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Abstract

This paper presents an algebraic multigrid method for the efficient so-
lution of the linear system arising from a finite element discretization of
variational problems in Hy(rot, 2). The finite element spaces are generated
by Nédélec-elements (Whitney-1-forms or further referenced to as edge el-
ements).

A coarsening technique is presented in order to construct a suitable
coarse spaces and according grid transfer operators. The prolongation op-
erator is designed such that coarse grid kernel functions of the rot-operator
are mapped to fine grid kernel functions. Furthermore, coarse grid rot-free
functions are discrete gradients.

The smoothers by Hiptmair [11] and Arnold/Falk/Winther [1] can be
directly used in the algebraic framework.

Numerical studies are presented for 3D problems to show the efficiency
of the proposed technique.

Keywords Maxwell’s equations, finite element method, edge elements, alge-
braic multigrid

1 Introduction

This paper is concerned with the solution of the linear equation

Kﬁuh = fh, (1)
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where K¢ € RV *Ni is a symmetric positive definite (SPD) sparse system matrix,
up, € RN the solution vector, and f;, € RYi the load vector. Additionally K}
results from the finite element (FE) discretization of the bilinear form

/yrotf_f-rotﬁdx+/aff-77d:c V7 € Hy(rot,Q), (2)
0 Q

which is discretized with Hy(rot, Q2)-conforming finite elements introduced by
Nédélec in [17], i.e., edge elements (the index “e” indicates the discretization by
edge elements). Consequently f, stems from the linear form

/ J-¥dx YT e€ Hyrot,Q),
Q

where J is a given function. The computational domain Q C R? is assumed to
be bounded with a Lipschitz boundary 0€2. Furthermore, v and o are piecewise
constant, strictly positive functions. The number Ny of unknowns in (1) behaves
asymptotically as Nf = O(h~?) with the mesh size parameter h, and thus the
linear system is usually very large.

If o = 0 then (2) represents a static, magnetic field problem arising from the
Maxwell’s equations (see [12]). Therein A is related to a magnetic vector poten-
tial, that means rot A represents the magnetic flux. In this case a gauge condition
has to be assigned to ff, ie., divA = 0 and the right hand side is assumed to
be divergence free, i.e., div.J = 0. This is necessary to ensure uniqueness of
the solution. In this paper we assume o > 0 in order to circumvent the gauge
condition. Let us additionally mention that the convergence rate of the proposed
method do not depend on a lower bound of o.

Solving (1) by means of multilevel methods the kernel of the rot-operator,
have to be taken into account carefully. A geometric multilevel method was set
up by R. Hiptmair in [11] the first time. An other approach was discussed in
[1]. For applications on the geometric multigrid technique in the function space
H(rot, Q) we refer to [11, 3, 1, 16, 20].

An algebraic multigrid approach for the solution of (1) requires in addition
to the available components of the geometric multigrid also a proper coarsening
strategy. In spite of the fact that the FE-matrix K} is SPD, the classical ap-
proaches of [5, 6, 7, 8, 15, 18, 19, 22] and variants of it fail for the problem at
hand. All these methods are designed for SPD problems which either stems from
an FE-discretization for H!-elliptic problems or needs beside the SPD property
special characteristics of the system matrix (e.g. M-matrix property). A first
AMG approach to solve (1) can be found in [2]. The key idea of Beck was to
split the H (rot, Q) function into a (H')® function and a gradient function, and
apply classical AMG for all components. This differs from our approach, since
we apply the coarsening directly for the one space H(rot, 2).
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The challenge for the construction of an AMG method is to cope with the
kernel of the rot-operator. Therfore we propose the following technique:

1. Construct a “node to edge” map in order to know which edges belong to a
node.

2. Fix the coarse grid unknowns by a coarsening technique.

3. Define a prolongation operator which maps the kernel of the coarse space
into the kernel of the fine space.

4. Calculate the coarse grid matrix by Galerkin’s method.
5. Take an appropriate smoother for the regarded problem class.

