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Abstract

This thesis is concerned with the construction and analysis of robust multigrid precon-
ditioners for parameter dependent problems in primal variables. The developed framework
is applied to the specific examples of nearly incompressibility, the Timoshenko beam, and
the Reissner Mindlin plate. The suggested multigrid components are simple to implement.

The work is based on two theories. On one side, the theory of mixed finite element
methods is essential for the analysis of parameter dependent problems. The material is
presented in a rather self-contained way. The point of departure is the primal form, where
the stability conditions are formulated. The obtained discretization schemes are known as
reduced integration methods. We point out the essence of a Fortin interpolation operator.

The other base contains the additive Schwarz theory and multigrid theory. These tech-
niques provide a framework for the construction and analysis of efficient preconditioners.
We will collect the concepts of one-level and two-level subspace splitting, approximation
property and smoothing property by means of elliptic problems without parameters. The
formulation is such that it carries over to parameter dependent problems.

The central point of the thesis are the combination of both theories. We will start with
one-level preconditioners for parameter dependent problems. We see that block smoothers
capturing base functions of the kernel are robust with respect to the small parameter.
The analysis uses function splitting with a partition of unity, and interpolation with the
Fortin operator. We proceed with two level methods. A trivial prolongation by embedding
is not uniformly bounded with respect to the parameter dependent energy norm. The idea
for the construction of robust prolongation operators is that coarse grid kernel functions
must be lifted to fine grid kernel functions. This can be obtained by adjusting proper
degrees of freedom locally. In the considered applications, the implementation consists of
solving local sub-problems of the assembled stiffness matrix. The prolongation operator is
an approximative right inverse to the Fortin operator.

The components developed for the two-level method can be used in a multigrid algo-
rithm. The analysis requires two norms, for which the approximation property and the
smoothing property are verified. One is the parameter dependent energy norm, the other
one combines three terms, namely improved convergence in a weaker norm of the primal
variable, stability in primal energy, as well as stability in average for the dual variable.
The approximation property can be proven under abstract assumptions. The smoothing
property has to be checked individually for the considered examples. Even under strongest
realistic regularity assumptions, we have to apply interpolation norms. We point out some
relations to the smoother by Braess and Sarazin.

Finally, numerical experiments are presented. They agree with the analysis for the W-
cycle and variable V-cycle. Additionally, they show optimal and robust convergence of
V-cycle methods.
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Zusammenfassung

Diese Arbeit beschiftigt sich mit der Kontruktion und Analyse von robusten Vorkon-
ditionierern fiir parameterabhéngige Probleme in primalen Variablen. Die entwickelte Me-
thodik wird auf fast inkompressible Materialien, den Timoshenko Balken und die Reissner
Mindlin Platte angewandt. Die vorgeschlagenen Multigrid Komponenten sind einfach zu
realisieren.

Die Arbeit beruht auf zwei Theorien. Das eine Standbein ist die gemischte Finite Ele-
mente Methode, die fiir die Analyse von parameterabhiingigen Problemen fundamental
ist. Der Stoff wird weitgehend selbstenthaltened dargestellt. Der Ausgangspunkt ist das
primale Problem, fiir das die Stabilitédtsbedingungen formuliert werden. Die erhaltene Dis-
kretisierung ist als Methode mit reduzierter Integration bekannt. Wir unterstreichen die
Bedeutung des Interpolationsoperatos nach Fortin.

Das zweite Standbein umfafit Additiv Schwarz Methoden und die Multigrid Theorie.
Diese Techniken bilden die Methodik zur Konstruktion und Analyse von effizienten Vor-
konditioniereren. Wir stellen die Konzepte von Ein- und Zweigittermethoden, und von
Approximations- und Glattungseigenschaft an Hand von elliptischen Problemen ohne Pa-
rameter dar. Die gewéhlte Formulierung 148t sich auf parameterabhéingige Probleme iiber-
tragen.

Der Kern der vorliegenden Arbeit ist die Verbindung beider Theorien. Wir begin-
nen mit Eingitter Vorkonditionierern fiir parameterabhéingige Probleme. Wir sehen, daf
Blockglatter, die Basisfunktionen fiir den Kern umfassen, robust beziiglich des Parameters
arbeiten. Die Analyse verwendet Zerlegung der Eins und den Interpolationsoperator nach
Fortin. Als néchsten Schritt nehmen wir ein Grobgittersystem hinzu. Eine trivial Prolonga-
tion ist nicht gleichmé&Big stetig beziiglich des kleinen Parameters. Die Idee einer robusten
Prolongation besteht darin, daf§ Grobgitter-Kernfunktionen auf Feingitter-Kernfunktionen
abgebildet werden. Das kann durch lokale Anpassung geeigneter Freiheitsgrade erreicht
werden. Bei den betrachteten Beispielen kann die Realisierung durch Lésen von Teilpro-
blemen der assemblierten Steifigkeitsmatrix geschehen. Der Prolongationsoperator ist eine
approximative Rechtsinverse des Fortin-Operators.

Die Komponenten des Zweigitterverfahrens kénnen in einem Mehrgitteralgorithmus
eingesetzt werden. Die Analyse benotigt zwei Normen, fiir welche die Approximationsei-
genschaft und die Glattungseigenschaft gezeigt werden. Eine ist die parameterabhiingige
Energienorm, die andere ist eine Kombination von drei Termen, ndmlich einer verbesser-
ten Approximation der primalen Variable in einer schwicheren Norm, die Stabilitdt in
der primalen Energie, und Stabilitéit der gemittelten dualen Variablen. Die Approximati-
onseigenschaft kann unter abstrakten Voraussetzungen gezeigt werden. Die Gléttungsei-
genschaft wird fiir die spezifischen Beispiele iiberpriift. Auch unter stiarksten realistischen
Regularitdtsannahmen miissen Interpolationsnormen verwendet werden. Es werden Ver-
bindungen zu dem Gléitter von Braess und Sarazin hergestellt.

Numerische Beispiele bestéitigen die theoretischen Ergebnisse fiir die robusten und op-
timalen Ratenabschiitzungen beim W-Zykus und variablen V-Zyklus. Weiters zeigen sie
auch entsprechende Konvergenzraten fiir den V-Zyklus.
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Chapter 1

Introduction

State of the Art

Many engineering problems are mathematically modeled by elliptic boundary value prob-
lems. The finite element (fe) method is certainly the most frequently applied tool for the
numerical approximation of these models. The computer power available today enables
very accurate computer simulations by using a million and more elements. The large prob-
lem size requires numerical algorithms of optimal, this means linear, time complexity. The
challenge is to design efficient iterative methods for the solution of the high dimensional
linear systems. Multigrid methods meet these requirements.

There is a lot of literature available about the fe method and multigrid methods (see
the textbooks [BS94], [Bra97] for two more recent presentations of the theory of finite
elements and an introduction to multigrid methods, as well as many references therein).
The monograph [Hac85] gives a wide overview about the theory of multigrid methods. The
textbook [Bra93| presents the more recent results related to multi-level methods. See also
[Gri94], [Osw94].

The accuracy of fe methods depends on the regularity properties of the underlying
boundary value problem, and of the approximation quality of the fe space. For a lot
of problems the standard (i.e. conforming) approach works well and gives optimal error
estimates of the form

rel.err. <c¢N “

Here, rel.err. is the relative error of the computed finite element approximation. The
constant ¢ has a moderate size, N is the number of unknowns. The power a depends on
the spatial dimension, the polynomial degree of the fe space, and the adaption of the mesh.

For many realistic problems, the constant c is really large, and many unknowns have to
be spent, until the error drops below 50%. This misbehavior is called locking effect. This
topic is discussed in many textbooks of finite element analysis in mechanical engineering,
see e.g. [Bat96] for a lot of practical examples.

The first step is to detect the source of locking. Often, a small parameter ¢ of the
equation can be specified. Then the family of problems depending on £ € (0,1) may

1



2 CHAPTER 1. INTRODUCTION

behave like
rel.err < ce PN, (1.1)

where ¢ is a constant of moderate size, and [ is a positive constant.

One typical examples of locking in solid mechanics is nearly incompressibility locking
(also known as volume locking or Poisson locking). Here, the source of the problem stems
from the material parameters. If the Poisson ration v, which is allowed to take values in
(0, 1/2), is close to 1/2, the material behaves (nearly) incompressible. The error estimate
(1.1) applies with £ = 1/2 — v. Nearly incompressible subregions occur e.g. in non-linear
problems from elasto-plasticity [KL84]. We will consider this type of locking in this thesis.

An other source of locking may be the shape of the geometry. Problems from elasticity
on thin domains are usually described by models from structural mechanics, see [DS96],
[Ber96], [CTV95], [Cia90]. A hierarchy of plate models is derived in [Sch89], [BLI1],
[AAFM99], and in [Sch96] with a posteriori control.

The lowest order models for flat geometries are the Bernoulli beam model and the
Kirchhoff plate model. These are fourth order equations, which can be well approximated
by proper (conforming or non-conforming) fe methods. The next models in the asymp-
totical expansion are the Timoshenko beam model, and the Reissner Mindlin plate model,
which are systems of second order equations. These systems depend explicitely on the
thickness ¢ of the structure. A standard fe approximation of these models leads to so
called shear locking (see Section 2.1.3 for numerical examples). We will investigate these
two models in this thesis. The more involved shell models cover the behavior of curved thin
structures. Already the lowest order model of Kroiter may suffer from membrane locking
[Pit92]. In [CB98] a systematic classification of shell structures is given. [Bis99] applies
the EAS concept for shell problems. We will not consider shell models in the present work.

The considered examples and (many more) belong to the class of parameter dependent
problems in the sense of Arnold [Arn81]. They lead to variational problems: Find u € V
such that

A (u,v) = f(v) Vo eV,

where the bilinear form A®)(.,.) has the special structure
1
A (u,v) = a(u,v) + —c(Au, Av).
£

The form a(.,.) is symmetric, non-negative and continuous on V, the form c(.,.) is sym-
metric, elliptic and continuous on a second Hilbert space (). The continuous opera-
tor A : V' — @ has the non-trivial kernel V;. The bilinear form A'(.,.) is assumed to
be elliptic on V. Then the form Af(.,.) is uniformly elliptic on V| but the continuity
constant depends on . In general, this class of problems leads to a priori estimates of the
form (1.1) for conforming finite element methods (see [Arn81], [CP94], [BS92b], [BS92a],
and [Bra97]).
The standard approach for a robust discretization is to define the dual variable

1
p = EAU € Q,



and pass to the equivalent mixed problem: Find u € V, p € () such that

a(u,v) + c(Av,p) = f(v) VoeV,
c(Au,p) — eclp,g) = 0 VgeQ.

The concept of mixed variational problems go back to [Bre74]. A deep source of collected
information is [BF91], see also [RT91], [GR86]. For proper norms on V' and @, the mixed
problem is continuous and stable, and thus provides an isomorphism between V' x () and
V* x Q*. The mixed form is discretized by the choice of fe subspaces V,, and ;. The
discretization has to fulfill two conditions. On one hand side, the discrete LBB condition
condition must hold, on the other hand side, a discrete ellipticity condition must be guar-
anteed. Then the discrete problem is stable as well, and the theory of Babuska and Aziz
[BAT72] provides robust convergence. In [AB93] a general stabilization trick was applied to
make the form a(.,.) elliptic itself, and thus the construction of stable fe spaces becomes
much simpler. In [Bra96], a unified analysis of mixed problems with penalty is developed.

Often, the dual fe variable p, can be eliminated locally, and one returns to a positive
definite fe problem: Find u; € V}, such that

1
a(uh, Uh) + gC(Ahuh, Ahvh) = f(?)h) Vvh € Vh.

This approach of was systematic analyzed by [MH78|, see also [Sin78|, and [JP82] for
delicate questions of unstable elements. It is known as reduced integration technique. The
operator Ay is a softening of the original one, A. An alternative approach is the enhanced
assumed strain (EAS) concept by Simo and Rifai (see [SR90], [AR93]). Often, the method
is equivalent to a mixed method ([Bra98]).

From the viewpoint of computation, the problem in primal variables is preferable
against the mixed form, because only one field of variables is used and thus the system
matrix is considerable smaller and more sparse. It is positive definite, such that the con-
jugate gradient method can be applied. Last but not least, the version in primal variables
is simpler to implement.

A widely used discretization scheme for plate and shell models is the MITC family
of elements introduced in [BBF89] and further analyzed by [BFS91], [PB92]. In [AF89]
a robust non-conforming linear element is analyzed. A simple but efficient alternative
based on stabilized finite element techniques was introduced by Arnold and Brezzi [AB93].
Several versions of stabilization were investigated in [BL97] and [Lov96]. Chapelle and
Stenberg [CS98] consider a special choice of stabilization. They establish improved regu-
larity estimates and apply them for duality techniques. This work has been the bases to
understand the multigrid method for Reissner Mindlin plates. Pitkidranta and Suri [PS96]
give an overview of robust methods. Lyly and Stenberg [L.S99] give an overview of robust
stabilized methods.

The problem of bad finite element approximation was solved by the equivalent mixed
form. But still, the small parameter ¢ spoils the condition number of the arising system
matrix A®). No robust preconditioner have been available for this class of problem. That
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was one of the reasons to use the mixed form, and apply a solver for the saddle point system
of equations (see [AHUS8]|, [Axe79], [FG83], [BP88], [LQ86], [LQ8T7], [Qued9], [BWYIO],
[Pei91], [RW92], [VLI6], [Kla98], [BPVI7], [Zul98a], and more). The main goal of the
present work is to develop and analyze robust and efficient preconditioners for the ill
conditioned matrix A®).

We will collect well-known results for the construction and analysis of preconditioners
based on subspace correction methods. Because the special structure of reduced integration
schemes lead to different bilinear forms on each level, we are only interested in methods
applicable to non-nested forms.

There are two underlying principles. One is the splitting of finite element function into
subspace functions by means of local operators. This principle does not require problem
regularity, but is restricted to the two level case.

The other principle is Hackbusch’s multigrid theory based on the smoothing property
and the approximation property. It uses problem regularity and proves methods of optimal
complexity for W-cycle [Hac82], [BD81], [BD85], and variable V-cycle [BPX91] multigrid
methods. Optimal convergence of V-cycle schemes is proved in [BH83] if full regularity is
available, and in [BP93] for less then full regularity. Up to the knowledge of the author,
optimal V-cycle analysis is available only for nested bilinear forms.

The framework to design preconditioners based on splitting of finite element functions
is the additive Schwarz method. The method of [Sch69] was adapted by [Nep86], [Lio88],
[DW90], [Zha91] to domain decomposition preconditioning. [SBG96] is a recent textbook.

We will mainly focus on additive Schwarz methods, but the multiplicative counterpart
is understood as well from the work of [BPWXO91]. The framework of multilevel Schwarz
methods combines both concepts ([Yse86], [Xu92|, [Zha92]).

Multigrid methods applied directly to the system in mixed variables have been provided
by [Ver84], [Wit89a], [Hua90], [BB90], several papers by S. Brenner unified in [Bre96],
[BS97]. The papers mainly differ by the type of smoother. In [Wie99], the smoother from
Braess and Sarazin is adapted for the problem in primal variables

More specific, we borrow techniques for the analysis of multigrid preconditioners for
fourth order problems [PB87], [Bre89], and, closely related, Stokes’ equations with diver-
gence free basis functions [Bre90], [Tur94]|. The design of our smoothers shares ideas of
[EW92], [VW92], [AFW97b] and [Hip99] for the construction of multigrid methods for
H(div) and H(rot). These methods can be used to precondition the blocks arising from
mixed finite element systems, e.g. for Reissner Mindlin problems [AFW97a].

An alternative approach to multigrid schemes is the AMLI method by Axelsson [Axe96].
It is based only on the strengthened Cauchy Schwarz inequality. In [KM99] an AMLI
algorithm for nearly incompressible materials is analyzed.

In the present work we do not consider the parameter dependent problem of anisotropy.
We refer to [Wit89b], [Ste93] [Neu98] for anisotropies on aligned meshes. The method
of [Pad97] is proved to provide optimal and robust preconditioners for non-aligned
anisotropies as well.



Overview

The emphasis of this thesis is to present techniques for the construction and analysis of
multigrid methods for parameter dependent problems in primal variables. The obtained
preconditioners are the first ones of optimal time complexity which are robust with respect
to the mesh size and the small parameter. For the analysis of the multigrid preconditioners
some results from mixed finite element theory had to be adapted.

The construction of the presented preconditioners was presented in [Sch99¢|. It con-
tains also the one-level and two-level analysis for nearly incompressible materials and for
the Timoshenko beam. [Sch99b] contains the multigrid analysis for the case of nearly
incompressible materials. [Sch99a] contains the abstract multigrid analysis, and the appli-
cation to the Reissner Mindlin plate.

The work is organized as follows. Chapter 2 contains an introduction into selected top-
ics of finite element methods. The theory of parameter dependent problems is presented
as far as needed in a self-contained manner. The examples of Timoshenko beam, nearly
incompressible materials and Reissner Mindlin are formulated. Chapter 3 gives an intro-
duction to subspace correction methods. The principle of one-level, two-level and multigrid
methods are explained for problems without parameters. Chapter 4 contains the new re-
sults for preconditioning of parameter dependent problems. Chapter 5 presents numerical
results.

In particular, this work contributes to the following approaches and results.

e In Section 2.3 the formulation, stabilization and discretization of parameter depen-
dent problems is presented in a unified manner. A relaxed version of Fortin’s crite-
rion, a sufficient condition for stable mixed finite element discretization is formulated
(Theorem 2.12).

e Section 2.4.3 collects the results of [AB93] and [CS98] for the stabilization and dis-
cretization of the Reissner Mindlin plate model. By means of the relaxed version of
Fortin’s criterion, the scheme with mesh dependent stabilization terms fits into the
abstract framework. We obtain first stability of the infinite dimensional problem and
then perform a stable discretization. This result may be useful for a posteriori error
estimates. We modify the norm for the duality trick, such that problem regularity,
the approximation inequality and the inverse inequality fit together.

e Section 4.1 explains the construction of local preconditioners, which are robust with
respect to the parameter, but depends on the mesh size. The idea of block smoothers
is borrowed from [VW92] and [AFWO97b], but the environment is different.

e Section 4.2 extends the local preconditioner by a coarse grid system to obtain condi-
tion numbers robust in the parameter and mesh size. Since the forms are non-nested,
grid transfer operators are necessary. To be robust, the operator has to map coarse
grid kernel functions to fine grid kernel functions, essentially.
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Sections 4.3 formulates multigrid methods, which can be performed equivalently in
primal variables or in mixed variables. This is the basis for the multigrid analysis.
The norms to prove the approximation property and the smoothing property are
defined. The norms differ from the norms usually used for multigrid methods in
mixed variables. Our norms are related stronger to the primal problem.

Section 4.4 proves the approximation property under abstract assumptions.

The smoother of Braess and Sarazin [BS97] was adapted by Wieners [Wie99] to the
formulation in primal variables. Section 4.5 compares the analysis by Wieners to
the present work. A corresponding smoother for the Reissner Mindlin plate model is
suggested.

In Section 4.6 the smoothing property for the local smoothers suggested is proved for
different applications. The technique uses additive Schwarz methods and operator
interpolation in Hilbert spaces.

Finally, by combining the approximation property and the smoothing property of the
local smoothers, robust solvers of optimal arithmetic complexity are obtained.

Notation

The symbol a < b means that there exists a constant ¢ independent of a and b, as well as
e, and the discretization parameter i defined below such that a < ¢b. We write a > b for
b<a,and a ~ b fora <band b < a.

When (V. ||.|lv, (.,.)v) is a Hilbert space, and A(.,.) is a continuous bilinear form on

V x V, we will associate to it the operator A : V' — V defined by

(Au,v)y = A(u,v) Vu,v,€ V.

If A(.,.) is symmetric and non-negative, it defines the energy semi-norm

|lul|4 := A(u, u)l/g.



Throughout this work, the following symbols keep their meaning:

O

o

=
A~~~
NN

~ S

SQ—~—

small parameter

Hilbert space of primal variable (u,v,w € V)
Hilbert space of dual variable (p,q,r € Q)
X=VxQ

symmetric and non-negative bilinear form on V
symmetric and elliptic bilinear form on
linear operator V' — )

kernel of A

{(u,p) € X : Au=ep}

primal form A (u,v) = a(u,v) + & 'c(Au, Av)
mixed form B*((u, p), (v,q)) = a(u, v) + ¢(Av,p) + ¢(Au, q) — € ¢(p, q)
preconditioner (with varying indices)

simple preconditioner used for smoother
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Chapter 2

Finite Element Theory

In this chapter a brief introduction to selected topics of the finite element method is given.
We will start with a conforming discretization method for the Poisson equation and list the
steps of the analysis. We proceed with the saddle point problem of Stokes’. These examples
can be found in most finite element textbooks. Then we will see that a conforming method
behaves bad for the beam model of Timoshenko (see e.g. [Bra97]).

We will introduce the toolkit of Sobolev spaces, the technique of Hilbert space interpo-
lation, finite element interpolation and partition of unity techniques. Then we will proceed
with parameter dependent problems. We will pass to mixed finite element methods. The
extended toolkit involves saddle point problems, stabilization techniques, and the Fortin
interpolation operator. We will end up with elliptic, but non-conforming finite element
methods.

2.1 Finite Element Basics

2.1.1 A positive definite problem

First, we demonstrate by means of the most elementary partial differential equation the
method of finite elements. We consider the Poisson equation with homogeneous Dirichlet
boundary conditions

—Au = f in Q,

2.1
u = 0 on 0f) (21)

on the domain 2 C R2. The finite element method requires the weak form of the equation.
We seek for the solution u in the Hilbert function space V' = H{(2). The solution has to
fulfill the variational problem

/VqudX:/fvdX VoeV. (2.2)
Q Q

9



10 CHAPTER 2. FINITE ELEMENT THEORY

We define the symmetric bilinear form A(.,.) : VxV — R and the linear form f(.) : V — R
as

Alu,v) = /VqudX,
%

f(v) = / fodz.
Q
Then we can rewrite the problem abstract as: Find u € V' such that
A(u,v) = f(v) YveV. (2.3)

The analysis of symmetric and and elliptic problems is based on the fact that the energy
norm ||lul|4 := A(u,u)"/? is an equivalent norm on V', i.e. there exists constants ¢; > 0 and
¢ > 0 such that

aflully < llulla < e lully  VueV (2.4)

By means of the Lemma of Lax and Milgram there exists a unique solution v € V of
the variational problem (2.3). The finite element method is an approach to approximate
the (unknown) solution by something computable. We have to chose a finite dimensional
space Vj, where we will find the finite element solution w,. In the standard (= conforming)
approach the space V}, is a subspace of V', and the problem is the reduction of the variational
problem (2.3) to: Find uy; € V}, such that

A(Uh, Uh) = f(Uh) ‘v’vh € Vh. (25)

We have to analyze how good u;, approximates u. The first step is the question of stability.
Variational problems with elliptic forms are always stable. The finite element solution is
the best approximating function in the finite element space with respect to energy norm.
Using norm equivalence (2.4), we obtain the estimate

.
lu = unlly < —Qvlgghﬂu—vth (2.6)

We estimated the discretization error of the variational problem by the best approzima-
tion error to the true solution u. The second step is the estimation of the approximation
error. This question can be decided by properties of the space V}, and additional properties
of the true solution concerning smoothness. Define a family of spaces {Vj;}5>¢ character-
ized by the positive parameter i — 0. We assume that the solution is not only in V,
but also in the dense subspace V' with the stronger norm ||.||y+. We need a result from
approximation theory of the form

inf ||u—vp|lv < O(R) ||ullv+. (2.7)

VR EVR

The function §(.) : RT — R* has to fulfill

d(h) — 0 as i — 0. (2.8)
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The third step in error analysis is to check that v € V' is not only an assumption, but
is indeed true. This part needs properties of the infinite dimensional problem and of
the function space V. These are regularity theorems, which require properties of the
domain (convex, cone-conditions, smooth boundary, etc.), the right hand side as well as
the boundary conditions. We will cite some results of the form later.

Knowing that we have a good discretization method for the problem, we can prepare it
for computing. Therefore, we have to chose a basis (¢;)Y, for the finite element space V},,
with N = dim V},. By means of the basis we can rewrite problem (2.5) equivalently as the
linear system

Au=Ff. (2.9)

The system matrix A € R¥*"V, the load vector f € RY and the solution vector u = (u;);L,
are defined by

= (Alpi ©3))ij=1-
= (f(e)ily,

N
up = E Us Pi.
i=1

In principal, algorithms for the solution of linear systems are not new, but special properties
of linear systems from finite element methods make it more exiting. First, the systems can
be very large (N = 10° or more), and secondly, there are only a few non-zero elements per
row in the matrix. This gives the chance for algorithms of optimal arithmetic complexity
O(N). Indeed, multigrid methods are such methods. We will give an overview of available
modern fast methods in Chapter 3 and will analyze and apply these methods for the rest
of the monograph.

[~ |

2.1.2 A saddle point problem

The analysis of parameter dependent problems is strongly related to mixed variational
problems. The best known example is Stokes’ equation. The strong form of the equation
reads as: Find the velocity u and the pressure p such that

—Auy — Vp = f in Q,
divu = 0 in Q, (2.10)
u = 0 on Of).

