 and ~v � ~n = 0g :4



Therewith a weak formulation of (4) reads as: Find ~A 2 V such thatZ
 � � rot ~A � rot~v dx + Z
 � � ~A � ~v dx = Z
 ~J � ~v dx 8~v 2 V : (5)It is well known that the kernel of the rot-operatorV0 = f~v 2 V j rot~v = 0gare described by gradient �elds in the case of simple connected domains 
. Formultiple connected regions 
 this is true up to a �nite dimensional space. Byde�ning Q = H10 (
), the gradient �elds are exactly the rot-free functions, i.e.,V0 = gradQ:During the last years edge elements became very popular for FE-discretizationof V (see [12, 17]). Besides the fact that there exists other possibilities for anFE-discretization (see [4, 21]) we are concerned with edge elements in this paper.Therfore we assume a spatial discretization of 
 by a simplicial mesh which ful�llsthe shape regularity in the sense of [9]. The index set of �nite elements is denotedby �h. The FE-space constructed by the edge elements on �h is abbreviated byVh and Vh � V holds. Consequently, a conforming FE-space is constructed forQ by nodal piecewise linear �nite elements, which is denoted by Qh. We will usethe Galerkin isomorphism Ge : Vh ! Vhand Gn : Qh ! Qhwith Vh = RNeh and Qh = RNnh . Thus the discrete kernel of the rot-operator isde�ned by Vh;0 = fvh 2 Vh j rotGevh = 0g (6)and the discrete gradient operator gradh : Qh ! Vh;0 is given for qh 2 Qh bygradh qh = (Ge)�1 gradGnqh : (7)The edge elements have the property that the tangential component is con-tinuous while they let the normal component free to jump, i.e., an edge elementdiscretization is H0(rot;
)-conform. This is important for (5) in the case of non-convex domains 
 or if the coe�cient function � has a jump to get a \goodapproximation" of the continuous solution. Further applications in nonlinear ortime dependent problems are out of the scope of this paper, and we refer to theextensive literature, see [3, 16, 20]. 5



3 Construction of an AMG MethodIn this section the ingredients of an AMG method are recalled and especiallyan approach for edge elements is proposed. Thus we are concerned with thepure algebraic construction of a multilevel hierarchy of coarse matrices for Keh.Therefore it is assumed that Keh 2 RNeh�Neh and Knh 2 RNnh �Nnh arises from thesame FE-mesh of tetrahedra in R3 . The bilinear form belonging to Keh and Knhare given in (2) and (3), respectively. The number of edges and nodes of theunderlying mesh is given by N eh and Nnh , respectively. First, we brie
y describean AMG method for Knh . Afterwards, we are able to construct a matrix hierarchyfor Keh with the help of the auxiliary matrix hierarchy of Knh .3.1 A General Approach to the AMG MethodThe tools for an AMG method can be presented rather general in the case ofSPD matrices arising from an FE-discretization. The most important points are:1. De�ne a coarse grid selection process (see, e.g. [5, 15, 19, 22]).2. Construct a prolongation operator and use its transposed as restrictionoperator (see, e.g. [5, 15, 19, 22]).3. Use Galerkin's method to construct a coarse grid matrix.4. Take an appropriate smoother for the underlying problem class, i.e., Gau�-Seidel for scalar problems, block Gau�-Seidel for systems of equations.The matrix Knh stems from an FE-discretization with nodal linear FE-functionsand therfore we can interpret the ith matrix row of Knh as follows: The diagonalentry knii is related to the grid point i and an entry knij is related to an edge (i; j)(see Fig. 2). In the case of a scalar problem we are able to identify \grid point"with \unknown". The set of grid points is denoted by !ns = f1; 2; : : : ; Nns g, withcardinality card(!ns ) = Nns on level s for the matrix Kns 2 RNns �Nns . Below theneighborhood of a node i 2 !ns , the set of edges on level s, and the set of edgesbelonging to a node i 2 !ns are given by!es = f(i; j) j (Kns )ij 6= 0; i 6= jg ;N i = fj j (Kns )ij 6= 0; i 6= jg ;T i = f(i; j) j j 2 N ig ;respectively. In addition the graph of a matrix Knh is de�ned as a 2-tuple of nodesand edges, i.e., graph(Knh ) = (!nh ; [i2!nh T i) : (8)6
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Figure 2: Clipping of an FE-grid.Motivated from an FE-grid, we see that a \grid" or \set of unknowns" can besplit up into two disjoint subsets, i.e.,!nh = C [ F ; C \ F = ;with C and F denotes the coarse and �ne nodes, respectively. The coarse grid isde�ned by identifying each coarse grid node j 2 C with an index k 2 !ns+1. Thisis express by the index map ind(:) as!ns+1 = ind(C) :The local �ne and coarse grid sets around a node i 2 !ns are de�ned byF i = F \N iCi = C \N i :In terms of two consecutive levels s and s + 1 it is assumed that each coarselevel variable us+1i , i 2 !ns+1, is used to directly correct a �ne grid variable usk,k 2 F j(i) and j(i) 2 !ns . The \setup process" (for an algorithm see Alg. 1)constructs a hierarchy of matrices with suitable (i.e., problem dependent) pro-longation operators and possible preparatory work for the smoothing operator(e.g. block smoother). Therefore a multilevel cycle can be setup in the usual way(see Alg. 2).So far, the basic tools for AMG are presented. Next, the AMG method foredge elements is discussed in more detail. First, it should be noted, that anapplication of the classical AMG approaches (which are designed for nodal basisfunctions) fails, in spite of the fact that the system matrix Keh is SPD. Thus theconstruction of a matrix hierarchy with suitable prolongation operators and asmoothing iteration is required. 7



