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Abstract:
The goal of the presented work is the efficient computation

of Maxwell boundary and eigenvalue problems using high or-
der H(curl) finite elements. We discuss a systematic strat-
egy for the realization of arbitrary order hierarchic H(curl)-
conforming finite elements for triangular and tetrahedral ele-
ment geometries. The shape functions are classified as lowest-
order Nédélec, higher-order edge-based, face-based (only in
3D) and element-based ones.

Our new shape functions provide not only the global com-
plete sequence property, but also local complete sequence
properties for each edge-, face-, element-block. This local
property allows an arbitrary variable choice of the polyno-
mial degree for each edge, face, and element. A second advan-
tage of this construction is that simple block-diagonal precon-
ditioning gets efficient. Our high order shape functions con-
tain gradient shape functions explicitly. In the case of a mag-
netostatic boundary value problem, the gradient basis func-
tions can be skipped, which reduces the problem size, and
improves the condition number.

We successfully apply the new high order elements for a 3D
magnetostatic boundary value problem, and a Maxwell eigen-
value problem showing severe edge and corner singularities.
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I. I NTRODUCTION

Electromagnetic problems are formulated in the function
space

H(curl) := {u ∈ [L2(Ω)]3 : curlu ∈ [L2]3}.

It naturally contains the continuity of the tangential com-
ponents across sub-domain interfaces. This property has
lead to the construction of finite elements with tangential
continuity. The most prominent one is the edge element,
which is the lowest order member of the first family of
Néd́elec elements [1]. A recent monograph is [2]. Up from
the lowest order element all of them contain edge-based
degrees of freedom. Higher order ones also contain un-
knowns in the element faces, and in the interior of the ele-
ments. To match the functions over the element-interfaces,
the orientation of the edges and faces has to be taken into
account. While on edges this is just changing the sign, the
orientation of triangular faces is more involved. In [3], the
problem was solved by defining rotational invariant sets
of basis functions for the various orders. In [4] rotational
symmetry was given up, which resulted in several refer-
ence elements.

Together withH1 := {u ∈ L2 : ∇u ∈ [L2]3} and
H(div) := {u ∈ [L2]3 : div u ∈ L2}, the function spaces
form the sequence

H1 ∇−→ H(curl) curl−→ H(div) div−→ L2.
Moreover, this sequence is complete, i.e.

range(∇) = ker(curl),

range(curl) = ker(div).

This complete sequence property is inherited on the
finite element level, if continuous elements(Wh, p+1),
Néd́elec elements (Vh, p), Raviart-Thomas elements
(Qh, p−1), and discontinuous elements(Sh, p−2) of proper
polynomial order are chosen for the four spaces, respec-
tively. This relation is visualized in the De Rham complex:

H1 ∇−→ H(curl) curl−→ H(div) div−→ L2⋃ ⋃ ⋃ ⋃
Wh, p+1

∇−→ Vh, p
curl−→ Qh, p−1

div−→ Sh, p−2.

The complete sequence property is essential for the con-
vergence of the finite element approximation, in partic-
ular for eigenvalue problems [5], [6]. Also the kernel-
preserving multigrid preconditioners of [7], [8] are based
on the knowledge of thecurl-free functions.

In this paper, we construct arbitrary order basis func-
tions allowing individual polynomial orders for each edge,
face, and element of the mesh. The resulting finite element
spaces fulfill the complete sequence property. We show
that for our new basis functions, block-Jacobi precondi-
tioners are kernel-preserving and thus effective. Numeri-
cal experiments show the moderate growth of the condi-
tion number for increasing polynomial order. An extended
version of the present paper is in preparation [11].

II. H IERARCHICAL HIGH -ORDER SHAPE

FUNCTIONS

We construct hierarchical high order basis functions on
triangular and tetrahedral elements. The extension to all
other common element geometries is in [11]. We start with
the construction forH1 finite elements, and derive the cor-
respondingH(curl) elements.

Hierarchical finite elements are usually based on orthog-
onal polynomials. Let(`)i=0,...p denote the Legendre-
polynomials up to order p. This is a basis forP p([−1, 1]).
Furthermore, define the integrated Legendre-polynomials
Li=2,...,p via

Li(x) :=
∫ x

−1

`l−1(s) ds.

