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Abstract. Reliable and efficient residual-based a posteriori error estimates are established
for the stabilised locking-free finite element methods for the Reissner-Mindlin plate model.
The error is estimated by a computable error estimator from above and below up to multi-
plicative constants that do neither depend on the mesh-size nor on the plate’s thickness and
are uniform for a wide range of stabilisation parameter. The error is controlled in norms that
are known to converge to zero in a quasi-optimal way. An adaptive algorithm is suggested
and run for improving the convergence rates in three numerical examples for thicknesses
0.1, .001 and .001.

1. Introduction

The Reissner-Mindlin plate model [B2, BS, Ci] concerns the following problem for a plane
simply connected domain Ω with polygonal boundary Γ and a parameter 0 < t < 1: Given
an applied force f ∈ L2(Ω) seek rotations and displacements (ϑ,w) ∈ V := H1

0 (Ω)2×H1
0 (Ω)

such that, for all (ϕ, v) ∈ V ,

(1.1)

∫
Ω

ε(ϑ) : Cε(ϕ) dx+ t−2

∫
Ω

(ϑ−∇w) · (ϕ−∇µ)dx =

∫
Ω

fv dx.

The discretisation of (1.1) is based on a regular triangulation T and finite element spaces
for the conforming or nonconforming discretisations of H1

0 (Ω) which yield a discrete space
Vh.

As an alternative to more complicated nonconforming plate elements from [AF, BBF, BFS,
C2], the problem (1.1) can be extended by introducing a new shear-variable γ in Q := L2(Ω)2

which is then approximated in another discrete space Qh [AB, B2, BL, CS, Lo].
This paper concerns a stabilised version, the continuous Problem, that reads: Given f ∈

L2(Ω), seek (ϑ,w, γ) ∈ V × Q (i.e., (ϑ,w) ∈ V and γ ∈ Q := L2(Ω)2) that satisfies, for all
(ϕ, v, η) ∈ V × L2(Ω)2,

Bα(ϑ,w, γ;ϕ, v, η) =

∫
Ω

fv dx(1.2)
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with the stabilised bilinear form Bα defined by (cf. also Section 2)

Bα(ϑ,w, γ;ϕ, v, η) =

∫
Ω

ε(ϑ) : Cε(ϕ) dx+

∫
Ω

α2(ϑ−∇w) · (ϕ−∇v) dx

+

∫
Ω

(ϑ−∇w) · η dx+

∫
Ω

(ϕ−∇v) · γ dx−
∫

Ω

β2 γ · η dx.

The continuous problem (1.2) is equivalent to (1.1), while their discrete counterparts and
discrete solutions (ϑh, wh, γh) ∈ Vh × Qh, defined by replacing V × Q by Vh × Qh in (1.2),
may differ. There is a hidden stabilisation parameter α (that enters the definition of Bα)
such that classical conforming schemes are included for α = 0.

Various suggestions on the choice of α as a function of t and the local mesh-size hT can
be found in the literature [AB, B2, BL, CS, Lo] with a corresponding stability and a priori
error analysis: α = 1 was the first approach with P1 plus cubic bubbles for ϑh, P2 finite
elements for wh, and P0 for γh and linear convergence in energy norms [AB, B2]. The latest
suggestion reads α = 1/(h + t) (e.g., for the same finite elements) and linear convergence
(in the norms from below) and (compared to α = 1) with additional better convergence in
L2-norms for ϑ− ϑh resp. H1-norms for w − wh [CS]; for a multigrid analysis cf. [S].

This paper establishes a quite general a posteriori error analysis for the scheme (1.2) and
a wide range of possibly mesh-depending stabilisation parameters α. Our main result is a
reliable and efficient computable error estimator ηR := (

∑
T∈T η

2
T )1/2, where, for each element

T ∈ T with edges E ⊂ ∂T (and summation
∑

E⊂∂T over all edges of T ),

η2
T := h2

T ‖α2
T (ϑh −∇wh) + γh − divCε(ϑh) ‖2

L2(T )

+h2
T/α

2
T ‖ f − div(α2

T (ϑh −∇wh) + γh) ‖2
L2(T )

+(1 + βT/hT )−2 ‖ curl rh ‖2
L2(T ) + (α−1

T + βT )−2 ‖ rh ‖2
L2(T )(1.3)

+
∑

E⊂∂T

hE ‖ [Cε(ϑh)] · nE ‖2
L2(E\Γ)

+
∑

E⊂∂T

hE/(βE (βE + hE)) ‖ [rh] · τE ‖2
L2(E)

+
∑

E⊂∂T

hE/α
2
E ‖ [α2

E(ϑh −∇wh) + γh] · nE ‖2
L2(E\Γ).

Here, we abbreviate rh := ϑh −∇wh − β2γh and, for an edge E of length hE, [·] denotes the
jump across E, and nE and τE are normal and tangential unit vectors, respectively. The
results of this paper imply that ηR is a lower and upper bound of the error

(1.4) eh := ‖ϑ− ϑh ‖H1(Ω) + ‖α(ϑ− ϑh −∇(w − wh)) ‖L2(Ω) + ‖ γ − γh ‖Q.

The norm ‖ · ‖Q is defined in Eqns (3.7)-(3.8) below and it is in fact owing to this norm
that we can obtain robust error estimates.

The positive constants c1 and c2 in the efficiency and reliability estimate

(1.5) c1 ηR − h.o.t ≤ eh ≤ c2 ηR

are uniform in 0 < t < 1, α, and hT (resp. hE) and depend only on the minimal interior
angle in the triangulation T and on Ω. The higher order terms (h.o.t.) in (1.5) (i.e., efficiency
of ηR) are computable terms.
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A posteriori error estimates on other finite element schemes for (1.1) are presented in
[C2, Li]. As the estimates therein, our a posteriori error bound ηT may serve as a refinement
indicator within an adaptive mesh-refining algorithm.

Adaptive Algorithm (A). (a) Start with coarse mesh T0.
(b) Solve discrete problem with respect to Tk.
(c) Compute ηT from (1.3) for all T ∈ Tk.

(d) Compute error bound
(∑

T∈Tk
η2

T

)1/2
and terminate or go to (e).

(e) Mark element T red iff ηT ≥ 1
2
maxT ′∈Tk

ηT ′ .
(f) Red-green-blue-refinement to avoid hanging nodes, update mesh Tk and goto (b).

We refer to [EEHJ, V1] for details on red-green-blue refinement procedures and corre-
sponding data handling and, e.g., to [BR, EEHJ, V1] for corresponding details on the Laplace
equation.

The remaining part of the paper is organised as follows. Section 2 describes the mixed
formulation and its discretisation Bα which involves parameters α and β. The main results on
reliable and efficient a posteriori error estimates are stated and necessary notation provided
in Section 3. The proofs are divided in three main sections. Equivalence of the α-depending
error norms and two residuals in V ∗ and Q∗ is established in Section 4 while their estimation
is performed in Section 5 and Section 6, respectively, where efficiency and reliability of the
two residuals to their estimates is proven separately. The adaptive Algorithm (A) is run
for improving the convergence rates in Section 7 in three numerical examples for various
thicknesses 0.1, .001 and .001.

Throughout the paper, L2(Ω) and H1(Ω) denote the usual Lebesgue and Sobolev spaces
[BS, LM] and H1

0 (Ω) is the subspace of all functions with zero boundary values with a dual
space H−1(Ω). Scalar products in (any power of) L2(Ω) are denoted by (·; ·)L2(Ω) while its
extension to the (H1

0 (Ω), H−1(Ω))-duality is denoted by 〈·; ·〉H−1(Ω)×H1
0 (Ω) which differs from

the scalar-product (·; ·)H1(Ω) in (any power of) H1(Ω).

2. Mixed formulation and finite element discretisation

The weak form of the Reißner-Mindlin plate model is rewritten with bilinear forms

a(ϑ,w;ϕ, v) :=

∫
Ω

ε(ϑ) : Cε(ϕ) dx+

∫
Ω

α2(ϑ−∇w) · (ϕ−∇v) dx,(2.1)

b(ϑ,w; η) :=

∫
Ω

(ϑ−∇w) · η dx,(2.2)

c(γ; η) :=

∫
Ω

β2 γ · η dx,(2.3)

where (ϑ,w) = (ϑ1, ϑ2, w) and (ϕ, v) ∈ V := H1
0 (Ω)3, and γ, η ∈ L2(Ω)2. The linear Green

strain ε(ϑ) := symDϑ = (1
2
(∂ϑj/∂xk + ∂ϑk/∂xj))j,k=1,2 is the symmetric gradient and the

elasticity operator C is defined by

Cτ =
E

12(1− ν2)

(
(1− ν) τ + ν tr(τ) I

)
,
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where tr(τ) denotes the trace of τ ∈ R2×2, I is the 2 × 2-unit matrix, and E is Young’s
modulus and ν is the Poisson ratio of the elastic plate. On the product space V × L2(Ω)2

we define the bilinear form

Bα(ϑ,w, γ;ϕ, v, η) := a(ϑ,w;ϕ, v) + b(ϑ,w; η) + b(ϕ, v; γ)− c(γ; η).

