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Abstract H' Y H(ewl) % Hdv) % 2
The goal of the presented work is the efficient computation Moreover, this sequence is complete, i.e.
of Maxwell boundary and eigenvalue problems using high or-
der H(curl) finite elements. We discuss a systematic strat-
egy for the realization of arbitrary order hierarchic H(curl)-
conforming finite elements for triangular and tetrahedral ele- range(curl) = ker(div).
ment geometries. The shape functions are classified as lowest-

order Nédélec, higher-order edge-based, face-based (only in This complete sequence property is inherited on the

3D) and element-based ones. finite el t L if ti | o
Our new shape functions provide not only the global com- inite_element level, if continuous elementl, 1),

plete sequence property, but also local complete sequence Nédelec eleme'nts(V.h,p), Raviart-Thomas elements
properties for each edge-, face-, element-block. This local (Qp,,—1), and discontinuous elemertts;, ,_») of proper
property allows an arbitrary variable choice of the polyno-  polynomial order are chosen for the four spaces, respec-

mial degree for each edge, face, and element. A second advan- ey This relation is visualized in the De Rham complex:
tage of this construction is that simple block-diagonal precon-

range(V) = ker(curl),

ditioning gets efficient. Our high order shape functions con- v curl . div
tain gradient shape functions explicitly. In the case of a mag- H — H(cwl) — H(div) — L?
netostatic boundary value problem, the gradient basis func-
tions can be skipped, which reduces the problem size, and U U U U
improves the condition number. v curl "

We successfully apply the new high order elementsfora3D W, 41 — Vi, p il Qh, p—1 =, Sh,p—2-

magnetostatic boundary value problem, and a Maxwell eigen- _ )
value problem showing severe edge and corner singularities. The complete sequence property is essential for the con-
vergence of the finite element approximation, in partic-
Keywords edge elements, high order finite elements, eigen- ular for eigenvalue problems [5], [6]. Also the kernel-
value problems preserving multigrid preconditioners of [7], [8] are based

) _onthe knowledge of theurl-free functions.
Both authors are supported by the Austrian Science

Foundation FWF under project grant Start-project Y 192 In this paper, we construct arbitrary order basis func-

“hpFEM : Solvers and Adaptivity”. tions allowing individual polynomial orders for each edge,
face, and element of the mesh. The resulting finite element
I. INTRODUCTION spaces fulfill the complete sequence property. We show

Electromagnetic problems are formulated in the functiorfhat for our new basis functions, block-Jacobi precondi-
space tioners are kernel-preserving and thus effective. Numeri-
cal experiments show the moderate growth of the condi-

H(curl) := {u € [L*(Q)]* : curlu € [L?]*}. tion number for increasing polynomial order. An extended

_ o _ version of the present paper is in preparation [11].
It naturally contains the continuity of the tangential com-

ponents across sub-domain interfaces. This property has Il. HIERARCHICAL HIGH -ORDER SHAPE
lead to the construction of finite elements with tangential FUNCTIONS
continuity. The most prominent one is the edge element

Vl\\llhgl] IS tlhe Iowesi ofer member of thi flrs; faLerI?/ of triangular and tetrahedral elements. The extension to all
edelec elements [1]. A recent monographis [2]. Up from oo 'common element geometries is in [11]. We start with

the lowest order element all of them contain edge-basefj,o ;ongtryction for! finite elements, and derive the cor-
degrees of freedom. Higher order ones also contain ur}'espondingH(ourl) elements

knowns in the element fac_es, and in the interior C.)f the ele- Hierarchical finite elements are usually based on orthog-
ments. To match the functions over the element-lnterface%nal polynomials. Let(¢),— denote the Legendre-
the orientation of the edges and faces has to be taken ingolynomials up o order pztli)ﬁ'iépis a basis ([ 1, 1])

u

account. Whlle_on edges this IS just changmg the sign, th rthermore, define the integrated Legendre-polynomials
orientation of triangular faces is more involved. In [3], the ; . via
1=2,...,p

problem was solved by defining rotational invariant sets
of basis functions for the various orders. In [4] rotational g
symmetry was given up, which resulted in several refer- Li(z) := / 151—1(5) ds.
ence elements.