The weak form requires the Hilbert spaces V = [H}(Q)]? and Q = Ly/R. We search for
u €V and p € Q such that

fQVqudX + deivvde = fﬂfvdx YvelV,
Jo divugdx = 0 VqeQ.
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For an abstract notation we define the bilinear forms a(.,.) : V x V — R and b(.,.) :
V x @ — R, and the linear form f(.):V — R by

a(u,v) = /VqudX,
0

b(u,q) = /divuqu,
Q

The mixed variational problem in abstract form reads as: Find v € V and p € () such that
a(u,v) + bv,p) = [f(v) Yo eV,
b(u, q) = 0 VqeQ.

For a more compact notation we define the product space X = V x ) with the product
norm ||(u, p)||% = l|lull} + |Ip||g and the block bilinear form B(.,.) : X x X — R by

(2.11)

B((u,p), (v, q)) = a(u,v) + b(v,p) + b(u, q).

By adding both rows of the variational equation (2.11), the problem can be rewritten as:
Find (u,p) € X such that

B((u,p), (v,q)) = f(v)  V(v,q) € X. (2.12)

The condition (2.4) of equivalent norms is the essential property of positive definite prob-
lems. The corresponding extensions to more general problems are the conditions by
Babuska and Aziz [BA72], namely stability

B((u,p), (v,q))

sup Z C v, q v v, q c X 213
S w2l Vg (2.13)
and continuity

B((uap)a (Ua Q)) < ||(U,p)||X ||(U, q)”X \vd (u)p)’ (U,q) c X. (214)

Indeed, Babuska and Aziz can handle non-symmetric problems by taking care of the dif-
ferent kernels, but we will stay in the class of symmetric forms. If conditions (2.13) and
(2.14) are fulfilled, then problem (2.12) has a unique solution. We define the kernel V; of
b(.,.) by

Voi={veV:bv,q) =0VqeQ}.

The theory of Brezzi [Bre74] gives sharp conditions onto the bilinear forms a(.,.) and b(.,.)
to obtain stability (2.13). Namely, there must hold Vp-ellipticity of a(.,.), i.e.

a(u,u) > ¢, ||ull? Vu eV, (2.15)
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and the famous LBB condition

b(u, q)
sup
wev |[ullv

>alldle VaeQ. (2.16)

The LBB condition for Stokes’ problem is not trivial, see [DL76]. Clearly, continuity of
B(.,.) follows by continuity of a(.,.) and b(.,.).

The problem is called saddle point problem, because the solution (u,p) € V X @ is a
saddle point of the Lagrangian functional

L(v,q) := %a(v,v) +b(v,q) — f(v).

The component u is also a solution of the constrained minimization problem

min Za(v, ) — f(v).

The fe discretization needs finite element spaces for both variables, namely V;, C V' and
Qn C Q, and X}, =V, X Qp,. The fe problem is the restriction of (2.12): Find (uy, pp) € Xp
such that
B((un,pn): (Vn,an)) ¥ (vn,qn) € X,

But unlike to positive definite problems, additional conditions are required. Namely, dis-
crete counterparts to the kernel ellipticity (2.15) and to the LBB condition (2.16) must be
verified for the fe spaces V}, and Q. A lot of theory for the construction of mixed finite
element spaces is available [BF91].

2.1.3 A parameter dependent problem

In Section 2.1.1 we formulated the basic principle of the finite element method for positive
definite problems. Now, we consider examples for which the standard approach fails.
Let us consider the linear elasticity problem on the domain

Q=(0,1) x (—t/2,t/2),

where t € (0,1) is a small parameter. The part of the boundary with Dirichlet boundary
conditions is

Tp = {0} x (~t/2,/2),
see Figure 2.1.
Let V' be the function space

V={vel[H'(Q)*:v=00onTp}.

We consider the problem of linear elasticity: Find u € V such that

/e(u) :D:e(v)dx = /fv dx. (2.17)
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Figure 2.1: Thin beam with transverse loading

The operator e(v) is the strain operator
e(v) = 0.5(Vv + (Vou)T),

and D is the fourth order tensor of elastic coefficients. We consider the specific problem
of uniform load f = #?(0, —1), and material parameters E = 1, v = 0.2. We perform finite
element computations with bilinear rectangular elements. We use a fixed number of 10
elements in vertical direction, and vary the number of elements in horizontal directions.
The solution on a mesh with 16 x 10 elements is plotted below, the thickness ¢ is 0.1:

The vertical displacement us(1,0) at the right end of the beam is compared for varying
thickness and number of elements in horizontal direction:

25 T T

-u2(1,0)

1000

We observe that the results are totally useless until the mesh size in longitudinal direction
is of the same dimension as the thickness.
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Usually, elasticity problems on thin domains are described by beam or plate models.
The beam model of Timoshenko uses the infinite dimensional Ansatz space

{u eV (ur,u) = (226(21), w(zy)) with 8, w € Hl((oa 1)}

described by the vertical deflection w and the rotation . In principal, Galerkin projection
of 2.17 to the space V' gives the beam model of Timoshenko. By integration in vertical
direction one obtains the variational problem: Find (w, ) € V' C [H'((0,1))]? such that

/0 (' +t72(w' — B)(v' —n)}dx = /0 fov dx. V(v,n) € V. (2.18)

We neglected the coefficients in front of the differential terms. There are two reasons. First,
they are not essential for the following analysis, and, secondly, the coefficients obtained by
Galerkin projection are not asymptotically correct for ¢ — 0. This is tried to compensate
by the so called shear correction factor found in any engineering work. We perform finite
element simulations with piecewise linear elements for equation (2.18). The results are
similar to the investigation above:

0.12 T T

w(1)

0 e el e 1

1 10 100 1000 10000
Elements

The locking effect was not removed by the use of the beam model, but the difficulties are
more transparent. The energy of the model consists of two parts, the bending energy

JGRE

2 /(w' — B)*dx.

The problem is that for some functions the second term is by the factor ¢t 2 larger, while for
other functions the second term vanishes. There is the old technique of selective reduced
integration (see [MHT78], [Arn81]) to remove this problem. Instead of an exact formula of

and the shear energy
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numerical integration, one of lower order is used. Often, this is equivalent to averaging
some term of the bilinear form. We indicate element-wise averaging on the finite element
mesh by . We replace the form of (2.18) by

1 1
/ (B +t 2w =B =)'} dx = / frvdx (2.19)
0 0

and repeat the simulations. The obtained results are:

0.12 T

t=1le-1 ——
t=1e-2 —x—
t=1e-3 ---*-- |
0.08 T R
o L i
4 0.06
0.04 - B
0.02 |- B
O 1 1
1 10 100 1000

Elements

By this trick, the locking effect is removed. We will discuss the relation to mixed methods
in Section 2.3 in detail. We mention that also by increasing the polynomial degree of the
finite element space the locking effect can be removed ([SBS95] discusses shear locking for
plate models).

2.2 Approximation Results

2.2.1 Sobolev spaces

The natural spaces for variational problems are Sobolev spaces [Ada76]. In this monograph
we are interested in linear problems and thus the subset of Hilbert spaces is enough.

The domain € is a bounded open set from R? with d = 2 or d = 3. We want to avoid
technical difficulties and assume that €2 is polygonal. The boundary 02 is denoted by T,
and I'p C I is a closed subset.

The inner product (.,.)o, and the associated norm ||ulo. = (u, u)é/2 are the of Ly(w).
We will use ||.|lo := ||-|lo.o- We will write the same symbol for vector and tensor valued
functions. If v is a manifold of lower dimension, then ||.||¢ is the corresponding L, norm
on 7.

Let w C €2 be an open set with Lipschitz continuous boundary. We define the space C'*°
of infinitely differentiable functions on w. The subspaces Cg® and C§%, consist of functions
which function values and all derivatives vanish on T" and T'p, respectively. Indeed, we
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allow different sets I'p for different derivatives as well as for different components of vector
valued functions.
For £ € N we define recursively the norms

ou
i 2
|50 = (Hqu—l,w +i_Z Haxz

1nd

2 >1/2
k—1w .

We set |u]ow := ||u|low and define for & € N the semi-norms

Ou 12 1/2
[ulkw = (Z 0x; kl,w) '

The Sobolev spaces H*(w), Hg(w), and Hj ;,(w) are the closures of C*(w), C§°(w), and
Cgp(w), respectively, with respect to the norms [[ul[;.,. Again, for w = Q we will skip the
domain. For k € N we define the the Sobolev spaces H*(w) as dual spaces to H¥(w).

Theorem 2.1. Let ko, ki € N with kg < ki. Then there holds H** C H* with compact
embedding.

2.2.2 Hilbert space interpolation

Interpolation techniques are simple but powerful tools for finite element analysis. We will
use the real method of interpolation going back to [LP64]. We refer also to [BS94]. In
[Bra93] the special case of Hilbert spaces is discussed in more details.

Let (Vo, (., .)o) and (V4, (.,.)1) be two Hilbert spaces with compact embedding V; C Vj.
The goal is to define a scale of spaces in between. For ¢ > 0 and u € V; define the
K-functional as

K(tyu) = _inf (Juoll§+#[|uill$)" (2.20)

u “+uy

The interpolation norm ||.||, for 0 < a < 1 is defined to be

0o 1/2
fullo = . = [ R w2ac) (2:21)
The norm fulfills the parallelogram law, and thus it leads to a Hilbert space. The space
Vo = [Vo, Vila is the closure of Vi with respect to ||.||a.

Theorem 2.2. Let Vi C Vi and Wy C Wy be two pairs of compactly embedded Hilbert
spaces. Let T be an linear operator mapping Vo into Wy as well as Vi into Wi with norm
bounds

[Tvllwe < collvlve Ve,
[Tvllw, < ol YveW.

Then for ac € (0,1), T maps [Vo, Vila into [Wy, Wils with bound

ITvllwowia < co S llvllwowi, Vv € [Vo. Vila. (2.22)
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An important application is interpolation of Sobolev spaces. Take for £ € N; the
spaces Vo = H¥(w) and V; = H*'(w). The embedding is compact, so one can apply
interpolation to define H**®(w) := [H*(w), H*"'(w)], and Hi T (w) 1= [HE (W), H¥ ' (w)]a-
Sobolev spaces of negative, non-integral parameters —s are defined as dual spaces of H(w).

Theorem 2.3. Let €2 be a domain with Lipschitz-continuous boundary. Let mg, mq, m €
Ny with mg < m < my. Set o such that mg = (1 — a)mg + amy. Then the norms of the
spaces

e H™(w) and [H™ (w), H™ (w)]a
o Hy'(w) and [Hy" (w), Hy" (w)]a
are equivalent, respectively.

The proof for H™ can be found in [BS94], while H{" is proved in [Bra95].

2.2.3 The Bramble-Hilbert lemma

There exists different formulations of the Bramble-Hilbert lemma in the literature, see e.g.
[Bra97], [BS94]. We formulate first an abstract theorem ([GR86], Theorem 2.1):

Theorem 2.4. Let V be a Hilbert space with norm ||.||y. Let V.C W be a compact
embedding into the Hilbert space (W, ||.|lw). Let ||.||a be a semi-norm an V" with kernel V.
Assume that the following norms are equivalent:

[ully ~ lullw +[lulla VueV
Then the following is true:

i. The kernel Vyg is of finite dimension. The semi-norm is equivalent to the norm on
the factor space, i.e.

lull4~ inf |lu—ulv VYueV.
uo€ Voo

ii. Let ||.]|p be a continuous semi-norm on V' such that there hold for all u € V
|lulls +|uljla=0 = wu=0.
Then there holds the equivalence of norms

|l + [Jul|a = [Jul|v VuelV.

iii. Let V. C V be a closed subspace such that
Then there holds the equivalence of norms

[ulla > [lully  VueV
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The lemma of Bramble-Hilbert is a corollary to the above theorem:

Lemma 2.5 (Bramble-Hilbert). Let k € N, and Q be a Hilbert space. Let L : H* —
Q@ be a linear and continuous operator. Assume that L vanishes on the space Py_1 of
polynomials up to order k — 1. Then L is bounded by the semi-norm, i.e.

[Lullg = fulx.

2.2.4 Finite element spaces

For computing one has to approximate elements in Sobolev spaces by elements in finite
dimensional function spaces. Finite element spaces are such spaces. The material in
this section is referred to [Cia78]. One divides the domain © into a finite set of simple
subdomains T, called elements. Together they form the triangulation 7 = {T}. For
simplification we assume that €2 is a polygonal domain. Usual elements are simplicials,
namely segments in 1D, triangles in 2D and tetrahedra in 3D, and elements build by
tensor products from simplicial elements, namely quadrilaterals, hexahedra and prisms.

Each element T is interpreted as the image of the mapping 27 (£) from a reference
element 7™, We define some terms for the triangulation:

e A triangulation is conforming, iff the intersection of two different elements is either
empty, or contains one common corner point, one common edge or one common face.

e A conforming triangulation is shape regular, iff for all elements the condition number
of the Jacobian is bounded, i.e.

dedTg(S) H H (dx;5(§)>lH =1 VTeT,VEeT (2.23)

e We define the local mesh size h(z) for x = 27 (£) as

d T
h(:c):H :r:df(f) ; (2.24)
and
hp = sup h(z)
€T

A triangulation is quasi-uniform, iff it is shape regular and there exists one global
h > 0 such that
h<h(x)<h Vae (2.25)

Next, the set of shape functions has to be defined on the reference element. We will
need shape functions of full or partial polynomial type, denoted as P, and Qy, respectively.
In addition, often so called bubble functions are necessary. There are element bubble
functions which vanish at the boundary of the element, and face bubbles vanishing on all
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but one face of an element. For example, the lowest order element bubble function for a
triangle is A Ao A3, and one of the face bubble functions of lowest degree is A\; Ay (the \; are
the barycentric coordinates).

Third, a set of unisolvent linear functionals are defined on the space of shape functions,
called the degrees of freedom. These functionals are most often point evaluations, but also
other possibilities like integrals over edges or faces are in use.

These three components define the finite element in the sense of Ciarlet [Cia78]. The
global finite element spaces is constructed by transformation of the geometry, the shape
functions, and linear functionals. The demand of well-definition of the linear functionals
give the desired continuity properties of the global finite element space.

The finite element space will be denoted by V},, where h is the global mesh size pa-
rameter for quasi-uniform triangulations, and just notation for more general conforming
triangulations. It is spanned by a set of basis functions, i.e.

Vi, = span {y;}. (2.26)

The global linear functionals /;(.) shall form a bi-orthogonal basis for V,*. Then a finite
element function u, € Vj, can be represented by

up = le‘(uh)%‘- (2.27)

According to the continuity, the finite element space is a subspace of the Sobolev space
of order s. Including also the cases V,, ¢ H* we define the broken Sobolev norms as

1/2
lenllen = (3 lenlitr) (2.28)

TeT

for k € Ny, and for positive parameters by interpolation between these norms.
On finite element spaces on shape regular meshes we can estimate Sobolev norms of
higher order by lower order ones. These are inverse inequalities. For v, € V}, there holds

lonller = by onllr k=120 (2.29)

A proof can be found in any finite element book, e.g. [Cia78|.

2.2.5 Local interpolation operators

We will often have to approximate a function in a Sobolev space by some finite element
function. Therefore we need a mapping I, : H®* — V},. The mapping should be local, i.e.
(I,u)|r should depend on u|# only, where T is close to and not much larger than T

The approximation shall become better as the image norm gets weaker. The optimal

approximation is
lu— Lulpr 2B Flul,z 0<k<I (2.30)
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for proper integers k and [. The classical interpolation operators are nodal interpolation
operators Iy. They are defined by extending the representation (2.27) to

N
Iyu = Zli(u)cpi VueW CV. (2.31)
i=1

The space W is such that the linear functionals /;(.) are well defined on W. By (2.27),
the operator is a projection on V. The large disadvantage of the interpolation operator
(2.31) is the necessary restriction to the sub-space W. If the linear functionals are point
evaluation, then W = H*® with s > d/2 is required. Thus the approximation estimate
(2.30) can hold for [ > d/2, only.

Other possibilities are interpolation operators of Clément [Clé75] and Scott-Zhang
[SZ90] type. They are defined as follows. For each linear functional /;(.) define a set
o; such that [;(u) depends on ul,,, only. It can be a subset of non-zero measure, but also a
manifold. Define the Ly (0;)-orthogonal projection IT¥ onto P¥(a;). Then the interpolation
operator is

N
Iszu =" 1;(TTu)g;. (2.32)

This interpolation operator is a projection if V;|,, C P¥(0;). Two examples to define the
sets o; for the point evaluation functional /;(.) in the node z; are shown below. The set o;
has non-trivial measure in R?, while o; is a one-dimensional manifold.

S

The Scott-Zhang projector is well defined for the Sobolev space L, iff all sets o; have
non-zero measure in R?. Then the approximation inequality (2.30) holds for [ > 0. If the
sets are d — 1 dimensional manifolds, then the operator is well defined on H* with s > 1/2.
Then inequality (2.30) holds for > 1. The upper bound for [ is one plus the minimum of
the full polynomial degree of the fe space and of the local space used to construct TTF.

2.2.6 Partition of unity

The partition of unity method is a useful tool for all part of finite element analysis ([BA72],
[MB96]). We will use it for the analysis of multigrid and domain decomposition methods.
Let {w;} be a decomposition of 2, i.e.

M
Q= Uwi.
1=1
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We set
Hi = diam Wj.

Each set w; is increased to the set {; C € such that
Then there exists functions v; € C* such that

0<wi(x) <1, Y =1,

and
supp v; C €

holds, and all derivatives are bounded by
V¥4l < H.
Lemma 2.6. The multiplication
(iu)(x) := i(x)u(x) Vae x€Q

is well defined on Sobolev spaces H* k> 0. Foru € HE () there holds the estimate

il = ||ullko, + H *|ullog,

2.3 Parameter Dependent Problems

The material presented in this section is referred to [BF91].

2.3.1 Primal and mixed formulation

Let (V,|.|lv, (-, .)v) and (@, ||.||, c(.,.)) be Hilbert spaces. The typical cases are the Sobolev
spaces V = H'(Q) and Q = Ly(Q2) on the domain Q@ C RY. We consider variational
problems: Find u € V such that

Af(u,v) = f(v) VoeV (2.33)

with the symmetric bilinear form A®)(.,.) : V x V — R, and the continuous linear form
f(.): V= R The bilinear form is assumed to have the special structure

A% (u,v) = a(u,v) + &' e(Au, Av). (2.34)

The bilinear form a(.,.) : V x V — R is assumed to be symmetric, continuous and non-
negative. The bilinear from ¢(.,.) was defined to be the inner product in ). The operator
AV — (@ is assumed to be continuous. We assume that AV, the range of A, is dense in
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Q. Tt is not necessarily closed. The parameter € € (0, 1] is typically small. The problem is
of special interest, if
Vo :=kern A

is non-trivial. We will skip the superscript © of A°(.,.), later.
We assume that A'(u,u)'/? is an equivalent norm on V/, i.e.

Null? = a(u,u) + c(Au, Au) < ||ull?.. (2.35)
Norm equivalence (2.35) implies that A%(.,.) is elliptic
lulli < A*(u, w).
It is continuous with the parameter dependent estimate
A (u, u) 2 e fulfy

The theorem of Lax and Milgram ensures a unique solution of (2.33) and the robust stability
estimate

[ullv =[]

Let V}, be a finite element subspace of V. The conforming finite element discretization
scheme is: Find u; € V}, such that

V=

Aa(uh, Uh) = f(vh) Yo, € V. (236)
Using the norm estimates we get the parameter dependent a priori estimate

| — up|lv < e™V2 inf |Ju— vylly. (2.37)
v EVY

On the other hand, we have the robust estimate in energy norm, i.e.

||U—Uh||Ae S inf ||U—Uh||Ae. (238)
v EVY

For the problems we are interested in, the non-robust estimate in ||.||; norm is more
realistic than the robust estimate in ||.|| 4 norm. One explanation is that the approximation
estimates for standard finite element spaces apply in norms related to V. In Section 2.1.3
we have seen that the estimate (2.37) is not only a theoretical lack, but also occurs in
practical computations.
The standard technique is to pass to a mixed formulation. We define the dual variable
pEQ as
pi=c 'Au. (2.39)

We use p in the variational problem (2.33) and get

a(u,v) + ¢(Av,p) = f(v) VoelV. (2.40)
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The weak form of (2.39) is

c(Au,q) —ec(p,q) =0 Vg€ Q. (2.41)
In mixed finite element publications, usually the bilinear form b(.,.) : V' x @ — R defined
by
b(u,p) := c(Au, p)

=c
is used. Combining equations (2.40) and (2.41), we obtain the mixed variational problem:
Find u € V and p € @) such that

B*((u,p), (v,q)) = f(v) VveV,VgeQ (2.42)
with the block bilinear form
B ((u,p), (v.q)) == a(u,v) + c(Au, ¢) + c(Av, p) — £ c(p, q). (2.43)

The mixed bilinear form is well defined for the limit ¢ = 0. A solution (u, p) of (2.42) is in
the space
Xo ={(u,p) € X : Au=¢ep}. (2.44)

This space will play an essential role for stabilization techniques as well as for iterative
solvers. We define the norm

(. ) v see == (ull5 +ellp]2)72

on the space V' x ). It degenerates to a semi-norm for ¢ = 0. The bilinear form B(.,.) is
continuous with parameter dependent bounds for that norm, namely

B((u,p), (v,q))

a(u,v) + c(Au, q) + c(Av,p) — e c(p, q) (2.45)

)
w,u)2a(v, )2 + || Aull. [[qlle + Aol 12l + llpllellalle
1/2

(
(
(alu, u) + [|Aulf? + [Ip]2 + & [Ip]2)
x (a(v,0) + Al + lql? + & lq])?)
lalZ + 112" (lol1% + llall2)?

_ 1/2
et (lull +elpll) " (lollf + < llgll2
571 H(U;p)HVxec H(Ua Q)HVXm-

IA 1A
S

1/2

DN

)1/2

On the other hand, B(.,.) provides a uniformly continuous mapping from [V x £Q]* into
V x e@. This is formulated in the following theorem:

Theorem 2.7. Let g(.) : Q — R bet a continuous linear form with norm ||g
extended mized problem: Find (u,p) € V x @ such that

B ((u,p), (v,q)) = f(v) +9(q)  VY(v,q) €V xQ (2.46)

has a unique solution. There holds the a priori bound

. Then the

2
o* e

lulli + e~ H[Aullg + ellplle < 1~ +<7 g
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Proof. First, we construct a solution by means of the primal problem. Because A : V — @)
is continuous, and g(.) in @*, the functional g(A.) is continuous on V. Let u € V be the
solution of

a(u,v) +e te(Au, Av) = f(v) +e tg(Av) VoelV.
We use the ellipticity of a(.,.) + ¢(A.,.A) to estimate
[ulli + e HIAull? = au,u) + & e(Au, Au)
f(u) + =7 g(Au)
1w [lully + &2 glle 2| A
_ 1/2 _ 1/2
(U1 + = lgll2)"” (i + &7 [ Aw]2) .

A

A

Dividing by (||u||Z 47" ||Au||?)'/? gives the bound for u. By Riesz’ representation theorem
we define g € () such that

We set

It can be bounded by

2
c*

Vet g

ellpll = e Aull + e lglle = £

We verify, that (u,p) is a solution of (2.46), namely for all (v, q) € V x @ there holds

B*((u,p), (v,q)) = a(u,v)+ c(Au,q) + c(Av, p) — e c(p, q)
= a(u,v) + c(Au,q) + c(Av,e H(Au— §)) — ec(e H(Au — §), q)
= a(u,v) 4+ e e(Au, Av) — 7 'e(§, Av) + ¢(G, q)
= f(v)+9(q)

Finally, we proof that the solution is unique. Otherwise, a non-trivial solution (u, p) of the
homogenous problem would satisfy

0 = B*((u,p), (u, Au—p))

a(u, u) + c(Au, Au — p) + ¢(Au, p) — e c¢(p, Au — p)

a(u, u) + c(Au, Au) + £ c¢(p, p) — € ¢(p, Au)

a(u, u) + c(Au, Au) + ¢ ¢(p,p) — /2 c(p, p) — £/2 c(Au, Au)
a(u,u) + 1/2 c(Au, Au) + /2 c(p, p)

lull + e llplle > 0,

Y v v

and the proof is complete. O
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Up to now, there is no profit of the mixed form. One reason of the problem is that A
has not necessarily a closed range. Let us assume that ||.||go is a norm on ) such that

c(p, Av
Ipllgo ~sup Wy e o (247
vev vy
It is always possible to define the norm ||.||g,0 by the supremum above. In general, ||.||g.0

is a weaker norm than ||.||.. Per definition, A has a closed range in
Qo := AV e, (2.48)
The bilinear form of the limit € = 0 is continuous and stable on V' X Qy:
Theorem 2.8 (Brezzi). The bilinear form
B%((u,p), (v,q)) = a(u,v) + c(Au, q) + c(Av, p)
1S continuous, 1. e.
B ((u.p), (v, q)) = (lull} + 16020l + llallg0 ", (2.49)

and stable, i. e.

L B((wp).(00)
p 2 2 V12 &=
uevipeqo ([[ullf +1[p[3,0)
on the space V x Q.

(ol + llall.0)' . (2.50)

The theorem is the classical theorem of Brezzi. See [BF91], Prop 1.3.