The critical parameter is the small thickness t > 0 of the plate which enters (2.1)-(2.3)
through β2 := 1/(t−2 − α2) ∈ L2(Ω) where α ∈ L∞(Ω) is a parameter with 0 < α < 1/t
to stabilise the finite element discretisation of (2.1)-(2.3) that employs discrete subspaces
Vh × Qh of V × L2(Ω)2. The Discrete Problem reads: Seek (ϑh, wh, γh) ∈ Vh × Qh that
satisfies, for all (ϕh, vh, ηh) ∈ Vh ×Qh,

Bα(ϑh, wh, γh;ϕh, vh, ηh) =

∫
Ω

fvh dx.(2.4)

The discrete spaces Vh × Qh are T -piecewise polynomials (the index h may refer to the
mesh-size of T but we neglect further sub-indices such as Th, αh etc.) based on a regular
triangulation T of Ω in the sense of Ciarlet [Ci, BS], i.e., T is a finite partition of Ω in
closed triangles or parallelograms; two distinct elements T1 and T2 in T are either disjoint,
or T1 ∩ T2 is a complete edge E or a common node of both T1 and T2. The triangulation
satisfies a minimum angle condition, i.e., the angles in the triangles or parallelograms are
assumed to belong to the interval (cθ, π−cθ) for some positive constant cθ and so are bounded
uniformly away from 0 and π; in addition let cθ be also a lower bound for the aspect ratios
of parallelograms in T .

The set of all edges in T is denoted as E and ∪E is the union of all edges, i.e., the skeleton
of all boundaries of elements in T .

For an element T ∈ T , let Pk(T ) denotes the vector space of algebraic polynomials of
(total resp. partial) degree ≤ k (if T is a triangle resp. a parallelogram) regarded as a
mapping on the domain T ⊂ R2. Then,

(2.5) Lk(T ) :=
{
p ∈ L2(Ω) : ∀T ∈ T , p|T ∈ Pk(T )

}
and S1

0 (T ) := L1(T ) ∩H1
0 (Ω).

Various choices of Vh ×Qh and mesh-depending parameters α = αT ∈ L∞(Ω) can be found
in [AB, B2, BL, CS, Lo]. Those results cover a stability and a priori error analysis while this
paper establishes an a posteriori error analysis.

3. A posteriori error bound and adaptive algorithm

For the regular triangulation T of Ω in (closed) triangles or parallelograms let N be the
(finite) set of all vertices and let K := N ∩ Ω be the set of interior ones. For simplicity, we
assume that the triangulation matches the domain exactly, i.e., ∪T = Ω and there are no
hanging nodes. The set of edges E = conv{x, y} for two distinct x, y ∈ N is denoted as E .
Their union ∪E is the skeleton of edges, i.e., the set of all points in Ω which belong to some
edge. With each edge, we associate a unit normal vector nE and a perpendicular tangential
unit vector τE.

For a T -piecewise uniformly continuous function, the square brackets [·] is defined as the
jump over the edges: If E = T+∩T− is a common edge of two distinct T+ and T− in T then,
for x ∈ E, the jump [G](x) is the limit of G(x+ δ nE)−G(x− δ nE) as δ → 0+. (The limit
exists if x /∈ K since x± δ nE ∈ T± and G is uniformly continuous on each T±.) In this way,
[·] is defined on the skeleton ∪E \ ∂Ω of all inner boundaries of elements.
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The diameter of T is denoted as hT and the length of E is hE. For compact notation, let
hT ∈ L∞(Ω) and hE ∈ L∞(∪E) be given as T - resp. E-piecewise constant weights

(3.1) hT |T := hT and hE |E := hE for T ∈ T and E ∈ E .

The discrete problem is supposed to generate discrete solutions (ϑh, wh, γh) ∈ V ×L2(Ω)2

which are neither expected to be uniquely determined nor to belong to a discrete space
Vh × Qh. We merely suppose that (ϑh, wh, γh) is T -piecewise smooth (such that all the
derivatives in (3.3) and related traces and jumps on the edges exists in the classical sense
and are integrable), i.e., we suppose

(3.2) (ϑh, wh, γh) ∈ H2(T )2 ×H2(T )×H2(T )2

where, for k = 1, 2, Hk(T ) := {η ∈ L2(Ω) : ∀T ∈ T , η|T ∈ Hk(T )}. As a minimal condition,
we suppose that (ϑh, wh, γh) satisfies (2.4) for all (ϕh, vh, ηh) ∈ S1

0 (T )3 × L0(T )2.
For each element T ∈ T , with α|T constant equal to αT , βT := (t−2 − α2

T )−1/2, and for all
E ∈ E with αE = min{αT : E ⊂ T ∈ T }, βE := max{βT : E ⊂ T ∈ T }, we define indicators
ηT and ηE by and rh := ϑh −∇wh − β2γh

η2
T := h2

T ‖α2
T (ϑh −∇wh) + γh − divCε(ϑh) ‖2

L2(T )(3.3)

+h2
T/α

2
T ‖ f − div(α2

T (ϑh −∇wh) + γh) ‖2
L2(T )

+(1 + βT/hT )−2 ‖ curl rh ‖2
L2(T ) + (α−1

T + βT )−2 ‖ rh ‖2
L2(T ),

η2
E := hE ‖ [Cε(ϑh)] · nE ‖2

L2(E\Γ) + hE/(βE (βE + hE)) ‖ [rh] · τE ‖2
L2(E)(3.4)

+hE/α
2
E ‖ [α2

E(ϑh −∇wh) + γh] · nE ‖2
L2(E\Γ).

([rh] · τE := 0− rh|Γ for E ⊂ Γ.)
This paper establishes the reliability and efficiency of the a posteriori error bound ηR,

(3.5) η2
R =

∑
T∈T

η2
T +

∑
E∈E

η2
E,

and the error norms in V and Q defined, for (ϕ, v) ∈ V and η ∈ Q, by

‖ (ϕ, v) ‖V :=
{
‖ϕ ‖2

H1(Ω) + ‖α(ϕ−∇v) ‖2
L2(Ω)

}1/2
,(3.6)

‖ η ‖Q,0 := inf
η=p+q, div p=0

{
‖ p ‖2

H−1(Ω) + ‖ q/α ‖2
L2(Ω)

}1/2

,(3.7)

‖ η ‖Q :=
{
‖ η ‖2

Q,0 + ‖ βη ‖2
L2(Ω)

}1/2

.(3.8)

In the infimum of (3.7), p ∈ L2(Ω) is divergence free, written div p = 0, in the sense that it
is L2(Ω)-orthogonal to ∇H1

0 (Ω), the gradients of functions in H1
0 (Ω), and q ∈ L2(Ω).

Remark 3.1. The set Q equals L2(Ω)2 and their norms are equivalent. However, the constants
in the equivalence inequalities dependent on t, α(h, t), and β(h, t) and thus we need to specify
(Q, ‖ · ‖Q).

Remark 3.2. The norm ‖ · ‖Q,0 is the norm in H−1(div,Ω) in case that α is a global constant.
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The main contribution of this paper is the proof of reliability and efficiency of the error in
the aforementioned norms and the error estimator ηR. As α is usually chosen as a function
of t and hT and since the elements are shape-regular (whence hT1/hT2 . 1 for T1∩T2 6= ∅) it
is not a too restrictive assumption that the quotient of two αT is bounded for two neighbour
elements; for future reference to those bounds, we introduce

(3.9) κ(α, T ) := max
T1,T2∈T , T1∩T2 6=∅

αT1/αT2 .

Let (ϑ,w, γ) ∈ H1
0 (Ω)2×H1

0 (Ω)×L2(Ω)2 solve (1.2) and suppose that (ϑh, wh, γh) as in (3.2)
satisfies (2.4) for all (ϕh, vh, ηh) ∈ S1

0 (T )3 × L0(T )2.

Theorem 3.1. Suppose that α satisfies 0 < α < 1/t and α ≤ c3/h. Then, there exists a
positive (hT , hE , t)-independent constant c4 which depends only on Ω, c3, cΘ, and on κ(α, T ),
such that

(3.10) ‖ (ϑ− ϑh, w − wh) ‖V + ‖ γ − γh ‖Q ≤ c4 ηR.

Theorem 3.2. Suppose that α satisfies 0 < α < 1/t and α ≤ c3/h. Then, there exists
positive (hT , hE , t)-independent constants c5 and c6 which depend only on Ω, c3, cΘ, and on
κ(α, T ), such that

(3.11) c5 ηR ≤ ‖ (ϑ− ϑh, w − wh) ‖V + ‖ γ − γh ‖Q + c6 inf
fh∈L1(T )

‖hT /α(f − fh) ‖L2(Ω).

The remaining sections are devoted to the proof of both theorems.

