RESIDUAL-BASED A POSTERIORI ERROR ESTIMATE FOR A MIXED
REISSNER-MINDLIN PLATE FINITE ELEMENT METHOD*

CARSTEN CARSTENSEN AND JOACHIM SCHOBERL

ABSTRACT. Reliable and efficient residual-based a posteriori error estimates are established
for the stabilised locking-free finite element methods for the Reissner-Mindlin plate model.
The error is estimated by a computable error estimator from above and below up to multi-
plicative constants that do neither depend on the mesh-size nor on the plate’s thickness and
are uniform for a wide range of stabilisation parameter. The error is controlled in norms that
are known to converge to zero in a quasi-optimal way. An adaptive algorithm is suggested
and run for improving the convergence rates in three numerical examples for thicknesses

0.1, .001 and .001.

1. INTRODUCTION

The Reissner-Mindlin plate model [B2, BS, Ci] concerns the following problem for a plane
simply connected domain €2 with polygonal boundary I' and a parameter 0 < t < 1: Given
an applied force f € L*(2) seek rotations and displacements (9,w) € V := H(2)? x H}(Q)
such that, for all (p,v) € V,

(1.1) /95(19):@5<¢)dx+t—2/

Q(19 —Vw) - (p — Vyp)de = /va dx.

The discretisation of (1.1) is based on a regular triangulation 7 and finite element spaces
for the conforming or nonconforming discretisations of Hj(f2) which yield a discrete space
Vh.

As an alternative to more complicated nonconforming plate elements from [AF, BBF, BF'S,
(2], the problem (1.1) can be extended by introducing a new shear-variable v in @ := L*()?
which is then approximated in another discrete space Q) [AB, B2, BL, CS, Lo].

This paper concerns a stabilised version, the continuous Problem, that reads: Given f €
L*(Q), seek (9, w,7) € V x Q (ie., (9,w) €V and v € Q := L*(Q)?) that satisfies, for all
(QO’U77]> €V x LQ(Q)27

(1.2) Ba(ﬁ,w,y;go,v,n):/fvdx
Q
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with the stabilised bilinear form B, defined by (cf. also Section 2)

Bﬂé(ﬂﬂwa’y; Spvvan) = /

Q
J— . J— . J— 2 .
+/Q(19 Vw) nda:—k/ﬂ(go Vo) - ydz /Qﬁ v -ndx.

The continuous problem (1.2) is equivalent to (1.1), while their discrete counterparts and
discrete solutions (Up, wn,vn) € Vi X Qp, defined by replacing V' x @ by V,, x @y in (1.2),
may differ. There is a hidden stabilisation parameter o (that enters the definition of B,)
such that classical conforming schemes are included for o = 0.

Various suggestions on the choice of a as a function of ¢ and the local mesh-size hy can
be found in the literature [AB, B2, BL, CS, Lo| with a corresponding stability and a priori
error analysis: a = 1 was the first approach with P; plus cubic bubbles for ¥, P, finite
elements for wy,, and Py for 7, and linear convergence in energy norms [AB, B2]. The latest
suggestion reads o = 1/(h 4 t) (e.g., for the same finite elements) and linear convergence
(in the norms from below) and (compared to o = 1) with additional better convergence in
L?-norms for ¥ — 9y, resp. H'-norms for w — wy, [CS]; for a multigrid analysis cf. [S].