For the case € > 0 we need a norm depending on the parameter £. We define

1/2
Ipllq = lIpllg.e := (Pl +ellplle) ™ (2.51)

This norm is equivalent to ||.||. for fixed € > 0, but not necessarily uniformly equivalent
with respect to e. We define the product space

X=VxQ

with the norm
1w, )l x = (ull3 + lIplg) "

The following theorem states that B¢(.,.) provides an uniform isomorphism form X to X*:

Theorem 2.9. Assume the equivalence of norms (2.35) is true. Let B*(.,.) and |.||x be
defined as above. Then the following is true:

e The bilinear form B*(.,.) is uniformly continuous on X, i.e.

B*((u, p), (v,9)) 2 |[(wp)Ix (v, @)llx  V(u,p) € X, V(v,q) e X.  (2.52)



2.3. PARAMETER DEPENDENT PROBLEMS 27

e The bilinear form B*(.,.) is uniformly stable on X, i.e.

B*((u,p), (v, q))
oo [ p)llx

t ||(an)||X v(an) e X. (253)

Proof. The proof of the continuity follows estimate (2.45). But now, we have the improved
estimate

c(Awv,
c(Au, q) < ||u|ly sup (Av, q)

= ||u q
e ||v||V || ||V|| ||Q30

for the mixed term. Thus we get uniform continuity. Now, fix (v,¢) € X. By definition of
the norm ||.||g,0, there exists a © € V such that

(A7, q)
- = llallg.o-
[kt (3%

We are free to scale v such that
[9llo = llallgo  and  c(AD, q) = [lgllg.0-
Let (u,p) be the unique solution (by Theorem 2.7) of
B*((u,p), (w,r)) = (v,w)y + c(Av, ) + € c(q,r) V(w,r) e X. (2.54)

We will prove that (u,p) is feasible to verify (2.53). First, we see that

B*((u,p), (v,q)) = (v,v)v+c(AD,q) +ec(q,q) (2.55)
= vlly + llallpe + < llall?
= ||(v,9)|%-

By the definition of B?(.,.) and (2.54) there holds for all (w,r) € X:

B ((u—v,p), (w,r)) = B((u,p), (w,r)) = B((9,0), (w, 7))
= (v,w)y +c(Av,r) +ec(q,r) = [a(v,w) + c(Av, )]

= (Ua w)V - a(ﬂa w) + SC(q, T)'
We apply Theorem 2.7 to bound
lu = 6[[5 + e llpll2 < floll5 + 1205 +<llallZ.
and further

1915 + llolly + < llall2
oIy + llallgo + < llalle
= (@9l

lull¥ + £ [Ipll2



28 CHAPTER 2. FINITE ELEMENT THEORY

We are left to estimate ||p||g,0. Applying test functions (w,0) to (2.54) we get
BE((u, ). (w,0)) = alu, w) + c(Aw,p) = (w,v)y  YweV,

and thus

Ipllgo = sup c(Aw,p) — sup (w,v)y — a(u, w)
) weV ||w||V weV ||w||V

= lollv + llullv = [(v, @)l

We got ||(u, p)||x = [[(v,q)]|x. Combining with (2.55) we get

B ((wp), (v.0)  |@wal% _
ol = lwal ol

and the proof is complete. O

There are alternative assumptions to provide an uniform isomorphism. The weakest
conditions are formulated in [Bra96].

2.3.2 Stabilization techniques

An advantageous property is the ellipticity of the bilinear form a(.,.), i.e.
alu,u) > |jull¥ VuelV. (2.56)

This is not really an additional assumption. Due to (2.35) it can always be constructed.

Let us split ¢(.,.) into
e e(u,v) = é(u,v) + e~ "e(u,v)

such that (@, ||.||z) is a Hilbert space, and
a(u,v) == a(u,v) + ¢(Au, Av)
is elliptic on V. One possibility is to set é(.,.) = 1/2¢(.,.). Then the bilinear form

A (u,v) = a(u,v) +e 'e(Au, Av)
= a(u,v) + &(Au, Av) + & 'é(Au, Av)
= a(u,v) + e 'é(Au, Av)

is a splitting with elliptic part a(.,.). We substitute a(.,.) by a(.,.) and é(.,.) by ¢(.,.),
and return to a problem of the original structure. This approach can be found in [AB93].
There are many possibilities to construct the splitting. It may depend on the finite element
mesh, as well as on the parameter.

An alternative approach (used e.g. in [CS98]) with the same result is the following.
The solution (u,p) € X of the variational problem

BE((U:p)a (U: q)) = f(v) v (U, Q) € X



2.3. PARAMETER DEPENDENT PROBLEMS 29

is in the space Xy, i.e.
Au—ep=0.

Thus, (u, p) solves also the stabilized problem

B ((u,p), (v,q)) = f(v)  V(v,q) € X

with the stabilized bilinear form

B*((u,p), (v,9)) = B*((u,p), (v,9)) + &(Au — ep, Av — &q).

The forms ¢(.,.), é(.,.), and a are the same from above. One verifies that the bilinear form
B#(.,.) has the alternative representation

B((u,p), (v.q)) = alu,v) + &(Au, Av) + ¢(Au, q) — £ é(Au, q)
+ ¢(Av,p) — e &(Av,p) — ec(p,q) +*Eé(p, q)
= a(u,v) + é¢(Au, q) + é¢(Av,p) — e é(p, q).
After renaming a(.,.) to a(.,.) and ¢é(.,.) to ¢(.,.) we are back at the original structure.
An other version of stabilization is analyzed in . It makes the discrete stability condition
hold for any finite element pairing. But the technique cannot be applied in primal variables.

For relations between stabilization methods and bubble functions see [BBF*92], [Hug95],
[BFHRY7].

2.3.3 Non-conforming and mixed discretization techniques

We have seen already in Section 2.1.3 that conforming discretization methods for parameter
dependent problems may deteriorate as the parameter gets small. The key to construct
robust discretization schemes is the relation to mixed finite element methods. Let

Vi, CcV and QnCQ

be finite element spaces build on the shape regular triangulation 75 of the domain 2. We

set
X = Vi x Q.

The idea of the discretization is the reduction of the operator A. We define the projection
Py Q — Qp by
c(Bpp.an) = cp,an) VP EQ, Vau € Qn.

The reduced operator Ay, : V' — @, is defined as
Ay = PEA.
We define A5(.,.): VxV = R as

A5 (u,v) i= a(u,v) + & te(Apu, Apv). (2.57)
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The non-conforming finite element problem is: Find u;, € V}, such that
A (up,vp) = f(uop) Vo, € V. (2.58)
We assume that A} is stable, i.e.
Nunll? < alup, up) + cn(Apun, Apuy) YVup € V. (2.59)

This is in general an additional assumption. It is harder to fulfill as the space V), gets
larger and @y, gets smaller. If the bilinear form a(.,.) is elliptic on V', then (2.59) is fulfilled
trivially, and the space V}, may become arbitrarily large. This might be the reason to apply
stabilization techniques.

We define the mixed form

By ((un, pr), (vn, qn)) = alun, vy) + c(Apup, qn) + c(Apon, pr) — c(ph, qn)

and formulate the equivalent mixed finite element problem: Find (up,ps) € X}, such that

B}EL((Uh:ph): (Uh;Qh)) = f(vh) v(”ha‘]h) € Xp.

The variational definition of Aj gives

c(Apup, qn) = c(PyAup, qn) = c(Aup, qp).

Thus Bj(.,.) coincides with B®(.,.) on the finite element space X}, and the mixed finite
element problem with the original form B*(.,.): Find (up,ps) € X}, such that

B*((un; pn), (vnyqn)) = flon) V(v qn) € X

is equivalent to the non-conforming primal problem (2.58). Theorem 2.7 can be applied
to prove stability and continuity of B®(.,.) on the space (X, ||.|[vxee), but with bounds
depending on €.

The norm ||.||x provides an uniform estimates for stability and continuity of B°(.,.)
on X. We need an additional assumption to obtain an uniform stability estimates on the
subspace Xj,.

Theorem 2.10 (Fortin’s criterion). Assume there ezists an operator

IF.-v-wv (2.60)
which s continuous
17l <1 (2.61)
and fulfills the property
(AT u, qn) = c(Au, q3) YueV, Vq, € Q. (2.62)

Then the bilinear form B*(.,.) is stable on Xy, i.e.

BE
sup ((Uh,ph), (Uhth))
(up,pr)EXp H(Uh:ph)HX

= [(va,an)llx V¥ (vh,qn) € Xn. (2.63)
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Remark 2.11. We can consider the parameter dependent problem as penalty approxima-
tion of a constrained minimization problem. Then property (2.62) means, that the con-
straints Au = 0 should be preserved by the Fortin operator in mean.

Proof. In analogy to (2.47), let ||.||g, 0 be a norm such that

c phaAvh
lpnllQ,.0 =~ sup g Vp € Q. (2.64)
VREVR ||vh||V
We define the parameter dependent norm
1/2
IpnllQ, = lIpllQne = (IPallg, 0 +ellpallz) ™ (2.65)

By Theorem 2.9, B(.,.) is stable and continuous on X}, with respect to the norm
Illvxg,- In general, the norm ||.||g, is weaker then ||.||g, because the supremum is taken
over a smaller space. But, if there exists a Fortin operator I}", the norms are equivalent.
To prove, we fix a p, € Q. Let u € V such that

c(Au, pp) - sup c(Av, pp)

||u||V - = ||ph||Q,U'

vev  lvllv

Then, we can estimate

c(Avp,pn) _ c(ALfu, pr)
IPallgno = sup =
g omevi llvnllv 17 ullv

c(Au, pp, c(Au, pp,
_ upn) clhupn)
Tl = Tally

Thus, the norms ||.|lvxg, and ||.|y«xg are equivalent, and B°(.,.) is stable on X, with
respect to the norm ||.||y. O

Fortin’s criterion is based on the limit problem with € = 0. In Theorem 2.10 we proved
equivalence of ||.||go and |.||g, 0 to conclude that ||.||g and ||.||g, are equivalent. We will
consider problems, where the norms depend on the parameter. Then, the later norms can
be equivalent, but the former are not. The term ¢||.||> may have a stabilizing effect. A
relaxed version of Fortin’s criterion can handle that case:

Theorem 2.12 (Relaxed Fortin’s criterion). Assume, we can split Qy, into
Qn = Qno + Qn,

with Qpo C Qn and Qpy C Qn. The splitting is assumed to be stable in the norm ||.||., i.e.
for all p, € Qy there exists pg € Qno and py € Qp such that

pr=po+p  and polle + [Ipille = [Ipnlle: (2.66)
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We assume for py € Qn,o there holds the estimate
Ipollo < "2 [Ipolle- (2.67)
Assume that the Fortin operator IF of Theorem 2.10 fulfills the relazed condition
c(AIFu, q) = c(Au, q1) VueV, Vg € Qna (2.68)

instead of (2.62).
Then the form B¢(.,.) is stable on X}, with respect to the norm ||.||x.

Proof. Again, we have to prove that

Ipullo = llpallq,

holds for p, € Q. Let p, = po + p1 such that (2.66) holds. Then there holds

Ipnlle < llpollq + [lpille

A
~ lpollq +sup P2V
vE

—r— e lpille.
v vl

We use the Fortin operator like in the previous theorem to reduce the supremum to the
finite element space:

C(pla A"Uh)

Ipalle = lpolle + sup ————= +&"*|Ipi .
VR EVR ||vh||V

= lpolla + lIpalluo + " lpile-

We proceed with the triangle inequality applied to p; = p — pg, the estimate ||.||g,.0 <
I llo.0 < |I-]lg, assumption (2.67) and assumption (2.66):

lpnle = lIpolle + ll2lleno + poll@uo +%pi ]l
< lpolle + 2l Qo+ lp ]l
< elwolle + llpllgno + &2 llpalle
< pllguo +=llpll.
= ||p||Qh'
The theorem is proven. O

A direct application of the Fortin operator I} is as continuous interpolation operator
for the parameter dependent problem in primal variables:

Theorem 2.13 (Robust interpolation operator). Let I} be an operator as in Theo-
rem 2.12. Then it is bounded uniformly with respect to the energy norms

||[fu||Ah =< JJulla YuelV. (2.69)
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Proof. We fix u € V', and estimate the terms of
125wl = My ulle + e~ | Andy ullZ.
The first one follows by continuity of ], i.e.
15l = I ullf = (ully = [lull%:
To estimate the second term, we use the |[|.||.-stable decomposition of Qp:

C(A/\h]’lljlu“aph)2

||AhIFu||2 = sup
h ‘ PhEQHR ||ph||g
S s C(Ahlf;t,po +1021)2
90€Q,0 ||pU||c + ||p1||c
41€Qp 1

The supremum is taken at the solution of the variational problem

c(po, q0) + c(p1.q1) = C(AhI;IjU, qo + q1) Vo € Qno, @1 € Qn,1,
and evaluates to

c(po. po) + c(p1,p1).

The variational problem consists of two decoupled problems. The same variational prob-
lems and the same value are obtained by two decoupled supremes:

c(ApIfu, qy)? c(ApIfu, q1)?
c(po,po) + ¢(p1,p1) = sup (h—QO) sup % (2.70)
q0€QH,0 HqUHc q1€QH,1 quHc
To estimate the first term, we use ¢(Ayv, qn) < ||v||lv|l¢]lo and assumption (2.67):
c(Anly u, o)’ 175 ull¥ llgolIZ
sup v wl g, M ulvlnle ooy e
q€QH,0 ||q0||c q0€QHK 0 ||q0||c
To estimate the second term, we use (2.68) and Cauchy-Schwarz for ¢(.,.):
c AhIFuaql 2 c Ahuaql 2
qup @) - ARG e g2
G1EQR,1 HQIHC G1E€EQR,1 quHc
The combination gives
e ARy I = lull
hip I A
and the theorem is proven. O

Assume stability of B®(.,.) on X} with respect to the norm ||.||x. Then the finite
element approximation is close to best approximation, i.e.

(= =gl % inf 0= vnop = )

(Vh,qn
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To obtain a rate of convergence, we have to leave the natural space X. Assume, there
exist spaces
VtcvcVvs and QFcCq

with corresponding norms ||.||y+, ||.||yv-, and ||.||g+. The embedding is assumed to be dense
and continuous. The standard case is VT = H*(Q), V™ = Ly(Q), and QT = H'(Q). Let
IV and I,? be interpolation operators fulfilling the approximation and continuity properties

ot u— I ully- + lu—Iully = Aljully (2.71)
W — L ully- + Ly ully < flully (2.72)
1LY ullv- = (Jullv-, (2.73)
and
lp—I?pllg = Hlipllo+ (2.74)

for proper u and p. The parameter i depends on the finite element space. Usually, it will

be the mesh size h = h. If we consider problems of less then full elliptic regularity, we set
h = h* with a € (0,1).

The dual norm ||.||(1-)- is defined as usual
f(v)
[fllv=)- == sup :
vev— [[vllv-

and the dual space is
(Vo) ={f eV :[[fllw-) <oo}.
We have proved for f € V* the solution is in (u,p) € V X Q. Now we assume that a

more regular right hand side f € (V7)* provides a more regular solution (u,p) € V* x Q™,
and there holds the regularity estimate

[ullv+ +lIpllor = Wfllo-)-- (2.75)
We finish the section about discretization by collecting the following theorems:

Theorem 2.14. Let A*(.,.), B°(.,.) and A;(.,.) be as defined above. Assume there holds
equivalence of norms (2.35), the discrete counterpart (2.59), and there exists a Fortin
operator as in Theorem 2.12. Then the discretization error is bounded by the approximation
error uniformly in e € (0,1):

[(w = un,p = pn)l[xp = ( iﬂf) [(w = vn, 0 = an)[[x,n- (2.76)

Uhsqh

If, in addition, regularity is available, we obtain convergence rate estimates

Theorem 2.15. Let the assumptions of Theorem 2.14 be fulfilled. Additionally, assume
that the reqularity estimate (2.75) is true. Let I} = (I,Y,I,?) be an interpolation operator
fulfilling (2.71) and (2.74). Then there holds the a priori estimate

Wl = unllv- + llu = unllvn + lp = prllon = Blfllo-)-- (2.77)
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2.4 Some Examples

We consider some parameter dependent problems fitting into the abstract framework.

2.4.1 The Timoshenko beam

In Section 2.1.3 we shortly considered the beam model of Timoshenko. Now, we apply the
abstract machinery to this example. The domain ( is the interval (0,1), and the space V'
is [H'(Q)]?. We define the bilinear form

A ((w, B), (v,m) = (B',1)o + 172(w" = B,0" = n)o. (2.78)
The small parameter is the square of the thickness
e =1t
The space for the dual variable is Q = Lo(2). With the definitions

a((w, B), (v;n) = (B 1),
c(p,q) = (P;qo,
Aw,B) = w' -,

the bilinear form has the structure (2.34).
The kernel of the semi norm ||.||4 consists of the functions

Voo = {(w, B) = (a + bz, b) : a,b € R}.
We obtain the closed space V' C V be posing enough boundary conditions such that
Voo NV ={0}.

We check the ellipticity of A'(.,.) = a(.,.) + ¢(A.,A.) on V. First, we verify

1w, B = [lw']ls + llwlls + 1816 + 11815
< 2[jw' = BIIg + 218115 + llwlig + 18115 + 1315
= llw, B + 1 (w, B)l5.

Theorem 2.4 proves that the norms ||.||y and ||.|| 41 are equivalent on V.
Following the abstract recipe, the dual variable is

p=c"'Aw,f) =t"*(w' - B).
The bilinear form B¢(.,.) evaluates to

B*((w,B,p), (v.1,9)) = (B .1)0 + (w' = B,¢)0 + (V" — 1,p)o — t*(p, q)o-
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We define the norms on the dual space and on the product space

Iplle = lpllo,
Iw, 8.p)llx = (ICw, B+ IIpll3) .
We have to prove norm equivalence (2.51), i. e.
D, w' — B o
ol = sp LTz vge =1L,

(w,B)eV ||(’U), 5)”%

Clearly, The left hand side dominates the right hand side. To verify the other direction,
we have to check the LBB condition. We will prove it for boundary conditions leading to
the smallest primal space V.

Theorem 2.16. Let Q0 be the interval (0, L) with L < 1. Then there holds the LBB
condition ,

('U) _ Bap)ﬂ

sup —

wgyerm e 1wl + (1Bl

On the reduced space LY = {q € Ly : [ ¢ = 0}, there holds the LBB condition uniformly in
L, even on the reduced space H} x {0}:

= Lipllo  Vp e L(Q). (2.79)

(w’, p)o

= plle  Vp e LYDQ). (2.80)

fnpdf .
Jo §(L = &) dg

w(z) = / ") + B(e) de.

(L - SE),

It fulfills " Bde = [} pd€. There holds
181 = L7 1Bl = L7 [Ipllo,
and w € Hj with w' = p + 3 such that
lwlls = llp+ Bllo = Ip[lo-
This choice gives the LBB condition, namely

’LUI— ’ ’ 2
( ﬁ p)O o (p p)O . ||p||0 i LHpHO

lwlly + 1811 Tlwlly+ 1181~ llpllo + Z="pllo

If p € LY, then the choice gives 8 = 0, and no factor L enters the estimates. O
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Next, we choose finite element subspaces for V' and (), namely piecewise linear elements
for the primal and piecewise constants for the dual variables, i.e.

Vh = {Uh € V. Uh|T € [PI]Q},
Qn = {an€Q:qlre P}

This leads to the discrete operator

Ap(wp, Br) = (w), — 5h)h-

The non-conforming bilinear form Aj(.,.) is

A5 ((wn, Br), (o)) = By mi)o + 72 (wh = Ba' s oy — 1 o

Since the part a(.,.) was not elliptic on V, we have to check ellipticity of A}(.,.) on V},.
—h .
We use that wj = wj, and estimate

1Cwn, B = N (wn, B)le = ||52||3+ lwh, = Balls
—h
= (B3 + lh = B + Bu — B 13 = B3 + Ny, = B 113 + 118 — Ba" I3
< NIBHIE + leh = B l13 + B 18412 < 1 Cwn, Bu)% -

We will construct the Fortin operator I}" by
=11 —1. (2.81)

The operator I} is the nodal interpolation operator fulfilling optimal approximation esti-
mates

12 (w, B) 11+ B~ (w, B) = Iy (w, B)llo < Il (w, B)]|1.

The operator I,Ij’? fulfilling the constraints is constructed as follows. Let Mj = {M} be a
macro triangulation by combining two by two elements. We set M = (77,T5). Then

(wn, Br) == 1, *(w, B) (2.82)

if
wp =P =0 on IMVYM e M,

h
/B;ﬂlx-/}\l{(ﬂ—m')dx
[ wax= [ w5+ 5 ax

One checks that the construction is possible, and simple scaling arguments give

htlwallo + [1Ballo < llwlly + [1B1]o. (2.83)
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We see that both variables scale differently. Especially, the estimate [|8||s < h™"||Bullo =<
h™!'||w||; seems troublesome. Fortunately, the nodal interpolation operator fulfills addi-
tionally

/ (w— I"w) dx = 0.
M

Thus, for
(wns B) = L7 (1 = 1;7"), (w, B)
B, does not depend on w. This leads to the improved estimate || 8|0 = ||5]|0, and one gets
o F,2 F,l
continuity of I, (I — I,"):

[Cwn, Bu)lle = B~ lwnllo + A" Bullo
= W = L wllo + AT = Ty Bl
=

[[(w, Bl

Thus also the Fortin operator I} is continuous with respect to the norm ||.|[y-. An addi-
tional property is that the operator maps (w, 0) to (wp, 0). Thus, there hold corresponding
stability conditions for the finite element space V}, as proved in Theorem 2.16 for V.

There is full regularity available. For the extended problem: Find (w, 8) € V such that

A((w, B), (v;m) = (f;v)o+ (0m)o  V(w,n) €V

there holds
[wlla +1[8ll2 = 1fllo + ll6][o-

A proof is found in [Arn81].

2.4.2 Nearly incompressible materials

We consider the problem of linear elasticity. The problem is to find u € V := [Hj 5 ()]
such that

2u/e(u) : e(v)dx—i—)\/divudivvdxz / Mo dx, (2.84)
Q 0 0

with the positive constants A and p of Lamé, the strain operator e(u) := 0.5(Vu+ (Vu)T),
and the volume force f € [Ly(Q)]2. We are interested in the nearly incompressible case,
i.e. the Poisson ration v is close to 0.5. Then the parameter € := 2u/\ becomes small.
After dividing by 24, the primal bilinear form Af(.,.), the components a(.,.) and ¢(.,.),
the operator A, and the mixed bilinear form are

Af(u,v) = (e(u),e(v)) + e (divu, divw),,
a(u,v) = (e(u),e(v))o
cp.a) = (P, 0o
A = div,

B*((u,p), (v,q)

~—
—~

e(u),e(v))o + (divu, g)o + (divy,p)o — & (p, @)o-
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Due to Korn’s inequality, and sufficient boundary conditions, a(.,.) is continuous on V.
We set

Ipllg = lIpllZ,/m + €llpIlL,

for pure Dirichlet boundary conditions, and ||p|/q = ||.|[1, else. The LBB - condition of
Stokes’ problem

di
ue[HL(9))2 [ain

is non-trivial, see [DL76]. On a convex polygonal domain and pure Dirichlet boundary
conditions there holds the regularity pick up

lullz + 2l = 11£llo

uniformly in the parameter €, see [BS92c|, and [KO76] for the limit problem of Stokes.
The stability theory for finite element discretization of Stokes problem seems to be done
[Ste84], [BF91]. A stable finite element pairing for Stokes is the combination P, — Py. Thus
we set

Vh = {Uh eV: Uh|T € ['PQ}Q},
Qn = {G€Q alre PU}-

The non-conforming bilinear form in primal variables evaluates to
A (u,0) = (e(u), e(v))o + 2 (diva, dive)o.

Because af.,.) is elliptic on V, the reduced form A5 (u,v) is elliptic as well, and the finite
element always has a unique solution. The stability on X, is verified by the construction
of a Fortin operator adjusting edge bubbles (see [BF91], pp 211):

IF =0+ 01— 1.
The operator I,f’l shall have full order of approximation, i.e.
BN = I Dullo + 114 1 = flalls.

Possible choices are Scott-Zhang operators with set ¢ C T, or only ¢ C dT. The other
operator 15’2 .V =V}, is defined by

(I[%u)(z) =0 Vz vertex of 7,

and

/If’2uds:/uds Ve edge of Tp,.

It fulfills
12 Pully 4+ R 2 o < [l + B fulo.

Combining both estimates, one obtains continuity of I,Ij’g in energy. The construction is
important to verify stability on subspaces. Other stable elements for problems of elasticity
are found in [Ste88]. Robust and non-robust elements are found in [Fal91].
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2.4.3 The Reissner Mindlin plate

We use the Reissner Mindlin plate model with the discretization of [CS98]. In the primal
space V' = H}(Q) x [H}]* we search for the transverse displacement w and the vector of
rotations 3. The scaled problem is defined by

k
ab(ﬁ,n)+t—2(Vw—5,Vv—n)g = (g,v)o V(v,n) €V.