4. Equivalence of error and residual norms

This section is devoted to the proof of equivalence between the error and the residual with
respect to the norms in V ×Q and V ∗×Q∗, respectively, with emphasis on the independence
of the equivalence constants from α, h, and t.

According to Korn’s inequality and setting of the parameters E > 0 and 0 < ν < 1, the
energy norm ‖C1/2ε(·) ‖L2(Ω) is equivalent to the Sobolev norm ‖ · ‖H1

0 (Ω) with the global

positive constants c7 and c8 which merely depend on Ω and C, i.e., for all ϕ ∈ H1
0 (Ω)2,

(4.1) c7 ‖ϕ ‖2
H1

0 (Ω) ≤
∫

Ω

ε(ϕ) : Cε(ϕ)dx ≤ c8 ‖ϕ ‖2
H1

0 (Ω).

Thus the bilinear form a(·; ·) is elliptic and continuous with constants c9 := min{1, c7} and
c10 := max{1, c8}, i.e., for all (ϕ, v) ∈ V ,

(4.2) c9‖ (ϕ, v) ‖2
V ≤ a(ϕ, v;ϕ, v) ≤ c10‖ (ϕ, v) ‖2

V .

The norm ‖ · ‖Q,0 is chosen such that both, stability and continuity of the bilinear form
b are satisfied with bound 1.

Lemma 4.1. The stability and continuity conditions of the bilinear form b with respect to
the norms ‖ · ‖V and ‖ · ‖Q,0 are fulfilled with the optimal constant one, i.e.,

(4.3) ‖ η ‖Q,0 = sup
(ϕ,v)∈V \{0}

b(ϕ, v; η)

‖ (ϕ, v) ‖V

for all η ∈ Q.
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Proof. Let (ϕ, v) ∈ V , η = p+ q ∈ Q with div p = 0 (i.e.,
∫

Ω
p · ∇v dx = 0) and deduce

b(ϕ, v; η) =

∫
Ω

(ϕ−∇v) · (p+ q) dx

=

∫
Ω

ϕ · p dx+

∫
Ω

α(ϕ−∇v) · q/α dx

≤ ‖ϕ ‖H1
0 (Ω) ‖ p ‖H−1(Ω) + ‖α(ϕ−∇v) ‖L2(Ω) ‖ q/α ‖L2(Ω)

≤ ‖ (ϕ, v) ‖V

{
‖ p ‖2

H−1(Ω) + ‖ q/α ‖2
L2(Ω)

}1/2

.

Since the split η = p+ q was arbitrary, this estimate shows

(4.4) sup
(ϕ,v)∈V \{0}

b(ϕ, v; η)

‖ (ϕ, v) ‖V

≤ ‖ η ‖Q,0 for all η ∈ Q.

An explicit decomposition η = p+ q will be constructed to show inequality reverse to (4.4).
Given η ∈ Q \ {0}, let (ϑ,w) ∈ V solve, for all (ϕ, v) ∈ V ,

(4.5) (ϑ;ϕ)H1
0 (Ω) + (α2(ϑ−∇w);ϕ−∇v)L2(Ω) = −b(ϕ, v; η).

(The same arguments that show ellipticity of a prove that of the bilinear form on left-hand
side of (4.5) and so imply unique existence of (ϑ,w) ∈ V .) The choice (ϕ, v) = (ϑ,w) in
(4.5) shows

(4.6) ‖ (ϑ,w) ‖V = − b(ϑ,w; η)

‖ (ϑ,w) ‖V

≤ sup
(ϕ,v)∈V \{0}

b(ϕ, v; η)

‖ (ϕ, v) ‖V

.

Set q := −α2(ϑ−∇w) and p := η − q. Because of (4.5), we have, for all v ∈ H1
0 (Ω),

(p;∇v)L2(Ω) = (η + α2(ϑ−∇w);∇v)L2(Ω) = 0

and so div p = 0. Furthermore, (4.5) (with v = 0) shows

‖ p ‖H−1(Ω) = sup
ϕ∈H1

0 (Ω)\{0}

(η + α2(ϑ−∇w);ϕ)L2(Ω)

‖ϕ ‖H1
0 (Ω)

= sup
ϕ∈H1

0 (Ω)\{0}

(ϑ;ϕ)H1
0 (Ω)

‖ϕ ‖H1
0 (Ω)

= ‖ϑ ‖H1
0 (Ω).(4.7)

The proof of the missing inequality is concluded for η = p+ q with (4.6)(4.7) and

‖ η ‖2
Q,0 ≤ ‖ p ‖2

H−1(Ω) + ‖ q/α ‖2
L2(Ω)

= ‖ϑ ‖2
H1

0 (Ω) + ‖α(ϑ−∇w) ‖2
L2(Ω)

= ‖ (ϑ,w) ‖2
V ≤ sup

(ϕ,v)∈V

b(ϑ, v; η)2

‖ (ϕ, v) ‖2
V

. �

Theorem 4.2 (Braess, 1996). The bilinear form Bα(·; ·) provides an isomorphism between
V ×Q and its dual, i.e., for all (ϑ,w, γ) ∈ V ×Q, we have (when in the supremum (v, ϕ, η) ∈
V ×Q \ {0})

(4.8)
min{c9, c−1

10 }√
13

‖(w, ϑ, γ)‖V×Q ≤ sup
(v,ϕ,η)

Bα(ϑ,w, η;ϕ,w, γ)

‖(v, ϕ, η)‖V×Q

≤ (1 + c10)‖(w, ϑ, γ)‖V×Q.
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Remark 4.1. The bounds for the global stability and continuity estimates only depend on the
bounds of the norm equivalence (4.1). If we use the energy norm ‖C1/2ε(·) ‖L2(Ω) instead of
the H1

0 (Ω)-norm, then c7 = 1 = c8 and the constants in Theorem 4.2 are absolute constants
1/
√

13 and 2.

Remark 4.2. Theorem 4.2 is an immediate consequence of Theorem 2 in [B1] and this leads
to a proof different from the proof below.

Proof of Theorem 4.2. To prove the stability we define operators A : V → V , B : V →
Q, B∗ : Q → V , and C : Q → Q by (A(ϑ,w); (ϕ, v))V = a(ϑ,w;ϕ, v), (B(ϑ,w); η)Q =
(B∗η;ϑ,w)V = b(ϑ,w; η), and (Cη; γ)Q = c(η; γ). The operators A and C are selfadjoint
(with respect to the scalar product in V and Q), respectively. Since A is elliptic, A±1/2 and
A−1 are well defined. Lemma 4.1 proves the isometry of B∗ with respect to the norms ‖ · ‖Q,0

and ‖ . ‖V , i.e., for all η ∈ Q,

(4.9) ‖ η ‖Q,0 = sup
(ϕ,v)∈V \{0}

b(ϕ, v; η)

‖ (ϕ, v) ‖V

= sup
(ϕ,v)∈V \{0}

(B∗η;ϕ, v)V

‖ (ϕ, v) ‖V

= ‖B∗η ‖V .

For fixed (ϑ,w, γ) ∈ V ×Q set

f := A(ϑ,w) +B∗γ ∈ V,
g := B(ϑ,w)− Cγ ∈ Q,

and eliminate the primal variable (w, ϑ) = A−1(f −B∗γ). With the Schur complement S,

S := BA−1B∗ + C : Q→ Q selfadjoint isomorphism,

(since A and C are elliptic) this implies the identity

(4.10) Sγ = BA−1f − g.

The continuity and ellipticity bounds on S±1 (may depend on α, β, h, t and so) are analysed
explicitly in the sequel. For η ∈ Q, the definition of S and (4.2) yield

(Sη; η)Q = ((BA−1B∗ + C)η; η)Q = (A−1B∗η;B∗η)V + (Cη; η)Q

≤ c−1
9 ‖B∗η ‖2

V + c(η; η) = c−1
9 ‖ η ‖2

Q,0 + c(η; η) ≤ c−1
9 ‖ η ‖2

Q,(4.11)

and, similarly, one verifies the reverse estimate to finally obtain

(4.12) c−1
10 ‖ η ‖2

Q ≤ (Sη; η)Q ≤ c−1
9 ‖ η ‖2

Q for all η ∈ Q.