This paper establishes a quite general a posteriori error analysis for the scheme (1.2) and
a wide range of possibly mesh-depending stabilisation parameters cv. Our main result is a
reliable and efficient computable error estimator ng == (e n2)'/2, where, for each element
T € T with edges E' C 0T (and summation ), over all edges of T'),

e(¥) : Ce(p) dx + / (¥ — Vuw) - (¢ — Vo) de

Q

np = hrllaz(0h — Vws) + v — divCe(Vn) [|72(r
+hi/or || f = div(eZ (On — Vwn) + ) 17201
(1.3) +(1+ Br/he) 2| carlry |22y + (azt + Br) 72 | 7a 720
+ Z hi || [Ce(In)] - ne ”%Q(E\F)
ECOT
+ Y he/(Be Be + b)) || [ra] - 7E 1320)
ECOT
+ Y he/ay | og (0 — Vwn) + ) -1 2000
EcCoT

Here, we abbreviate rj, := 9, — Vwy, — 3%y, and, for an edge E of length hg, [-] denotes the
jump across F, and ng and 7 are normal and tangential unit vectors, respectively. The
results of this paper imply that ng is a lower and upper bound of the error

(1.4) en = |0 = ||lmr + | (@ —9n — V(w —wn)) |2 + |7 — 7 llo-

The norm || - ||g is defined in Eqns (3.7)-(3.8) below and it is in fact owing to this norm
that we can obtain robust error estimates.
The positive constants ¢; and ¢, in the efficiency and reliability estimate

(1.5) cinr — hot <e, <cng

are uniform in 0 < t < 1, «, and hy (resp. hg) and depend only on the minimal interior
angle in the triangulation 7" and on €. The higher order terms (h.o.t.) in (1.5) (i.e., efficiency

of ng) are computable terms.
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A posteriori error estimates on other finite element schemes for (1.1) are presented in
[C2, Li]. As the estimates therein, our a posteriori error bound nr may serve as a refinement
indicator within an adaptive mesh-refining algorithm.

Adaptive Algorithm (A). (a) Start with coarse mesh 7Ty.
(b) Solve discrete problem with respect to 7j.
(c) Compute nr from (1.3) for all T € Tj.

(d) Compute error bound (ZTG’Tk ") "2 and terminate or go to (e).

(e) Mark element T red iff np > %maxTxefk Ny
(f) Red-green-blue-refinement to avoid hanging nodes, update mesh 7, and goto (b).

We refer to [EEHJ, V1] for details on red-green-blue refinement procedures and corre-
sponding data handling and, e.g., to [BR, EEHJ, V1] for corresponding details on the Laplace
equation.

The remaining part of the paper is organised as follows. Section 2 describes the mixed
formulation and its discretisation B, which involves parameters o and 3. The main results on
reliable and efficient a posteriori error estimates are stated and necessary notation provided
in Section 3. The proofs are divided in three main sections. Equivalence of the a-depending
error norms and two residuals in V* and Q* is established in Section 4 while their estimation
is performed in Section 5 and Section 6, respectively, where efficiency and reliability of the
two residuals to their estimates is proven separately. The adaptive Algorithm (A) is run
for improving the convergence rates in Section 7 in three numerical examples for various
thicknesses 0.1, .001 and .001.

Throughout the paper, L?(2) and H'(Q) denote the usual Lebesgue and Sobolev spaces
[BS, LM] and H}(2) is the subspace of all functions with zero boundary values with a dual
space H~1(Q). Scalar products in (any power of) L?*(Q2) are denoted by (-;-)r2(q) while its
extension to the (Hj(Q), H(Q))-duality is denoted by (-; '>H*1(Q)><H3(Q) which differs from

the scalar-product (;-)g1(o) in (any power of) H'(€2).

2. MIXED FORMULATION AND FINITE ELEMENT DISCRETISATION

The weak form of the Reifiner-Mindlin plate model is rewritten with bilinear forms

(2.1) a(V,w;,v) = /95(19) : Ce(p) dx + / (¥ — Vw) - (p — Vo) du,

Q
(2.2) b(v,wyn) = /9(19 — Vw) - ndz,
(2.3) clyim) = | Fr-nde,

where (J,w) = (91,95, w) and (p,v) € V := H}(Q)3, and v,n € L?*(Q)%. The linear Green
strain e(¢) := symDV = (3(09;/0xy + 89),/0x;))j k=12 is the symmetric gradient and the
elasticity operator C is defined by

CT:ﬁ((l—u)T%—utr(r)H),
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where tr(7) denotes the trace of 7 € R?*2 T is the 2 x 2-unit matrix, and F is Young’s
modulus and v is the Poisson ratio of the elastic plate. On the product space V x L?(£2)?
we define the bilinear form

Ba (0, w,7;,0,m) := a(¥, w; @, 0) + b(V, w;n) + b(p, v;7) = (73 7).