Together withH! := {u € L? : Vu € [L?*} and  They form a basis foP} ([-1,1]) := {¢ € PP([-1,1]) :
H(div) := {u € [L?]? : div u € L*}, the function spaces ¢(—1) = ¢(1) = 0}. The edges of the element are
form the sequence E,,, wherem = 1,2,3 for triangles, andn = 1,...,6

' We construct hierarchical high order basis functions on



Hierarchical triangular H'-element of order p
using Scaled Legendre Polynomials

Vertex-based functions
oY =\ fori =1,2,3

Edge-based functions

for edgeE,, = {e1,e2},m =1,2,3
for0<i<p-—2
P = LE(Aey = Aeys Aer + Aey)
Interior functions
fori,7>0,i+j<p—3
L= LSO = Ao, A+ 22) A 45 (A — A1 — Ao)

Hierarchical tetrahedral H'-element of order p
using Scaled Legendre Polynomials

\ertex-based functions
oy =N fori=1,2,34
Edge-based functions

for edgeE,, = {e1,ea}, m=1,...6
for2<i<p-2

(ZsiEm = Li’s(/\e] - /\ezv )\el + )\62)
Face-based functions
for face F,,, = {f1, f2, f3}, m=1,...,4
fori,j>0,i+j<p—3

¢5m = Lf()‘fl - )‘fz’/\fl + >‘f2)
for tetrahedra. An edgé’™ has two vertices. denoted XA, gf(Afs —Af = Afs AL+ Ao+ Ag)
by (e1,e2). We assume that all edges are oriented such

thate; < ep. A tetrahedron has four faces denoted by
Fy,... F,;. Aface is represented by three vertex indices
(f1, f2, f3). We assume that they are ordered such tha
fi < fa < fs.

The basis functions are expressed in terms of the
barycentric coordinates;, Ao, and \3, and )\, for the 3D
element. Following [9], we exploit a tensor product struc-
ture on the simplicial elements.

We introduce the scaled Legendre polynomials

Interior-based function

L foro<i+j+k<p-—4

L bl = LI — A A+ )
X)\3€}S()\3 — A1 — A2, A1+ A2+ A3)

></\4 gk()\4 — /\1 — /\2 — )\3)

¢

two edges, the second one has to eliminate the third edge.
In 3D, the face shape functions are defined by means of
scaled Legendre polynomials, which ensures that the argu-
ment takes values on the whole interyall, 1), and thus
improves the conditioning.

£3(5,8) == 1"00(3)

and scaled integrated Legendre polynomials

LS(s,t) == t”Ln(i)
on the triangular domain with vertices {1, 1), (1,1),

(0,0) B. High-order vector shape functions

te(0,1], s € [-t.1]. Next, we explain our new vector-valued basis functions.

Both can be evaluated by division-free 3 term recurrencesl he basic idea is to include the gradients of the scalar ba-
We observe thak? vanishes on the two edges= —t and  sis functions into the set of basis functions. If the scalar
s = t, and corresponds té,(s) on the third edge¢ =  function is continuous, then the gradient has continuous
1. By means of two barycentric coordinatés A; > 0,  tangential components. First, we take the lowest order
Ai + A; < 1, this domain can be parameterized as Nécdelec elements, which have one basis function for each
edge. The additionally needed edge-based basis functions
for spanningP? on the edge can be taken exactly as the
_ ) gradients of the scalar edge-based functions which span
A. High-order scalar shape functions PPt Since the edge-based functions are gradients, the

We start with presenting hierarchical high order finitecurl of them vanishes. The interior basis functions for
elements for approximating scal&f!' functions. These the triangle need vanishing tangential components. This
functions must be continuous over element boundariess obtained by taking the gradients of tHe -interior func-
This means that the point values in element vertices, antions. But now, the gradient fields are not enough to span
the polynomials along edges (and faces in 3D) must be thell vector valued functions. Recall that the scalar basis is
same. This is obtained by defining basis functions assochbuilt as tensor produet;v;. The evaluation of the gradient
ated with vertices, edges, (faces), and the interior of elegivesV (u;v;) = (Vu;)v; +u;Vv;. Note that not only the
ments. The vertex basis functions are the standard lineaum, but both individual terms have vanishing tangential
nodal functions being one in one vertex, and vanishing irboundary values. Thus, also different linear combinations
the other ones. The edge based functions have to Bfjan like (Vu;)v; — u; Vo, can be taken as basis functions. By
on the edge, and must vanish at the other two edges. Thmunting the dimension one finds that silt- 1 functions
scaled integrated Legendre polynomials fulfill this prop-are missing. These can be chosen linearly independent as
erty. In 2D, the interior basis functions must vanish onthe product of the edge-element function, and a polynomial
the boundary of the triangle. They are defined as tensar;. By means of the scaled Legendre polynomials, the 2D
product of 1D basis functions. One factor has to vanish omronstruction is easily extended to 3D elements.