They form a basis forP p
0 ([−1, 1]) := {ψ ∈ P p([−1, 1]) :

ψ(−1) = ψ(1) = 0}. The edges of the element are
Em, wherem = 1, 2, 3 for triangles, andm = 1, . . . , 6



Hierarchical triangular H1-element of order p
using Scaled Legendre Polynomials

Vertex-based functions
φV

i = λi for i = 1, 2, 3

Edge-based functions

for edgeEm = {e1, e2},m = 1, 2, 3
for 0 ≤ i ≤ p− 2

φEm
i = LSi (λe1 − λe2 , λe1 + λe2)

Interior functions

for i, j ≥ 0, i+ j ≤ p− 3

φI
ij = LSi (λ1 − λ2, λ1 + λ2)λ3 `j(λ3 − λ1 − λ2)

for tetrahedra. An edgeEm has two vertices denoted
by (e1, e2). We assume that all edges are oriented such
that e1 < e2. A tetrahedron has four faces denoted by
F1, . . . F4. A face is represented by three vertex indices
(f1, f2, f3). We assume that they are ordered such that
f1 < f2 < f3.

The basis functions are expressed in terms of the
barycentric coordinatesλ1, λ2, andλ3, andλ4 for the 3D
element. Following [9], we exploit a tensor product struc-
ture on the simplicial elements.

We introduce the scaled Legendre polynomials

`Sn (s, t) := tn`n(
s

t
)

and scaled integrated Legendre polynomials

LSn(s, t) := tnLn(
s

t
)

on the triangular domain with vertices in(−1, 1), (1, 1),
(0, 0)

t ∈ (0, 1], s ∈ [−t, t].

Both can be evaluated by division-free 3 term recurrences.
We observe thatLS

n vanishes on the two edgess = −t and
s = t, and corresponds toLn(s) on the third edget =
1. By means of two barycentric coordinatesλi, λj ≥ 0,
λi + λj ≤ 1, this domain can be parameterized as

(s, t) = (λi − λj , λi + λj).

A. High-order scalar shape functions

We start with presenting hierarchical high order finite
elements for approximating scalarH1 functions. These
functions must be continuous over element boundaries.
This means that the point values in element vertices, and
the polynomials along edges (and faces in 3D) must be the
same. This is obtained by defining basis functions associ-
ated with vertices, edges, (faces), and the interior of ele-
ments. The vertex basis functions are the standard linear
nodal functions being one in one vertex, and vanishing in
the other ones. The edge based functions have to spanP p

0

on the edge, and must vanish at the other two edges. The
scaled integrated Legendre polynomials fulfill this prop-
erty. In 2D, the interior basis functions must vanish on
the boundary of the triangle. They are defined as tensor
product of 1D basis functions. One factor has to vanish on

Hierarchical tetrahedral H1-element of order p
using Scaled Legendre Polynomials

Vertex-based functions

φV
i = λi for i = 1, 2, 3, 4

Edge-based functions

for edgeEm = {e1, e2},m = 1, ...6
for 2 ≤ i ≤ p− 2

φEm
i = LSi (λe1 − λe2 , λe1 + λe2)

Face-based functions

for faceFm = {f1, f2, f3}, m=1,...,4

for i, j ≥ 0, i+ j ≤ p− 3

φFm
ij = LSi (λf1 − λf2 , λf1 + λf2)

×λf3 `
S
j (λf3 − λf1 − λf2 , λ1 + λ2 + λ3)

Interior-based function

for 0 ≤ i+ j + k ≤ p− 4

φI
ijk = LSi (λ1 − λ2, λ1 + λ2)

×λ3 `
S
j (λ3 − λ1 − λ2, λ1 + λ2 + λ3)

×λ4 `k(λ4 − λ1 − λ2 − λ3)

two edges, the second one has to eliminate the third edge.
In 3D, the face shape functions are defined by means of
scaled Legendre polynomials, which ensures that the argu-
ment takes values on the whole interval(−1, 1), and thus
improves the conditioning.

B. High-order vector shape functions

Next, we explain our new vector-valued basis functions.
The basic idea is to include the gradients of the scalar ba-
sis functions into the set of basis functions. If the scalar
function is continuous, then the gradient has continuous
tangential components. First, we take the lowest order
Néd́elec elements, which have one basis function for each
edge. The additionally needed edge-based basis functions
for spanningP p on the edge can be taken exactly as the
gradients of the scalar edge-based functions which span
P p+1

0 . Since the edge-based functions are gradients, the
curl of them vanishes. The interior basis functions for
the triangle need vanishing tangential components. This
is obtained by taking the gradients of theH1-interior func-
tions. But now, the gradient fields are not enough to span
all vector valued functions. Recall that the scalar basis is
built as tensor productuivj . The evaluation of the gradient
gives∇(uivj) = (∇ui)vj +ui∇vj . Note that not only the
sum, but both individual terms have vanishing tangential
boundary values. Thus, also different linear combinations
like (∇ui)vj − ui∇vj can be taken as basis functions. By
counting the dimension one finds that stillp− 1 functions
are missing. These can be chosen linearly independent as
the product of the edge-element function, and a polynomial
vj . By means of the scaled Legendre polynomials, the 2D
construction is easily extended to 3D elements.