Algorithm 1 Setup process for AMG: Setup(Knl ,l)// COARSEGRID is de�ned before this function callif card(!nl ) > COARSEGRID thenSplit !nl into disjoint sets C and FSet !nl+1 = ind(C)De�ne the interpolation operator P nl , Rnl = (P nl )TKnl+1 = Rnl Knl P nlSetup(Kl+1,l+1)elsePerform a factorization of KnlCOARSELEVEL = lend ifAlgorithm 2 V(�F ,�B)-cycle: MG(ul, fl,l)if l = COARSELEV EL thenul = (Knl )�1fl with a direct solverelseSmooth �F times on Knl ul = flCalculate the defect dl = fl �Knl ulRestrict the defect to the next coarser level l + 1: dl+1 = Rnl dlSet ul+1 � 0Apply MG(ul+1,dl+1,l+1)Prolongate the correction sl = P nl ul+1Update the solution ul = ul + slSmooth �B times on Knl ul = flend if3.2 The Coarsening ProcessIn order to perform a coarsening for the edge element matrix Keh and therewiththe construction of a prolongation operator and a smoother we use an auxiliarymatrix arising from an FE-discretization (linear, nodal FE-functions) of the weakformulation (3) which results in an SPD matrix Knh 2 RNnh �Nnh . For this type ofmatrices the setup process can be done in the usual way (see [5, 15, 19, 22]).Remark 3.1.1. The coarse grid selection can be done by several di�erent coarsening strate-gies. On the one hand side a pure matrix graph based method can be used,or on the other hand side a coarsening method depending on the matrixentries. Only the latter case has chances to detect parameter jumps andanisotropies.2. We can think of other auxiliary matrices which de�nes an appropriate \nodeto edge" map, but this is not the content of this paper.8



In order to get a \useful" set of coarse grid edges !es we invest in a specialprolongation operator P n for the auxiliary matrixKnh . The prolongation operatorP n is constructed such that each �ne grid variable prolongates exactly from onecoarse grid variable. We extend the index map ind : C ! !nH de�ned above ontothe whole �ne space !nh by assigning the coarse grid index of the representant ofthe cluster ind : !nh ! !nH :A consequence is thatind(i) = ind(j) i� i; j 2 !nh prolongate from the same coarse grid variable :We denote the set of an agglomerate around a grid point i byIi = fj 2 !ns j ind(j) = ind(i)gand !ns+1 = find(i) j i 2 !ns g :Therefore the prolongation operator P n has only 0 and 1 entries by construction,i.e., (P n)ij = pnij = (1 i 2 !nh ; j = ind(i)0 otherwise : (9)The coarse grid matrixKnH calculated by Galerkin's method, i.e.,KnH = (P n)TKnhP n,which is equivalent to the formulae(KnH)~k~l =Xi2IkXj2Il pni~k � (Knh )ij � pni~l (10)with ~k = ind(k), ~l = ind(l), and k; l 2 !ns+1. KnH has useful properties, because ofthe prolongation operator de�ned in (9). This is the content of the next lemma.Lemma 3.2. Let k; l 2 C, k 6= l and ~k = ind(k) 2 !nH , ~l = ind(l) 2 !nH. Furtherlet Knh be given from (3) and P n be de�ned by (9). KnH = (P n)TKnhP n.If for all i 2 Ik and for all j 2 Il (Knh )ij = 0then (KnH)~k~l = 0 :9



PSfragreplacements
i Ii

j (i; j)
Ij

r s(r; s)