A pivotal point is the construction of the “node to edge” map, to be able to
define the coarse edges and to construct the prolongation and the smoother for
K. A possibility to construct a “node to edge” map is to define an auxiliary
matrix K} € R¥a *Ni which stems from the bilinear form

/ygradu-gradvd:c—l—/au-vd:r, (3)
Q Q
using linear nodal FE-functions. In addition, the matrix Kj' is calculated on
the same computational domain € (i.e., on the same FE-mesh, where only a
simplicial one is used in this paper) and parameters v, o defined in (2). The
index “n” indicates a nodal FE-discretization. For description we always use a
two grid method and therefore the indices h and H are related to the fine and
coarse grid quantities, respectively. Each off-diagonal entry of K} is related to an
edge in the FE-mesh. Consequently, a “node to edge” map is given in a natural
way. In order to get a matrix hierarchy for K; we perform a setup (i.e., coarse
grid selection, construction of a prolongation operator and a coarse grid operator)
for the auxiliary matrix K}'. The resulting coarse grid matrix K7 gives rise to a
“node to edge” map on the coarse level. These coarse edges are degrees of freedom
on the coarse grid for KY,. Consequently, an appropriate prolongation operator
for the edge FE-space and a suitable smoothing iteration can be defined with the
benefit of the “node to edge” map. The coarse grid matrix K7§; is computed by
Galerkin’s method. By recursion, the multigrid method is defined as usual.

The paper is organized as follows: In Sec. 2 a brief overview on Maxwell’s
equation and its discretization by edge elements is given. In Sec. 3 the AMG
method is motivated for SPD matrices which stem from nodal FE-functions.
After that an AMG method for (1) is presented, i.e., the coarsening process, the
definition of the prolongation operator and the smoother are designed in a pure
algebraic way. Numerical studies are presented in Sec. 4 which show the efficiency
of the proposed technique. Finally, further remarks are given and conclusions are
drawn.



2 Problem Formulation
Let us consider the partial differential equation
rotvrot A+ cA=J inQ CR (4)
with boundary conditions
Axi=0 onI'p

and appropriate interface condition on T';. In (4) Q = Q; U Qy is the bounded
computational domain with sufficient smooth boundary 0€) = I'p and interface
['; (see Fig. 1). The piecewise constant functions v and o are assumed to be
strictly positive. 7 is dedicated to the unit outward vector and J is related to
an appropriate given right hand side. As we mentioned it very briefly in the

F] QQ: Vg, O9
I'p
m

Q]: Vi, O

Figure 1: Principle structure of the considered problem class.

introduction this setting is closely related to 3D static magnetic field problems
arising from the Maxwell’s equations. This can be seen by introducing a magnetic
vector potential for the magnetic flux B, i.e.,

Ezrotff.

If the high frequency displacement current and all time derivatives are neglected
and furthermore ¢ = 0 then we end up with the magnetostatic equation. By
interpreting v as the reluctivity and J as the current density the physical relation
is given. For further discussion we always have this physical interpretation in
mind but set o > 0 to a small value compared to v. This regularization guarantees
a unique solution, and does not much affect the quantity of interest, the magnetic
flux B.

A natural choice for the weak formulation is the function space V' = Hy(rot, §2)
which is defined by

Ho(rot, Q) = {7 € (L*(Q))?| rot & € (L2(92))® and ¥ x 7 = 0} .
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Therewith a weak formulation of (4) reads as: Find A € V such that
/l/-rotg-rotﬁdx+/U-E-de:/j-ﬁdz VieV. (5)
% Q Q

It is well known that the kernel of the rot-operator
Vo ={0€V|rotv=0}

are described by gradient fields in the case of simple connected domains €2. For
multiple connected regions 2 this is true up to a finite dimensional space. By
defining @ = H{ (), the gradient fields are exactly the rot-free functions, i.e.,

Vo = grad Q.

During the last years edge elements became very popular for FE-discretization
of V' (see [12, 17]). Besides the fact that there exists other possibilities for an
FE-discretization (see [4, 21]) we are concerned with edge elements in this paper.
Therfore we assume a spatial discretization of €2 by a simplicial mesh which fulfills
the shape regularity in the sense of [9]. The index set of finite elements is denoted
by 7,. The FE-space constructed by the edge elements on 7, is abbreviated by
Vi and Vi, C V holds. Consequently, a conforming FE-space is constructed for
( by nodal piecewise linear finite elements, which is denoted by Q. We will use
the Galerkin isomorphism

G°: Vh — Vy
and
G": Qn — Qn

with V, = RY: and Q) = RV». Thus the discrete kernel of the rot-operator is
defined by