The bilinear form

(e(8). e(n))o + 1 (div B, divn);

| =

a’(B,n) =

is related to bending energy. The small parameter is the square of the plate thickness ¢.
The transverse load is Gt3g. Further, k is the shear correction factor, v the Poisson ratio,
G the shear modulus and e(.) is the linear strain operator. We extend the linear functional
(g,.)o onto V" and set

flu,n) =g(v) +d(n)  V(v,n) eV
With the definitions

A = Vw-—-3,
e = t*/k

the bilinear form A¢(.,.) has the structure of (2.34). The dual variable, the scaled shear
force is

_ k
p=c AW, f) = (Y - )
The mixed form B°(.,.) evaluates to

2

B ((w. 6.). (0:1,0)) = @"(B.n) + (Vo = 1. )0 + (Vu = B,0)o = = (prae

In [CS98] results of [BR80] and [AF89] were extended to prove the following regularity
theorem. Let (g,0) € Ly. Then the solution (w, 3, p) of the mixed problem

BE((waBap)a(vanaq)): (g,v)0+(6,77)0 V(U,n) EVVPEQ (285)

has a representation
wW = Wy + W,

such that

lwolls + & Hlwell2 + 1B2ll + ¢ lIplls + lIpllo = llgll-1 + % ligllo + 116]lo (2.86)
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Wh Bh Ph

Figure 2.2: Finite elements for Reissner Mindlin

holds.We define the norms

[(w, B) [+ = [wllisw + 1Bl545 = ,_inf {llwoll3 + t~2|w,l3} + 118113,
=wo+wr
[(w, B3 = |wlly—w + 18l5-5 = inf  {JlwollT + 72w |5} + 18]35,

wW=wo+wWr

lpllgs = llplg +#*[lp7.

The dual norm to [|.|[y~ can be evaluated explicitely:
9(v) +4(n)

1/2
it ool +~2ar 13+ 1913

v=v0+Ur
g(vo) +g(vy) +0(n)
vowrB {[lvollf + ¢l [wr (5 + 18115}

1(g,0)||v-y- = sup
(v,m)EV ™

1/2°

The supremum is taken at the solution (wg, w,, 3) of the variational problem

(U)OavO)l + t_Q(wT'a UT')O + (ﬁa 77)0 = g(UO> + g(vr) + 6(77) VUOa Up, 1]

and is equal to {[lwo|[} +t*[lw[[§ + B3}/ = {llgl; + £ [lgll§ + [l8]]3}'/*. Thus we
computed
(g, O)[fv-y- = Nall2 + 1lglls + 1131[5- (2.87)

This is exactly the norm on the right hand side of (2.86). The estimate of both components
of the splitting w = wy + w, give (w, ) € VT, and the estimate

1w, B)l[v+ + lIpllg+ = 11(g, 0)llv-

The discretization of [AB93] and [CS98] uses P, elements for the transverse displace-
ment, P;” for the rotations and P, for the shear, see Figure 2.2. The space P, are the
piecewise linear functions enriched by the element bubbles A;A2A3 in barycentric coordi-
nates. These spaces are non-nested due to the bubble functions. Following [CS98], the
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bilinear form B*(.,.) is replaced by the stabilized form

B((w,B,p), (v,n,q)) = B((w,B,p),(v,n,q))
k ( 12 t2 )
+ Vw—-p—-—p,Vo—-—n—-—q]| .
k 0

t2 4 h? k

In [CS98] a local mesh size is used. For only technical reasons, we restrict us to a global
one. In [CS98] the stabilization parameter p is assumed to be in (0,1). The limit case
it =1 can be allowed as well.

For the choice of piecewise constant elements for (), the discrete shear operator can
be computed locally and evaluates to

An(wn, B) = (Vwn — Bu)

where " is the element-wise averaging operator. The reduction to the positive definite
problem gives the form

h

ku
A ((wns, Bn), (on,mn)) = a” (B, mn) + 1 55 (Vwn = Br, Vo — nn)o (2.88)
k k ] !
<t_2 - m—fﬁ) (Ve =", Von ="

By the stabilization trick, a part of the shear energy is assembled with full integration. In
[AB93], a constant part of the shear energy is used for stabilization. By the mesh dependent
stabilization, Chapelle and Stenberg could apply the duality trick. Also for multigrid
methods, the mesh dependent versions seems to be advantageous, from the theoretical as
well as practical point of view.

Chapelle and Stenberg use p < 1. Thus, also for mesh sizes h < t a reasonable part of
the shear energy is reduced. By the choice of 4 = 1 the non-conforming form converges to
the original form A¢(.,.). Chapelle and Stenberg proved the discrete stability conditions
to obtain optimal a priori bound. We will use the mixed machinery to obtain equivalent
results. The choice ;4 = 1 is independent of technique.

We have to write the bilinear form (2.88) as

A5 ((wn, Br), (vn, 0n)) = al((wn, Bn), (vn, 6n)) + &~ (A (wh, Br), A (vn, 0n)).
Thus, we are forced to set

a((wns Bn), (vn: ) = a’(Bny 1) + h2k+ 2 (Vwn = Br, Vup, —1mn)o
k ki
c(ph,qn) = € <— - 7) (Phy qn)o-

2 h2 2
We had set ¢ = k/t? already. Thus we obtain

e e
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Here is one difference between p < 1 and p = 1. For the first case, |.||. is equivalent to
||.]|lo uniformly in A and ¢. For the second one, there holds

Ip[I7 2= min{1, A*/¢*}|p]l5.
We define the norm [|.||y such that a(.,.) is elliptic and continuous, namely

1

m“vw — Bll5- (2.89)

1w, B = 1IBIIT +
The norm ||.||g is defined such that we obtain stability by definition, i.e.

c(Vw — 3, p)?
pld = sup SVUZBp)

+<€p2.
S e el

The first part, the norm ||.||g,0, can be estimated from above by

(A, ), )
IPlos = S0 =l Ay

o V0= Bl lal.
BT+ (<) [Vw = Bl
N\ 2 T P

P Gt v — Al

< (h+1) gl

(2.90)

A

We use the (relaxed) criterion of Fortin to prove stability of B%(.,.) on on the finite

element space X;,,. We split

Q= Qper UQpsy
such that

o= J T Qpst = Q= Qs
TeT :hr<t

Accordingly, we split

Qn = Qn<t + Qn>t

such that

Qn<t = {0 €Qn:qn=0 on Qpy}
Qrst = {qn €Qnr:qn=0 on Q).

This splitting is defined for general shape regular triangulations. We restrict ourself to
quasi-uniform meshes for a shorter notation, only. The space (),<; belongs to elements,
where the locking effect already disappeared. For gy € Qn<; we have due to (2.90) the
bound

lgolle = llaollgo + & laolle = (A + 1) llolle + " laolle < /*l|go]l..
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This is condition (2.67) of Theorem 2.12. We have to construct the Fortin operator such
that I : V' — Vj is continuous, and (wy, B) = I} (w, B) fulfills

C(th - ﬁha QI) = C(V’w - 6; ql) VQI € Qh>t-

The space (Q,~; consists of piecewise constant functions on elements with A > t. We build
the operator by adjusting the bubbles of 5, = (6,(11), B,(ZZ)). Let by be the element bubble
function on the triangle 7. Then we define

/8}(1) = Z (bT, ].)T a bT'

TeT
hp>t

This local projection is Ly stable

||/Bh||039h>t = ||V’U) - ﬁ||059h>t‘

The function g, depends on (w, ) only, thus there holds

|Qh>t

1Bl + (B + 1) Bull

h=1Bnllo

hHIVw = Bllo.,s.

(h+1) 1 Vw = Bllo = [[(w, B)|lv-

110, Bu)llv

LA T T TA

By Theorem 2.9 we obtain stability of B%(.,.) on X}, and thus the best approximation
property

[(w, B) = (wn, Bu)llv + [0 = palle = inf|[(w, 5) = (v, m)llv + lp = anll

(VhsMhqn)EXp

holds. In (2.90) we have estimated the [.||g,0 norm from above. For a finite element
function ¢, € Q) we can estimate it from below. Therefore, let 3, € V},; in the space of
element bubbles such that

/ﬁhdx:/qhdx YT eT
T T

Then there holds

Vw — qn)e 2
lanllon = sup (Vw—Fa) o B, ) lal:

> > : (2.91)
wsyev [[Bllr + (h+4)7H[Vw = Bllo = h=Y[Bullo —  [lanllo

If one combines (2.90) and (2.91) one gets sharp bounds between ||.||g and |.||o. One has
to distinguish the cases © < 1 and p =1, as well as h < t or h > t. We collect the results
in the table below. The estimates take over to locally refined meshes.
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p<l p=1

h>t|h<t|h>t|h<t

lanlle/llanllo | 1 1 1 | h/t

lanllgo/llanllo | A <t h <h
lanlle/llanllo | N t h h

Next, we will investigate approximation estimates and inverse estimates between the
spaces V7, V, and V', and between @ and Q. Let

Vo 1V,

]]‘l/ = (Ih “, I, ﬂ)

be Scott-Zhang type projection operators with the order of approximation
|w— 1wy < BF(Jw, 0<k=<1 k<I1<3,

18 =18l < B-F||8]) 0<k<1, k<Il<2

The operators Qz/’w and I,Y’B have to preserve quadratic and linear functions, respectively.
The operator I,* performs element wise averaging and fulfills

lo = Lialle < P llglle - 0<k<i<1.
We need a different characterization of the norm |||y -.w.

Lemma 2.17. Let I} : V=" — V" be a local reqularization operator at length scale t. It
shall fulfill

t lw = Lrwllo + w0 [lwll
[T wllo + [T wlly = [lwllo.
Then the following norms are equivalent:
[wlly-w = [ Fwlli + 7" [Jw = wllo. (2.92)

Proof. One estimate follows directly from the definition of the norm ||.|[y-.«, namely

lwlly—w = inf  {[Jwolly + 7 w,llo} = (15wl + 7w — Lwlo.
W=wWo+wWr

To estimate the other, take a splitting w = wy + w, such that
lwolls + = lwyllo < JJw]ly-10.
Then we use the triangle inequality and the assumptions made for I}¥ to estimate
11wl + 7 lw = LPwlle < |11 wolh + 7" [Jwo — Iwollo
H L w1+ 7" [Jwr = L, g
[woll1 + =" {Jwr]lo

[[w]ly—.
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For finite element functions, the splitting in the norm can be reduced to the finite
element space:

Lemma 2.18. On the finite element space V,”, the following norms are equivalent:

lwnllV-w = _inf - {{fwnallF + ¢ lwnsllo} (2.93)

wp=wp, 1 +wh,
wh,l,whﬂevﬁu

Proof. The right hind side trivially dominates the left hand side. Now, let I}’ be a Scott-
Zhang interpolation operator to V;. It shall be continuous in ||.||o as well as ||.||;-norm.
Let I}” be a operator feasible for Lemma 2.17. Then the splitting of w, € V},

wpy = I T wy, and wpo = I;) (I — I")wy,
is chosen to verify the other estimate:

: 2 —2 2 < w W 2 —2 w W 2
oonf el 2 wnal} 2 Tl 2 5T - Il
wp 1,wp 2 €EVRY

[ wn 3+ 72 12 = 1) wallg

=
2 lwally-w.
The last inequality followed by Lemma 2.17. U

Theorem 2.19. The interpolation operators I} and I,? have full order of approzimation,
namely

h [ (w, B) = I (w, B)llv- + [[(w, B) = I, (w, B)[v = hl(w,B)[lv+  (2.94)
h=H|(w, B) = Iy (w, B)lv— + 11} (w, B)lv = [[(w, B)llv (2.95)
1L (w,B)[v- = [(w,B)]v-, (2.96)
and
lp—Iplle = hlplg+ (2.97)

Proof. We start with the V= norm of (2.94). The estimate of the component § is the
property of the interpolation operator I,Y”B. Let w = wy + w, such that

lwolls + =" flwy [l2 < [w]fv+.

holds. Then

12

Jw = I w|[y- , inf {llwollr + t~" |||+ }
w—T,"" w=o+w,

Jwo — I} wol[s + tJw, — I} w,|[g
W |lwolls + A7t~ [lw, |2

h2 ||w||v+,w.

IA TA TA
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The estimate of the V-norm of (2.94) can be simply split as

18 = 1y Bl + (h + ) M|V (w = 1, "w) = (5 = 1, B)llo
BBz + (B4 )7 (wo + wy) — Iy (wo +1wy) s

RIBll2 + (b + 1)~ h? [lwolls + (h + )" h [y |2

RAIBl2 + o (lwolls + 1 lw,2)

hl(w, B) v+

1w, 8) = I (w, B) v

LA TA A TA A

The estimate (2.96) is similar.
Next, we estimate continuity in the norm ||.||y. We have to apply the Bramble-Hilbert
lemma. We define the semi-norm

[(w, B)lv = (IVBI§ + | Vw — Bllo) "2

It has the kernel
Voo = {(w, B) = (a +b"2,b) : a € R b € R?}.

On the reference element 7%, the following norms are equivalent:

1w, BT = [I(w, Bl + I(w, B)]v-

The interpolation operator I} is continuous in ||.|[;, and it preserves the kernel Vjo. By
Theorem 2.4, we conclude that the interpolation operator is continuous in the semi-norm,
i. e.

VB =1 B)lo + IV (w — L, w) = (B =1 B)lo < IVBlo + [|[Vw — Bllo.

Let z(§) be the mapping from the reference element to the element. The functions (w, ()
are transformed differently, namely

w(@(§)) = w'()
paE) = (Va(g)) Bx(E)).

Using transformation rules, and ||Vz|| ~ h, we get
IV (8 = 1, 7B) |l +h M|V (w = I w) = (8 = 1,7 B)lo
= B (VB = 1780 + IV (" — 1 w") — (87— 1787l

Wt (19850 + [ Vw™ = 5%lo)

=
= VB0 + ~~IVw = Bllo-

We obtained that the interpolation operator is continuous with respect to the semi-norm

IVBI5+h* [Vw = Bl
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Because it is also continuous with respect to the semi norm

IV B5llo;

the interpolation operator is continuous with respect to the family of semi-norms
2 2
IVBIlo + al[Vw = 8ll5
with
a=<h?2.
The choice a = (h* +t?)~" of Chapelle and Stenberg is in the allowed range. For h > ¢, it
is the maximal choice such that the interpolation operator is continuous.
Next, we estimate the better approximation in the norm ||.||;-. We use Lemma 2.17 to

estimate the norm ||.||y—.«. Then, we distinguish between -, and €,<,. Using properties
of the regularization operator we construct an splitting for the norm ||.|[y-.» as

Vaw w Vaw — w Vaw
lw = Iy wlly-w 211 (w = Iy w) |+ (T = 1) (w = I w) g

V. — V,
< o= 1wl + 0 = L0l

We use the approximation properties of the operator T}Y’w, and the relations between h and
t to continue
lw = Iy wllv-w = [lw = I w0y, + bt | (w = 1 w) [0,
h
h+t
We insert the rotations § — I,Y”Bﬁ and obtain the result

Vaw
= [(w = I, w)]ls-

w ]' w
|w — IIY’ w[y-w = hh—+t (HV(U’ - IIY’ w) — (B — LY’%)HO + 1|8 — [;Y’%HU)

< (I = 1w = (8- 128yl + 5 - 1714
~ h(w, 8) — ¥ (. )y

< b . Bl + b 1 8)

<, )l

The estimate the dual variable, we use the estimation of () by a scaled Ly norm, and
separate the domain into €25, and €<

(h+t)llg — Iqllo

(h+1)llg = LZglloan, + (h+1) la = I 4llo.0,s,
thilallrue, +hllallos,s,

h(tllgll + [lallo)

hllqllq+.

g — I2qllq

A TA TA TA

12

We have proved the theorem. O
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Multigrid theory is based on the interplay between approximation estimates and inverse
estimates. We have to establish the inverse estimate

Theorem 2.20. There holds the inverse estimate

| (wn, Bu)llv < b~ [ (wn, Bu)|lv- Y (wn, Br) € Vi (2.98)

Proof. We estimate ||(wy, 55)||v by splitting into components

[(wn, Bu)llv = 11Bllo + (A + ) Hlwalls + (h + )| Ballo
= M IBullo + (A4 )7 walls

The term |50 is contained in the norm ||.||y~. We estimate ||wy||; by using a splitting
wy, = wo + w, such that
lwoll + ¢ Hlwello < lwn|lv-.

Let T,Y’w be a projection operator of Scott Zhang type. Then we estimate
(h+t) Hwnlh = () 11" (wo + wy) [y

(ho+ 8 (I wolls + 1wy

W Jwolly + (B 6) " B[ 1w o,

N

DN

Since (h+t)~'h™' < h7't~!, we finish with

(h+1) " Jwalls hHlwolly + A [y lo
ht (lwoll + ¢ lwy o)

B Hlwp ][y

A TATA
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Chapter 3

Iterative Methods

In the last chapter we came up with the finite dimensional variational problem: Find
up € V3, such that
Ah(uh,vh) = fh(vh) Vvh € Vh, (31)

where V}, is a finite element space of dimension N, Ay (., .) is a symmetric and elliptic bilinear
form on Vj, and f,(.) is a linear form on V. By the choice of a basis (p;)¥, € [V},]V for
the finite element space, we can represent the finite element function u, € V}, by the vector
u=(u;)Y, €RN via

N
up, = Zulgoz (3.2)
i=1

Usually, the nodal basis is chosen. We define the symmetric and positive definite (spd)
RNXN

system matrix A € as
A= (An(ei 03))01, (3.3)
and the vector on the right hand side as
[ = (fa(@i)ils. (3.4)
The variational problem (3.1) is equivalent to the linear system of equations
Au=f. (3.5)

Since the dimension NV of the system may be very large, solvers of optimal arithmetic com-
plexity and memory complexity are required. Optimal memory complexity is achieved by
most iterative methods like conjugate gradients (cg) iteration ([HS52], for a wide overview
see [Hac91]). The iteration number and the time complexity of the iterative solver depend
on the applied preconditioner. A spd matrix C is called preconditioner, if the operation

w:=C"xd (3.6)

is computable. The performance of the preconditioner C for the solution of (3.5) depends
on the arithmetic operations needed to compute (3.6), and on the constants of the spectral
inequalities

cC<A<eC. (3.7)

ol
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The relation A; < A, defined for two positive definite matrices is equivalent to A, — A;
is positive semi-definite. It is well known, that an upper bound for necessary cg iterations
for a fixed error reduction behaves like O(y/ca/c1). The optimal time complexity for the
approximative solution of (3.5) with fixed accuracy is O(NN). This is possible with constants
¢1 and ¢y independent of N. Multigrid methods are optimal methods (see [Hac82], [Hac85],
[Xu92], [Bra93]). We call a preconditioner robust with respect to the parameter ¢, if there
exists constants ¢; and ¢y independent of £ such that (3.7) holds.

In the next sections we will collect techniques to construct and analyze preconditioners
for problems without parameters. In Section 4 we apply these methods to obtain robust
preconditioners for parameter dependent problems.

3.1 Additive Schwarz techniques

The additive Schwarz (AS) framework provides us a simple and elegant technique for the
construction and analysis of a class of preconditioners. A good introduction to the material
is [SBG96].

For the analysis it is advantageously to stay in the fe space V}, instead of the Euclidean
space RY. For sure, the obtained methods are the same, but the notation simplifies. By
means of the inner product (.,.), of the Hilbert space V,, we define the linear operator
Ah Vi, =V, by

(Ahuh, Uh)h = Ah(uh, Uh) Y up, v, € V.

Similarly, the vector f, € V}, is defined by

(fh;vh)h = fh(?)h) Yu, € V.

By means of Aj and fj, we can rewrite the variational problem (3.1) or the system of linear
equations (3.5) equivalently as operator equation: Find uj, € V}, such that

Ahuh = fh- (38)

A preconditioner C}, : Vj, = Vj, is a (., .), - self-adjoint and positive definite operator. The
spectral estimates
C1 Ch S Ah S Co Ch (39)

correspond to (3.7). The relation A; < A, between two self-adjoint operators is defined by
(Avvn, vn)n < (Agvn,vn)n You € Vi

The idea of additive Schwarz preconditioning is to split one large problem into a set of

smaller problems. Let
{(Vi, (., )i) 1 1<i< M}

be a set of Hilbert spaces. Each of them is embedded by a lifting operator into the space V},
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The whole space V}, shall be decomposable into lifted local spaces, i.e.
M
Vi=> RV (3.11)
i=1

The sum is not necessarily a direct sum. On each one of the spaces V; we require a
symmetric, continuous and elliptic bilinear form

Ci(.,):Vix Vi 5 R

As we will see below, it should be a local approximation of Ap(.,.). We define the AS
preconditioner C}, : V}, — V}, by the application of its inverse:

Wh = Cl;ldh,
which is computed by
N
wy, =Y R,
i=1
with w; € V; the unique solution of
Ci(w;, v;) = (dp, R;v;)p Vu; € Vi

It is easily seen that the operator C’h_lAh : Vi, — V3, and the finite element function C’h_lfh
do not change, if the norms of V}, or V; are replaced by equivalent ones.
By means of the inner product (.,.); on V; we define the linear operator C; : V; — V;:

(Cz'uz'a Uz‘)z‘ = Ci(uz’, vi) Yu;,v; € V.
The adjoint operator R of R; is defined by
(Rl up,vi)i = (up, Ryvi)p,  Vup € Vi, Vo; € V.

By these definitions we can rewrite the preconditioning operation Ch’l in operator form as
M

C,' =) R 'R (3.12)
i=1

Although we use the abstract notation in the Hilbert space, it is very close related to the
implementation. We define the subspace solution operators

T, := RiC7'R] Ay (3.13)
A special choice of the subspace bilinear forms is the Galerkin setting

Ci(ui; Ui) = Az(uz; Ul') = A(RZU“ szz)
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The according definition of A; : V; — V; evaluates to
A; = RTALR,.
For the Galerkin choice the subspace solution operator
T; = RiA;'RT Ay, (3.14)
is the Ap(.,.)-orthogonal projection to R;V;.

The following theorem provides the central technique for the analysis of AS precon-
ditioners. It was formulated in different forms in many papers (see e.g.[MN85], [Lio88],
[DWOI0], [Zha91], [BPWX91], [Xu92], [Nep92], [GO95]).

Theorem 3.1 (Additive Schwarz Lemma). Let us define the splitting norm

M
lunl? =  dnf > Cilui,u). (3.15)
uievil fi=1

on Vy. It is equal to the norm ||uy||c, = (Chup, uh)}l/2 generated by the AS preconditioner,
i.e. there holds
lunll = llunllc,  Vun € Vi (3.16)

Proof. The constrained minimization problem (3.15) can be written as saddle point prob-
lem: Find (u1,...,up) € Vi x ... x V3 and A, € V}, such that

Ci(ui, v;) + (A, Rivi)p = 0 Vo, e Vi, 1<i <M,
(D" Riwg, pun)n = (Un, ftn)n Vun € Vi
Eliminating the u; by u; = —Ci’lRiT)\h, we can rewrite the second row as

(O RC R Ny pn)n = —(un, pn)n Vo € Vi
By (3.12) we can replace the sum by C; ' and obtain
Ch_l)\h = —Up.

The minimum of the constrained minimization problem (3.15) is taken at the solution (u;)
of the saddle point system and evaluates to

lunll® = ) (Couiywi)i =Y (CiC7 ' RI A, O R M) = Y (RiCy R A, M)
= (C,;l)\h, )\h)h = (Cl;lchuh; Chuh)h = (Chuh: Uh)h = ||Uh||%)h7

and the proof is complete. O
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This theorem provides us with a constructive possibility to calculate or bound the
constants of the spectral inequalities (3.9).

If only a finite number of spaces overlap, the right inequality of (3.9) is trivial We define
the symmetric matrix (g;;)_, of overlapping subspaces by

o 1 if du; € 'V, v; € V; : Ah(Riui,ijj) 7é 0
Jii =0 else

Then we define the overlap of the space splitting as
M
overlap({V;}) := rnlaszlgz,]
Lemma 3.2 (Finite Overlap). Let ¢, > 0 be a constant such that
||Riui||?4h < e, ||Uz||20, Vu, eV, 1<i<M (3.17)

holds. Then the estimate
Ap < O,

18 fulfilled with the constant
o = c. overlap({V;}).

Proof. Let up, = R;u;, u; € V; be an arbitrary splitting. There holds

||Uh||,24h = Ap(up, up) = ZAh(Riui: Rjuj)-
(2%
Using the symmetric matrix of overlapping subspaces and Young’s inequality we get
unll%, = Zgz’,j Ap(Ryui, Ryug)
i,

1
> 9 §(||Riuz'||34h + [1Rjuill%,)

J
= > gijll Rl
i

IN

Now we use the definition of overlap({V;}), and (3.17) to get
lunll%, < overlap({Vi}) Y || Riuil%,

< c.overlap({V;}) Z||Uz|

2
C;e
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Because this estimate holds for any splitting, it holds also for the minimizer of the splitting
norm

lunllh, < ccoverlap({Vi}) inf 3 fluili,
up=y Riu; i
= coverlap({13}) Jus]?
= ccoverlap({‘/;}) ||’U,h||20h

0

By the paper of [BPWX91], the multiplicative version of Schwarz methods is understood
as well. Let us assume that the subspace problems are scaled such that

C; > A, (3.18)

Let

be one step of the multiplicative Schwarz iteration. The adjoint with respect to the inner
product Ay(.,.) is

Sru=U=T)I-T5)...(I1 =Ty-1)(I—Tun). (3.20)
The symmetric version of multiplicative Schwarz is
Ssmu = Sy Smu- (3.21)
It defines the preconditioner C,,, by

Semu =1 —C,} Ay

smu

Usually, the multiplicative method leads to a faster convergent method then the additive
version. But in general, one can prove only that the multiplicative version is not much
worse:

Theorem 3.3 (Multiplicative Schwarz). Let Coqq and Cy,y,,, be the preconditioners ob-
tained by the additive Schwarz method and the symmetric multiplicative Schwarz method,
respectively. Assume the scaling 3.18 holds. Then the spectral estimates

Ap < Coppu < overlap({V}})2 Clodd- (3.22)

are fulfilled.