The critical parameter is the small thickness ¢ > 0 of the plate which enters (2.1)-(2.3)
through % := 1/(t7% — o) € L*(Q) where a € L*>(Q) is a parameter with 0 < a < 1/t
to stabilise the finite element discretisation of (2.1)-(2.3) that employs discrete subspaces
Vi X Qp of V x L*(Q)% The Discrete Problem reads: Seek (94, wpn,vn) € Vi, X Q) that
satisfies, for all (ppn,vn, nn) € Vi X Qp,

(2.4) Ba<19hawha’7h;90havh77]h):/fvhdx-
Q

The discrete spaces Vj, x @y are 7-piecewise polynomials (the index A may refer to the
mesh-size of 7 but we neglect further sub-indices such as 7j,, «y, etc.) based on a regular
triangulation 7 of €2 in the sense of Ciarlet [Ci, BS], i.e., 7 is a finite partition of Q in
closed triangles or parallelograms; two distinct elements T} and 75 in 7 are either disjoint,
or Th N'T; is a complete edge E or a common node of both T} and T;. The triangulation
satisfies a minimum angle condition, i.e., the angles in the triangles or parallelograms are
assumed to belong to the interval (cg, m—cy) for some positive constant ¢y and so are bounded
uniformly away from 0 and 7; in addition let ¢y be also a lower bound for the aspect ratios
of parallelograms in 7.

The set of all edges in 7 is denoted as £ and UE is the union of all edges, i.e., the skeleton
of all boundaries of elements in 7.

For an element T' € 7, let Py(T) denotes the vector space of algebraic polynomials of
(total resp. partial) degree < k (if T is a triangle resp. a parallelogram) regarded as a
mapping on the domain 7" C R2. Then,

(25)  LMT):={peLXQ): VT €T, plr € Pu(T)} and SHT):= LN(T) N HL(Q).

Various choices of V}, x @), and mesh-depending parameters a = a7 € L®(2) can be found
in [AB, B2, BL, CS, Lo]. Those results cover a stability and a priori error analysis while this
paper establishes an a posteriori error analysis.

3. A POSTERIORI ERROR BOUND AND ADAPTIVE ALGORITHM

For the regular triangulation 7 of 2 in (closed) triangles or parallelograms let A/ be the
(finite) set of all vertices and let K := N N be the set of interior ones. For simplicity, we
assume that the triangulation matches the domain exactly, i.e., U7 = Q and there are no
hanging nodes. The set of edges E = conv{z,y} for two distinct z,y € N is denoted as €.
Their union UE is the skeleton of edges, i.e., the set of all points in € which belong to some
edge. With each edge, we associate a unit normal vector np and a perpendicular tangential
unit vector 7.

For a T -piecewise uniformly continuous function, the square brackets [-] is defined as the
jump over the edges: If E =T, NT_ is a common edge of two distinct T, and T in 7 then,
for x € E, the jump [G](z) is the limit of G(x 4+ 0 ng) — G(x — dng) as 6 — 0F. (The limit
exists if z ¢ K since z £ dng € Ty and G is uniformly continuous on each 7%.) In this way,

[-] is defined on the skeleton UE \ 02 of all inner boundaries of elements.
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The diameter of T is denoted as hy and the length of F is hg. For compact notation, let
hr € L*(2) and he € L*(UE) be given as 7- resp. E-piecewise constant weights

(3.1) hr|r :=hr and he|lp:=hg for T €7 and F € €.