(S,t) = ()\z — >\j7)\i + )\])



Hierarchical triangular H°"'-element of order p
using Scaled Legendre Polynomials
Edge-based shape functions
for edgeE™ = {e1,ex},m=1,2,3
Edge-element shape function
S = Ve, Ay = Aey Ve,
High order edge-based functions
for2<i<p+1

¢> VLS(A — Aegs Aey T Aey)
Element-based functions
We set u; = Lﬁ_Q()\Q — )\1, A+ )\2)
’Uj = Ag[j()\g — )\1 — )\2)

Type 1: gradient fields
fori,j >0,i+j<p-—2

¢i = V(uivj)
Type 2:
fori,j>0;i+j<p—2
¢ip = (Vi) vj — u; V()
Type 3:

foro0<j<p-2
¢F = (VA1 d2 — M Vo) v;

C. Local complete sequence properties

The global scalar finite element space can be decom-
posed into vertex, edge, (face,) and element based spaces:

Wb+§:WE+§:WF+§:W%

Similarly, the H (curl) finite element space is split into the
edge-element basis, the high-order edge, (face,) and ele-
ment blocks:

Vo=Vio + D Ve, + > Vi + >V,
E; F; T;

Similarly, one defines high order basis functions for
H(div) as lowest order Raviart-Thom&¥s*7, high order
face, and high order element-based functions, and.the

p+1 C Hl

C H(curl).

spaces as constants, and high order element functions. W

constructed the basis functions such that each one of th

Hierarchical tetrahedral H<"!-element of order p
using Scaled Legendre Polynomials

Edge-based functions
foredgeE™ = {ey,e2},m=1,...,6
Edge-element shape function
OL™ = Vs Aey — Aoy Ve,
High order edge-based functions
for2<i<p+1
¢£wlz = VLz'S(/\el
Face-based functions
for face F,,, = {f1, f2, f3}, m=1,....4

- )\627 )\62 + )\61)

LA p = Mg Apy + Ap)
>\3£J$(/\f3 - >‘f1 - )‘fz’ )‘fs + >‘f1 + )\fz)

Usg

vj

Type 1: gradient fields

fori,j >0,i+j<p—2
d)f?;'” = V(u; v;)

Type 2:

fori,j>0,i+j<p—2

FwL 2
¢;"" = (Vug) vy — u; V(v))
Type 3:
for0<j<p-—2
67" = (VAf Af — Ap VAR) 0
Element-based functions

u; = LM =X, A1+ A2)

Uj /\345()\3 — /\1 )\2, /\1 + )\2 + /\3)

W = )\4fk()\4 — )\1 )\2 — )\3)

Type 1: gradlent fields
fori,j,k >0, z+]+k<p 3

Qsl]k = V(u Uj W)
Type 2:
fori,j,k>0,i+j+k<p-3
Pz = Vi vjwy — u; Vo wy, + u; v; Vg
oz = Vi vjwy — u; Vo, wy, — u; v; Vg
Type 3:
dorj,k>0,j+k<p-3
A ¢jk = (V)\l )\2 )\1 v>\2) Vj Wk

blocks satisfies bbcal complete sequence property

L oy wn QRTe B g
ng+1 L Vp]fa

Whaoo S VE SR Qb

Wy VLS QL S,

Some of the advantages of this local property are

« An arbitrary individual polynomial order can be cho-

« The basis functions contain high order gradient fields

explicitly. A simple way of gauging (as needed, e.g.,
for the magnetostatic boundary value problem) can be
performed by skipping the high order gradient fields.
Note that the lowest order gradient fields are still in
the system.