The proof is similar to [BPWX91] and [BP92|, Chapter 5. Actually, estimate (3.18)
can be relaxed to allow over-relaxation with parameter w < 2.
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Figure 3.1: Local domain decomposition

3.1.1 The local domain decomposition preconditioner

First, we consider a domain decomposition (dd) method with local spaces, only. Let
V = H™(Q), and let A(.,.) be a symmetric, elliptic and continuous bilinear form on V.
Let Vj, C V be a finite element subspace of mesh size h, and let A (up, vy) = A(u,v).

We will formulate and analyze the local dd preconditioner. We decompose the domain
into an overlapping set of subdomains €2; of diameter O(H) and overlap O(H), see Fig-
ure 3.1. We assume that the number of overlapping subdomains is finite. Let w; C €2; such
that

and the construction of a partitioning of unity {¢;}, ¢ € C*°(Q) with the following
properties is possible:

supp ¥; C wj,

and
V¥, <H™* 0<k<m.

We define the local spaces
V;:{UhEVhZUh:OinQ\Qi}.

The lifting operators R; : V; — V), are the trivial embedding operators. The inner products
(.,.); are inherited from V},. We consider the space splitting

Vi=Y RV
The subspace forms are defined by the Galerkin approach
Ci(uia Uz‘) = Ai(uz’a Uz’) = Ah(Riuz’a Rﬂ)z')-

Thus we get
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Figure 3.2: Relation of €2;, w; and o}

We define the overlapping domain decomposition preconditioner D, without coarsegrid
correction

D;' =) RiAT'R]. (3.24)

We call this preconditioner D, in analogy to diagonal. It will be needed as a part of more
complicated preconditioners, later.

Theorem 3.4. The overlapping domain decomposition preconditioner Dy, without coarse
grid correction fulfills the spectral inequalities

H*™ Dy < A, =< Dy, (3.25)

Proof. The upper bound follows from the finite overlap of subspaces and Lemma 3.2. The
lower bound is verified by the construction of an explicit decomposition uy = > u;, u; € V;
fulfilling

S i, = H " uall, -

Then we can conclude by the Additive Schwarz lemma
H?™|un||5, = H™ [lunl® < H™ > w4, = a4,

Let I, : V. — V}, be a Scott-Zhang projection operator of the form

N
Ih?) = ZZJ(H]U)(p]
j=1
Each functional ;(I1;.) is defined on Ly(0;), where o; is a set of diameter O(h).
Because of (3.23) we can chose o; such that there holds
[h : Hgl(wz) — V;,

see Figure 3.2. We define
u; = I, (Yiun).
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By using the linearity of I, the partitioning of unity and the projection property of I, we
verify

M M

Zui = Zlh(z/)zuh) = Ihuh = Up.

i=1 i=1
There holds u; € V; because (¢;up) € Hi"(w;). Thus, we constructed a splitting of uj,. Using

the continuity of A(.,.), the continuity of the Scott-Zhang projector I;, and properties of
the partition of unity (Lemma 2.6), we get

willd, = luillzo = 1a(iun) |0
= iunlza
= H7™|upllf o, + IV unlg -

Using the finite overlap of subdomains and the ellipticity of A(.,.), we get

M M
olwilla, = D H T unllf e, + IVl
i=1 i=1
< H"|lunllgo + V™ unllo 0 (3.26)
= H7"unlln = H 2" (|unll%,
and the proof is complete. O

3.1.2 Domain decomposition preconditioner with coarse grid
system

In this section we will consider the method of Dryja and Widlund [DW89]. A pure local

space decomposition cannot give an preconditioner of optimal spectral bounds. One has

to add a coarse grid system in order to avoid the factor H?™. Let Vy be a finite element

subspace of V' of mesh-size H. It is called the coarse grid space. It is not necessarily a

subspace of V.
Let I be an interpolation operator with the optimal approximation estimates

v — T = H* [|0]|m VoeV, 0<k<m. (3.27)

Let Ry : Vg — Vj, be the so called prolongation operator. If there holds Vi C V}, we can
use natural embedding. In general, it shall fulfill the approximation estimates

‘UH — RHUH‘mfk < HkHUHHm VUH € VH, 0< k < m. (328)
We use the space splitting

M
Vi=RuyVy + ZRz‘Vi- (3.29)

=1
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The spaces V; are local spaces with natural embedding, and thus we can chose the Galerkin
approach A; = RT A, R;. On the space Vy; we define

Cu(ug,vy) = Ag(ug,vy) = Alug, vy).
If Vi ¢ V},, the method differs from the Galerkin approach, because in general
Ap(up,vy) # Ap(Rpuy, Ryvg).
We define the overlapping dd preconditioner with coarse grid system as
Ci' = RyAy'Ri + Y RiAT'R]. (3.30)
By using the local dd preconditioner Dy, of (3.24) it can be expressed by
C,'=RyA /'R, +D,".
Lemma 3.5 (Optimal two level preconditioner). Assume the following is true:

i. The overlap of local spaces is bounded by No.

1. The prolongation is continuous, i.e.

|Rurum|la, < crllum|la, Vug € Vg. (3.31)

wi. There exists an continuous interpolation operator Iy : Vi, — Vi, i.e.
[ Trun|la, < crllunlla, Vuy, € V. (3.32)

w. The local splitting of the difference uy := up — RyIyuy is stable, i.e.

D i, < ecllunl, (3.33)
u; €EV;

Then the two level preconditioner (3.30) fulfills the optimal spectral bounds

C1 Ch S Ah S Co Ch (334)
with
c = (3 4ecp)!,
ca = (14 Np) max{ch,1}.

Assumptions 2-4 are also necessary to obtain an optimal preconditioner.
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Proof. We apply Lemma, 3.2 to estimate A, < ¢y Cp,. The overlap of spaces is bounded by
(14 No). Due to (3.31), and the Galerkin choice for A;, assumption (3.17) is fulfilled with

Co := max{ch, 1},

and the upper bound is proven.
On the other hand, assumptions (3) and (4) are formulated such that

luall?, = Nl = inf L funll, + 3wl )

uh:RHuH+Z Usj
2 : 2
I wunll, + , inf > il

< (cf +e)llunlly,

IN

Now, assume that (', is a preconditioner with optimal bounds, i.e

[[unl] == flunl]-

We will derive conditions (2) - (4). We start with (2). Let uy € Vi, and set u, = Ryupy.
Because (', is an optimal preconditioner, there holds

=Rgvg

2 2 . 2 2 2
U =<l = inf 2 + V; < I|lu }
unlla, = llual . i {H mlla, EZ [|vi]] }_ umlla,

We have chosen the splitting vy = uy and v; = 0. The continuous interpolation operator
(3.32) and the stable splitting (3.33) is chosen as the minimizer of the splitting norm. O

Theorem 3.6. The two level preconditioner Cy, of (3.30) has optimal spectral bounds, i.e.
Cp = A, =<Ch. (3.35)

Proof. We apply the previous lemma. We have assumed finite overlap of subdomains.
Assumptions (2) and (3) follow from (3.28) and (3.27), respectively, by the choice k£ = 0
and the triangle inequality.

We are left to verify (4). By using (3.28) and (3.27) we estimate

lugllo = lun — R Zrunllo
< |unw — Tgupllo + [|[Trun — RaIruslo
= H" |unllm + H™ [T up||m
= H"|up|m (3.36)
and
Nugllm = ||wn|m- (3.37)

Proceeding similar to Theorem 3.4, we chose
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According to the intermediate result (3.26) there holds
Y luallh, = H P g5+ gl
i
But now, we have the improved Ly estimate (3.36) and we can finish the proof with
D Ml < lunllz < el
i

O

The coarse grid mesh sizes H can be chosen such that the total work is minimized. We
cannot obtain optimal complexity for a 2 level method. The dimension of the coarse grid
system grows unless H ~ 1, and the dimensions of the local systems grow unless H ~ h.

We will analyze two level methods with H ~ h as preparation for the more involved
multigrid analysis providing optimal preconditioners.

3.2 Multigrid Methods

Optimal preconditioners can be constructed by the use of variational problems on a se-
quence of finite-element spaces
m;%:"'avL:Vh

with according inner products (.,.);. We do not assume that the spaces are nested, so we
need grid transfer operators

Ry Vi =V, 2<I<L.
On each level, 1 <[ < L, we have the eventually modified bilinear form
A(L,):VixV =R
The operators A; : V;, = V] are defined by
(Agug, vy); = Ag(uy, vy) YV, v € V.
The adjoint operators R;‘F : Vi — Vi_1 of R, are defined by
(RlTUz,Ulq)zfl = (w, Rv)) Vuy eV, Vuy_, €V,
On each level [ we require a preconditioner D, : V; — Vj, which is scaled such that
A < D (3.38)
holds. It defines the smoothing iteration
S, =1- DA, (3.39)

The preconditioner D; might stem from a local additive Schwarz method on level /.
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Procedure MG(l, uy, f;)
ifl=1
MG(laula fl) = Al_lfl
else

ull’U = Uy
(* pre-smoothing *)
dOj:L...,ml
w? = w4+ Dy (fi = Ay )

(* coarse grid corrections *)

di— = R} (fi — Aluzl’ml)

u, =0
d0]:21v,...,q i
J J—
upr, = MG(l - 1, uy 1)
350 —_ 17ml 29q
w” =)+ Ruy

(* post-smoothing *)

dOj:l,...,ml '
up? = DU = A

MGy, fi) = up™

Algorithm 1: Multigrid method

3.2.1 Multigrid algorithm
One step of the multigrid iteration
ﬂl = MG(Z,Ul,fl) (340)

is defined in Algorithm 1. The parameter ¢ defines the type of cycle. Usually, the V-
cycle method with ¢ = 1 or the W-cycle method with ¢ = 2 is performed. The number
of smoothing steps m; on the level [ may be fixed, or may depend on the level. For the
variable V-cycle the number of smoothing steps increase geometrically on lower levels. The
multigrid algorithm leads to the multigrid operator M, : V; — V

My, := MG(l, u;,0) (3.41)
and to the multigrid preconditioner C; : V; — V] defined by

Crlfi== MG(1,0, fy), (3.42)
(see [JLMT89]). The multigrid operator fulfills the recursion formula

M, = 0,
M, = (S)™ (I - Ri(I— (M)A RIA) (S)™. (3.43)
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3.2.2 Multigrid analysis

The classical multigrid analysis by Hackbusch [Hac82] is based on the approximation prop-
erty and the smoothing property. If these properties are available, one can prove optimal
convergence of the W-cycle iteration (with sufficiently many smoothing steps), and of the
variable V-cycle. Several more sophisticated techniques ([BH83|, [MMB87], [BP93]) pro-
vide optimal convergence of the V-cycle, but, up to the knowledge of the author, only for
the nested case. So, we will focus on the classical theory.

The interplay of the coarse grid correction step and of the smoother is measured by
means of two different norms, the energy norm ||.||4, and the local norm

[l - (3.44)
For full regular, second order problems it is
lualli g =y Hlallo,

and therefore we will call it Ly - like norm. For problems with partial regularity, one has
to chose Sobolev norms of fractional order. For these two norms, one has to check the
approximation property

lur = RiAZ B A5 < Callw|a, (3.45)
and the smoothing property
10S0) ™ ulla, = n(m) [Jull, s, (3.46)
where n(m) is a function with
n(m) -0 as m — oc.
One part of the proof of the smoothing property is the purely algebraic estimate
1(S)™ il 4, = (I = 7Dy A) ™| 4, = m™ [Jw|

which is well established in multigrid theory. Since the preconditioner D is scaled such
that [|(S;)™]| 4, < 1, one can conclude by operator interpolation

1S ™ wll a, = m™ [Jwl|a,, Dy

for any a € [0, 1]. The norm ||.||4,,p,5, is the interpolation norm between the energy norm
(a = 0) and the ||.||p,-norm (o = 1). For the AS smoother applied for second order
problems one gets

lurllpy 2= by Hlallo.

The interpolation norm for this case is

lwallianpige = Ry *llwllmi-a.
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If one can establish the link between the algebraic smoothing property and the approxi-
mation property, namely
[ullia,pia < Csllulli 6, (3.47)

the smoothing property (3.46) is proved. We collect multigrid convergence estimates in
the following theorem:

Theorem 3.7 (Abstract multigrid convergence). Let the multigrid procedure be as
defined in Algorithm 1. Assume there holds the scaling (3.38), the approximation prop-
erty (3.45) and the estimate (3.47) used for the smoothing property. Then the following
multigrid methods lead to optimal solvers:

e The W-cycle multigrid scheme with sufficiently many smoothing steps leads to a
convergent method. The contraction number is bounded by

| M| < Cm—o/?2 (3.48)
with a constant C' only depending on C, and Cy, but independent of the level L.

e The variable V-cycle with my, > 1 and Som; < my_y < [fymy smoothing steps (1 <
Bo < B1) leads to a preconditioner Cy,. The condition number is bounded by

K(C YAL) <1+ Cm o2 (3.49)

with a constant C only depending on C,, C, and By, (1, but independent of the
level L.

Proof. The proof of the W-cycle method follows from the approximation property (3.45)
and the smoothing property (3.46) by induction. We refer to [Hac85].

The proof of the variable V-cycle method is provided in [BPX91], see also [Bra93].
First, we derive the type of approximation property used there, then we translate the
notation.

Because DflAl is a symmetric and positive definite operator in the inner product
Dy(.,.), one can define the Hilbert scale

Nl == Di((D; " A w, w).
For a shorter notation, we neglect the index [ indicating the level. Especially, there holds

Julls = Nuallp,
Jully =l
lwll; =AD" Ay, w).

For « € (0, 1), the interpolation norm used above can be expressed by

lallta,pg = lulli-a- (3.50)
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There holds the estimate of logarithmic convexity
Ay, v1) < luals—sllonll 145 (3.51)
for s € R, and the interpolation estimate
lalls < Jeaall, fleals (3.52)

for s1,89 € R, @ € (0,1) and s = asy + (1 — a)ss.
We use (3.51) to estimate

A = RAZ R Augw)| < (1= ReAZ R A)ulh—a Jwl e
By (3.50), the approximation property (3.45) and estimate (3.47) we get

(T = ReAZ RS Aui-a < CuClllual|a,-

We go on and use interpolation

[Ai((I = RAZ R Ay, wp) CoCsllulla, Juallr+a (3.53)

<
< CoCllluly flenlls ually™
< CoCulluli Ml

This estimate corresponds to [Bra93|, Assumption 10, page 62. We translate the present
notation to the formulation used in [Bra93], which we will indicate by subscripts or super-
scripts Br. We are free to set the inner product on level [ to

(uav)Br,l = (Dluav)l-
Then the operator AlB’" : 'V, = V] evaluates by
(Ayug, v)y = Ai(ug, o) = (AlBrUz,Uz)Br,z = (DzAlBrUz,Uz)z

to
AlBT = DflAl.

The smoother RP" evaluates by
Sy=1I1-D;'A=1-RAP"
to
RPr =1.

We set AP" = 1. We want to apply [Bra93], Theorem 4.6. A.4 and A.4* are fulfilled for
the symmetric smoother. A.10 is (3.53) with ap, = a/2. A.12 is assumed in the theorem.
Estimate (3.49) follows by dividing " by nf". O



3.2. MULTIGRID METHODS 67

We have formulated the simple approximation property (3.45) instead of the stronger
estimate

_ Aj(ug,v
||ul — RlAl,llRlTAlUle,() S Ca sSup M

)
wevi |wllig

(3.54)

which is usually used. This is paid by reducing the dependency on the number of smoothing
steps from Cm ™ to C'm~%/2. The reason for choosing (3.45) instead of (3.54) is that only
the former one could be verified for parameter dependent problems.

If the smoothing property and the approximation property are available, the door is
open for other multilevel algorithms, like full multigrid methods [Hac85], Cascadic multi-
grid methods [BD96], [Sha96], [BD99], and extension operators [HLMN94], [Haa97].
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Chapter 4

Robust Preconditioning for
Parameter Dependent Problems

In this chapter we combine the results of the former two to construct preconditioners for
parameter dependent problems. We will start with one level and two level preconditioners,
and then go on with the multigrid case.

4.1 Local preconditioning

First, we show by means of an example that the condition number of standard precondition-
ers may deteriorate for parameter dependent problems. Let Aj; be the operator obtained
by a stable discretization for the Timoshenko beam model, i.e.

(An(wn: Br), (vns 50))1 = / B8 + 2 (], — B ) (o, = Bn) dx.

Let Dj,. be the Jacobi preconditioner for A,. We measured the spectral condition number

k(D;L Ap) for different values of the mesh size h and the parameter t. The results are:

1e+08 T

le+07 | = t=1e-2 -—--%-- 7
1e+06 |- T ]
100000 F

10000

cond. num.

1000 F

100 F

10 F

1 1 1
1 10 100
Elements
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Now, we try the block Jacobi preconditioner Dpg; with the blocks indicated below. Three
by three nodes are connected with an overlap of one node.

The corresponding results for k(D3 Ay) are:

1e+08 T T

1e+07 | t=1&2 - 7
=163 o

1e+06 s E
100000 f

10000

cond. num.

1000 F

100 F

10 F

1 1 1
1 10 100 1000
Elements

We see, the preconditioner is robust with respect to the small parameter, if the triangulation
is fixed. For the interesting range ¢ < h it shows the same dependence on the mesh size as
a local preconditioner for 4" order problems.

The reason why the block Jacobi preconditioner is robust, while the pointwise Jacobi
deteriorates deals with the kernel V}, o of the operator Aj,. These are the functions

Vo = {(wn, Br) 3mh = 0}.
On the kernel, the energy norm ||.|| 4, behaves like
[(wn, B4, = 16allT Y (wh, Br) € Vo
The norm induced by the diagonal behaves always like
[ Cwn, BB, = (B2 + ) |Bullg + A%t [lw]l5.
By choosing smooth functions (wy, 8,) € Vi, one sees that the estimate

h2t2 D]ac j Ah
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w w
B ; B : Z
Figure 4.1: Basis functions for kernel V}, g

is asymptotically sharp. Because also A, < Dy, is sharp, the condition number behaves
like
k(D7) Ap) ~ b2,

Jac

One observes, that errors in V}, o are smoothed out very slowly be the Jacobi preconditioner.
The kernel is spanned by a set of basis functions of two different types, see Figure 4.1. The
block Jacobi preconditioner is designed to capture these basis functions.

The idea of the block smoother is related to the methods of [AFW97b] and [Hip99] for
problems in H(div) and H (rot)

The following Theorem gives an abstract framework for one level preconditioners for
parameter dependent problems.

Theorem 4.1. Let Au(.,.): Vi X Vi, = R be the bilinear form
Ah (uh, Uh) = ah(uh, Uh) + 871 Ch(Ahuh, Ahvh) (41)
with the assumptions made in Section 2.3. Let {V;} be a local space splitting with overlap

No such that
V=) V.

We assume that functions u, € Vi, and kernel functions uy € Vo can be split locally with
estimates depending on the mesh size, i. e.

M
it D full, < () ul?, (4.2)
)iievizizl

M
inf > o2, < ealh) lluoll3 (4.3)

ug=3ug,; <
u; €V;NVy g =1
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Assume, there holds the inverse estimate

lanlle, < cs(Wllanllqro  Yan € AnVa, (4.4)
where ||.||g,.0 is defined in (2.64). Then the additive Schwarz preconditioner Dy, built on
the space splitting {V;} fulfills

(c1(h) + ca(h)es(h)?) ™" Dy < Ay, < No Dy, (4.5)
on V. The bounds are independent of the parameter ¢.

Proof. The upper estimate follows immediately from Lemma 3.2. We choose an u;, € V,.
First, we split
Up = Uy + U

with ug € Vj,o by projection into V3 0. Let (ug,po) € Xp, be the solution of the mixed
variational problem with the bilinear form of the limit

Bg((u(],po), (Uh’ QO)) = a(uha Uh) v (Uh, Qh) € Xh-
Theorem 2.8 (Brezzi) bounds g by

[uollvi, = llunllvi.- (4.6)

Then u; = uy, — ug fulfills

Bg((ula _pO)a (vh: Qh)) = Bg((uha 0): (Uh? Qh)) - B}?((UO:pO): (Uh; Qh))
= ap(up, vp) + cn(Apun, qn) — an(up, vp)
= Cp (Ahuha Qh)-

We use Cauchy-Schwarz, the definition (4.1) of Aj(.,.) and the inverse inequality (4.4) to
proceed with

By ((u1,po). (vnsan)) < [1Anunlle, llanlle,

<
< e lunla, es(h)llgnll gy 0.
By Theorem 2.8 we get
v, < &'2ea(h)l|unllay.- (4.7)

We use assumptions (4.3) and (4.2) to split ug = Y up,; and uy = > uy;. Then we use the
additive Schwarz lemma (Theorem 3.1) to estimate

lenlip, =, inf e,
< Z||u0,i+ul,i||,24h
< 23 {lluoalld, + llurall, §
< 3 (ol + 7 gl |
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We finish with the inverse estimates (4.3) and (4.2) and the stability estimates (4.6) and
(4.7):

cr()Juolly;, + & ea(B)]|ually,
er(h)unll, + ea(h)es(h)?[|unl,

{e1(h) + ea(R)es(h)*} [Junly, -

[unllD,

A TA TA

4.1.1 Timoshenko beam and Reissner Mindlin plate

We will prove now the e-robust condition number of the block Jacobi preconditioner for
the beam model of Timoshenko. We will apply Theorem 4.1. Because |.||y, = ||.|[1.
assumptions (4.2) is fulfilled with

Cl(h) j h72,
and assumption (4.4) is fulfilled with
CS(h’) j 1;
since ||.|le, = ||-llon.0 = Il-/lo. We will verify the splitting inequality for kernel functions:
E S BB, < G B0 (18

(wi,B;)EVy 0NV;

We use a partitioning of unity {¢;} as drawn in the figure below:

b

The support of each function ) is inside four elements. Recall the construction of the Fortin
operator (2.81). There we used the nodal interpolation operator I,I:’l, and the projector
I,Ij’g adjusting bubbles. The co-projector maps onto V}, o:

I =17V = Vi

Thus, the combination
(I —IPHE V= Vi

is a projection, too. We chose the kernel splitting as

(wi, B;) = (I = I*)I (05 - (wa, Br))-
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We have obtained in Section 2.4.1 that 15’2 is continuous with respect to the norm
h=Hwnllo + || Bullo. Thus we get

[(wi, Bl = 1Bils = A7 HBllo
b3 hiwnllo + B |wiBnllo

=
< 07 (wns Ba)llo.w

Summing up gives the inverse estimate

Z 1w, B)lIz, = R Cwns Bu)lle = 22 (s BT,

The local smoother for the Reissner Mindlin plate is analogous. The inverse inequalities
(4.2), (4.3) and (4.4) hold with

ci(h) ~ h72
co(h) ~ h74,
cs(h) ~ h7'.

Thus, the same upper bound h~* results as for the beam. The subspaces Vj; have to
contain (I — I}I:’Q)cpi, where ¢; is a nodal base function. This is possible with subspaces
spanned by the nodal base functions clustered as follows:

4.1.2 Nearly incompressible materials

We will check the conditions of Theorem 4.1 for the bilinear form of nearly incompressible
materials , ,
Ap(up, vy) = (e(up), e(vy)) +e Hdivuy ,divo, )o.

The estimates (4.2) and (4.4) follow directly form the spaces V;, C H! and Q) C Ly, namely
ci(h) ~ h72
cs(h) ~ 1

We will prove the splitting estimate for the kernel functions. We are guided by a basis for
the kernel, which consists of the following type of functions:
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These basis functions cannot be split into kernel functions of smaller support. Thus, we
will use subspaces spanned by the nodal base functions connected as follows:

The plan for the analysis is to lift the divergence free function to the potential space.
For this, we have to assume that () is simply connected, and there is only one simply
connected part with natural boundary conditions. Then the potential function is split into
local functions. The splitting of the original function is obtained by interpolating the curl
of the local potential functions by the Fortin operator.