The discrete problem is supposed to generate discrete solutions (9, wp,v,) € V' x L*(02)?
which are neither expected to be uniquely determined nor to belong to a discrete space
Vi, X Qn. We merely suppose that (U5, wp, ) is 7-piecewise smooth (such that all the
derivatives in (3.3) and related traces and jumps on the edges exists in the classical sense
and are integrable), i.e., we suppose

(3.2) (O, wp, ) € H*(T)* x HX(T) x H*(T)?

where, for k = 1,2, H¥(T) :={n € L*(Q) : VT € T, n|r € H*(T)}. As a minimal condition,
we suppose that (ﬁh,wh,%) satisfies (2.4) for all (goh,vh,nh) € S (T) x LYT)2.

For each element T' € T, with a|r constant equal to ar, fr = (72 — a2)~/2, and for all
E €& withagp =min{ar: ECT €T}, Bg :=max{fr: E CT € T}, we define indicators
nr and ng by and ry, := 9, — Vwy, — 5%y,

(3.3) np = h |l af(0h — Vwn) + v, — divCe(9n) | Z2(r)
hz oz || f = div(az(On — Vwn) + ) 722
+(1 4 Br/hr) 72| curlry ||%2(T) + (apt + Br) 2 ||%2(T)
(3.4) My = hell[Ce(Wn)] - ng [12gmr) + he/(Be Be + he)) | ra] - 72 1725
+hg/ag || [k — Vwn) + ] - 1s 1220

([rn) - 76 :=0—rp|p for E CT.)
This paper establishes the reliability and efficiency of the a posteriori error bound ng,

(3.5) M=) M+ > ks
TeT Ee&

and the error norms in V' and @ defined, for (p,v) € V and n € @, by

1/2

(3.6) (@, v)llv == {lle H%{l(m + [ (e — Vo) H%Q(Q)} )
' 1/2
(37) Inles = inf  {IplBo + I/l

1/2
(33) Inlle = {I0lde+ 16030}

In the infimum of (3.7), p € L?(Q) is divergence free, written div p = 0, in the sense that it
is L?(Q)-orthogonal to V H}(Q), the gradients of functions in H} (), and ¢ € L*(Q).

Remark 3.1. The set Q equals L?(Q2)? and their norms are equivalent. However, the constants
in the equivalence inequalities dependent on ¢, a(h, t), and ((h,t) and thus we need to specify

(@1 - lle)-

Remark 3.2. The norm || - |g0 is the norm in H~*(div, ) in case that « is a global constant.
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The main contribution of this paper is the proof of reliability and efficiency of the error in
the aforementioned norms and the error estimator ng. As « is usually chosen as a function
of t and hr and since the elements are shape-regular (whence hr, /hy, S 1 for ThNTy # 0) it
is not a too restrictive assumption that the quotient of two arr is bounded for two neighbour
elements; for future reference to those bounds, we introduce

3.9 T):= .

(3.9) wa T) Ty €T, T T 0 ar /o,

Let (9,w,vy) € H}(Q)? x H}(Q) x L?(2)? solve (1.2) and suppose that (95, wp,v) as in (3.2)
satisfies (2.4) for all (5, vp,mn) € Sg(T)3 x LY(T)%

Theorem 3.1. Suppose that « satisfies 0 < a < 1/t and o < c3/h. Then, there erists a
positive (hr, he, t)-independent constant ¢y which depends only on 2, c3, co, and on k(a, T ),
such that

(3.10) (0 = On,w —wn) v + 1|7 = llQ < cann

Theorem 3.2. Suppose that «a satisfies 0 < o < 1/t and o < c3/h. Then, there exists

positive (hr, he,t)-independent constants cs and cg which depend only on ), c3, co, and on
k(a, T), such that

B11)  esnr <[ (0 =In,w —wi) v + [y =l +ce il [[hr/a(f = fu)lr2@)-
fhelX(T)

The remaining sections are devoted to the proof of both theorems.