Since C is elliptic, (A−1B∗γ;B∗γ)V ≤ (Sγ; γ)Q = ‖S1/2γ ‖2
Q. This and (4.10) lead to

‖S1/2γ ‖2
Q = (BA−1f − g; γ)Q

≤ ‖A−1/2f ‖V ‖A−1/2B∗γ ‖V + ‖S−1/2g ‖Q ‖S1/2γ ‖Q

≤
(
‖A−1/2f ‖V + ‖S−1/2g ‖Q

)
‖S1/2γ ‖Q, whence

‖S1/2γ ‖Q ≤ ‖A−1/2f ‖V + ‖S−1/2g ‖Q.(4.13)
8



Similar arguments for the primal variable (w, ϑ) = A−1(f −B∗γ) show

‖A1/2(ϑ,w) ‖2
V = (A(ϑ,w); (ϑ,w))V = (f −B∗γ; (ϑ,w))V

≤ ‖A−1/2f ‖V ‖A1/2(ϑ,w) ‖V + ‖A−1/2B∗γ ‖V ‖A1/2(ϑ,w) ‖V

≤
(
‖A−1/2f ‖V + ‖S1/2γ ‖Q

)
‖A1/2(ϑ,w) ‖V , whence

‖A1/2(ϑ,w) ‖V ≤ ‖A−1/2f ‖V + ‖S1/2γ ‖Q.(4.14)

The lower bounds in (4.2) resp. (4.12) in the first inequality, (4.14) in the second, and (4.13)
in the third imply

max{c−1
9 , c10}−1/2 ‖ (ϑ,w, γ) ‖V×Q ≤ ‖A1/2(ϑ,w) ‖V + ‖S1/2γ ‖Q

≤ ‖A−1/2f ‖V + 2 ‖S1/2γ ‖Q ≤ 3 ‖A−1/2f ‖V + 2 ‖S−1/2g ‖Q.

This and the bounds on A−1/2 resp. S−1/2 in (4.2) resp. (4.12) (with a Cauchy inequality in
R2 at the end) lead to

max{c−1
9 , c10}−1‖ (ϑ,w, γ) ‖V×Q ≤ 3 ‖ f ‖V + 2 ‖ g ‖Q ≤

√
32 + 22 ‖ (f, g) ‖V×Q

=
√

13 sup
(v,ϕ,γ)∈(V×Q)\{0}

((f, g); (ϕ, v, γ))V×Q

‖(v, ϕ, γ)‖V×Q

=
√

13 sup
(v,ϕ,γ)∈(V×Q)\{0}

Bα(w, ϑ, γ; v, ϕ, γ)

‖(v, ϕ, η)‖V×Q

which is the first claimed inequality in the theorem. The proof of the second follows, for
(ϑ,w, γ), (ϕ, v, η) ∈ V ×Q, from

Bα(ϑ,w, γ;ϕ, v, η) = a(ϑ,w;ϕ, v) + b(ϑ,w; η) + b(ϕ, v; γ)− c(γ, η)

≤
(
a(ϑ,w;ϑ,w) + ‖ϑ,w ‖2

V + ‖ γ ‖2
Q,0 + c(γ, γ)

)1/2

×
(
a(ϕ, v;ϕ, v) + ‖ η ‖2

Q,0 + ‖ (ϕ, v) ‖2
V + c(η, η)

)1/2

≤ (1 + c10)‖ (ϑ,w, η) ‖V×Q‖ (ϕ, v, γ) ‖V×Q. �

The theorem relates the error to the two residuals in V ∗ and Q∗ estimated in Section 5
and 6, respectively.

Corollary 4.3. The discretisation error is equivalent to the sum of residuals, i.e., there
holds (with equivalence constants which depend only on c7 and c8)

‖ (ϑ− ϑh, w − wh, γ − γh) ‖V×Q(4.15)

≈ ‖ f − a(ϑh, wh; ·)− b(·; γh) ‖V ∗ + ‖ b(ϑh, wh; ·)− c(·; γh) ‖Q∗ .

Proof. Theorem 4.2 relates the error (ϑ,w, η) to the dual norm of the residuals, i.e.,

‖(ϑ− ϑh, w − wh, γ − γh)‖V×Q ≈ sup
(ϕ,v,η)∈(V×Q)\{0}

Bα(ϑ− ϑh, w − wh, γ − γh;ϕ, v, η)

‖(v, ϕ, η)‖V×Q

= sup
(ϕ,v,η)∈(V×Q)\{0}

f(v)− a(ϑh, wh;ϕ, v)− b(v, ϕ; γh)− b(ϑh, wh; η) + c(η, γh)

‖(v, ϕ, η)‖V×Q

≈ sup
(ϕ,v)∈V \{0}

f(v)− a(ϑh, wh;ϕ, v)− b(v, ϕ; γh)

‖(v, ϕ)‖V

+ sup
η∈Q\{0}

−b(ϑh, wh; η) + c(η; γh)

‖η‖Q

. �
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5. Reliable and Efficient Computable Estimates for the residual in V ∗

This section is devoted to the proof of equivalence of the dual norm ‖ rV ‖V ∗ of the primal
residual rV := f − a(ϑh, wh; ·)− b(·; γh) and the computable error estimator ηV ,

η2
V :=

∑
T∈T

(
h2

T‖α2
T (ϑh −∇wh) + γh − divCε(ϑh) ‖2

L2(T )

+h2
T/α

2
T ‖ f − div(α2

T (ϑh −∇wh) + γh) ‖2
L2(T )

)
(5.1)

+
∑
E∈E

(
hE‖ [Cε(ϑh)] · nE ‖2

L2(E\Γ) + hE/α
2
E ‖ [γh + α2(ϑh −∇wh)] · nE ‖2

L2(E\Γ)

)
.

Recall αE := min{αT1 , αT2} if E = T1∩T2 is the joint edge of the distinct elements T1, T2 ∈ T
and αT := α|T is supposed to be constant on each T ∈ T .

Theorem 5.1. There exists an (hT , t)-independent constant c11, which depends on α and T
only through κ(α, T ), c3 = ‖αhT ‖L∞(Ω), and cΘ, such that

(5.2) ‖rV ‖V ∗ ≤ c11 ηV .

The proof is based on a refined approximation property of the Clément-interpolant (or any
other weak approximation operator which is locally exact for affine functions) of Lemma 5.2
in which the upper bound ‖(ϕ, v)‖V is more involved than ‖ (Dϕ,α∇v) ‖L2(Ω).

Lemma 5.2. There exists an (hT , t)-independent constant c12, which depends on α and T
only through κ(α, T ), c3 = ‖αhT ‖L∞(Ω), and cΘ, such that, given (ϕ, v) ∈ V , there exists
(ϕh, vh) ∈ S1

0(T )3 which satisfies∑
T∈T

h−2
T ‖ϕ− ϕh‖2

L2(T ) +
∑
T∈T

α2
T/h

2
T‖v − vh‖2

L2(T )

+
∑
E∈E

h−1
E ‖ϕ− ϕh‖2

L2(E) +
∑
E∈E

α2
E/hE‖v − vh‖2

L2(E) ≤ c12 ‖(ϕ, v)‖2
V .(5.3)

Proof. The Clément approximation operator for a scalar v defines a T -piecewise affine vh

by their nodal values. For a node z at the boundary, vh(z) = 0, and at an interior node z
with a patch ωz := interior(∪{T ∈ T : z ∈ T}) we let vh(z) = p(z) where p is the L2(ω)-
best-approximation of vh|ωz in P1(ωz). The two components of ϕh are defined by the same
procedure applied on the two components of ϕ. Well-established approximation estimates
[BS, Cl, Ci, V1] prove that the terms on the left-hand side of (5.3) which contain ϕ−ϕh are
bounded by a constant times ‖Dϕ ‖L2(Ω) ≤ ‖(ϕ, v)‖V . It therefore remains to prove

(5.4)
∑
T∈T

α2
T/h

2
T‖v − vh‖2

L2(T ) +
∑
E∈E

α2
E/hE‖v − vh‖2

L2(E) . ‖(ϕ, v)‖2
V ,

which is completely standard up to the weights α . h−1
T . Indeed, from the proof of first

order convergence and stability of the Clément operator we know

(5.5) h−2
T ‖v − vh‖2

L2(T ) + h−1
E ‖v − vh‖2

L2(E) + ‖∇vh‖2
L2(T ) . ‖∇v‖2

L2(ωT )

for each element T ∈ T with an edge E ⊂ ∂T and its patch ωT := interior(∪{K ∈ T :
K ∩ T 6= ∅}). Suppose in the first case that one vertex of T belongs to the boundary ∂Ω.
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Then, the intersection of ∂ωT with ∂Ω contains at least one edge and so (after α . h−1
T ) a

Friedrichs inequality shows

(5.6) ‖αϕ ‖L2(ωT ) . ‖h−1
T ϕ ‖L2(ωT ) . ‖Dϕ ‖L2(ωT ).

A multiplication of (5.5) with αT ≥ αE, a triangle inequality, and (5.6) yield

αT h
−1
T ‖v − vh‖L2(T ) + αE h

−1/2
E ‖v − vh‖L2(E) . κ(α, T )‖α∇v‖L2(ωT )

. κ(α, T )‖α(ϕ−∇v)‖L2(ωT ) + κ(α, T )‖Dϕ‖L2(ωT ).(5.7)

In the second case, the vertices of T are interior nodes and so (v − vh)|T remains the same
if we change v to v − z for an affine function z with on ωT when we change vh accordingly
(cf. the above mentioned construction for details and a proof); the Clément approximation
operator locally preserves affine functions. We choose the constant vector A := ∇z as the
integral mean of ϕ on ωT . As a consequence, (5.5) can be recast as

(5.8) h−2
T ‖v − vh‖2

L2(T ) + h−1
E ‖v − vh‖2

L2(E) + ‖∇vh − A‖2
L2(T ) . ‖∇v − A‖2

L2(ωT ).