Vio = {vn € Vi | rot Gv, = 0} (6)
and the discrete gradient operator grad,, : Qp — V4 is given for ¢, € Q5 by
grad;, gn = (G°) "' grad G" g - (7)

The edge elements have the property that the tangential component is con-
tinuous while they let the normal component free to jump, i.e., an edge element
discretization is Hy(rot, 2)-conform. This is important for (5) in the case of non-
convex domains () or if the coefficient function v has a jump to get a “good
approximation” of the continuous solution. Further applications in nonlinear or
time dependent problems are out of the scope of this paper, and we refer to the
extensive literature, see [3, 16, 20].



3 Construction of an AMG Method

In this section the ingredients of an AMG method are recalled and especially
an approach for edge elements is proposed. Thus we are concerned with the
pure algebraic construction of a multilevel hierarchy of coarse matrices for Kj.
Therefore it is assumed that Kf € RNi*Ni and K} € RV *Ni arises from the
same FE-mesh of tetrahedra in R®*. The bilinear form belonging to K¢ and K}’
are given in (2) and (3), respectively. The number of edges and nodes of the
underlying mesh is given by N; and N}, respectively. First, we briefly describe
an AMG method for Kj'. Afterwards, we are able to construct a matrix hierarchy
for K with the help of the auxiliary matrix hierarchy of Kj'.

3.1 A General Approach to the AMG Method

The tools for an AMG method can be presented rather general in the case of
SPD matrices arising from an FE-discretization. The most important points are:

1. Define a coarse grid selection process (see, e.g. [5, 15, 19, 22]).

2. Construct a prolongation operator and use its transposed as restriction
operator (see, e.g. [5, 15, 19, 22]).

3. Use Galerkin’s method to construct a coarse grid matrix.

4. Take an appropriate smoother for the underlying problem class, i.e., Gauf3-
Seidel for scalar problems, block Gauf}-Seidel for systems of equations.

The matrix K; stems from an FE-discretization with nodal linear FE-functions
and therfore we can interpret the i matrix row of K7 as follows: The diagonal
entry kj; is related to the grid point ¢ and an entry k7 is related to an edge (i,7)
(see Fig. 2). In the case of a scalar problem we are able to identify “grid point”
with “unknown”. The set of grid points is denoted by w? = {1,2,... , N}, with
cardinality card(w”) = N on level s for the matrix K" € R *"s'. Below the
neighborhood of a node i € w7, the set of edges on level s, and the set of edges
belonging to a node ¢ € w! are given by

wy = AGDIE)y #0,0# )
N = {[(KS)yy # 0,1 # 7},
T = {(i,j)|j € N'},

respectively. In addition the graph of a matrix K7J is defined as a 2-tuple of nodes
and edges, i.e.,

graph(K7) = (wp, [ ). (8)

)
’LGu)h



Figure 2: Clipping of an FE-grid.

Motivated from an FE-grid, we see that a “grid” or “set of unknowns” can be
split up into two disjoint subsets, i.e.,

wp=CUF, CNF=10

with C' and F' denotes the coarse and fine nodes, respectively. The coarse grid is
defined by identifying each coarse grid node j € C' with an index k& € w; ;. This
is express by the index map ind(.) as

wyy = ind(C).
The local fine and coarse grid sets around a node 7 € w are defined by

F' = FNN?
" = CNN'.

In terms of two consecutive levels s and s + 1 it is assumed that each coarse
level variable uf“, i € wy g, is used to directly correct a fine grid variable ug,
k € FI® and j(i) € w?. The “setup process” (for an algorithm see Alg. 1)
constructs a hierarchy of matrices with suitable (i.e., problem dependent) pro-
longation operators and possible preparatory work for the smoothing operator
(e.g. block smoother). Therefore a multilevel cycle can be setup in the usual way
(see Alg. 2).

So far, the basic tools for AMG are presented. Next, the AMG method for
edge elements is discussed in more detail. First, it should be noted, that an
application of the classical AMG approaches (which are designed for nodal basis
functions) fails, in spite of the fact that the system matrix K is SPD. Thus the
construction of a matrix hierarchy with suitable prolongation operators and a
smoothing iteration is required.