The implementation of the gradient-operator fréhh

to H (curl) finite element spaces becomes trivial.

This kind of basis-functions has been implemented in

sen on each edge, face and element. The global conour software package NgSolve for common 2D and 3D

plete sequence property is satisfied automatically.

element geometries (triangles, quadrilaterals, tetrahedra,

« Simple edge-face-element block-diagonal precondiprisms and hexahedra).

tioning becomes efficient.



= = o L — p dofs | grads| x(C~TA) | iter | solvertime
' : : : ' 2| 19719 vyes 79| 20 19s
2| 10686| no 79| 21 0.7s
3| 50884 yes 242 32 9.8s
3| 29130| no 182| 31 29s
4 1 104520| yes 71.4| 48 40.5s
4| 61862| no 32.3| 40 10.7s
5| 186731 | vyes 179.9] 69 1379s
5| 112952| no 55.5| 49 31.9s
6 | 303625| yes 4210 97 427.8s
6 | 186470| no 84.0| 59 87.4s
7 [ 286486] no 120.0] 68 209.6s
. TABLE |: PERFORMANCE OF THE SOLVER

Figure 1: Magnetic field induced by the coil, order p=6.
A. Maxwell Eigenvalue Problem

We consider the Maxwell eigenvalue problem: fings
0 such that

0.000+00 1.250e-02 2,5008-02 3.750e-02 5.0008-02

curl £
curl H

= iwuH,
= —iwekF.
The corresponding weak form is to find eigenvalues

0 and eigenvector& € H(curl), E # 0 such that there
holds

!

Figure 2:| curl A| = |B|, order p=6.

atoen 0.5 //,flcurlE-curlvdarsz/eE-vdx
Q Q

for all v € H(curl). Finite element discretization leads to
the generalized matrix eigenvalue problem

IIl. M AGNETOSTATIC BOUNDARY VALUE PROBLEM Au = w?Mu.

We consider the magnetostatic boundary value probleny; is well known that this system contains many zero-

eigenvalues which correspond to the gradient fields. A
standard eigenvalue solver such as the inverse power it-
eration would suffer from first computing all the unwanted
zero-eigenvalues. Following [10], we perform xexact

curl p=teurl A = 4,

wherej is the given current density, andl is the vector
potential for the magnetic fluk = C.url 4. For gauging, inverse iteration with inexact projectionGiven u,,, we
we add a small (6 orders of magnitude smaller tpar) compute

zero-order term to the operator. In order to show the per-

formance of the constructed shape functions we compute (At uy,)
the magnetic field induced by a cylindrical coil. An = m

The mesh generated by Netgen [12] contains 2035 Tpr = un— O (Aup — AnMuy)
curved tetrahedral elements. The two pictures below mt v Ao M T
show the magnetic fieldlines and the absolute value of Unt1 = (I —Pluy,

the magnetic flux simulated wittf (curl)-elements of

uniform order 6 Here,CAjrlUM is a preconditioner for the shiftefd (curl)

problem, and — P is an inexact projection into the com-
plement of gradient fields. It is realized by performihg
steps of the inexact projection

We have chosen different polynomial ordgr&nd com-
pared the number of unknowns (dofs), the condition num-
bers of the preconditioned system, the required iteratioflere, By is the matrix representing the gradiert/y
numbers of the PCG for an error reductiontiy ', and  is the mass matrix for the vector-elements, & is a
the required computation time on an Acer notebook withPoisson-preconditioner. As mentioned above, the gradient
Pentium Centrino 1600 MHz CPU. We run the experi-operator is very simple for the presented basis functions.
ments once with keeping the gradient shape functions, and We have chosen to compute the Neumann-eigenvalues
a second time with skipping them. The compufedield  on the Fichera domaip-1,1]3 \ [0, 1]3. It shows severe
is the same for both versions. One can observe a considesingularities along the non-convex edges and at the vertex
able improvement of the required solver time in the Table lin the origin. We have chosen a priori a mesh refinement

with 3 levels of anisotropidip-refinement to resolve the

Unt1 = (I — By Ox ' BE My) * 40
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Figure 3: First Maxwell eigenvector

singularities. Fig. 3 shows the first non-trivial eigenvector
approximated by elements of ordee= 4.
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