Hierarchical triangular Hcurl-element of order p
using Scaled Legendre Polynomials

Edge-based shape functions

for edgeEm = {e1, e2},m = 1, 2, 3
Edge-element shape function

φEm
1 = ∇λe1 λe2 − λe1∇λe2

High order edge-based functions

for 2 ≤ i ≤ p+ 1
φEm

i−1 = ∇LSi (λe1 − λe2 , λe2 + λe1)

Element-based functions

We set ui := LSi+2(λ2 − λ1, λ1 + λ2)
vj := λ3`j(λ3 − λ1 − λ2)

Type 1: gradient fields
for i, j ≥ 0, i+ j ≤ p− 2

φI1
ij = ∇(ui vj)

Type 2:
for i, j ≥ 0; i+ j ≤ p− 2

φI2
ij = (∇ui) vj − ui∇(vj)

Type 3:
for 0 ≤ j ≤ p− 2

φI3
j = (∇λ1 λ2 − λ1∇λ2) vj

C. Local complete sequence properties

The global scalar finite element space can be decom-
posed into vertex, edge, (face,) and element based spaces:

Wp+1 = WV +
∑
Ei

WEi
+

∑
Fi

WFi
+

∑
Ti

WTi
⊂ H1

Similarly, theH(curl) finite element space is split into the
edge-element basis, the high-order edge, (face,) and ele-
ment blocks:

Vp = VN0 +
∑
Ei

VEi
+

∑
Fi

VFi
+

∑
Ti

VTi
⊂ H(curl).

Similarly, one defines high order basis functions for
H(div) as lowest order Raviart-ThomasQRT , high order
face, and high order element-based functions, and theL2

spaces as constants, and high order element functions. We
constructed the basis functions such that each one of the
blocks satisfies alocal complete sequence property:

WV
h, p+1=1

∇−→ V N0
h

curl−→ QRT 0
h

div−→ Sh, 0

WE
pE+1

∇−→ V E
pE

WF
pF +1

∇−→ V F
pF

curl−→ QF
pF−1

W I
pI+1

∇−→ V I
pI

curl−→ QI
pI−1

div−→ SI
pI−2

Some of the advantages of this local property are
• An arbitrary individual polynomial order can be cho-

sen on each edge, face and element. The global com-
plete sequence property is satisfied automatically.

• Simple edge-face-element block-diagonal precondi-
tioning becomes efficient.

Hierarchical tetrahedral Hcurl-element of order p
using Scaled Legendre Polynomials

Edge-based functions

for edgeEm = {e1, e2},m = 1, . . . , 6
Edge-element shape function

φEm
1 = ∇λe1 λe2 − λe1∇λe2

High order edge-based functions

for 2 ≤ i ≤ p+ 1
φEm

i−1 = ∇LSi (λe1 − λe2 , λe2 + λe1)

Face-based functions

for faceFm = {f1, f2, f3}, m=1,...,4

ui := LSi+2(λf1 − λf2 , λf1 + λf2)

vj := λ3`
S
j (λf3 − λf1 − λf2 , λf3 + λf1 + λf2)

Type 1: gradient fields

for i, j ≥ 0, i+ j ≤ p− 2

φ
Fm,1
i,j = ∇(ui vj)

Type 2:

for i, j ≥ 0, i+ j ≤ p− 2

φ
Fm,2
ij = (∇ui) vj − ui∇(vj)

Type 3:

for 0 ≤ j ≤ p− 2

φ
Fm,3
j = (∇λf1 λf2 − λf1 ∇λf2) vj

Element-based functions
ui := LSi+2(λ1 − λ2, λ1 + λ2)
vj := λ3`

S
j (λ3 − λ1 − λ2, λ1 + λ2 + λ3)

wk := λ4`k(λ4 − λ1 − λ2 − λ3)

Type 1: gradient fields
for i, j, k ≥ 0, i+ j + k ≤ p− 3

φI1
ijk = ∇(ui vj wk)

Type 2:
for i, j, k ≥ 0, i+ j + k ≤ p− 3
φI2a

ijk = ∇ui vj wk − ui∇vi wk + ui vj ∇wk

φI2b

ijk = ∇ui vj wk − ui∇vi wk − ui vj ∇wk

Type 3:
for j, k ≥ 0, j + k ≤ p− 3

φI3
jk = (∇λ1 λ2 − λ1∇λ2) vj wk

• The basis functions contain high order gradient fields
explicitly. A simple way of gauging (as needed, e.g.,
for the magnetostatic boundary value problem) can be
performed by skipping the high order gradient fields.
Note that the lowest order gradient fields are still in
the system.