We fix uj, € V0. We construct the lifting operator £ : V}, — V as follows. Define the
spaces

Viee == {veV:iv=00n0dTVT €T}
Qloc = {quthO}

They split into local spaces on the elements. The pair Vi, X @, is stable for Stokes. Now
let
u:= FEup :=up +w

with (w, 1) € Vige X Qioc be the solution of the variational problem
B((w,r), (v,9)) = =B°((un,0), (v,q)) V¥ (v,4) € Viee X Quoe-
We observe that
(div (w +up), q)o = B*((w +up,7),(0,0)) =0 Vg € Qoe-

Applying Gauss’ theorem to w on each element, and using the assumption u, € Vj, o, we
also get

div (w + uh)h = 0.
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We have constructed an u € V such that

[[ullv = {luallv,

divu = 0,

and there holds
u = up on T VT € Ty,

Let IF = I"" + I™*(I — I"") be a Fortin operator based on a Scott-Zhang projection
operator. It shall be constructed such that it uses only function values at 9T, T € T}, see
the Figure below:

® ® ®
s z
7 V4 |
] , ] 7 [} | [
7 s
’ Y | |
’ Nj ’ I I
® ®
I Oj , Wi ’
| il Sy ] /
| ’ 7 7
7 Iy | 7
[ | , [ 2 | * [
’ 7 7
(PR - — —1= 4
4 |
* ® ®

The Fortin operator is an left inverse to the extension operator, i.e.
I,I:Euh:uh Yup € V.
Due to the assumptions on the domain, there exists an ¢ € Hg ;,(€) such that
rot o = u.
Let {1;} be a partitioning of unity with supp {¢;} C w;. We can define the splitting as
u; = IFrot ().
It is a splitting, because
Zui = Z[,frot(wicp) = T,I;rot(z Vip) = IFrot o = IFu = If Buj, = uy,.

Using the continuity of the Fortin operator, the properties of the partitioning of unity, and
the construction of ¢ we can bound the kernel splitting by

Do luwlly, = Dot}
> lIrot(vig) |}
Y llwi)lls = bl

= B ullf 2 Al

Al

I A
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Thus, we obtained the inverse estimate

Co (h) < h_4.

We mention that the original problem is of second order, but the lifting to the potential
space lets it behave like a fourth order problem. We have made assumption onto the
domain. They are really essential, because curls around a hole cannot be split into local
curls. When we use a coarse grid system, these global curls are caught by the coarse grid.

4.2 Two Level Preconditioning

In the last section we have constructed e-robust local preconditioners. Now, we will see how
to combine the local preconditioner with a coarse grid correction to obtain a preconditioner
with robust and optimal condition number.

The bilinear form

1
Ah(uh, Uh) = ah(uh, Uh) + Ech(Ahuh, Ahvh) (49)

stems from the reduction of a mixed finite element problem with the bilinear form Bj(.,.) :
X, x X, =& R. We need an additional coarse grid bilinear form

1
AH(UH,UH) = aH(uH,vH) + ECH(AHUH;AHUH) (410)

coming from a mixed finite element method with the bilinear form By (.,.) : Xgx Xy — R
on the coarser space Xy = Vi x Qg. The forms By(.,.) and By(.,.) may differ. They
might be obtained by stabilized methods with different weights. We do not assume that
the primal spaces are nested, i.e.

Vg C V, or Vi §Z V.
Thus we need a prolongation operator
Ry Vg = V.

If the spaces are nested, we may take the natural embedding. We call R}/I’U trivial pro-
longation operator, because we will actually use a more complicated one. The trivial
prolongation operator shall be bounded by

IR unllva = lunlve — Yum € Vi (4.11)
The spaces for the dual variable shall be nested

Qu C Q.



78 CHAPTER 4. ROBUST PRECONDITIONING

This is not a strong assumption, because the space () is L, or weaker for our applications.
We assume that the according norms are equivalent, i.e.

larllow = llanlle, — Vam € Qu (4.12)

and
lgrlley ~llgulle,  Vam € Qn. (4.13)

We have fixed the coarse grid operator Ay. Next, have to define the actual prolongation
operator
R}, : Vg — V.

In Lemma 3.5 we have shown, that the continuity in energy is a necessary condition for an
optimal two level preconditioner. Thus

IRGumlla, = lumllag

must be fulfilled uniformly with respect of the small parameter €. To get a feeling for this
condition, we take a coarse grid kernel function

ug € Vo =kern Ay

The coarse grid energy
2 2
unlla, = llurllz,
does not depend on . The fine grid energy of the prolongated function
1
v 2 1% 2 v 2
1Rgumll, = | Byunlla, + Z[1AnRyunll,
has to be bounded by a constant independent of . This is only possible, if || A, Ryugl?, <
. Essentially, this means that the prolongation has to map the coarse grid kernel to the

fine grid kernel:
R}/I : VH,O — Vh’g. (414)

Indeed, the prolongation may produce a small perturbation out of V}, o.
We consider the Timoshenko beam as example, see Figure 4.2. Let (wg,Sg) be a
function in V. This means that

— W
The prolongation has to construct functions (wy, ) such that
W= By =0, (4.15)

i.e. the averaging is done on the fine grid. The trivial prolongation R}/I’U can be chosen as
embedding. It does not fulfill that condition. But, by a local modification of the functions,
condition (4.15) can be achieved. We can adjust the nodal values of the deflection wy, on
the new nodes.

It is always the question which degrees of freedom have to be adjusted. The following
theorem gives an abstract guide for the construction of robust prolongation operators:
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By : B : B :
Ta, (W, Brr) Tn, Ry (wir, Br) Tn, RY;(wr, Bu)

Figure 4.2: Prolongation for Timoshenko beam

Theorem 4.2 (Robust prolongation operator). Assume that the dual space Q) is
split cp (., .)-orthogonal into

Qn = @H ® Qr (4.16)
with @H C Qu. The corresponding projection operators are Pg and Pé’lT The trivial
H

prolongation operator RZ’O is assumed to satisfy

en(M Ry um, Gu) = ca(Agum, Gn) Vi € Qu. (4.17)

Assume there exists a space Vi C 'V}, such that the bilinear form By(.,.) is stable on
XT = VT X QT; 1. €.

sup By((ur, pr), (vr, qr))

= |(vr,ar)llx, Y (vr,qr) € Xr. (4.18)
(ur,pr)EXT ||(uTapT)||X,h

Additionally, we assume the orthogonality condition
cn(Mpor, Gu) =0 Your € Vi, Vi € Qu. (4.19)
Let wr € Vi be the solution of the variational problem
Ap(wr,vr) = Ah(R}/I’OuH, vr) Vour € Vr. (4.20)
Then the prolongation R}, defined by
RYuy := Rg’ouH — wp (4.21)
1S coOnNtinuous in energy norm:

IRGumlla, = lunllay — Yun € Va. (4.22)
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Remark 4.3. The splitting of Qp, has the following meaning. The constraints according
to Qu are inherited from the coarse grid. This is only possible, if the trivial prolongation
preserves the constraints. The constraints belonging to Qr are fulfilled by construction.
For an efficient implementation it is important that the problem can be solved locally.

Proof. First, we observe that the orthogonality relations (4.16) and (4.19) imply that
AV C Qr.
Using the relations
B, ((un, e *Apug), (v,0)) = Ap(up,vp),
B, ((un, e *Apun), (0,q4)) = 0
for all uy, v, € Vj, and ¢, € Qp, we can rewrite (4.20) in mixed variables:
By, ((wr, e "Apwr), (vr, qr)) = Bh((R}/I’UuH, 6*1AhRI‘§’UuH), (v, qr)) Y (vr, qr) € Xr.
By the orthogonality relations (4.16) and (4.19) we can insert the projection Pg" :
By ((wr, 5_1P5’;Ath), (vr, qr)) = Br(RY ug, 5_1P5’;AhRg’0uH), (v, qr)).

We bring the dual variable to the left hand side, and use continuity of By(.,.) to obtain

Bh((wT: 571p5’;~Ah(wT - R}-/I’OUH)): (UT; qT)) = Bh((R}—/I’OuH: 0)7 (UT: qT))

V0
= Ry umllv, [[(vr, ar)llx,-
By stability of By(.,.) on X we get
_ V0 V0
lwrllv, + e PG Aw(wr — Ry un)llq, =< IRy unllv, = llumllvy. (4.23)
This bounds the first term of estimate (4.22):
IRy lla, = 1R unllv, 2 IR ur — wallv, = v (4.24)

We are left to bound
e [ Awunlle, = e IR AnunllZ, + &IPS Anuallz, -

By the definition of the norm [|gn||3), = l|anll%, 0 + € llanllZ, and (4.23) we bound the first
term

g! ||P5’;Ahuh||(2:h < g2 ||P5’;Ahuh||éh (4.25)

= PG AR — )],

= lumllvy-

A
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We use Pg Apwr = 0, property (4.17) of the prolongation and norm equivalence ||.||., ~
h

||I.||e;; to bound the second term
1PS Auunlle, = [1PS ARy ull,

— s en(M Ry um, Gn)
incOn 1G]],

ca(Agum, Grr)

= sup —
inecn Gl

[Arun eyl lley

IN

TneOn 1Gr ey

< JAruplle,-

This gives
e PG Anunllc, = IAgualle, 2 lluml,. (4.26)
Combining (4.24), (4.25), and (4.26) proves the theorem. O

According to Lemma 3.5 we have to prove the existence of an interpolation operator
[g V= Vy
which is continuous in energy, i.e.
1|4y = ||lun| 4, Yuy € V. (4.27)
As in Theorem 2.13, the Fortin operator I} has the desired properties. Let
Qu = Quo®Qu,
be a stable decomposition with respect to ||.||.,. The subspace Qp o fulfills
lanlle, < ellanlls,  Yam € Qn
The Fortin operator shall be continuous in the norm
[ Trrunllvr = [lunllva
and preserve constraints belonging to Qm 1, i.e.
ch(Apup, 1) = CH(AHIfluh; Q) Vg € Qi

Then Theorem 2.13 proves its continuity (4.27). The last assumption of Lemma 3.5, namely
the stable decomposability of
us = u, — Ry Ihup,

will be formulated for the specific examples.
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4.2.1 Nearly incompressible materials

Let us consider the case of nearly incompressible materials. We have the fine grid bilinear-
form , X
Ah (uh, Uh) = (G(Uh), €(Uh))0 + 871 (divuh ,diVUh )U

at the fine grid space V}, and the coarse grid form

Ap(ug,vg) = (e(um), e(vy))o +£7" (diquH, divaH)O

at a coarse grid space V of P, elements. The coarse triangulation 75 may be arbitrarily
coarse. The triangulations must be nested.
We construct the prolongation operator R}, following Theorem 4.2. Therefore, we split

Qn = Qu x Qr.

The space (Q consists of the piecewise constants on the coarse grid, factored by the global
constant. The space Qr is

Qr ={an € Qun: 7" =0}
The space Vr is chosen as

Vo = {Uh eV, : Uh|8TH =0VTy € TH}

If the fine mesh is obtained by bisection, the prolongation requires the solution of the local
problems indicated below:

This is a stable pair for the Stokes problem. The orthogonality (4.19) follows by the
theorem of Gauss, i.e

(divor, qu)o = Z/ divvpgy dx = Z qulr / (n"vr) ds = 0.
T JTn o 8

T

Thus the prolongation operator consists of solving local Stokes problems in the coarse grid
elements Ty. The Fortin operator is such that the function values at coarse grid edges Fy
are preserved. By construction, the local complement

up = up — Ry Thuy,
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is bounded by
[Jugll = fJunlh.

/ upds =0
Eg

for each coarse grid edge E'y. By the Bramble Hilbert lemma we get

and fulfills

lugllo = H lJuglls = H [Jun]l-

We will construct a local splitting of mesh size hj,. with h < h;,. < H. There are the two
extreme cases hj,. ~ h, and h;,. ~ H. The first one gives cheap local problems, while the
other one leads to an preconditioner with optimal bounds. For H ~ h both properties are
fulfilled.
We split us into two parts
Uy = Ug + Uy,

with woV}, 0. This is done using the space Xr once more. Let (uy,p1) € Xz be the solution
of

B®((u1,p1), (vr, qr)) = c(Apuy, gr) Y (vr,qr) € Xr. (4.28)
Then there holds
c(Apug, gr) = c(Ap(up —u1),qr) =0
per construction. Additionally, applying Gauss’ theorem on each element of Ty and using
J5, usds = [ uids =0 we get
c(Anuo, qu) = c(Apuyg, qu) — e(Apui, qur) = 0.
We got
div uoh = 0.
We proceed as in Section 4.1.2. We lift to u € V such that
divu =0 and u = ug on Ky,
and construct ¢ € HZ such that
rot o = u.

But now, we have the additional property

0
/ —(pds :/ nTrot pds :/ nTuds:/ nTufds = 0.
Eqy ot En En En

This means that ¢ has a constant value in all corner nodes of 7Ty. By the choice of
boundary conditions it is 0. An other consequence is that the potential ¢ exists also
for general domains. Applying the Bramble Hilbert lemma to ¢, we get the optimal L,
estimate

lello < H?[loll2.
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By multiplication with the p.o.u. at mesh size h;,. we get

[iolla = by 2H? ||| 2,

and as in Section 4.1.2

luoll, = lelfrot (i)l ﬁZII(wisO)IIE

)
toc 110115 = e H o |7

loc — "Yloc

=
The other component u; vanishes at 91y, thus
[uillo = Hllualjx

holds. By the definition (4.28) of u; and Theorem 2.8 (Brezzi) there holds
——h
[[url = fldivesfo.
Combining we get
lurllg = H2 Jlugll, -

Thus we have optimal Ly estimate, with the additional factor e. We can use the partitioning
of unity method starting with the original form A, namely

Jurlh, =, inf 3 il
< eyl = e a4 Al 5} < bt H gl a,
Summing up, we get

luglp, = Nuilln, + lualln, = hugeH? [lugllh, = hypeH[[unll%,

loc loc

If we have hj,. >~ H, we have constructed and analyzed a preconditioner with robust and
optimal spectral bounds.

4.2.2 Reissner Mindlin plate

We analyze the two level method for the Reissner Mindlin plate model. The fine grid
bilinear form A,(.,.) is

Ap((wn, Br)s (vn, 0n)) = a(Bn, 0n) + 755 (Vwn — Br, Vo, — dn)o

1
h* + t2

1 1 h h
+ {t—g—m}(vwh—ﬁh , Vo = 0 )o.
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The coarse grid form is defined by stabilization and averaging at the coarse grid, i.e.

Ap((ww, Br), (v, 61)) = a"(Bu.0m) + (Vw — 3, Vv —6)o

H? 412
1 1
+ { - } Vw=—5"Yo—05").

2 H? 412

We recall the norms of the primal and dual spaces, on the fine and on the coarse level:

1(wn, Bu)lI5, = 18wl + (h+ )2 Vw, — Bulls
l(wr, Ba)ll%, = 18ull}+ (H+6)7?|Vwg — Ballg
and
lanlls, = {h°+ 2} anll7,
lgully, = {H*+t} g,

To obtain a stable prolongation, we need that the norms ||.||g, and ||.||g, are equivalent.
Thus, we have to restrict us to the case

H~h. (4.29)

The construction of the prolongation operator follows Theorem 4.2. We split the dual
space trivially into

Qn = Qr.

The space
Ve ={(0, By) € Vi : Bulr € B3}

is enough to obtain stability (see Section 2.4.3). By the trivial choice Qu = {0}, assump-
tions (4.17) and (4.19) are clearly satisfied.

The prolongation is implemented very cheap by just performing one step of Point-
Jacobi iteration on the subspace of S-bubbles. The bubble-space splits A(.,.) orthogonal
into two-dimensional subspaces inside each element on the fine grid. Thus, the Jacobi step
becomes and exact solver.

The interpolation is the Fortin operator I;. We can chose a nodal interpolation operator
Ig’l for the corner nodes, because we had to assume H ~ h. The second step, 15’2 adjusts
bubble functions for elements with H > t. The fine grid complement

(wy, Bs) = (wn, Br) — RypLi;(wn, Bn)

has to be split locally. It vanishes at corner nodes, thus the Bramble Hilbert lemma gives

1Bsllo = A1l
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and
lwello = h[|[Vwgllo < b A{||[Vwy — Byllo + |1 Bsllo}
= h|[Vws = Bllo + h* B¢l
= h(h+t)|[(wy, Bf)lv,-

We define the local norm
2 1 2 L 2 4.30
[ (whs Br) 155, 10 7= ﬁ”ﬁh”o + mllwhﬂo- (4.30)

Combining both estimates above, we obtain that

1(ws, BT a0e = 1(wr, B, (4.31)
By continuity in energy of the interpolation I and of the prolongation R};, there holds
[(wr, Be)llan = M| (wn, Bn)ll 4, (4.32)

All information we will need is contained now in

o~ h
1wy BN o + 2 1Vwy = By lle = Ml (wns B) 1, (4.33)

This is the approximation property for the two-level method.

We will estimate

. _onn—=—"—""—">"h
1(wy, BB, = inf 1(wi, B3, =2 1w, BT soe + 121V wy — By 15
(wyg,Br)=>(wi,Bi)

Let 15’2 be the operator for adjusting S,-bubbles for elements with h > t, i.e.
cn (AR (wns Br)s an) = en(An(wn, Br)san)  Yan € Qrase.

[t is continuous with respect to the local norm (4.30). The co-projector I — I,I:’Q maps into
the (reduced) kernel, thus there holds

[ (wn, Br) = 1y (wn, Bu) 3, = N wns Ba) = L (wa, BT, =1 (wns B[ oo (4.34)
We split (wy, Bf) = (wo, Bo) + (w1, B1) by

(wo, Bo) = (wy. By) — I} *(wy, By)  and  (wy, Bi) = I *(wy, By).

into a kernel function and into the rest. The splitting is stable in V}, jo.-norm. The following
identity using a partitioning of unity {¢;} adjusted to the Scott-Zhang projector [,I:’l

(wo, Bo) = (I = I, )1, () i) (wo, Bo)
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leads to the splitting of (wy, fy):
(wo,i; Boq) = (I — 15’2)15’1%(100,%)-
Combining (4.34) and estimates related to the partitioning of unity we get

[(wo, BB =)l (wos, Bo)II%, (4.35)
D NI = 1)1 i (wo, Bo) |15,

F,
= Z ||]h lw’i(woiﬂo)ngfh,loc
= Z ||(w0’50)||%/h,loc,wi
< [[(wo, Bo)lI3, toe-

The other component, (wy, 8;), consists only of 5-bubbles on elements with h > ¢, thus we
have

_ _oy—=——5=h
1wy, BOID 2= 2 1Bullo < 2 Vwy — By 1[5

Combining the last two estimates with (4.33), we obtain the result

1wy, BIND, = 11(wo, Bo)lD, + I (wi, B)ID, < [1(wn, Ba)ll 4,

Thus, the two level preconditioner is robust with respect to h and t.

4.3 Multigrid Methods

In this section we formulate multigrid methods for parameter dependent problems and give
an outline of the analysis. The proofs of the approximation property and of the smoothing
properties will be postponed to the next sections.
The multigrid formulation is based on a sequence of possibly non-nested non-conforming
finite element spaces
Vi,Vo,...,Vp,

and on a chain of nested spaces

Q1 CQC...QLCQ

with norms ||.||y; and ||.||g,- The norms may and will depend on the level as well as on the
parameter. We set X; = V;x @, with the product norm [|(u,p)||x, := (|[ul|,+[p]|3,)"/?. The
index [ denotes the level and takes the values 1 to L, unless explicitely defined differently.
On each level [ we need the symmetric and positive definite bilinear form in primal variables

Al(ul, Ul) = al(ul, Ul) + 5_1 cl(Alul, Aﬂ)l). (436)
It is related to the symmetric bilinear form in mixed variables

Bi((w, pi), (v, @) = a(w, vr) + er(Awr, @) + co(MNo, pr) — € co(pus qi) (4.37)
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defined on X; x X;. The bilinear form B(.,.) shall be consistent with the form B(.,.) :
X x X — R in the sense of

Bi((u,e *Au), (v,9)) = B((u,e 'Au), (v,q))  VYu€eVV(v,q) €X.
We assume that a;(.,.) is symmetric and non-negative, i.e.
al(ul, ul) >0 Yu € V). (438)

The form ¢(.,.) is assumed to be symmetric and positive, i.e.

a(p,m) >0 VO #p € Q. (4.39)
The bilinear form By(.,.) is assumed to be continuous
Bi((w, o), (v, @) = [ (s 2l x, [ (v @) []x, (4.40)
e sabie Bi((. ). (v.)
T Mol - Wl V(wp) € X (44D

Let VT C V and Q" C @ be subspaces with stronger norms ||.|[y+ and ||.||g+, respectively.
Let V= D V be a larger space with norm ||.[|y-. Its dual is (V' ~)* with norm ||| ). We
assume that V; C V. The continuous variational problem: Find (u,p) € X such that

B((u,p), (v,q)) = f(v)  V(v,q) €X (4.42)
is assumed to fulfill the regularity shift
[ullv+ +lIpllor = M fllov-)-- (4.43)
We require interpolation operators
X =1, 12): (VE x Q%) = X, (4.44)
fulfilling the approximation estimates
o = 3ollv- + [[(v,0) = T (0, 0)1x, = B (follv+ + [lallo+) (4.45)

for given (v,q) € V* x Q. The coefficient h; is related to the mesh size on level .
Additionally, on each space V] the inverse estimate

uallv; = By - (4.46)

shall be fulfilled with the same coefficient 7. Let (u;,p;) € X; be the solution of the mixed
finite element problem

Bi((u, p1), (v, @) = f(r) V (v, @) € X (4.47)
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Then, by Theorem 2.15, the a priori error estimate to the solution (u, p) of (4.42)
Ry Hlu = wllv- + [lu = wllv +1lp = pilla, = Rl fll-)- (4.48)

is valid.
As in Section 4.2 we define the trivial prolongation operators

R Vil =V, (4.49)
with 2 <[ < L. They are supposed to fulfill the continuity and approximation estimates

IR Cwii |y + Bt ey — B Pwi|fy-

1Y u — RZV’OIXWHW

w—1llvi_,,

=
. (4.50)

i [|ullv+

for all u;_; € Vj_; and u € V*. Since Q;_; C @Q;, we do not need explicite prolongation
operators for the dual variable. We combine the RlV’O with the identity to the trivial mixed
prolongation operator

RY’ = (R, id) : X;_1 — X).

We assume norm equivalence across two levels
1P-illo . = Ip-ille Vo1 € Qi (4.51)
The actual grid transfer operator RlV’O requires the space
Xir =Vir X Qur C X (4.52)

with the properties defined below. We have to solve a variational problem with the bilinear
form A;(.,.) on the space V, r. To be efficient it is necessary that V; 1 splits into subspaces of
small dimension which are orthogonal with respect to A;(.,.). The space @, is decomposed
as

Q=Qir® Q1 (4.53)

with Qvl,l C Qi-1- The decomposition is assumed to be orthogonal with respect to the
inner product ¢/(.,.). The space @, ; corresponds to coarse grid constraints which will be
inherited on the fine grid. The complement (), characterizes the constraints which can
be fulfilled by local projections. We define the ¢; ortho-projector Iﬁl CQ — Qvl_l. It is
assumed to be continuous with norm ||.||g,-¢,_,- The bilinear-from B(.,.) is assumed to
be stable on X, 1, namely for all (u,p) € X; 7 there holds

B
sup z((U,p),(U,q))
(v@)eXiT ||(7), q)HXz

= || (u, p) |5 (4.54)

We assume the inclusion
ANVir C Qur. (4.55)
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The inclusion ensures that corrections in V;r will not disturb constraints corresponding to
;1. The trivial prolongation is supposed to satisfy

Bioi((wi—1,p1-1), (0,G1-1)) = Bi((R wi—r, pi—1), (0, Gi—1)) (4.56)

for all (u;_1,p—1) € X;—1 and ¢_; € @l_l. This condition guarantees that constraints

corresponding to );—; are preserved by the grid transfer. On the space V) not only the
inverse estimate (4.46), but also the norm equivalence

lurllv- T lfwerlv, Vur € Vir (4.57)
shall be fulfilled. For 2 <[ < L, we define the projection
Pl Vi—= Vir: AP, vr) = Allw, o) Vu € Vi, Yor € Ve, (4.58)
Then the actual grid transfer operator is defined as
RY = (I - P4)R" (4.59)

The construction of the smoother needs the decomposition

M, M,
Vi=> Vi Q=) Qu (4.60)
i=1 i=1

into subspaces of small dimension. The decomposition may be overlapping. The inclusions
NiVii C Qu (4.61)

must be fulfilled for all 1 <i < M,. Let a;(.,.) : V; x V; = R be symmetric bilinear forms
such that
5l(ul,ul) > al(ul,ul) ‘v’ul € W (462)

We define the parameter dependent primal form
gl(ul, Ul) = Eil(ul, Ul) + 8_1 Cl(AlUla Aﬂ)l). (463)

The smoother is an additive Schwarz method with subspace problems derived from the
bilinear form A;(.,.). That is

M,
Sp=T-71Y Tj (4.64)
i=1
where the operator Tlf is defined by

Tlﬁ V= Vi Az(Tlﬁulavz,i) = Aj(w,v,) Vu, € Vi, YV, € Vi (4.65)
The smoother is an iteration with symmetric preconditioner Dy, i.e.

SZZI—TDIIAZ.
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By the Additive Schwarz lemma, the norm induced by the preconditioner can be repre-
sented by

M
> _ >
lell, = inf D el (4.66)

up i€V i=1
We will prove the approximation property for the norm

lall3, 5 = A2 ulff- + e A2, + &7 102 Al (4.67)

The norm combines three different terms. The first one is the improved convergence in a
weaker norm stemming from the usual duality argument. The second term is essential to
reflect continuity in energy norm. The last term bounds the coarse grid part of the dual
variable e 7" Ay,

In Section 4.5 and Section 4.6 we will establish the estimate
il =2 Mwlly,g Yu €V (4.68)

for two different types of smoothers for the considered problems. These components lead
to optimal and robust multigrid solvers:

Theorem 4.4 (Robust multigrid method). Define a multigrid method with the com-
ponents introduced above. Then a W-cycle scheme with sufficiently many smoothing steps
lead to an iterative process with contraction number independent of the level | and the
parameter . A variable V-cycle lead to a preconditioner for A; with spectral bounds inde-
pendent of the level | and the parameter .