4. EQUIVALENCE OF ERROR AND RESIDUAL NORMS

This section is devoted to the proof of equivalence between the error and the residual with
respect to the norms in V' x ) and V* x Q*, respectively, with emphasis on the independence
of the equivalence constants from «, h, and t.

According to Korn’s inequality and setting of the parameters £ > 0 and 0 < v < 1, the
energy norm || C'/2¢(+) ||12(q) is equivalent to the Sobolev norm || - | 1) with the global
positive constants ¢; and cg which merely depend on Q and C, i.e., for all p € Hj(2)?,

(4.1) crll ey < [ 0 s Co()dn < sl 0 g
Q

Thus the bilinear form a(+;-) is elliptic and continuous with constants ¢g := min{1, ¢;} and
c10 := max{l, cg}, i.e., for all (¢,v) € V,

(4.2) coll (@, 0) IV < ale, vip,v) < cwoll (4, 0) [0
The norm || - ||g,0 is chosen such that both, stability and continuity of the bilinear form
b are satisfied with bound 1.

Lemma 4.1. The stability and continuity conditions of the bilinear form b with respect to
the norms || - ||v and || - ||go are fulfilled with the optimal constant one, i.e.,

b(p,v;n)
(4.3) Inllgo= sup —F———
(p,0)eV\{0} || (907 U) HV

6

foralln € Q.



Proof. Let (p,v) € V,n=p+qe Q with divp =0 (ie., [,p- Vvde =0) and deduce

blp,vin) = /Q(SO—VU)-(erq)dI

/go-pda:+/a(30—Vv)-q/ada:
Q Q

Il P llr-10) + | ale = V) (120 [ 4/ || 22(0)
1/2
< M@0y {Ip s+ la/alBee -

Since the split 7 = p 4+ ¢ was arbitrary, this estimate shows

b(p, v;
(4.4) sup blpvin) <|Inllgo for all n € Q.
(p,0)eV\{0} || (()07 ) ”

An explicit decomposition n = p + ¢ will be constructed to show inequality reverse to (4.4).
Given n € Q \ {0}, let (¥, w) € V solve, for all (p,v) € V,

(4.5) ;) ma(e) + (@° (9 = Vw); ¢ = V) 2y = =b(p, ;7).

(The same arguments that show ellipticity of a prove that of the bilinear form on left-hand
side of (4.5) and so imply unique existence of (¢, w) € V.) The choice (p,v) = (¢, w) in
(4.5) shows

IN

bW win) o, Mevin)

1@, w)llv = wevvior | (@, 0) llv

Set ¢ := —a?(¥ — Vw) and p :=n — ¢q. Because of (4.5), we have, for all v € H}(Q),
(0 Vo) r2@) = (0 + o (¥ = Vw); Vo) p2(0) = 0

and so div p = 0. Furthermore, (4.5) (with v = 0) shows

(n+ ? (0 — Vw); ¢) 20

(4.6) (0, w) [lv = —

Iplla-1@ = sup
eeHL(Q)\{0} K% HH&(Q)
(¥ <P)H1
(4.7) = sup —2—- =¥ ||H1

eeHE(Q)\{0} K% ||H1

The proof of the missing inequality is concluded for n = p + ¢ with (4.6)(4.7) and

1150 < 210 + 1 ¢/aliz
= ||V ||12L13(Q) + [l a(? = Vw) [|72(q)
b(0,v;n)?
= N < sp MU
(,0)EV “ (907 U) HV
Theorem 4.2 (Braess, 1996). The bilinear form B,/(-;+) provides an isomorphism between
V x@Q and its dual, i.e., for all (9, w,~) € V xQ, we have (when in the supremum (v, p,n) €

VxQ\{0})

min{69,cl_01} Ba<19>w777; gD,’LU,’}/)
(48) ———=—l(w,9,7)[lvxq < sup
V13 xQ (vy0,m) ||(U790an)||VXQ

7
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Remark 4.1. The bounds for the global stability and continuity estimates only depend on the
bounds of the norm equivalence (4.1). If we use the energy norm || C'/%¢(+) || 12(q) instead of
the Hj(Q2)-norm, then ¢; = 1 = ¢g and the constants in Theorem 4.2 are absolute constants

1/4/13 and 2.