Algorithm 1 Setup process for AMG: Setup(K/,1)

// COARSEGRID is defined before this function call
if card(w]) > COARSEGRID then
Split w} into disjoint sets C' and F’
Set w]',; = ind(C)
Define the interpolation operator P, R = (P*)"
Kty = REK} P}
Setup (K 1,1+1)
else
Perform a factorization of K}’
COARSELEVEL =1
end if

Algorithm 2 V(vg,vg)-cycle: MG(uy, fi,])

if | = COARSELEVFEL then
w; = (K1)~ f; with a direct solver

else
Smooth vp times on K'u; = f
Calculate the defect d; = f; — K['w
Restrict the defect to the next coarser level [ + 1: d;; = R}'d,
Set w1 =0
Apply MG (upy1,di41,14-1)
Prolongate the correction s; = P u;4q
Update the solution u; = u; + s,
Smooth vp times on K'u; = f;

end if

3.2 The Coarsening Process

In order to perform a coarsening for the edge element matrix K; and therewith
the construction of a prolongation operator and a smoother we use an auxiliary
matrix arising from an FE-discretization (linear, nodal FE-functions) of the weak
formulation (3) which results in an SPD matrix K € R¥: *Ni. For this type of
matrices the setup process can be done in the usual way (see [5, 15, 19, 22]).

Remark 3.1.

1. The coarse grid selection can be done by several different coarsening strate-
gies. On the one hand side a pure matriz graph based method can be used,
or on the other hand side a coarsening method depending on the matriz
entries. Only the latter case has chances to detect parameter jumps and
anisotropies.

2. We can think of other auxiliary matrices which defines an appropriate “node
to edge” map, but this is not the content of this paper.
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In order to get a “useful” set of coarse grid edges w¢ we invest in a special
prolongation operator P" for the auxiliary matrix K;'. The prolongation operator
P" is constructed such that each fine grid variable prolongates exactly from one
coarse grid variable. We extend the index map ind : €' — w}; defined above onto
the whole fine space wj by assigning the coarse grid index of the representant of
the cluster

ind : wp — Wh.
A consequence is that
ind(7) = ind(j) iff 4,5 € wy prolongate from the same coarse grid variable.
We denote the set of an agglomerate around a grid point ¢ by
I; = {j € w{ | ind(j) = ind (i)}
and
weq = {ind(7) |7 € wi'}.

Therefore the prolongation operator P has only 0 and 1 entries by construction,
ie.,

1 i € wjl, j =1ind(7) (9)

0 otherwise.

(P")ij = pij = {

The coarse grid matrix K% calculated by Galerkin’s method, i.e., K% = (P")T K P",
which is equivalent to the formulae

(K= ol (K- vl (10)

€l jeI

with & = ind(k), [ = ind(l), and ¥, € w”,,. K} has useful properties, because of
the prolongation operator defined in (9). This is the content of the next lemma.

Lemma 3.2. Letk,l € C, k #1 and k = ind(k) € w?, | = ind(l) € w¥,. Further
let KI' be given from (3) and P™ be defined by (9). Ky = (P")T K P".
If for all i € Iy, and for all j € I
(Ki)ij =0
then

(K =0.



Figure 3: FE-grid and agglomeration.

Proof. The proof follows immediately by using (10). O

Remark 3.3.

1. The essence of Lemma 3.2 is that a coarse grid edge is constructed only
if there exists at least one fine edge connecting the agglomerates I; and I;

(i #]), i,
Jr € I;,3s € I; such that (r,s) € wj,
(see Fig. 3).

2. The graph of K%, i.e., graph(K), gives rise to a grid on H with coarse
edges wy .

3. The decrease of edges in the coarsening process is in fact given, if the average
number of nonzero entries of K} grows not too fast.

In principle a setup for K can be performed and the setup process Alg. 1
changes to Alg. 3. Before the prolongation operator for K has to be defined

properly.