Proof. According to Theorem 3.7 we have to check 3 conditions: The approximation prop-
erty
lur — RUAZL R T Ay 5 = [l 4, (4.69)

will be verified in Section 4.4. The local preconditioner 7! D; of the smoother is scaled
such that
Al S TﬁlDl.

Estimate (4.68) will be verified in Section 4.5 and Section 4.6 for two different type of
smoothers. All estimates are independent of the level [ and the parameter . Together,
these conditions prove the theorem. O

4.3.1 Multigrid methods in mixed variables

Before we go into the details of the multigrid analysis, we derive an equivalent multigrid
procedure in mixed variables. Let the operator B; : X; — X be defined by an inner product
on X;. According to (4.63), we define the inexact mixed form By(.,.) : X; x X; = R by

Bi((u, 1), (v, 1)) = (g, ) + (M, i) + (A, o) — € ea(p, q1). (4.70)
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The projection P, : X; — X r and the operators T); : X; — X, ; are defined by

Bi(P(u, p), (vir, air)) = Bi((w ), (v, anr)) Y (vrs aur) € Xor (4.71)

and
Bi(TH(w, ), (vigy ai)) = Bi((w, pi), (0 @13)) Y (v qui) € Xog (4.72)

for all (u;, p;) € Xj, respectively. Then the smoother and the prolongation operator are
SP o= T-7> Th,
RY = (I-P%)R""

The smoother requires the solution of local saddle point problems. That is like a Vanka -
smoother [Van86]. But usual versions of the family of Vanka smoothers do not fulfill our
assumption (4.61). The multigrid method for the mixed problem is defined corresponding
to Algorithm 1.

We define the subspaces X; o, C X

Xio = {(u,m) € Xy : Nuy = epy}. (4.73)
For all (u;,p;) € X there holds
Bi((w,p), (0,@)) =0 Vg €Q (4.74)
as well as
Aj(ug,v) = Bi((ug, pr), (v1,0)) Vo eV, (4.75)

and corresponding relations for A,(.,.) and By(.,.). The multigrid components in mixed
variables preserve the spaces X;;. On the subspace, they reduce to the components in
primal variables. This is collected in the following lemma:

Lemma 4.5. The multigrid components fulfill the following properties:

1. The smoother SP preserves X, 9. On the subspace it is equivalent to the smoother SA
in primal variables. This means for (u;, p;) € X0 and

(alaﬁl) = SlB(ulapl)

there holds (), p1) € X0 and
lALl = SlAUl

2. The prolongation R maps X1 into X;9. On the subspace it is equivalent to the
prolongation R} in primal variables. This means for (w_1,pi—1) € X;—1,0 and

(alaﬁl) = RlX (ul—lapl—l)

there holds (u,,p1) € X0 and
ﬂl = Rlvul,l.
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3. The coarse grid solution operator maps X;o into X;_19. On the subspace it is
equivalent to the coarse grid solution operator in primal variables. This means for
(w,p1) € Xio and

(=1, pro1) = B L [RY]" By (ug, )

there holds (t;_1,p1—1) € X;—1,0 and

ﬁl,1 == Al_fll [RlA]TAlUl .

Proof. 1. Tt is sufficient to prove the corresponding properties for the operators Tl]f Let
(ut, p1) € Xy and (dy, pr) = T (u, pr). From (4.61), A\Vi; C Qu, there follows Ayt — ep €
Qui- Using the definition (4.72) of the operator T}, we get

Aty — Py, qui Ay — :
||Azﬂz—5251||c,: sup ( 1uy &‘pz,Qz,z)cl — sup ( 1y €pl,€n,z)q

— [],
q,;€Qu, qu,iHCl 0,:€Q1 ||qhi||cl

i. e. (ﬁl,ﬁl) S Xl’g. By ('&laﬁl) € Xl,O N Xl,i and (475) we obtain
gl(ﬁl, v,i) = Ez((@z,ﬁl), (v14,0)) = Bi((wi, pir), (v14,0)) = Ay(wg, vis) Vo, € Vi,

what is the definition of Tl"z
2. Let (u—1,pi—1) € X;—19. We define

(i, p1) = R °(wi1,pi1),
(o, pr) = B, m),
(W, o) = (g, p) — (wrpir)-

By the definition of the projection P} we have
(Azuz,T — EpT, ql,T)Cl = (Aﬂiz — €1, ql,T)Cl VQZ,T € QZ,T;
and by Ajwyr —epir € Qz,TJ-quzq we have
(M —epir, Gi-1)e, =0 V1€ Q.

Thus we get ~
(Nt —epryaqr) e, = (N — 8,’51,131610@ Vg € Q.

We use assumption (4.56), Iﬁlql € Q_1, and (4.74) to show

(ANt — P 1) ey = Bi((iu, 1), (0, 12, @) = By (w1, p11), (0, I2,q)) = 0,
i.e. (U, p) € Xi0. We apply (4.75) to (@, p;), namely

Ay(ty, v) = By((t, py), (v7,0)) Vo, € V.
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For vy r € V) r this gives
Aty — wr, ur) =0,

i.e. u,r = F)ZATlNLl, and

Lo AN~ A\ pVi0

iy = (I — Pz,T)Ul = (I - Pl,T)Rl Up—1,
and the equivalence is proved.

3. Let (u;, p;) € X;. The definition of (@;_1, p;_1) is equivalent to find (@1, p1_1) € X;_4
such that

B ((t-1,p1-1)s (vi—1, @—1)) = Bi((ur, pr), RlX’O(szl,szl)) V(v 1) € Xioq.

We set (vi—1,q—1) = (0,¢i—1) and obtain (4_1,p—1) € X;—10. Thus we can apply (4.75)
on both sides to get

Al (-1, v0) = A, Rlv’ovzq) Vo1 € Vi,
what is equivalent to @;_; = A, [RIV’U]TAlul. O

Theorem 4.6 (Equivalence of algorithms). The multigrid algorithm in mized vari-
ables preserves the space X;o. On this subspace it is equivalent to the multigrid algorithm
in primal variables. This means for (u,p) € X0 and (U, p) = MP(u,p) there holds
(ﬂl,ﬁl) € leo and

’lALl = MlAul.

Proof. The multigrid operator M;* fulfills the recursion

M} = o0,
M= (SPY™ (1= R(I = (ML) AT R A) (7)™,

and the mixed operator M} fulfills a corresponding one. We apply Lemma 4.5 and the
theorem is proved by induction. O

We define the norm

||(Uz,pz)||213, = ai(u, w) + a(p, p)- (4.76)

On the space X it is identic to the primal energy norm ||.|| 4,, i.e.

Nwilla, = [[(u,2)l|B, ¥ (w,p1) € Xio- (4.77)

For € = 0 the norm |.|| g, degenerates to a semi-norm.
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Theorem 4.7 (Optimal convergence rate of multigrid in mixed variables). Let
e > 0. The initial error is assumed to be in X)o. Perform either a W-cycle with
sufficiently many smoothing steps or a wvariable V-cycle with sufficient damping for the
system in mized variables. Then the iterates converge with rates uniformly in L and ¢
with respect to the norm ||.||s, -

Assume additionally By.(.,.) = Bi.—o(.,.), and the limit form By .—o(.,.) is stable with
respect to a limit norm ||.||x, =0 on the subspaces defined above. Then the algorithm in
mized variables can be performed for ¢ = 0 and the primal variable converges with respect
to the norm ||.||q, uniformly in L and .

Proof. First, we assume € > (. The errors of the iterates stay in X; . Thus, the algorithm
is equivalent to the corresponding one in primal variables. The last theorem stated uniform
convergence rates with respect to the primal energy norm. Due to (4.77), this is equivalent
to convergence in the norm ||.||p,.

If the additional assumption is fulfilled, we can apply continuity arguments and pass
to the limit £ = 0. O

4.4 The Approximation Property

In this section we will prove the approximation property (4.69) for parameter dependent
problems. The coarse grid correction step

us = uy — R AR A (4.78)

in primal variables is equivalent to the coarse grid correction in mixed variables. We set
p1 = ¢ 'Ajuy, and Lemma 4.5 provides

(us, ps) = (I = R B[R] By) (w1, p1). (4.79)

On X, we define the local norm in mixed variables as

e ) 5,5 = B llullir- + el + 12 il
On the subspace X it reduces to [|.[|y; 5, i-e.
(s p)ll x5 = Nlwillvie Y (ws 1) € X,

The property to be proven is
Jusllvi 6 = [Jual]a;s (4.80)

which reads in mixed variables as

||(U5,p5)||xl,() = (w1, p1) /B



96 CHAPTER 4. ROBUST PRECONDITIONING

We recall the definition of B;* and evaluate its adjoint

R = (I-P5)R""
RX]" = [R*"B/(I - P%)B .

The operation (4.79) is split into the steps

(12, p2) (I = P5) (ur, ), (4.81)
(us,ps) = B} [RZX’U]TBl(UQaPQ)a (4.82)
(w4, pa) (I — PR (us, ps), (4.83)
(us,ps) = (u1,p1) — (us, pa).

The first step is called preprocessing step. The third step (4.83) is similar, it is called
post-processing. Both modify the functions by local operations, such that the classical
coarse grid correction (4.82) becomes efficient.

We apply the triangle inequality in the form

[(us. ps)llx,.0 = [l(wr,p1) = (ua, pa)l x5

X’
[ (w1, p1) = (w2, p2)lx, 5 + [[(u2, p2) — B U(U3ap3)||x,,ﬁ +
IR (us, ps) = (ua, pa) || x5

IN

Each one of the three lemmas below estimates one of the three terms. We start with the
preprocessing step.

Lemma 4.8. There holds the approzimation estimate
[(u2, p2) = (w1, p1)llx, 6 = Ml (w1, p1) |5
Additionally, the stability estimate
luzllvi + llp2 = 12 pallqy = [l (wa, p1) 15,
15 fulfilled.
Proof. We use (us,p2) € X;0, and thus
(2, p2)l1 5, = lluzlla, = (I = Pip)ualla, < Nuilla, = (o) |5,
This bounds the first term of the stability estimate. Next, we will establish the estimate

[wllvi 2wl (4.84)
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We use stability (4.41) and continuity (4.40) of By(.,.) on X, to obtain

||wl||V < sup Bl((wlao)a (Ulan)) = sup al(wl,vl) — Cl(Alwl;Ql)
ST (@) €X) H(vl’ql)HXl (@)X H(UlaQI)HXl
< sup [ (wi, wy) + e e( Mgy, Aywn))? [an (o, w1) + € eular, @)
B (v1,q1)€ X H(Ul: ql)HXz
A 12 g o \\1/2
— s 1 (wr, wy) (v @), (v, —a@r)) -
(vlam)EXl ||(vl’ QI)HXI

For (u;, p) € X0, inequality (4.84) can be rewritten as

Nwillv; =1 (ue, 20) || B,

To bound the approximation term we use (us — uy,p2 — p1) € X;7 N X, the norm
equivalence (4.57), the orthogonal decomposition (4.53), and the estimate above to obtain

[(u, p2) = (ur, po)l%, 5 = M *luz — wall- + € lp2 = pall2, + 1124 (02 — 1) 13,
< Jug — w3, + e llpe = pall, < (w2 — wy, p2 = pi) I3, = 1 (ur, p1)|[5,.

From p, — Iglpg € Qur, stability (4.54) of X, r, inclusion (4.55), orthogonality (4.53), and
the definition of P/}, we obtain

Bl((O,pz - Il§1p2)7 (U, Q))

Ip2 — I2 pallo, < sup

(v.9)E X0, (v, )l x,
Bl((oap2)a (U, q)) - Cl(IlQ,IPQ, Aﬂ) - Q) Bl((o,pg), (U, Q))
= sup = sup
(v, Q)X ||(U’ q)HXz (v,9)EX) T ||(U; Q)HXI
Bl((—UQ,O),(U,q)) 2
= sup = Juallv; = (w2, p2)l5,-
waexe  (va)llx : B

Lemma 4.9. The classical coarse grid correction fulfills the approximation inequality
X,0
1By (us, ps) — (uz, p2)llx, 6 = [ (w1, p1)l| 5,

Additionally, the stability estimate

lusllviy + s = I23pallon = Nl (ur, p1) 5,

15 fulfilled.
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Proof. From the variational definition of (us3,p3) € X; 4

By1((u3, p3), (v,9)) = Bul(uz, p2), B (v, 9) Y (v,9) € Xp,

and property (4.56) we get

Bl—l((u?np?) - Ilg1p2)7 (U, q)) = Bl((“?ap? - Ilg1p2)a RZX’O(Ua Q)) v (U, q) € Xl—

(4.85)

1-

Stability (4.41) on X;_y, continuity (4.40) of By(.,.), continuity (4.50)+(4.51) of the pro-

longation operator RZX’O, and Lemma 4.8 give

Bl—l((u3,p3 - IlQ_1p2)7 (Ua Q))

lusllvi_y + llps = I2ip2llQ, = sup

('U,q)EXl_l ||(U7Q)||Xl,1
Bi((u2,p2 — 17 p2), R (v, q))
= sup
(v,9)€X; 1 ||(7), q)Hqu

=< uzllvi + llp2 = 2 p2llor = [1(ur, 1)1,

Norm equivalence (4.51) on ;1 and @), and Lemma 4.8 give

Ips = pallo, < llps = 2 ipallquy + Ip2 = 121 p2lly < [l (ur, 1)l

and the estimate

lps = 2 psllay < llps = p2+ 12 1 (02 = p3)llay + P2 — L2 1pallq, = [[(ur, )l 5.

We use continuity (4.40) of By(.,.) to bound the term £|.|[ of the approximation estimate,

namely
ellpe = psll?, = ellpe = I ipalle, + € llps — T2 1p2le,
= p2 = I p2llq) + lIps — I p2lla
= (ur, po)lls,

The only term left is the improved estimate in the weaker norm, which we will bound

by
lus — R uglv— < By [|(ua, po = I2,ps)|x,-
We define the dual problem

B((QOJ w)a (U, q)) = (u2 - RZV’OU3, U)V—.

(4.86)

The right hand side is a linear functional in (V~)* with norm |juy — R, %us]||,—. We define

the finite element problems

Bi((er, ), (v, @) = (ug — RlV’OU& v)y-,
Bl—l((SOz—la 1/11—1), (Uz—l, Ql—l)) = (U2 - Rl‘/’ousa Ul—l)V*a
B ((G-1, Y1), (v, qi-1)) = (ug — RlV’OU& RlV’OUZA)V--

(4.87)
(4.88)
(4.89)
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with test functions (v, ¢;) € X; and (v;_1,¢-1) € X; 1.
First, we estimate the difference of the solutions of (4.88) and (4.89) by

1(@1-1 — @ro1, Y1 — 1;171)||X,,1 (4.90)
Bi_1((1=1 — @11, =1 — =), (im1, @1—1))
= sup
(vl—lsQl—l)EXl—l ||(Ul_1, ql—l)HXl_l
_ (up — sz’ou?n V-1 — RZV’OUl—l)V—
= sup
(Vi—1,q1-1)€X1—1 ||(Ul—1, QZ—l)HXl_l

vizt — B vy [|v-

< ug — RZV’Uu3||V7 sup = hllug — RZV’Uu3||V7.

v_1€EVI_1 ||,Ul71||‘/l,1

We have used the approximation (4.50). Using the variational problems (4.87) and (4.89),
and the variational specification of the coarse grid correction (4.85) we get

Jug = B Pus|[y- = (uz — R Pug, u)v- — (uz2 — R} *us, B "us)y-
= Bi((¢1,¥1), (w2, 1)) — Bia (i1, %1-1), (uz, p3))
= Bi((¢1, %), (w2, p2)) — Bi(R (@11, 01 1), (g, pa))
= Bi((¢1, ) — R (@, {ﬁvz)a (ug, p2))-

Next, we use (4.56) and observe that

Bul(¢1, %) = REY (@11, du1), (0, 12,p,)) (4.91)
= Bl((@la wl): (0, ]31172)) - Blfl(([ﬁl—la 'Jlfl)a (0: [lcilp2)) = 0.

We continue and obtain

lus — R usl|2- = By((pr, ) — BRXY(B1, ), (ua, po — T2 o)) (4.92)
< i) = B @)l N(ua,po — T2 p2) |5, (4.93)

We use the continuity of the prolongation R;*"°, and (4.90) to get

(1, 10) — B, Jl)”xl
|| (1, 001) — RIX’U(SOFI; Y1) x, + ||RlX’0(90171, Y1) — Rf’o(@zflawlq)nﬁfz

=
< lor = B %oallvi + 1 — bl g, + o [lus — B Pus]|y -

If the spaces V,_; and V] are nested, and RZV’O is the embedding operator, we can apply the
a priori estimate (4.48) and we are done. We did not use the regularity estimate (4.43)
explicitely for this case. If RlV’O is not the embedding, we need the intermediate steps

lor— B ol < llon — IV gl + 11 ¢ — R°LY gl + 1RV j0 — R 011 ||y
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Now we apply the approximation estimate (4.45) of the interpolation operator, the a priori
estimate (4.48), the approximation estimate of the prolongation operator (4.50), and the
regularity estimate (4.43) to obtain

ot — R %orallv; + [ — i allo, = hllug — R Pusl|y-.

Using these estimates in (4.92) and canceling one factor ||uy — R, us||y—~ gives the result.
0

Lemma 4.10. The post-processing step (4.83) fulfills the approzimation estimate

(ua, pa) = R (g, pa) x5 = Nl (ur, p0) 13 (4.94)

Proof. Norm equivalence (4.57) on Vj r, orthogonality (4.53), stability (4.54) of X+ and
the definition of the projection (4.71) give

| (tay pa) — R (g, p3) || x5 == lua — R ugllvi + £/ ||ps — ps]le
Bl((RlV’OU3 — U4, P3 — p4): (Ua Q))

< (g, pa) — B (uz, ps)||x, = sup

(v,q)eX) T H(Ua q)HXl
_ Bl((RlV’OU3ap3)a(v;q)) _ Bl((RlV’Uu3ap3 —]lQ_1p3),(7),q))
= sup sup
(v,q)eX) T ||(7), q)HXz (v,9)eX) T H(Ua q)HXl

V,0 9 Q
< (B uzps — I p3)llx0 =< W (uzops — I2,03) 5, = (1. 1) |13

and the proof if complete.

4.5 The Smoother of Braess and Sarazin

Recently, Braess and Sarazin [BS97| suggested a new smoothing iteration for saddle point
problems. It is relatively simple to implement, and it is the only known method providing
an optimal dependency O(m~™') on the number of smoothing steps. It was observed in
[BS97] that the iteration depends on the primal variable, only. Although the iteration
is called smoother, it is responsible for the grid transfer as well. In [Wie99] the scheme
is applied for parameter dependent problems in primal variables arising from nearly in-
compressibility. The task of this section is the integration of the smoother by Braess and
Sarazin into the theory based on the norm related to primal variables.

The construction of the smoother is based on a bilinear form @,(.,.) : V; x V; such that
the problem: Find u; € V; such that

dl(ul,vl) = f(?)l) Yu €V, (495)

can be easily solved. E.g., the matrix arising from @; may be diagonal. It is assumed that

a; is scaled such that
dl(ul,ul) > al(ul,ul) Yu € V. (496)
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The bilinear form B
Al(ul, Ul) = Ell(ul, Ul) + 8716l(Alul, Aﬂ)l) (497)

is feasible for (4.63). A special choice of space decomposition is to choose just one space
(M = 1). Then the preconditioner D; used in the smoother becomes a global operation.
With _

Dl(ul, Ul) = Al(ul, Ul)

and the according definition of the operator D;, the smoothing iteration Sgg : V; — V] is
written as

Sps=1— D;'A,. (4.98)

Before stepping into the analysis, we shortly comment on the implementation. One step
of the iteration
iy = Spsuy

is written as
U = U — wy,

where w; is the solution of the problem
5[(11)[,7)1) = Al(ul,vl) Yu € V. (499)

One has to solve a global saddle point problem for w; as well, but by transforming to the
(discrete) dual problem, it (may) become much simpler. First, we formulate an according
mixed problem. Therefore, set p; = e7'Aju;, and r; = e'Ajw;. Then (w;, 1) € X is the
solution of the problem in mixed variables:

a(w,v) + av,r) = alu,v) + alNov,p) Vo eV,

(4.100)
ahw,q) — calr,g) = 0 Vg € Q.

With the definition of El((ul,pl), (Ul, ql)) = Ell(ul, UL) + cl(Alul, ql) + Cl(Aﬂ)l, pl) — & Cl(pl, ql),
the variational problem is rewritten as

By((wi, 1), (v, @) = Bi((w, pr), (01,0)) Y (v, ¢1) € X (4.101)

In the notation of linear algebra, it reads as

(3 2)(2)-(#4)

One can pass to the Schur complement problem:

(Aa™'AT +ec)r = Aa ' (au+ ATp) (4.102)

[ 12t

It is assumed, that this problem is simple, and can be solved by a few steps of a precondi-
tioned iterative scheme. The corresponding norm can be expressed by

A 2
BT(MilAT + SQ)B = sup M

—— +¢ ||pl||§l. (4.103)
mevi vl
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If the multigrid iteration is performed in mixed variables, an approximative solution of
(4.102) is theoretically understood by the work of [Zul98b]. We will assume that (4.102)
will be solved exactly. If the dual variable r is calculated, the primal variable w is obtained
by

w=a " (au+A"p—ATr).

We will return to the Schur complement problems later, when we consider the specific
examples of nearly incompressibility and Reissner Mindlin plates.

Lemma 4.11. Assume that there holds the full reqularity estimate

||ul||al = h_1||ul||vf Yu € V). (4104)
Then estimate (4.68) holds with o =1, i.e.
[wall oy = [Jeallvy - (4.105)

Proof. The estimate follows immediately by the definition of the norm (4.67)
a3, 5 = B2 il 5= + e I Awall?, + e 12 Al
The last term is not used. O

Theorem 4.4 proves robust multigrid convergence with rate O(m~'/2), if the coarse
grid correction from Section 4.4 is used. The iteration of Braess and Sarazin can be used

to construct robust grid transfer operations, too. Using it, the rate can be improved to
O(m™1).

The smoother of Braess Sarazin maps into the kernel space. Thus, it is bounded as a
mapping from a parameter free norm to a parameter dependent norm. This is formulated
in the following lemma:

Lemma 4.12. There holds the estimate
|SBswl|p, < [|wlla Yu € V. (4.106)
Proof. We fix u; € V; and define w; € V; as solution of
Dy(wy,vy) = Aj(uy, v) Vo €V
We represent the norm by

D(S
ISpsullp, = sup M‘
wevi vl

(4.107)
The numerator is estimated by
DZ(SBSUlaUl) = Dz(Uz - wlavl) = Dz(Ul; Uz) - Al(ulavl)
= a(w, v) — a(w, v)

Nwella,—a 01| -

willa, [[villp, -

INIA

Here, we have applied Cauchy-Schwarz to the (semi)-definite form af(.,.) —a(.,.). Inserting
the estimate in (4.107) proves the lemma. O
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It is mentioned, that we used only algebraic properties to obtain a stable grid transfer
operator. Especially, we do not require stability of the discretization. Ch. Wieners pointed
out this advantage, if not 100 percent stable finite element schemes like (Q; — P, elements
are used.

By a slight modification of the multigrid scheme, one can obtain the improved depen-
dency O(m~1') on smoothing steps. This improvement could not be obtained by local grid
transfer operators. For technical reasons we assume now, that the spaces V, are nested,
and the trivial prolongation operator is just embedding, i.e.

R =1 (4.108)

But nevertheless, the forms are non-nested. Then we obtain the improved approximation
property.

Theorem 4.13. Assume, there holds the regularity and approximation estimate
lu = wllv- < BIFllv-)- (4.109)
derived from (4.48). It is assumed that there holds the full reqularity estimate:
lwlla, = 2 Hwllv-  Yu €V (4.110)
Let Rlv,o = I. Assume, there exists an interpolation operator I, : V. — V, which is a

projection and which is continuous with respect to ||.|y-. The alternative coarse grid
correction step is defined by the procedure

us = Sps(I — Ry AL [R°)TA))Spsuy. (4.111)

Then there holds the improved approximation property:

A
sl p, < sup Ay, v1)

. (4.112)
wevi vl

Proof. We fix uy € V). The coarse grid approximation is split into the steps

uy = Spgui,

Uus = RlV’OA;_ll [RZV’U]TAZUQ,
Ug = Uz — U3,

us = Spsuy.