Figure 3: FE-grid and agglomeration.Proof. The proof follows immediately by using (10).Remark 3.3.1. The essence of Lemma 3.2 is that a coarse grid edge is constructed onlyif there exists at least one �ne edge connecting the agglomerates Ii and Ij(i 6= j), i.e., 9r 2 Ii; 9s 2 Ij such that (r; s) 2 !eh(see Fig. 3).2. The graph of KnH , i.e., graph(KnH), gives rise to a grid on H with coarseedges !eH .3. The decrease of edges in the coarsening process is in fact given, if the averagenumber of nonzero entries of Knh grows not too fast.In principle a setup for Keh can be performed and the setup process Alg. 1changes to Alg. 3. Before the prolongation operator for Keh has to be de�nedproperly.3.3 The Prolongation OperatorThe construction of the prolongation operator is delicate because of the kernelof the rot-operator. The prolongation operator P e 2 RNeh�NeH is de�ned for10



Algorithm 3 Setup process for AMG(edge elements): Setup(Kel ,Knl ,l)// COARSEGRID is de�ned before this function callif card(!el ) > COARSEGRID thenSplit !nl into disjoint sets C and FSet !nl+1 = CDe�ne the interpolation operator P nl , Rnl = (P nl )TCalculate the coarse grid matrix Knl+1 by the Galerkin methodKnl+1 = Rnl Knl P nlDe�ne the index set for the block-smoother (see Sec. 3.4)De�ne the interpolation operator P el , Rel = (P el )T (see Sec. 3.3)Calculate the coarse grid matrix Kel+1 by the Galerkin methodKel+1 = RelKel P elSetup(Kel+1,Knl+1,l+1)elsePerform a factorization of KlCOARSELEV EL = lend ifi = (i1; i2) 2 !eh; j = (j1; j2) 2 !eH as(P e)ij = 8<: 1 if j = (ind(i1); ind(i2));�1 if j = (ind(i2); ind(i1));0 otherwise : (11)You convince yourself that the constructed prolongation operator P e has fullrank, because every coarse grid edge prolongates at least to one �ne grid edge.Next, we note that the operator gradh : Qh ! Vh de�ned in (7) has therepresentation (with i = (i1; i2) 2 !eh and qh 2 Qh)(gradh qh)i = qh;i2 � qh;i1: (12)In analogy, we de�ne grads : Qs ! Vs on the coarser levels. The crux is that P eprolongates discrete gradients of the coarse space to discrete gradients of the �nespace.Since we use a Galerkin approach, the coarse grid kernel is a subspace of the�ne grid kernel, i.e., VH;0 = fvH 2 VH jP evH 2 Vh;0g (13)with Vh;0 de�ned in (6) and VH = RNeH .11



Lemma 3.4. For qH 2 QH there holdsP e gradH qH = gradh P nqH : (14)This means, there holds the commuting diagramgradHQH ! VH# P n # P egradhQh ! VhProof. We consider the edge i = (i1; i2) 2 !eh. We have to distinguish two cases.First, let us assume the edge is inside one agglomerate, i.e., ind(i1) = ind(i2).Then both sides of (14) vanish. The left hand side vanishes by de�nition of theprolongation operator P e, the right hand side vanishes since (P nqH)i1 = (P nqH)i2 .Now, we assume that ind(i1) 6= ind(i2). Thus, there exists a coarse grid edgej = (j1; j2) such that either j1 = ind(i1); j2 = ind(i2) or j1 = ind(i2); j2 = ind(i1).In both cases there holds (gradH qH)j = m(qH;j1 � qH;j2), with m 2 f�1;+1g.The sign in the prolongation compensates, such that (P e gradH qH)i = qH;ind(i1)�qH;ind(i2). Evaluating (gradh P nqH)i gives the same result.Lemma 3.5. The coarse grid kernel functions are exactly gradient functions,i.e., there holds VH;0 = gradH QH : (15)Proof. First, we show the inclusion gradH QH � VH;0. We �x a qH 2 QH andde�ne vH = gradH qH . Using Lemma 3.4 we obtainP evH = P e gradH qH = gradh P nqH :From gradhQh = Vh;0 there follows P evH 2 Vh;0, and from de�nition (13) of VH;0there follows vH 2 VH;0.Now, we verify VH;0 � gradH QH . Therefore, we �x a vH 2 VH;0. Since thekernels are nested, vh := P evH is in Vh;0, and thus there exists a qh 2 Qh suchthat vh = gradh qh:By the de�nition of the prolongation P e, the values of vh inside an agglomeratevanish, i.e., (vh)i = 0 for i = (i1; i2) and ind(i1) = ind(i2). Since (vh)i = qh;i1 �qh;i2, the potential qh is constant inside an agglomerate. Thus there exists aqH 2 QH such that qh = P nqH . Combining the steps and using Lemma 3.4 weobtain vh = P evH = gradh qh = gradh P nqH = P e gradH qH :Since P e has full rank, we can conclude that vH = gradH qH .12