Hence (after α . h−1
T . 1/diam(ωT ) on ωT ) a Poincaré inequality shows

(5.9) ‖α(ϕ− A) ‖L2(ωT ) . ‖h−1
T (ϕ− A) ‖L2(ωT ) . ‖Dϕ ‖L2(ωT ).

A multiplication of (5.8) with αT , a combination with (5.9), and the above arguments yield

αT h
−1
T ‖v − vh‖L2(T ) + αE h

−1/2
E ‖v − vh‖L2(E) . κ(α, T )‖α(∇v − A)‖L2(ωT )

. κ(α, T )‖α(ϕ−∇v)‖L2(ωT ) + κ(α, T )‖Dϕ‖L2(ωT ).(5.10)

A Summation of (5.7) resp. (5.10) over all T ∈ T and E ∈ E concludes the proof of (5.3). �

Proof of Theorem 5.1. Given (ϕ, v) ∈ V , T -piecewise integrations by parts shows

rV (ϕ, v) = f(v)− a(ϑh, wh;ϕ, v)− b(v, ϕ; γh)

=

∫
Ω

fv dx−
∫

Ω

ε(ϑh) : Cε(ϕ) dx−
∫

Ω

(α2(ϑh −∇wh) + γh) · (ϕ−∇v) dx

=
∑
T∈T

∫
T

(rT,w v + rT,ϑ · ϕ)dx+
∑
E∈E

∫
E

(rE,w v + rE,ϑ · ϕ)ds(5.11)

with the element and edge residual terms
(5.12)

rT,ϑ = divCε(ϑh)− α2
T (ϑh −∇wh)− γh, rE,ϑ = [Cε(ϑh)] · nE,

rT,w = f − div(α2
T (ϑh −∇wh) + γh), rE,w = −[γh + α2(ϑh −∇wh)] · nE.

The Galerkin orthogonality allows the substitution of (ϕ, v) by (ϕ−ϕh, v− vh) in (5.11) for
(ϕh, vh) as in Lemma 5.2. From this and the lemma, we infer with Cauchy inequalities

rV (v, ϕ) ≤
∑
T∈T

hT ‖ (rT,ϑ, rT,w/αT ) ‖L2(T ) h
−1
T ‖(ϕ− ϕh, αT (v − vh))‖L2(T )

+
∑
E∈E

h
1/2
E ‖ (rE,ϑ, rE,w/αE) ‖L2(E) h

−1/2
E ‖(ϕ− ϕh, αE(v − vh))‖L2(E)(5.13)

≤
√
c12 ηV ‖(ϕ, v)‖V . �
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The estimator ηV is efficient: The converse inequality of (5.2) holds even in a more local
form than stated (cf. the proof of (5.14) below).

Theorem 5.3. There exists an (hT , t)-independent constant c13, which depends on α and T
only through κ(α, T ), c3 = ‖αhT ‖L∞(Ω), and cΘ, such that

(5.14) ηV ≤ c13

(
‖rV ‖V ∗ + inf

fh∈L1(T )
‖hT /α(f − fh) ‖L2(Ω)

)
.

Proof. For each triangle T adopt notation from (5.12) and let bT be the cubic bubble-function
(i.e., 27 times the product of all barycentric coordinates on T ) which satisfies supp(bT ) = T ,
0 ≤ bT ≤ max bT = 1. Let fh denote the L2(T )-best-approximation of f in P1(T ) and
consider ϕ := bT r

T,ϑ and v := bT r̄
T,w/α2

T , r̄T,w := rT,w − f + fh in (5.11) to observe

(5.15) ‖ b1/2
T rT,ϑ ‖2

L2(T ) + ‖ b1/2
T r̄T,w ‖2

L2(T )/α
2
T +

∫
T

bT (f − fh)r̄
T,w dx/α2

T = rV (v, ϕ).

Equivalence of the norms ‖ b1/2
T · ‖L2(T ) and ‖ · ‖L2(T ) on a polynomial space (the components

of rT,ϑ and r̄T,w belong to) and Young’s inequality yield with VT := H1
0 (T )3 ↪→ V (and so

V ∗
T = H−1(T )3) in (5.15)

‖ rT,ϑ ‖2
L2(T ) +

1

2α2
T

‖ r̄T,w ‖2
L2(T ) . ‖ b1/2

T rT,ϑ ‖2
L2(T ) +

1

2α2
T

‖ b1/2
T r̄T,w ‖2

L2(T )

= − 1

2α2
T

‖ b1/2
T r̄T,w ‖2

L2(T ) −
∫

T

bT (f − fh)r̄
T,w dx/α2

T + rV (v, ϕ)(5.16)

≤ 1

2α2
T

‖ b1/2
T (f − fh) ‖2

L2(T ) + ‖rV ‖V ∗
T
‖ (v, ϕ) ‖VT

.

Inverse estimates for the polynomials bT r
T,ϑ and bT r̄

T,w and αT . 1/hT guarantee

hT ‖ (v, ϕ) ‖V . ‖ϕ ‖L2(T ) + hT‖αT (ϕ−∇v) ‖L2(T )

≤ ‖ϕ ‖L2(T ) + hT αT ‖ϕ ‖L2(T ) + hTαT ‖∇v ‖L2(T )(5.17)

. ‖ rT,ϑ ‖L2(T ) + αT‖ v ‖L2(T ) ≤ ‖ rT,ϑ ‖L2(T ) + ‖ r̄T,w ‖L2(T )/αT .

A multiplication of (5.16) with h2
T and using (5.17) to absorb h2

T‖ (v, ϕ) ‖V we obtain

(5.18) ‖hT r
T,ϑ ‖L2(T ) + ‖hT/αT r̄

T,w ‖L2(T ) . hT/αT‖ f − fh ‖L2(T ) + ‖rV ‖V ∗
T
.

This and a triangle inequality ‖ rT,w ‖L2(T ) ≤ ‖ r̄T,w ‖L2(T ) + ‖ f − fh ‖L2(T ) prove

(5.19) ‖hT r
T,ϑ ‖L2(T ) + ‖hT/αT r

T,w ‖L2(T ) . ‖rV ‖V ∗
T

+ hT /αT‖ f − fh ‖L2(T ).

The proof is the same for a parallelogram T with a different bT .
In the second part of this proof, we consider an interior edge E with patch ωE :=

interior(∪{T ∈ T : E ⊂ ∂T}) and construct functions bkE ∈ H1
0 (ωE) for non-negative integer

k. On each of the two neighbouring elements T1 and T2 in ωE = T1 ∪ T2 the function bkE
equals pk bE − qj

k bTj
on Tj where bE is the product of the two barycentric coordinates in Tj

such that bE(s) = s/hE(1−s/hE) is quadratic in the arc-length parameter 0 < s < hE along
E. The (one-dimensional) monomial pk(s) = sk for the parameter s := tE · (x− x1) (where
tE is the unit tangential vector along E and x1 ∈ E the first vertex of T ) defines pk(x).
The polynomial qk (of degree ≤ K) is chosen such that bkE is L2(Tj)-orthogonal to PK(Tj)
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for j = 1, 2; the parameter K is the highest degree of the polynomials rTj ,ϑ, r̄Tj ,w, rE,ϑ, and
rE,ϑ. As a consequence, for k = 0, . . . , K,

(5.20)

∫
ωE

rT,ϑbkE dx = 0 and

∫
ωE

r̄T,wbkE dx = 0.

Let rE,ϑ =:
∑K

k=0 αk pk|E (resp. rE,w =:
∑K

k=0 βk pk|E) define real coefficients α0, . . . , αK ∈
R2 (resp. β0, . . . , βK ∈ R) and then set ϕ :=

∑K
k=0 αk b

k
E ∈ H1

0 (ωE)2 and v :=
∑K

k=0 βk b
k
E/α

2
E

∈ H1
0 (ωE). The equivalence of norms ‖ b1/2

E · ‖L2(E) and ‖ · ‖L2(E) (on a polynomial space the
components of rE,ϑ and rE,w belong to) and (5.20) show (with (5.12) at the end)

‖ rE,ϑ ‖2
L2(E) + ‖ rE,w ‖2

L2(E)/α
2
E .

∫
E

(rE,ϑ · ϕ+ rE,w v)ds

=
∑
j=1,2

∫
Tj

(rTj ,ϑ · ϕ+ r̄Tj ,w v)dx+

∫
E

(rE,ϑ · ϕ+ rE,w v)ds(5.21)

= rV (v, ϕ) +
∑
j=1,2

∫
Tj

(fh − f) v dx.