• The implementation of the gradient-operator fromH1

toH(curl) finite element spaces becomes trivial.

This kind of basis-functions has been implemented in
our software package NgSolve for common 2D and 3D
element geometries (triangles, quadrilaterals, tetrahedra,
prisms and hexahedra).



Figure 1: Magnetic field induced by the coil, order p=6.

Figure 2:| curl A| = |B|, order p=6.

III. M AGNETOSTATIC BOUNDARY VALUE PROBLEM

We consider the magnetostatic boundary value problem

curlµ−1 curl A = j,

wherej is the given current density, andA is the vector
potential for the magnetic fluxB = curl A. For gauging,
we add a small (6 orders of magnitude smaller thanµ−1)
zero-order term to the operator. In order to show the per-
formance of the constructed shape functions we compute
the magnetic field induced by a cylindrical coil.

The mesh generated by Netgen [12] contains 2035
curved tetrahedral elements. The two pictures below
show the magnetic fieldlines and the absolute value of
the magnetic flux simulated withH(curl)-elements of
uniform order 6.

We have chosen different polynomial ordersp, and com-
pared the number of unknowns (dofs), the condition num-
bers of the preconditioned system, the required iteration
numbers of the PCG for an error reduction by10−10, and
the required computation time on an Acer notebook with
Pentium Centrino 1600 MHz CPU. We run the experi-
ments once with keeping the gradient shape functions, and
a second time with skipping them. The computedB-field
is the same for both versions. One can observe a consider-
able improvement of the required solver time in the Table I.

p dofs grads κ(C−1A) iter solvertime
2 19719 yes 7.9 20 1.9 s
2 10686 no 7.9 21 0.7 s
3 50884 yes 24.2 32 9.8 s
3 29130 no 18.2 31 2.9 s
4 104520 yes 71.4 48 40.5 s
4 61862 no 32.3 40 10.7 s
5 186731 yes 179.9 69 137.9 s
5 112952 no 55.5 49 31.9 s
6 303625 yes 421.0 97 427.8 s
6 186470 no 84.0 59 87.4 s
7 286486 no 120.0 68 209.6 s

TABLE I: PERFORMANCE OF THE SOLVER

A. Maxwell Eigenvalue Problem

We consider the Maxwell eigenvalue problem: findω 6=
0 such that

curlE = iωµH,

curlH = −iωεE.

The corresponding weak form is to find eigenvaluesω >
0 and eigenvectorsE ∈ H(curl), E 6= 0 such that there
holds ∫

Ω

µ−1 curlE · curl v dx = ω2

∫
Ω

εE · v dx

for all v ∈ H(curl). Finite element discretization leads to
the generalized matrix eigenvalue problem

Au = ω2Mu.

It is well known that this system contains many zero-
eigenvalues which correspond to the gradient fields. A
standard eigenvalue solver such as the inverse power it-
eration would suffer from first computing all the unwanted
zero-eigenvalues. Following [10], we perform aninexact
inverse iteration with inexact projection: Given un, we
compute

λn =
(Aun, un)
(Mun, un)

ũn+1 = un − C −1
A+σM (Aun − λnMun)

un+1 = (I − P̃ )ũn

Here,C −1
A+σM is a preconditioner for the shiftedH(curl)

problem, andI − P̃ is an inexact projection into the com-
plement of gradient fields. It is realized by performingk
steps of the inexact projection

un+1 = (I −B∇ C
−1
∆ BT

∇MV ) k ũn+1

Here, B∇ is the matrix representing the gradient,MV

is the mass matrix for the vector-elements, andC∆ is a
Poisson-preconditioner. As mentioned above, the gradient
operator is very simple for the presented basis functions.

We have chosen to compute the Neumann-eigenvalues
on the Fichera domain[−1, 1]3 \ [0, 1]3. It shows severe
singularities along the non-convex edges and at the vertex
in the origin. We have chosen a priori a mesh refinement
with 3 levels of anisotropichp-refinement to resolve the



Figure 3: First Maxwell eigenvector

singularities. Fig. 3 shows the first non-trivial eigenvector
approximated by elements of orderp = 4.
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