Remark 4.2. Theorem 4.2 is an immediate consequence of Theorem 2 in [B1] and this leads
to a proof different from the proof below.

Proof of Theorem 4.2. To prove the stability we define operators A : V — V, B:V —
Q B":Q — V,and C: Q — Q by (A(Y,w); (p,v))v = a(d,w;p,v), (B(J,w);n)q =
(B*n;0,w)y = b9, w;n), and (Cn;y)g = c(n;7y). The operators A and C' are selfadjoint
(with respect to the scalar product in V and @), respectively. Since A is elliptic, A*'/? and
A1 are well defined. Lemma 4.1 proves the isometry of B* with respect to the norms || - ||g.0
and || . ||v, i.e., for all n € @Q,

b(p, v;n) (B*n; ¢,v)y
(4.9) [nllgo= sup <= sup =By
wenvo} | (@) v ey [l (@) llv

For fixed (¥, w,7y) € V x Q set

f = AW, w)+B*~veV,
g = B@,w)-Cyeq,

and eliminate the primal variable (w,d) = A~!(f — B*y). With the Schur complement S,
S:=BA'B*+C:Q — Q sclfadjoint isomorphism,

(since A and C' are elliptic) this implies the identity

(4.10) Sy=BA'f —g.

The continuity and ellipticity bounds on S*! (may depend on «, 3, h,t and so) are analysed
explicitly in the sequel. For n € @, the definition of S and (4.2) yield

(Smme = (BAT'B*+C)mpn)g = (A7'B y; Bn)y + (Cn;n)o
(4.11) < o | Bl +c(mn) = cg 0o+ cmn) < g In g,
and, similarly, one verifies the reverse estimate to finally obtain
(4.12) collnlly < (Smme <ctllnllg  foralneq.
Since C'is elliptic, (A™'B*y; B*y)y < (S7:7)q = || S**v /4. This and (4.10) lead to
1S3y = (BAT'f —giv)q
< JATEFIVIEATY2B Y v + 1157 g llo 1527 lle
< (1A F v + 1S gllo) 1 S*y o, whence
<

(4.13) 1527l A2 f [l + 115729 lo-
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Similar arguments for the primal variable (w, ) = A~(f — B*y) show
TAY2@,w) [} = (AW, w); (0, w))v = (f = B*; (9, w))y
< ATV v | AV2@,w) v + | AT2B v || AY2(0,w) v
< (A2 f v + 1182y llQ) Il AV2(0,w) |y, whence
(414) AV @,w) Iy < [JAT2f v + 1152 g
The lower bounds in (4.2) resp. (4.12) in the first inequality, (4.14) in the second, and (4.13)
in the third imply
max{ey !, c10} 2 || (0,0,7) vxq < | AY2(0,0) lv + [ 52y [l
< AT f v + 2182y [l < 3IIATY2f v + 2157 g llq.

This and the bounds on A~'/2 resp. S~/2 in (4.2) resp. (4.12) (with a Cauchy inequality in
R? at the end) lead to
max{cg ', c1o} || (9, w,7) llvxq < 31 fllv + 21l glle < V3 +22[1(f,9) llvxa

; [e% 7?97 7 ) Y
_ VB sw (£ 9)i(ervvee _ g g Ba(w,9,7;v,¢,7)
(v,0,7)€(V xQ)\{0} (v, ,7) ”VXQ (v,0,7)E(V xQ)\{0} (v, ,n) HVxQ

which is the first claimed inequality in the theorem. The proof of the second follows, for
(0, w,7), (p,v,n) €V x Q, from

By (9, w,v;0,v,m) = a(d,w;e,v)+ b0, w;n) + b(e,v;y) — c(v,1)
1
< (a(@, w9, w) + |9, wli + |7 150 + c(v:7))

1
x (alg, vi0.0) + 0[50 + I (. 0) IS + c(n,m))
(1 + e[| (0, w,m) [vxell (0 0,7) lvxe. O

/2
/2

IA

The theorem relates the error to the two residuals in V* and Q* estimated in Section 5
and 6, respectively.