Since f−fh has the integral mean zero we have with the integral mean v̄ of v and a Poincaré
inequality on Tj that, with VE := H1

0 (ωE)3 ↪→ V , V ∗
E = H−1(ωE)3), (5.21) leads to

(5.22) ‖ rE,ϑ ‖2
L2(E) + ‖ rE,w ‖2

L2(E)/α
2
E

. ‖ rV ‖V ∗
E
‖ (ϕ, v) ‖V + hE‖ f − fh ‖L2(ωE) ‖∇v ‖L2(ωE).

The arguments in (5.17) apply to the present ‖ (ϕ, v) ‖V as well and yield

(5.23) hE ‖ rE,ϑ ‖L2(E) + hE/αE ‖ rE,w ‖L2(T ) . ‖rV ‖V ∗
E

+ hE/αE‖ f − fh ‖L2(ωE).

A summation of the estimates (5.19) and (5.23) for all T and E concludes the proof since,

(5.24)
∑
T∈T

‖rV ‖2
V ∗

T
+

∑
E∈E

‖rV ‖2
V ∗

E
. ‖rV ‖2

V ∗ .

Choose ϕE ∈ VE (extended by zero) with

‖rV ‖2
V ∗

E
= ‖ϕE‖2

VE
= rV (ϕE)

and set ϕj =
∑

E∈Ej
ϕE for some partition E = E1 ∪ · · · ∪ EJ such that (ωE : E ∈ Ej) are

pairwise disjoint and that J . 1 . Then,

(5.25)
∑
E∈Ej

‖rV ‖2
V ∗

E
=

∑
E∈Ej

rV (ϕE) = rV (ϕj) ≤ ‖rV ‖V ∗‖ϕj‖V .

By construction and since (ωE : E ∈ Ej) are pairwise disjoint,

(5.26) ‖ϕj‖2
V =

∑
E∈Ej

‖ϕE‖2
VE) =

∑
E∈Ej

‖rV ‖2
V ∗

E
.

A combination of (5.25)-(5.26) shows (the main part of) (5.24). This concludes the proof. �
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6. Reliable and Efficient Computable Estimates for the residual in Q∗

This section is devoted to the reliable and efficient estimation of rQ ∈ Q∗ with the L2(Ω)-
representation rh := ϑh −∇wh − β2 γh, which is L2-orthogonal to Qh owing to the Galerkin
property, in the norm ‖ · ‖Q∗ by ηQ,

η2
Q :=

∑
T∈T

h2
T

(hT + βT )2
‖ curl rh ‖2

L2(T ) +
∑
T∈T

‖ rh/(1/α+ β) ‖2
L2(T )(6.1)

+
∑
E∈E

hE

βE(hE + βE)
‖ [rh] · τE ‖2

L2(E).

The estimator is a lower and upper bound of the residual ‖ rQ ‖Q∗ . The reliability and
efficiency proof are based on the following lemma.

Lemma 6.1. If Ω is simply connected, we have

sup
z∈H1(Ω)\{0}

(rh; Curl z)L2(Ω)

‖z‖L2(Ω) + ‖β∇z‖L2(Ω)

. ‖ rQ ‖Q∗ ,(6.2)

‖ rh/(1/α+ β) ‖L2(Ω) . ‖ rQ ‖Q∗ ,(6.3)

‖ rQ ‖Q∗ . ‖α rh ‖L2(Ω) + sup
z∈H1(Ω)\{0}

(rh; Curl z)L2(Ω)

‖z‖L2(Ω) + ‖t∇z‖L2(Ω)

,(6.4)

‖ rQ ‖Q∗ ≤ ‖rh/β‖L2(Ω).(6.5)

Proof. The definition of ‖ η ‖Q (where p, q ∈ L2(Ω)2, p+ q 6= 0, and div p = 0) reads

(6.6) ‖ rQ ‖Q∗ = sup
p,q

(rh; p+ q)L2(Ω){
‖ p ‖2

H−1(Ω) + ‖ q/α ‖2
L2(Ω) + ‖ β(p+ q) ‖L2(Ω)

}1/2
.

Since Ω is simply connected and p ∈ L2(Ω) is divergence free, we have p = Curl z :=
(−∂z/∂x2, ∂z/∂x1) for some z ∈ H1(Ω) [GR]. Adding a constant to z, if necessary, we
obtain

∫
Ω
z dx = 0 and infer from the existence of solutions to the Stokes equations that

z = div η for some η ∈ H1
0 (Ω)2 [GR]; furthermore, writing ψ = (−η2, η1) ∈ H1

0 (Ω)2,

(6.7) z = rotψ and ‖ψ ‖H1
0 (Ω) ≤ c14 ‖ z ‖L2(Ω),

where c14 depends only on Ω. Using this and an integration by parts, we deduce

‖ z ‖L2(Ω) = (z; rotψ)L2(Ω) = 〈Curl z;ψ〉H−1(Ω)×H1
0 (Ω) = 〈p;ψ〉H−1(Ω)×H1

0 (Ω)

≤ ‖ p ‖H−1(Ω) ‖ψ ‖H1
0 (Ω) ≤ c14 ‖ p ‖H−1(Ω) ‖ z ‖L2(Ω)

and (by duality and integration by parts) ‖ p ‖H−1(Ω) = ‖ Curl z ‖H−1(Ω) ≤ ‖ z ‖L2(Ω), whence

(6.8) ‖ p ‖H−1(Ω) ≤ ‖ z ‖L2(Ω) ≤ c14 ‖ p ‖H−1(Ω).

Therefore, a substitution of p = Curl z and ‖ p ‖H−1(Ω) by ‖ z ‖L2(Ω) in (6.6) shows

(6.9) ‖ rh ‖Q∗ ≈ sup
q∈L2(Ω), z∈H1

0 (Ω)

(rh; q + Curl z)L2(Ω)

‖ z ‖L2(Ω) + ‖ q/α ‖L2(Ω) + ‖ β(q + Curl z) ‖L2(Ω)

.
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The right-hand side of (6.9), equivalent to ‖ rQ ‖Q∗ , allows immediate proofs of (6.2) and
(6.3): For q = 0, we obtain (6.2); for z = 0 we deduce (6.3) for a proper q ∈ L2(Ω)2 from

(rh/(1/α+ β); q(1/α+ β))L2(Ω)

‖ q(1/α+ β) ‖L2(Ω)

=
(rh; q)L2(Ω)

‖ q(1/α+ β) ‖L2(Ω)

≤
√

2(rh; q)L2(Ω)

‖ q/α ‖L2(Ω) + ‖ βq ‖L2(Ω)

.

In the verification of (6.4) show a triangle inequality,

‖ t∇z ‖L2(Ω) = ‖ t Curl z ‖L2(Ω) ≤ ‖ t(q + Curl z) ‖L2(Ω) + ‖ t q ‖L2(Ω),

and t < α−1 resp. t < β that

(6.10) ‖ z ‖L2(Ω) + ‖ t∇z ‖L2(Ω) + ‖ q/α ‖L2(Ω)

≤ ‖ z ‖L2(Ω) + 2‖ q/α ‖L2(Ω) + ‖ β(q + Curl z) ‖L2(Ω).

A substitution of the lower bound ‖ z ‖L2(Ω) +‖ t∇z ‖L2(Ω) resp. ‖ q/α ‖L2(Ω) for (6.10) in the
terms (rh; Curl z)L2(Ω) resp. (rh; q)L2(Ω) of the right-hand side of (6.9) shows (6.4).

The estimate (6.5) follows immediately from (6.6). �

The error estimator ηQ is a (global) reliable upper bound.

Theorem 6.2. Suppose that Ω is simply connected and that T consists of triangles. There
exists an (hT , t)-independent constant c15, which depends on α and T only through κ(α, T ),
and cΘ, such that

(6.11) ‖ rQ ‖Q∗ ≤ c15 ηQ.

Proof. The (closure of the) domain is split into two (essentially) disjoint (closed) sets A1 and
A2 according to the value of β on neighbouring elements by

A1 := ∪{T ∈ T : 2t < βK for some K ∈ T with K ∩ T 6= ∅},
A2 := ∪{T ∈ T : 2t ≥ βK for all K ∈ T with K ∩ T 6= ∅}.

(A1 is {T ∈ T : 2t < βT} enlarged by neighbour elements.) Define rj := rh on Aj and
rj := 0 on ω \ Aj for each j = 1, 2 so that we have rh = r1 + r2. The estimates (6.4) and
(6.5) can be separately applied to r1 and r2 (see the proof of Lemma 6.1) and show, with
|‖ z ‖|ω := ‖ z ‖L2(ω) + t ‖∇z ‖L2(ω) for ω ⊆ Ω, that

‖ rQ ‖Q∗ ≤ ‖ r1 ‖Q∗ + ‖ r2 ‖Q∗

≤ ‖ r1/β ‖L2(A1) + ‖α r2 ‖L2(A2) + sup
z∈H1(Ω)\{0}

(r2,Curl z)L2(Ω)

|‖ z ‖|Ω
.(6.12)

We claim 1/t . α on A1. For a proof consider (not necessarily distinct) T,K ∈ T with
K ∩ T 6= ∅ and 2t < βK . As a consequence, the definition of βK yields 1/t ≤ 2αK/

√
3 and

with αK ≤ κ(α, T )αT the assertion 1/t . α. This estimate yields

(6.13) 1/β . 1/(1/α+ β) on A1, whence ‖ r1/β ‖L2(A1) . ηQ.