We define the linear functional f € (V=) by

f(?j) = Al(ug,]l@) YoeV .
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Using the symmetry of the smoother we obtain for an arbitrary v € V~:
f@) = Ay(ug, ;t) = A(Spsuy, L) (4.113)
= Ay(uy, SpsIiv)
. Aj(uyg, v
< [|Sesliv|p, sup A, 1)
nweV ||vl||Dl
Next, we use Lemma 4.12, norm estimate (4.110), and continuity of I; to obtain
1SBsliollp, < [[Tiolla, < b7 [ Lo]lv- < B0y (4.114)

Combining (4.113) with (4.114) bounds ||f||(vf)* by the right hand side of (4.112), i.e.

f (@ A
Pl = sup L < ot g A1),
sev- [7llv- wlullp,

By definition of f, and by the variational definition of the coarse grid solution, there holds

A(ug,v) = f(w) Vo eV,

Ai(us,vi1) = fluy) Vo1 €V
We define the artificial problem: Find @ € V' such that
A, v) = f(v) YveV.

Then we can use the a priori estimate (4.109) to obtain

lusllv- = [Jua — uzllv- < |lug — ullv- + |lus — ul|v- (4.115)
=< Bl (4.116)
Finally, we apply Lemma 4.12 once more to obtain the result
|usllp, = [|Sesuallp, = [|ualla,
=< By |uallv-
= hllfllv-y-
< sup Al(ulavl)‘
i ||vl||Dl
The proof is complete. O

This approximation property gives optimal rate of convergence of order O(m~™'). The
technique to proof the approximation property for non-nested forms was used by [BV90] for
problems without parameters. In [Wie99] a similar technique was applied for a parameter
dependent problem. Wieners used the intermediate estimate (4.115) as approximation
property, and verified an according smoothing property.

Both versions lead to equivalent results for problems with full regularity. But, for
problems with less regularity there may occur differences. The formulation presented here
suggests to use interpolation norms based on the parameter dependent norms ||.||4, and
||l.||p,» while Wieners analysis suggests to use interpolation between the norms without
parameters ||.||o, and ||.|[z- This point is only mentioned, and has to be analyzed in further
work.
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4.5.1 Application to nearly incompressible materials

The smoother of Braess and Sarazin was applied in [Wie99] to the problem of nearly
incompressible materials. We will shortly collect the involved bilinear forms. The form

al.,.) is
N

a(up,vn) = D alei @)uvi Vup =Y wigi,vh = Y i,

i=1

i.e. the diagonal of the system matrix assembled with respect to the nodal basis (gpz)f\il By
an appropriate scaling factor ~ 1 the condition (4.96) is achieved. By an inverse inequality
and by Friedrichs’ inequality there holds the equivalence

luwlla, =~ by Hwlle Yu € Vi

For problems with full elliptic regularity, the norm ||.|[y~~ was chosen as ||.||o and & = h,
such that
lurlla, = Pyl

holds. The discrete Schur complement problem behaves like
Aa ' AT +ec~ —hIA, +el

such that a Poisson solver can be used.

4.5.2 Application to Reissner Mindlin plates

In order to get an efficient smoother, one has to define to preconditioners, namely one aris-
ing from @,(.,.), and one for the Schur complement. We suggest the following components.
Let a; be the block diagonal form

o, 8012, = 7 {3, + 16102, } (4.117)
with a proper scaling factor 7 ~ 1. The preconditioners are chosen by
181113, = b2 11Blo (4.118)
and
i, =C ' +Cy! (4.119)
with
lwnlle, = h™? lwlli  and  flwllg, = b7 lw[5.

This means, we choose a sum of a preconditioner for the Poisson equation and of a diagonal
preconditioner. For the Schur complement, we choose a preconditioner S such that

el = (B + )]l - (4.120)
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Theorem 4.14. The smoother of Braess and Sarazin with the components (4.119)
and (4.120) leads to an efficient smoother.

Proof. First, we check conditions (4.96) and (4.110), namely

(e, B)lla, < Nl (w, BYNE, = 272 (wn, B~

By the additive Schwarz lemma, and Lemma 2.18 we have

2 : 2 2
||wz||a,,w = wz:Jﬂ{;wl,Q {||wz,1||c1 + ||wl,2||02}

12

inf {h72||wz,1||?+h72t2||wl,2||g}

wy=w,1+wi, 2

inf  {B72[lwn][F + b2 w13}

w=w1+w3

12

= h* i
Additionally, there holds

1Billas =~ b M Billo = b Bllv-s,

and thus
[ (wr, B)lla, ~ b= (wi, By~

By the inverse inequality |[(w;, 8)||v—; = h7Y|(wi, B))|lv- proved in Theorem 2.20, and a
proper scaling factor 7 ~ 1, we get

[ (wi, Bi)llay < [ (w2, Bi)la, -

Additionally, we have to check that the diagonal preconditioner for the Schur comple-
ment is an optimal one. We have to check that

a(Vw, — B, pm)?
(0 + )pl2 = sup AT Do)
(wy,61) €V, H(wlaﬁl)H&l

+t2||pl||zl. (4.121)

We start with bounding the right hand side from above:

Cl(vwl _Blapl)Q 2 2 val _BZHEI 2 2
sup +tpll, = sup e 1 |pill
(w1,81) H(wlaﬂl)Hgl “ (wi1.B1) ||(wl:51)||§l “

(12 + )| (wi, B) I
< q sup T+t il
(wi,B1) H(wl:BZ)Hdl
< (P2 + 1) Imll7,-

We bound the right hand side from below, by choosing w; = 0 and 7; in the bubble space
V,fbub such that

/ mdx = /pl dx for T with hy >t, and n|r =0 else.
T T
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This gives
a(Vw = B,p0)* | oy 2 alBup)® | oy e
sup +Epll, = e ]
iy N(wi, B, “ ImllZ,., “
lpellonse o
~ s — +
DRI
~ (B + %) [Ip]lZ,
and the equivalence is proved. O

4.6 Local Smoothers

In this section we will verify the smoothing property for local smoothers. The estimate to
be proven is (3.47), namely

il 2 Mwllyg Yu € Wi (4.122)

The interpolation norm of index « € (0, 1] is defined by interpolating between the energy
norm ||.||4,, and the splitting norm

M,
ll|p, =  nf > Nl (4.123)

u; €V =1

Since we will use only small local problems, there is no need to replace A(.,.) by a simplified
form A;(.,.). But there is no difficulty, when a(.,.) is replaced by a spectrally equivalent
form @;;(.,.) on the subspace V;;. The norm on the right hand side was defined in (4.67):

luall3, 5 = B2 lulf- + e Awall?, + 272152 Al (4.124)

The general strategy to prove estimate (4.122) is to split a function u; into three parts. The
splitting has to be stable in |||y, 5, and each of the three terms is estimated by one of the
terms of ||.[|j; 5. For the case of nearly incompressible materials we use a global projection
by the limit problem, while for the Reissner Mindlin plate we can use local interpolation
operators.

4.6.1 A local smoother for nearly incompressible materials

We verify the smoothing property for the local preconditioner introduced in Section 4.1.2.
We recall the bilinear form for the limit case ¢ = 0

B%((u,p), (v,q)) = (e(u), e(v))o + (divu, q)o + (div o, p)o. (4.125)

The abstract norm ||.||y; 5 has the specific form

lul2, 5 = h~2ull2 + eV diva |3+ 2diva 2.
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Theorem 4.15 (Smoothing Property). Assume that the domain is simply connected,
and pure Dirichlet conditions are posed on V. Assume there holds full elliptic reqularity
for the limit problem, i.e. the solution (u,p) € X of

BU((ﬂaﬁ):(UaQ)):(f:U) V(U,Q) e X

fulfills )
[l + [IBll1 < [|.f[lo-

Then estimate (4.122) holds with o = 0.5.

Proof. We split u; = u' + u? + u? by solving for (u’, p') € X such that

B ((u,p), (v,0) = B((u,0), (v, ))
B%((u*,p°), (v,q)) = B"((w,0),(0,q - I?,q)), (4.126)
B ((u,p%), (v,q)) = B"((u.0), (0, Tz 19))  V(v,q) € Xi.

The splitting is constructed such that u' is discrete divergence free, u? has non-smooth

divergence and u® has smooth divergence. Then we apply the triangle inequality,
Lemma 4.17 - 4.19, and Lemma 4.16 below to obtain (4.122) by

||ul||[Dl,Alh/z < HulH[Dz,Azh/z + ||u2|| [D1,A1]1/2 + ||u H [D1,Ai]1/2
= u'llvs + 1l + 11l 6
= wllv 6
U
Lemma 4.16. The decomposition (4.126) is stable in |||y, 5 norm, namely
1Ml + 1l + 1l = v 6- (4.127)

Proof. By Theorem 2.8 (Brezzi) we get the bounds ||u!||; + [[p|lo < [|w]: and [|u?|; +
P2l = ||II% divayllo. First, we bound [utll}. 5 = h7?[[u'|[§. The solution of the dual
problem find (¢, 1)) € X such that

BO((QOa w)a (an)) = (ulav)o V(U,q) € X,

is bounded by |||+ |[#]]1 =< [|u*]lo. By Galerkin orthogonality, approximation, regularity,
the inverse inequality A ||u]|; < ||ulo, and integration by parts we obtain

lu'lle = B*((¢,%). (u',p"))
= B'((¢,v) — I} (¢ ), (u',p")) + BY(I (,4) — (,), (i, 0)) + B (¢, %), (w, 0))
h(llellz + Ills) ('l + et llo) + A (lellz + 611 Tl + (lellz + 111 ullo

Relfutlo llls =+l follullo =l lo [Jullo-

LA TA
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Next, we verify the estimate
B2l < (R divll} < < (4.128)

Therefore let
B°((¢,¥), (v,0)) = (u*,v)0  V(v,q) € X,
then we get by B((u?,p?), (v, q1-1)) =0 Vv € Vi, ¢ 1 € Q1 the bound

[W?|l3 = B°((p, ¥) — (I . I2 ), (u?, p?))
< h(llellz + 120 (el + 192lo) = [[u?llo b (112 divao.

Dividing by ||u?|[o proves (4.128). The last term u?® is bounded by the triangle inequality.
0

The discrete divergence free part u! is estimated by lifting to the potential space and
Sobolev-Space interpolation in the next lemma.

Lemma 4.17. Let u' be defined in (4.126). Then the estimate

HulH[DlaAzhp = HulHVl,ﬁ (4.129)
18 valid.

Proof. We recall the lifting operator E : V; — V and the Fortin operator I/ : V — V; we
have introduced in Section 4.1.1. The operator E solves Stokes problems in each triangle
to map Vj o to Vi. The interpolation operator I uses only values from 9T, such that it is
a left inverse to E.

By stability of the Stokes problem, and Friedrichs’ inequality there holds

[Eutlls + k| Eutllo = b Hluo.

By the assumptions onto the domain and boundary conditions, and div Fu; = 0, there
exists a potential ¢ € HZ(Q) such that

Eu' =voty  |olla+ kel =< B uo.

Different as in Section 4.2.1, we have no optimal bound for h=2||p|[p. Thus we have to
apply operator interpolation.
On one hand, we have

11 rot@l%, ~ I/ votg||T < (@7 V¢ € Hy(Q). (4.130)
We use the partition of unity from Section 4.1.2 to estimate for any ¢ € HZ
11 ot @15 =< Y I rot (vi@)3, = D llrot (i), = Y I3
= Y (W lG e + 125,0,) < (B 1IBIG + 12113)
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Let I/” : L, — HZ be a local regularization operator at mesh size h such that
— 2 2
W2 =L )ello + 15 el 2 Hlelle:
2 2
12" llo + 215l = lello

holds. One can choose a Clément operator mapping to a finite element subspace of HZ.
Then there holds
2 . ~ ~
1T vot I @lla, < Nl V¢ € H,

and
2 _ 2 2 _ ~ ~
117 vot I @llp, 2 W2 @llo + (117 @l 2 h721@lle V@€ L.

We use operator interpolation, and Hy = [Ly, Hg)1/2 (see [Bra95]) to conclude
2 o _ ~ ~
12 vot I @l pysfe <RI 21 - V€ Hy.
Since A; < Dy, there holds for the other component

~ 2 L ~ 2 L
||]lFrOt((p_I}fI (p)H[Al,Dzh/z = ||]lFrOt((P—I}fI (10)||D1

< WG = I gllo + 116 — I lls
= gl
Thus we obtain
lutllippan,, = 115" rot@llip,af,,,
< 1 vot I ellipan, . + 1 vot (¢ = L)l
=< b7 el + llells
= h o = flutlly.
The lemma is proven. O

2

The component u* is orthogonal to divergence free functions and has non-smooth di-

vergence.

Lemma 4.18. Let u® be defined in (4.126). Then the estimate

[ rn A || (4.131)
18 valid.

Proof. We use ||.|[%, < [l.ID,, .15, = A~ 2¢'.[§ and the intermediate result (4.128) to
obtain

2|12 2112 _ : 2
oy a0, = e?D, = ink D el

< inf B2 a2 = 2 )2 = )
u2:zui ls
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The part u® with smooth divergence will now be estimated by better approximation of
the coarse grid interpolant of the dual variable.

Lemma 4.19. Let u® be defined in (4.126). Then the estimate

||u3||[DlsAlh/2 = ||u3||Vl,f] (4.132)
s valid.
Proof. By definition of u® we have I divu® = I divu, and together with stability of

X, 4 we get [|ud]|; < || I, divayllo. This gives

1%, = (la®F + e HIT2 dive®[5) < e IR divaall§ < e [lu®]3, 5.

On the other hand, we have

w3, = O = el (7 |- el | O AP
s

inf
ud=>"

Uj

By operator interpolation we finish the proof.

4.6.2 A local smoother for Reissner Mindlin plates

We verify the smoothing property of the local preconditioner analyzed in Section 4.2.2 for
the two level method. Here, the abstract norm ||.||y; 5 has the specific form

1w, OIy6 = b7 l(w, B~ + [ Au(w. B)IC,
_ . _ _ _one=——>5!
= h* inf {Jwollf + ¢ lwellg} + A 2Bl + [ Vw = 5o

w=wo+wr

Theorem 4.20. Assume that pure Dirichlet boundary conditions are posed on V. Then
the condition (4.122) holds with o = 0.5, i.e. the estimate

[ (wi, B 141,031 =2 M1 (wis B[l 6 (4.133)
is valid for all (wy, B)) € V.

Proof. We will split the finite element function (w;, 4;) into a Kirchhoff part, and the rest.
For this we define two interpolation operators. Let IZHZ : Ly — HZ be a local regularization
operator at length-scale h. It shall fulfill the approximation inequalities

|w—I"w|y 2 A" ¥wl|l, VYweH, 0<k<m<2,
and the continuity and inverse inequalities

1T wlle < A" Fwlm  VweHy 0<m<k<2
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Further, let I} : Ly — V" a regularization operator at length-scale ¢. It shall fulfill the
approximation
Jw—wlo < tlwll  Yw e H,

and the continuity and inverse inequalities
177wl = ™ %|w||m Vwe H 0<m<Ek<1,
This interpolation operator is feasible for Lemma 2.17. We recall the Fortin operator
If =15+ (= 1,

where we use a Scott-Zhang Operator ! preserving quadratic polynomials for w and
linear polynomials for 5. The operator I, 2 adjusts S-bubbles for elements with A > ¢, see
Section 4.2.2. Then the Kirchhoff part is defined as

(w', BY) = IV (1] 1w, V I TP wy). (4.134)

The rest is
(’U)Q,EQ) = (wlaﬁl) - (wlaﬁl)'

We recall the two-level approximation norm (4.30)

1 1
2 2 2
1(w, BV, 10c = 751510 + EEDE [[wllo-

By Lemma 2.17, we can use a constructive expression of the norm
[ (we, B = I willf + 2w = I w5
Using this representation, one verifies that
1(w?, B2 10e + 21V w2 = 825 = 02| (wi, B)l[3r- + 72 ([ Veor = Bill5,
and (4.35) gives the estimate for the rest (w?, 3?):

1(w?, B%)lIp, = 1l (wi, B)llv;.6-

To bound the Kirchhoff part (w', 3') we have to apply operator interpolation. We define
T: L2 — ‘/Z by
w — T = IF (I o, VI w). (4.135)

We use Theorem 2.13 to estimate

~ 2 . 2 .
ITol, = 1@ o, VI o)
2 L _
~ VI +j0]f;
2
[FrallF

][5

IA 1A
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Using a partition of unity, the additive Schwarz lemma, and an inverse inequality for IZH2,
we obtain

1T,

IN

Y T ()3,
2
DI @) s

< Zh*ﬂl i) |12 < b2

A

Operator interpolation and Hy = [HF, Lo1 /2 gives
T4, Dy, = BT 0] Vi € Hy.
We apply this to w = I}"w; and get the result

1w?, B lanp. = ITT Wil a0y, 3 57wl
= T (w B)llv- = (1w, B1)lly 5.



114 CHAPTER 4. ROBUST PRECONDITIONING



Chapter 5

Numerical results

Several versions of the multigrid methods in primal variables with local smoothers have

been tested numerically. The following problems have been investigated within the finite
element code FEPP on a SUN Ultra 1 / 166 MHz workstation with 320 MB RAM.

Problem A: Driven Cavity example.

We consider a Stokes flow on the unit square Q = (0,1)2. The incompressibility is approx-
imated by a penalty term. The initial triangulation 7; is given by two triangles, further
meshes are obtained by successive refinement. We have used the finite element space based
on P, elements. The bilinear form A(.,.) on the finest level is defined by averaging the
divergence on the finest mesh, i.e.

Ap(u,v) :/Vqudx—l—el/divuhdivvhdx (5.1)
Q Q

The source term is set to f = 0. Dirichlet boundary conditions are specified as
)T at nodes € [0,1] x {1},
T 0,1

; _{ (1,0
"7 (0,007 at nodes ¢[0,1] x {1},

and incorporated by homogenization of the FE system. A plot of the solution at level 5 is
given in Figure 5.1.

Problem B: Flow through a pipe.

The geometry and the solution at level 4 are given in Figure 5.2. The boundary is split
into the jacket I'y, inlet boundary I's and outlet boundary I'3. We specify homogeneous
Dirichlet boundary conditions at I'y and natural boundary conditions elsewhere. We solve
the finite element problem find u;, € V}, such that

Ap(un, vy) = (9, vn)o0,r, Vo, € V.

The bilinear form Aj(.,.) is the form defined in (5.1). The boundary stress is defined as
g = (0,1). The problem involves curved boundary approximation, a non-convex domain

115
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Figure 5.2: Solution of Problem B

and mixed boundary conditions.

Problem C: Nearly Incompressible Sub-domains.

We consider a problem of linear elasticity with two incompressible sub-domains. The
geometry and the solution at level 4 are given in Figure 5.3. Dirichlet boundary conditions
are introduced at the bottom, twisting volume forces are applied in €2,. The material data
are £ =100, =0.31in ;U and £ =1,rv = 0.499 in Q3 U Q4.

At first, we investigate the behavior of the condition number x(C; ' Ay) in dependence
of the number of levels L and the parameter £. The preconditioner C}, is obtained by the
application of a symmetric multigrid operator, either a W-2-2 cycle or a V-1-1 cycle. We
used an additive smoother as well as a multiplicative smoother. The numerical results
for the condition number x(C, ' A;) for Problem A obtained by the Lanzcos method are
given in Table 5.1 for a V-1-1 cycle and in Table 5.2 for a W-2-2 cycle. For the W-2-2 the
calculated condition numbers neither depend on the level nor on the parameter, what is in
correspondence with the analysis provided. We do not have optimal estimates for V-cycle
convergence rate yet, but the numerical results seem to be very promising.

Next, we used the V-1-1 multigrid preconditioner in a preconditioned conjugate gradi-



Q,

Figure 5.3: Geometry and solution of Problem C

[ ‘ Unknowns additive smoother multiplicative smoother
e=1[10° 102 10* [10% |10 102 [10°* | 10°°
2 50 1.82 | 251 |266 |266 |1.04 |1.10 |1.11 |1.11
3 162 227 1679 |7.66 |7.67 |126 |215 |2.29 |230
4 578 258 | 859 [9.91 |993 |1.37 |247 |2.64 |2.64
5 2178 2.72 |19.79 |[11.60 | 11.62 | 1.39 | 2.56 |2.73 | 273
6 8450 279 |10.84 | 13.12 | 13.15 | 1.39 | 2.65 | 2.82 | 2.82
7 33282 273 | 11.66 | 14.41 | 14.45 | 1.39 | 2.72 | 290 | 291
Table 5.1: Condition numbers for V-1-1 cycle, Problem A
[ ‘ Unknowns additive smoother multiplicative smoother
e=[10° 1072 [ 10=* | 107% | 10° 1072 | 10=* | 107°
2 50 1.05 | 1.08 |1.10 |1.10 | 1.000 | 1.00 | 1.00 | 1.00
3 162 1.15 | 165 |1.74 |1.74 |1.002 | 1.05 |1.06 | 1.06
4 578 .19 | 176 |1.73 |1.73 |1.002 | 1.05 |1.05 | 1.06
5 2178 1.24 | 179 |1.87 |1.86 |1.002|1.04 |1.05 | 1.05
6 8450 1.26 | 1.8 |1.92 |1.91 |1.002|1.05 |1.05 | 1.05
7 33282 1.26 | 1.87 |1.92 |1.92 |1.002|1.05 |1.05 | 1.05

Table 5.2: Condition numbers for W-2-2 cycle, Problem A

117



118 CHAPTER 5. NUMERICAL RESULTS

Level | Unknowns | Iterations | Time[sec]
2 50 4 0.01
3 162 10 0.08
4 578 15 0.41
Y 2178 15 1.88
6 8450 16 8.56
7 33282 16 37.06
8 132098 16 154.80

Table 5.3: Tteration numbers and CPU times for Problem A, PCG with V-1-1 cycle

Level | Unknowns | Iterations | Time[sec]
2 230 10 0.1
3 810 13 0.6
4 3026 15 2.7
Y 11682 17 12.9
6 45890 18 08.2
7 181890 18 242.0

Table 5.4: ITteration numbers and CPU times for Problem B, PCG with V-1-1 cycle

ents solver for the solution of Problem A, Problem B, and Problem C. The small parameter
is set to £ = 1076 in Problem A and Problem B. The iteration is terminated after a reduc-
tion of the error in energy norm by a factor of 10%. The necessary iteration numbers and
CPU times are shown in Table 5.3, Table 5.4, and Table 5.5, respectively.

Problem D: Timoshenko beam.
We consider the Timoshenko beam model. The discretization is done with P'-elements for
both variables, and element-wise averaging of the shear at the finest mesh. The considered

Level | Unknowns | Iterations | Time[sec]
2 1344 11 0.7
3 4928 14 4.1
4 18816 15 19.4
Y 73472 16 87.3
6 290304 16 351.4

Table 5.5: ITteration numbers and CPU times for Problem C, PCG with V-1-1 cycle
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Level | Nodes |t =1 |¢t=0.1|¢=20.01]|¢t=0.001
3 5 1.000 | 1.00 1.00 1.00
4 9 1.002 | 1.11 1.22 1.22
5 17 1.002 | 1.13 1.30 1.30
6 33 1.002 | 1.14 1.34 1.35
7 65 1.002 | 1.14 1.36 1.38
8 129 | 1.002| 1.14 1.36 1.40
9 257 1 1.002| 1.14 1.36 1.42
10 513 | 1.002 | 1.14 1.36 1.42
11 1025 | 1.002 | 1.14 1.36 1.43
12 2049 | 1.002 | 1.14 1.36 1.43
13 4097 |1.002 | 1.14 1.36 1.43
14 8193 | 1.002 | 1.14 1.36 1.43
15 16385 | 1.002 | 1.14 1.36 1.43

Table 5.6: Condition numbers for Timoshenko beam, V-1-1 cycle

bilinear form A(.,.) is

1 1
An((w, B), (v m)) =/ w'v'dx+t2/ w7 v = dx.
0 0

Problem E: Reissner Mindlin plate.

We consider the Reissner Mindlin plate model on the unit square Q = (0,1)?. The dis-
cretization is done by the stabilized method from [CS98]. The considered bilinear form
Ah(-: ) is

(. 8),(0.m) = [ () Dietax+ gy [ (Vw5 (To—g)dx

1 h, ]
4 {1 - m}/ﬂ o= 5" Vo =) dx.

The tensor D corresponds to plane stress linear elasticity. We have chosen £ = 1 and
v = 0.2. We used P; elements for both variables, and condensed the bubble in the
assembling procedure.

The relative condition numbers of Ch_lAh with a V-1-1 cycle multigrid with multiplica-
tive smoother for the Timoshenko beam (Problem D) has been measured. Table 5.6 shows
the results for varying mesh size and thickness parameter. For the Reissner Mindlin plate
problem, we could observe diverging W-cycle schemes for m < 3. We measured the con-
dition numbers of C, ' A4, for the V-1-1-cycle multigrid with multiplicative smoother. The
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Level | Elements | mesh-size |t =1 |t=0.1|¢t=0.01 | ¢t =0.001
3 32 0.25 1.29 1.49 3.00 3.11
4 128 0.0125 1.36 1.31 3.94 4.60
5 512 0.0062 1.39 1.39 3.50 5.40
6 4096 0.0031 1.39 1.46 2.87 5.53
7 8192 0.0016 1.39 1.47 2.78 5.08
8 32768 0.0008 1.39 1.48 2.76 4.30

Table 5.7: Condition numbers for Reissner Mindlin plate, V-1-1 cycle

results are given in Table 5.7. We mention that the condition number decreases from a
certain level of refinement. The reason may be that the forms are nearly nested for h < ¢.
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