Corollary 4.3. The discretisation error is equivalent to the sum of residuals, i.e., there
holds (with equivalence constants which depend only on ¢; and cg)

(4.15) | (0 =V, w —wh,y — ) [[vxo
~ | f = a(On, wi; ) = b(5 ) v + | 0(0n, was ) — c(559m) |lo=-

Proof. Theorem 4.2 relates the error (9, w,n) to the dual norm of the residuals, i.e.,

ﬁ—ﬁh,w—UJ}l, — y)llvxo = su Ba<ﬁ_19h7w_wh77_7h;¢avan)
II( Y= Q p
(pom)e(VxQ\{0} (v, 0,m)[lvxq
_ sup f(“) - a(ﬁh, Wh; P, U) - b(va ©; ’Yh) - b(ﬁh, Wh; 77) + 6(777 ’Yh)
(pom)E(VxQ\{0} (v, 2, ) lvxq
~ f(v) - G(ﬁh, Wh; ¥, U) - b(U, 2 ’Yh) —b(ﬁh, Wh; 77) + 0(773 ’Yh)

sup + sup
() EV\{0} (v, o)|lv neQ\{0} Inllq




5. RELIABLE AND EFFICIENT COMPUTABLE ESTIMATES FOR THE RESIDUAL IN V*

This section is devoted to the proof of equivalence of the dual norm || ry ||y« of the primal
residual ry := f — a(p, wy; ) — b(+;y,) and the computable error estimator 7y,

=y (h2T|| aip (O — Vwp) +yn — divCe(D4) |72y

TeT

(5.0)  +h3/od || f - div(ad (9 — Vun) + ) [2acr))

+y (hEH [Ce(In)] - ne | Z2mry + he/oE | i + o (9n — Vwy)] - ng H%z(E\r)) :
Ec&

Recall ag := min{ar,, ap, } it E = T1NT, is the joint edge of the distinct elements 77, T, € T
and ar := alr is supposed to be constant on each T € 7.

Theorem 5.1. There exists an (hr,t)-independent constant c11, which depends on o and T
only through k(o,T), c3 = ||ahy |1, and co, such that

(5.2) Irv|

The proof is based on a refined approximation property of the Clément-interpolant (or any
other weak approximation operator which is locally exact for affine functions) of Lemma 5.2
in which the upper bound ||(¢,v)||v is more involved than || (Dg, a Vv) || 2.

ve < ey

Lemma 5.2. There exists an (hr,t)-independent constant cia, which depends on « and T
only through (o, T), cs = ||ahr ||1=), and co, such that, given (p,v) € V, there exists
(on,vn) € SH(T)? which satisfies

Z ho?lle — enllTeery + Z ai/hl[v = vall 7
TeT TeT

(5.3) + D gl = enlfa + D ab/hellv = wllfa e < cnll(e0)l7
Eeg Eeg

Proof. The Clément approximation operator for a scalar v defines a 7-piecewise affine vy,
by their nodal values. For a node z at the boundary, v,(z) = 0, and at an interior node z
with a patch w, := interior(U{T € 7 : z € T}) we let v;(z) = p(z) where p is the L*(w)-
best-approximation of vp|,, in P;(w.). The two components of ¢, are defined by the same
procedure applied on the two components of ¢. Well-established approximation estimates
[BS, Cl, Ci, V1] prove that the terms on the left-hand side of (5.3) which contain ¢ — ¢}, are
bounded by a constant times || Dy || r2) < ||(¢,v)||v. It therefore remains to prove