Because of α < 1/t ≤ 2/β on A2, we have

(6.14) ‖α r2 ‖L2(A2) ≤ 2 ‖ min{α, 1/β} r2 ‖L2(A2) ≤ 2 ηQ.
15



Given z ∈ H1(Ω) \ {0}, it remains to check (rh; Curl z)/|‖ z ‖|Ω ≤ ηQ. The bound of
(r2,Curl z)L2(Ω) = (r2; Curl(z − zh))L2(Ω) utilises the observation that rh and so r2 is L2(Ω)-
orthogonal onto T -piecewise constants such as Curl zh for the Clément approximation zh to
z in S1

0 (T ). Besides ‖z − zh‖L2(T ) . ‖z‖L2(ωT ), we have

(6.15) h−2
T ‖z − zh‖2

L2(T ) + h−1
E ‖z − zh‖2

L2(E) + ‖∇(z − zh)‖2
L2(T ) . ‖∇z‖2

L2(ωT )

as in (5.5). With ‖z − zh‖L2(T ) . min{‖z‖L2(ωT ), hT‖∇z‖L2(ωT )} and βT ≤ 2t if T ⊂ A2,

(6.16) (1 + βT/hT ) ‖z − zh‖L2(T ) . ‖z‖L2(ωT ) + t ‖∇z‖L2(ωT ) . |‖ z ‖|ωT
.

For each edge E ⊂ A2∩∂T with neighbour T ∈ T , we have βE := max{βK : E ⊂ K ∈ T } ≤
2t and a trace inequality [Cl], [BS, p. 35],

(6.17) ‖z − zh‖L2(E) . ‖z − zh‖1/2

L2(T )

(
‖z − zh‖1/2

L2(T ) + ‖∇(z − zh)‖1/2

L2(T )

)
.

The definition of the norm |‖ z ‖|ωT
and (6.16)-(6.17) show eventually that

(6.18)
(
βE(1 + βE/hE)

)1/2

‖z − zh‖L2(E) . |‖ z ‖|1/2
ωT

β
1/2
E ‖∇z‖1/2

L2(ωT ) ≤ |‖ z ‖|ωT
.

A T -piecewise integration by parts, Cauchy inequalities, (6.16), and (6.18) yield

(r2; Curl z)L2(Ω) = (r2; Curl(z − zh))L2(Ω) = (curlT r2; z − zh)L2(Ω) + ([r2] · τE ; z − zh)L2(∪E)

≤
∑
E∈E

√
βE(1 + βE/hE) ‖z − zh‖L2(E) ‖ [r2] · τE/

√
βE(1 + βE/hE) ‖L2(E)

+
∑
T∈T

(1 + βT/hT ) ‖z − zh‖L2(T ) ‖ curl rh/(1 + βT/hT ) ‖L2(T )

. |‖ z ‖|Ω
(
η2

Q +
∑

E⊂∂A2

‖ [r2] · τE/
√
βE(1 + βE/hE) ‖2

L2(E)

)1/2
(6.19)

. |‖ z ‖|Ω
(
η2

Q +
∑

E⊂∂A2

‖ [r1] · τE/
√
βE(1 + βE/hE) ‖2

L2(E)

)1/2
.

The summation in the last sums in (6.19) is over all edges E which do not belong to the
boundary Ω but to the boundary of A2. While the jumps of [rh] · τE do contribute to ηQ the
remaining jumps of [r2] · τE = [rh] · τE − [r1] · τE do not; we employed a triangle inequality

in the last step and focus on the estimate of ‖ [r1] · τE/
√
βE(1 + βE/hE) ‖L2(E) for an edge

E = T1 ∩ T2 with Tj ⊂ Aj, Tj ∈ T , for j = 1, 2. Therefore, the definition of A2 leads to
βTj

≤ 2t for j = 1, 2 while there exists a K ∈ T with K ∩ T1 6= ∅ and 2t < βK . Thus

(6.20) 4/t2 − 4α2
K = 4/β2

K < 1/t2, whence 3/t2 < 4α2
K .

The reverse arguments show 4α2
T1
≤ 3/t2 and so, with αK ≤ κ(α, T )αT1 and (6.20),

(6.21) 1/t . αK . αT1 . 1/t, whence αT1 ≈ 1/t.

This, 0 < α, and the definition of β show

(6.22) 1/β2
T1

= 1/t2 − α2
T1
≤ 1/t2 . α2

T1
, whence 1/βT1 . min{1/βT1 , αT1}.

On the other hand, r1 vanishes on T2 and equals rh on T1, hence, the jump [r1] · τE equals
the trace (rh · τE|T1)|E of rh · τE on T1. A trace inequality for rh on E ⊂ ∂T1 and the inverse
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estimate hE ‖∇ rh ‖L2(T1) . ‖ rh ‖L2(T1) for the polynomial rh|T1 show
(6.23)

‖ [r1] · τE ‖L2(E) ≤ ‖ rh|T1 ‖L2(E) . h
−1/2
E ‖ rh ‖L2(T1) + h

1/2
E ‖∇ rh ‖L2(T1) . h

−1/2
E ‖ rh ‖L2(T1).

With βT1 ≤ βE and (6.22)-(6.23) we deduce

(6.24) ‖ [r1] · τE/
√
βE(1 + βE/hE) ‖L2(E) . ‖ rh ‖L2(T1)/βE . ‖ min{α, 1/β} rh ‖L2(T1).

The evaluation of (6.24) in (6.19) concludes the proof. �

Remark 6.1. The assumption on triangles can be weakened to the hypothesis on parallel-
ograms T ∈ T that

∫
T
p rh dx vanishes for all p ∈ P1(T ). (The only condition is that∫

Ω
curl zh rh dx = 0 which is then satisfied for zh|T in P1(T ) resp. Q1(T ).)

The error estimator ηQ is efficient: The converse inequality of (6.11) holds even in a more
local form than stated (cf. the proof of (6.25) below).

Theorem 6.3. Suppose that Ω is simply connected. Then there exists an (hT , t)-independent
constant c16, which depends on α and T only through κ(α, T ), and cΘ, such that

(6.25) ηQ ≤ c16 ‖ rQ ‖Q∗ .

Proof. For each triangle T let bT be a bubble-function as in the first part of the proof of
Theorem 5.3; set z|T := bT curl rh/(1 + βT/hT ) ∈ H1

0 (T ) and define |‖ · ‖|ω := ‖ · ‖L2(ω) +

‖ β∇ · ‖L2(ω) for ω ⊆ Ω. Then, equivalence of the norms ‖ b1/2
T · ‖L2(T ) and ‖ · ‖L2(T ) for

polynomials, an T -piecewise integration by parts, and (6.2) of Lemma 6.1 show

(6.26) ‖ curlT rh ‖2
L2(Ω) . ((1 + β/hT )z; curlT rh)L2(Ω)

= (CurlT z(1 + β/hT ); rh)L2(Ω) ≤ ‖ rQ ‖Q∗ |‖ (1 + β/hT )z ‖|Ω.
By ‖∇bT ‖L∞(T ) . 1/hT and (the inverse estimate) hT ‖∇ curl rh ‖L2(T ) . ‖ curl rh ‖L2(T ),

(6.27) |‖ (1 + βT/hT )z ‖|T = ‖ bT curl rh ‖L2(T ) + βT ‖∇(bT curl rh) ‖L2(T ) . ‖ curl rh ‖L2(T )

+ βT

(
‖∇bT curl rh ‖L2(T ) + ‖∇ curl rh ‖L2(T )

)
. (1 + βT/hT ) ‖ curl rh ‖L2(T ).

Combining (6.26)-(6.27) we deduce the asserted estimate of the volume contributions

(6.28) ‖ curlT rh/(1 + βT /hT ) ‖L2(Ω) . ‖ rQ ‖Q∗ .

The related proof of the estimate on the edge contributions is more involved. For each E ∈ E ,
say E = conv{a, b} for end-points a, b ∈ N and with patch ωE consider σE := {x ∈ ωE : 0 <
τE · (x − a) < hE}, which might be strictly smaller than ωE if some inner angles are larger
than π/2. The reduced patch σE consists of (at most) two (neighbouring) elements T1 and T2

on which we define bkE ∈ H1
0 (σE) ⊆ H1

0 (ωE) as in the second part of the proof of Theorem 5.3.

Given [rh] · τE set φE :=
∑K

k=0 αk b
k
E ∈ H1

0 (σE) ⊆ H1
0 (ωE) with (φE)|E = bE [rh] · τE and so

(6.29) h
−1/2
E ‖φE ‖L2(ωE) + h

1/2
E ‖∇φE ‖L2(ωE) . ‖ [rh] · τE ‖L2(E).