3.3 The Prolongation Operator

The construction of the prolongation operator is delicate because of the kernel
of the rot-operator. The prolongation operator P¢ € RM:*Ni is defined for
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Algorithm 3 Setup process for AMG(edge elements): Setup(K;,K]",l)
// COARSEGRID is defined before this function call
if card(wf) > COARSEGRID then
Split w} into disjoint sets C' and F’
Set wi',, =C
Define the interpolation operator P, R = (P*)"
Calculate the coarse grid matrix K7 | by the Galerkin method
K}y, = RYK} Py

Define the index set for the block-smoother (see Sec. 3.4)
Define the interpolation operator P¢, Rf = (Pf)" (see Sec. 3.3)
Calculate the coarse grid matrix K, by the Galerkin method
Kf,\ = R{K{ P

Setup (K}, ,,K}",14+1)

else
Perform a factorization of K
COARSELEVEL =1

end if

i = (i1,12) € wj,j = (j1,72) € wy as

1 if 7 = (ind(é;), ind(is)),
(Pe)i]- = —1 if j = (ind(és), ind(iy)), (11)
0 otherwise .

You convince yourself that the constructed prolongation operator P¢ has full
rank, because every coarse grid edge prolongates at least to one fine grid edge.

Next, we note that the operator grad, : @, — V} defined in (7) has the
representation (with i = (i1,42) € wf and ¢, € Q)

(grady, qn)i = Qi — Qh,iy- (12)

In analogy, we define grad, : Qs — V5 on the coarser levels. The crux is that P°
prolongates discrete gradients of the coarse space to discrete gradients of the fine
space.

Since we use a Galerkin approach, the coarse grid kernel is a subspace of the
fine grid kernel, i.e.,

VH,O = {UH € VH | PBUH € Vh’o} (13)

with V}, o defined in (6) and Vi = RV .
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Lemma 3.4. For qg € Qg there holds

P°grady qy = grad, P"qy. (14)
This means, there holds the commuting diagram
grad
Qu - Vi
Lopr L
grad,,
Qn -V

Proof. We consider the edge i = (i1, i) € wj,. We have to distinguish two cases.
First, let us assume the edge is inside one agglomerate, i.e., ind(i;) = ind(is).
Then both sides of (14) vanish. The left hand side vanishes by definition of the
prolongation operator P¢, the right hand side vanishes since (P"qy )i, = (P"qw)s,-

Now, we assume that ind(i;) # ind(i5). Thus, there exists a coarse grid edge
j = (jl,jg) such that either jl = ind(il),jg = 1nd(22) or jl = ind(ig),jg = 1nd(21)
In both cases there holds (grady qm); = m(qmj, — quj,), with m € {—1,+1}.
The sign in the prolongation compensates, such that (P°grady qm)i = qu,ina(i;) —
qH,ind(i»)- Evaluating (grad;, P"qp); gives the same result. O

Lemma 3.5. The coarse grid kernel functions are exactly gradient functions,
i.e., there holds

Viro = grady Q. (15)

Proof. First, we show the inclusion grady Qg C Vio. We fix a ¢y € Qg and
define vy = grad, qy. Using Lemma 3.4 we obtain

Pvy = P°grady qu = grad;, P"qp.

From grad, Q, = Vi there follows Pvy € V}, 0, and from definition (13) of Vi,
there follows vy € V.

Now, we verify Vi C grady Qp. Therefore, we fix a vy € Vg Since the
kernels are nested, v), := Py is in V}, o, and thus there exists a ¢, € @ such
that

vy, = grady, qp.
By the definition of the prolongation P¢, the values of v;, inside an agglomerate
vanish, i.e., (v,); = 0 for i = (i1,42) and ind(i;) = ind(dy). Since (vp); = qni, —
h,i,. the potential g, is constant inside an agglomerate. Thus there exists a
gg € Qg such that ¢, = P"qy. Combining the steps and using Lemma 3.4 we
obtain
vy, = Py = grad,, g, = grad, P"qy = P“grady qg .

Since P€ has full rank, we can conclude that vy = grady qg.
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3.4 The Smoothing Iteration

To complete the ingredients for an AMG method we need an appropriate smoother.
We consider two different types of smoothers for K. The first one was suggested
from Arnold/Falk/Winther. This is a block Gauf-Seidel where all edges smoothed
simultaneously which belong to T" for all i € w]! (see Fig. 4).

Another kind of smoother was suggest by Hiptmair. A mathematical equiv-
alent formulation is outlined in Alg. 4. Therein the vector gi" € RN is defined

by

orient((k,1)) (k, 1) eT!

e, — orad N, —
In ELACh In {0 otherwise

where the vector g/"" is defined zero everywhere, except for the i entry which is
1.