3.4 The Smoothing IterationTo complete the ingredients for an AMGmethod we need an appropriate smoother.We consider two di�erent types of smoothers for Keh. The �rst one was suggestedfrom Arnold/Falk/Winther. This is a block Gau�-Seidel where all edges smoothedsimultaneously which belong to T i for all i 2 !nh (see Fig. 4).Another kind of smoother was suggest by Hiptmair. A mathematical equiv-alent formulation is outlined in Alg. 4. Therein the vector ge;ih 2 RNeh is de�nedby ge;ih = gradh gn;ih = (orient((k; l)) (k; l) 2 T i0 otherwisewhere the vector gn;ih is de�ned zero everywhere, except for the ith entry which is1.Algorithm 4 Smoothing operator: Smooth(Keh,uh,fh)Perform a Gau�-Seidel sweep on Kehi.e., GS(Keh, fh, uh)Update the solution uhfor all i 2 !nh douh = uh + (ge;ih )T (fh�Kehuh)(ge;ih )TKehge;ih � ge;ihend for
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Both smoothing iterations are performed in the multigrid cycle (Alg. 2) with�F forward sweeps and �B backward sweeps. A detailed discussion of thesesmoothers is given in [1, 11].4 Numerical StudiesThe proposed AMG technique is used as a preconditioner for the preconditionedconjugate gradient (PCG) method (see [10, 14, 13]). The iteration was stopped ifan error reduction in the preconditioner energy norm by a factor of 10�6 has beenachieved. All calculations were done on an SGI Octane, 300 MHz, workstation.Every row of the time table consists of two sub-rows. The �rst one is directedto a V (1; 1) cycle and the second one to a generalized V-cycle with 2s�1 smoothingsteps on level s. The domain 
 = 
1 [ 
2 with 
2 = (0; 0:5)3, 
 = (0; 1)3 and
1 = 
 n 
2. We assume further homogenous Dirichlet boundary conditions on@
 and an appropriate interface condition inside the cube. In Tab. 1 the usedshort cuts are listed.edges number of edges, i.e., N ehsetup CPU time of the setup process, i.e., construction of the matrix hierarchysolver CPU time for the iterations of the PCG method with preconditioner AMGsolution overall CPU time, i.e., setup and solveriteration number of iterations in the PCG methodTable 1: Used short cuts for the numerical studies.The �rst example is dedicated to a parameter setting of � = 1 and � =10�4 in 
. Results therefore are given in Tab. 2 for the smoothing iterationof Arnold/Falk/Winther and in Tab. 3 for the smoother of Hiptmair. In bothcases a slight increase can be detected in the number of iterations with respect tothe number of unknowns. This might be an e�ect of the designed prolongationoperator. As it can be expected the generalized V-cycle performs better for bothsmoothers compared to the V(1,1)-cycle. Actually there are no big di�erencesbetween the smoothers and the cycles with respect to CPU time.The second example was calculated with a parameter jump. Therefore � = 1on 
1 and � = 103 on 
2. In this case we are only considering the smoother ofArnold/Falk/Winther. The results (see Tab. 4) are very similar to the above ones.It seems to show that the AMG method do not depend on parameter jumps.5 Conclusions and Further RemarksA new algebraic multigrid approach was proposed for the solution of H(rot;
)-conforming FE-discretization, i.e., edge elements. Therefore a coarsening tech-nique based on an auxiliary matrix was introduced in order to setup a proper14



edges setup (sec) solver (sec) solution (sec) iteration4184 0.24 0.23 0.47 90.27 0.51 931024 1.98 4.76 6.74 144.56 6.54 12238688 16.83 58.15 74.98 2053.59 70.42 16Table 2: Example without parameter jump and smoother ofArnold/Falk/Winther.edges setup (sec) solver (sec) solution (sec) iteration4184 0.15 0.30 0.45 120.31 0.46 1131024 1.32 6.29 7.61 176.21 7.53 15238688 11.39 67.98 79.37 2163.93 75.32 17Table 3: Example without parameter jump and smoother of Hiptmair.prolongation operator and an appropriate smoother for the system matrix aris-ing from an edge element discretization.The numerical studies seem to show that the performance of the method isindependent of parameter jumps but unfortunately it depends slightly on themesh size. Nevertheless it performs much better than standard preconditioners(i.e., incomplete Cholesky preconditioner). An improvement of the proposedprolongation operator should be possible and is under current research, in orderto get better convergence rates.edges setup (sec) solver (sec) solution (sec) iteration3588 0.20 0.18 0.38 80.18 0.38 826856 1.67 3.46 5.13 123.40 5.07 11207696 14.06 41.99 56.05 1742.16 56.22 15Table 4: Example with parameter jump and smoother of Arnold/Falk/Winther.15
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