To cover the situation of very small βE/hE, we employ an idea of Verfürth [V2] and consider,
for 0 < δE := min{1, βE/hE}, the affine bijection Φ : σE → ωδ

E defined by

(6.30) Φ(x) := a+ s τE + δE t nE for x = a+ s τE + t nE,
17



onto a smaller domain ωδ
E (s := τE · (x − a), t := nE · (x − a)); Φ describes a stretch in

the direction nE by a factor δE. We define ΨE := Φ−1 : ωδ
E → σE with constant derivative

B := τE ⊗ τE + δ−1 nE ⊗ nE and its determinant detB = 1/δE; let zE := φE ◦ ΨE ∈
H1

0 (ωδ
E) ⊆ H1

0 (ωE) and set ρ2
E := βE(1 + βE/hE) for each E ∈ E . The family (zE : E ∈ E)

(regarded as functions in H1
0 (Ω)) has finite overlap and so z :=

∑
E∈E zE/ρ

2
E is well-defined

in H1
0 (Ω). Since z|E = (φE)|E, an integration by parts shows (after equivalence ‖ b1/2

E · ‖L2(E)

and ‖ · ‖L2(E) for polynomials)

(6.31) ‖ [rh] · τE/ρE ‖2
L2(∪E) .

∑
E∈E

ρ−2
E

∫
E

[rh] · τE zE ds

=
∑
E∈E

ρ−2
E

∫
ωδ

E

rh · Curl zE dx = (rh; Curl z)L2(Ω) ≤ ‖ rQ ‖Q∗ |‖ z ‖|Ω,

where we used the transformed analogy
∫

ωδ
E

curl rh zE dx = 0 of (5.20). Since zE = φE ◦ Ψ,

we infer from a transformation formula that

(6.32) ‖ zE ‖L2(ωδ
E) ≤ δ

1/2
E ‖φE ‖L2(ωE) and ‖∇zE ‖L2(ωδ

E) ≤
√
δE + 1/δE ‖∇φE ‖L2(ωE).

Since the ωE have finite overlap, βE := ‖ β ‖L∞(ΩE), a combination of (6.29) and (6.32) show

(6.33) |‖ z ‖|2Ω .
∑
E∈E

(‖ zE ‖2
L2(ωδ

E) + β2
E ‖∇zE ‖2

L2(ωδ
E))/ρ

4
E

.
∑
E∈E

(δhE + β2
E/(δhE))‖ [rh] · τE ‖2

L2(E)/ρ
4
E ≤

∑
E∈E

‖ [rh] · τE/ρE ‖2
L2(E)

because, in any case, (δhE + β2
E/(δhE)) ≤ ρ2

E. A combination of (6.31) and (6.33) proves
‖ [rh] · τE/ρE ‖2

L2(∪E) . ‖ rQ ‖Q∗ . The remaining assertion (6.3) is already verified. �

7. Numerical Experiments

Three numerical examples illustrate that (i) the expected experimental convergence rate
on a unit square and small polynomial degrees even for a uniform mesh-refining in Subsection
7.2, (ii) the Algorithm (A) improves the convergence rate to the optimal value in the two
remaining singular examples, and (iii) local refinements for cubic polynomial degree (i.e.
p = 3 below) indicate boundary layers and singular points for.

7.1. Computer implementation. Throughout this section, we report on various numerical
aspects of a finite element realisation of (2.4) after [CS] in Netgen/NGSolve. This amounts
in (2.4) with three components of

Vh = Sp+1
0 × (Sp

0 ⊕Bp+2(T ))2

(that is piecewise polynomials of degree p+1, p, p enriched by bubble functions in the second
and third component) with Bp+2 equal to the cubic bubble function times a polynomial of
degree ≤ p− 1 on each triangle, while

Qh = Lp−1(T )2.

We realized (2.4) for a stabilization α = 1/(h+t) with p = 1, 2, 3 and displayed the numerical
results throughout this section. Further numerical experiments (not displayed) proved to us
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that the curves for the estimators and the phenomena described here are (qualitatively) very
similar to the results and conclusions discussed in the subsequent subsections.

The discrete system of equations (2.4) with N degrees of freedom (i.e. the dimension of
the discrete system) was solved by a sparse direct solver. In all cases, e.g. for the right-hand
side and all 7 terms in the error estimators (1.3) are fully evaluated with exact quadrature
formulae without any approximation.

The results for sequence of uniform meshes and the adaptive meshes are the output of
Algorithm (A). There thickness t = 0.1, 0.01, 0.001 cover the range of applications for the
RM plate. A thicker domain would need a 3D simulation, a thinner plane would rather be
approximated by a Kirchhoff plate. The material parameters read E = 1 and ν = 0.2 for a
unit square or an L-shaped plate Ω.

Since the error is not immediately accessible, the convergence history plots exclusively
display the equivalent estimator ηR.

7.2. Unit Square. The unit square domain Ω = (0, 1)2 is loaded with a constant volume
force f = 1. Figure 1 displays the convergence history for uniform mesh-refining and the
p-th order scheme and the thicknesses t = 10−k for p, k = 1, 2, 3 plus adaptive mesh-refining
exclusively for p = 3.
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Figure 1. Example of Subsection 7.2: The error estimator ηR is plotted as
a function of the degrees of freedom N for polynomial degrees p = 1, 2, 3,
thickness’ t = 10−k for k = 1, 2, 3, and for uniform and (solely for p = 3)
adaptive mesh refinements.
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The experimental convergence rates are p for p = 1, 2 but sub-optimal for p = 3 and
hence Algorithm (A) was run for p = 3 and indeed improves the empirical convergence rate
up to order three (with the exception of the last few entries for t = 0.001 which we view
as numerical instability). Except for the last few entries for the thinnest plate (where a
Kirchhoff plate theory seems to be preferable) the convergence history seems to be robust
with respect to the thickness parameter.

In the first example, adaptivity significantly improves the convergence speed in comparison
with a uniform mesh-refining for the degree p = 3 while there is no real improvement for
p = 1, 2. Our interpretation is that the regularity of the exact solution is quite high to
ensure the optimal second order convergence but not high enough to allow for third order
convergence.

7.3. Small Stamps. The second example illustrates small singularities in the right-hand
side. The unit square domain Ω = (0, 1)2 is loaded with a piecewise constant volume
force f(x, y) which equals zero or 400 (which corresponds to a total force 1) on the stamp
(0.3, 0.35)× (0.2, 0.25).

Figure 2 displays the convergence history for uniform and adaptive mesh-refining and the
p-th order scheme and the thicknesses t = 10−k for p = 1, 2, 3 and k = 1, 2. The coarsest
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Figure 2. Example of Subsection 7.3: The error estimator ηR is plotted as
a function of the degrees of freedom N for polynomial degrees p = 1, 2, 3,
thickness’ t = 10−k for k = 1, 2, and for uniform and adaptive mesh refine-
ments.
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mesh resolved (0.3, 0.35) × (0.2, 0.25) and hence already is reasonably fine. The uniform
mesh-refinements lead to sub-optimal convergence rates while the adaptive Algorithm (A)
yields optimal convergence rates with significant improvements for p = 2 and p = 3.

The adaptive mesh-refining via Algorithm (A) resolves (i) boundary layers (stronger for
smaller t) along the boundary of the domain as well as (ii) singularities of the loads (i.e.,
location of the jumps of the right-hand side) at the boundary of (0.3, 0.35) × (0.2, 0.25).
Figure 3 displays a mesh with 5267 element domains and N = 206961 degrees of freedom
for t = .01 with a combination of local refinements along ∂Ω and near the vertices of
(0.3, 0.35)× (0.2, 0.25) for p = 3.

Figure 3. Triangulation for the example from Subsection 7.3 generated
by the adaptive Algorithm (A) with 5267 element domains with p = 3,
N = 206961 degrees of freedom, and thickness t = .01. One observes some bal-
ance of local mesh-refining towards the outer boundaries (for boundary layer
resolution) and towards the vertices of the stamp with discontinuities of the
applied load.
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7.4. L-Shaped Plate. An L-shaped plate Ω = (−1, 1)2 \ [0, 1]2 is clamped along the two
edges of the domain which form the re-entering corner and is free at the remaining boundary.
The (unknown) exact solution is expected to be singular near the origin at the re-entering
corner even though the load is uniformly distributed.

Figure 4 displays the convergence history for uniform mesh-refining and the p-th order
scheme and the thicknesses t = 10−k for p, k = 1, 2, 3.
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Figure 4. Example of Subsection 7.4: The error estimator ηR is plotted as
a function of the degrees of freedom N for polynomial degrees p = 1, 2, 3,
thickness’ t = 10−k for k = 1, 2, 3, and for uniform mesh refinement.

The experimental convergence rates are sub-optimal and significantly improved by the
adaptive Algorithm (A) as depicted in figure 5.
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