Algorithm 4 Smoothing operator: Smooth(Kj ,up,fn)
Perform a Gaufl-Seidel sweep on K}
i.e., GS(KE, fh, Uh)
Update the solution uy,
for all i € w}! do

(95) (fn—Kjun) = e
(95 )TKfg;"

VA

Figure 4: Detail view of graph(K7})

uh:Uh+

end for
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Both smoothing iterations are performed in the multigrid cycle (Alg. 2) with
vr forward sweeps and vp backward sweeps. A detailed discussion of these
smoothers is given in [1, 11].

4 Numerical Studies

The proposed AMG technique is used as a preconditioner for the preconditioned
conjugate gradient (PCG) method (see [10, 14, 13]). The iteration was stopped if
an error reduction in the preconditioner energy norm by a factor of 107¢ has been
achieved. All calculations were done on an SGI Octane, 300 MHz, workstation.

Every row of the time table consists of two sub-rows. The first one is directed
toa V(1,1) cycle and the second one to a generalized V-cycle with 2°~! smoothing
steps on level s. The domain Q = Q; U Qy with Q, = (0,0.5)3, Q = (0,1)? and
Q; = Q\ Q. We assume further homogenous Dirichlet boundary conditions on
0€) and an appropriate interface condition inside the cube. In Tab. 1 the used
short cuts are listed.

edges number of edges, i.e., Ny

setup CPU time of the setup process, i.e., construction of the matrix hierarchy
solver CPU time for the iterations of the PCG method with preconditioner AMG

solution | overall CPU time, i.e., setup and solver
iteration | number of iterations in the PCG method

Table 1: Used short cuts for the numerical studies.

The first example is dedicated to a parameter setting of p = 1 and 0 =
107" in Q. Results therefore are given in Tab. 2 for the smoothing iteration
of Arnold/Falk/Winther and in Tab. 3 for the smoother of Hiptmair. In both
cases a slight increase can be detected in the number of iterations with respect to
the number of unknowns. This might be an effect of the designed prolongation
operator. As it can be expected the generalized V-cycle performs better for both
smoothers compared to the V(1,1)-cycle. Actually there are no big differences
between the smoothers and the cycles with respect to CPU time.

The second example was calculated with a parameter jump. Therefore =1
on ; and p = 10 on Q. In this case we are only considering the smoother of
Arnold/Falk/Winther. The results (see Tab. 4) are very similar to the above ones.
It seems to show that the AMG method do not depend on parameter jumps.

5 Conclusions and Further Remarks

A new algebraic multigrid approach was proposed for the solution of H (rot, 2)-
conforming FE-discretization, i.e., edge elements. Therefore a coarsening tech-
nique based on an auxiliary matrix was introduced in order to setup a proper
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| edges | setup (sec) | solver (sec) | solution (sec) | iteration |

smoother

4184 0.24 0.23 0.47 9

0.27 0.51 9

31024 || 1.98 4.76 6.74 14

4.56 6.54 12

238688 || 16.83 58.15 74.98 20

53.99 70.42 16

Table 2: Example without parameter jump and
Arnold/Falk/Winther.

| edges | setup (sec) | solver (sec) | solution (sec) | iteration |

4184 0.15 0.30 0.45 12

0.31 0.46 11

31024 1.32 6.29 7.61 17

6.21 7.53 15

238688 || 11.39 67.98 79.37 21

63.93 75.32 17

Table 3: Example without parameter jump and smoother of Hiptmair.

of

prolongation operator and an appropriate smoother for the system matrix aris-
ing from an edge element discretization.

The numerical studies seem to show that the performance of the method is
independent of parameter jumps but unfortunately it depends slightly on the
mesh size. Nevertheless it performs much better than standard preconditioners

(i.e., incomplete Cholesky preconditioner).

An improvement of the proposed

prolongation operator should be possible and is under current research, in order
to get better convergence rates.

| edges | setup (sec) | solver (sec) | solution (sec) | iteration |

3588 0.20 0.18 0.38 8
0.18 0.38 8

26856 || 1.67 3.46 5.13 12
3.40 5.07 11

207696 || 14.06 41.99 56.05 17
42.16 56.22 15

Table 4: Example with parameter jump and smoother of Arnold/Falk/Winther.
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