(5.4) Y ar/hillv = vilfary + Y ab/hello = olliam S @)l
TeT EeE

which is completely standard up to the weights a < hq_—l. Indeed, from the proof of first
order convergence and stability of the Clément operator we know

(5.5) h? v — UhH%?(T) +hi'llv — Uh”%z’(E) + ||VUhH%2(T) S ||VU||%2(W)

for each element 7' € 7 with an edge F C 9T and its patch wr := interior(U{K € 7 :

K NT # 0}). Suppose in the first case that one vertex of T belongs to the boundary 0.
10



Then, the intersection of dwr with JQ contains at least one edge and so (after a < h;') a
Friedrichs inequality shows

(5.6) lagllzwn S 1Az @ llrzwn S I1D@ ll2gn-
A multiplication of (5.5) with ar > ag, a triangle inequality, and (5.6) yield

ar h' o = onll 2y + ar b o = vallz2gey) S Kle, TllaVol 2wr)
(57) S./ ’%(Oéa T)HQ<90 - VU>HL2(UJT) + K(Oé> T)HDQDHLQ(WT)

In the second case, the vertices of T are interior nodes and so (v — vy)|r remains the same
if we change v to v — 2z for an affine function z with on wy when we change v, accordingly
(cf. the above mentioned construction for details and a proof); the Clément approximation
operator locally preserves affine functions. We choose the constant vector A := Vz as the
integral mean of ¢ on wr. As a consequence, (5.5) can be recast as

(5.8) hz’llv = onllZegry + PE' lv = wnllZa () + IVon = Allzary S VY = Al

Hence (after a < h;' < 1/diam(wr) on wr) a Poincaré inequality shows

(5.9) oo = A)ll2on S 17 (0 = A) lzzen) S 1D e

A multiplication of (5.8) with ap, a combination with (5.9), and the above arguments yield

ar hp'l[v = vnllr2ery + ap bl — vallr2ey S Kl Tl Vo — Al 2or)
(5.10) Skl Tl — Vo)l 2 + K, T Dol L2 (wr)

A Summation of (5.7) resp. (5.10) over all 7" € 7 and E € £ concludes the proof of (5.3). O
Proof of Theorem 5.1.  Given (¢,v) € V, T-piecewise integrations by parts shows

rv(p,v) = f(v) = a(Vn, wn; 0, v) = b(v, @; Y1)
/fvdx—/ 1) : Ce(p )dm—/( 2(0, — Vwy) + ) - (0 — Vo) do

(5.11) Z/ Tw gy 4410 d:c+Z/ By V. p)ds

TeT EcE

with the element and edge residual terms

(5.12)
rT? = divCe(dy) — a7 (9n — Vwy) =, 157 = [Ce(Vn)] - ng,
rfv = f —div(ad (9, — Vwr) + ), rPv = —[y, + a*(, — Vwy)] - np.

The Galerkin orthogonality allows the substitution of (¢, v) by (¢ — ¢p, v —v,) in (5.11) for
(¢n,vp) as in Lemma 5.2. From this and the lemma, we infer with Cauchy inequalities

rv(v,9) < ) he || (500" far) ||y bt | (9 = @ns ar(v = va)) |l 2y
TeT

(5.13) +3 R P fap) ey hs N (0 — ons s (v — o) e
FEe&

< Ve l(gv)|v. O

11



The estimator 7y is efficient: The converse inequality of (5.2) holds even in a more local
form than stated (cf. the proof of (5.14) below).

Theorem 5.3. There exists an (hr,t)-independent constant ci3, which depends on o and T
only through k(o, T), cs = || ht || (), and ce, such that

(5.14) ny < c13 <I|7“v| v-+ inf _|hr/a(f — fr) ||L2(Q)) :

frel!(T)

Proof. For each triangle T" adopt notation from (5.12) and let by be the cubic bubble-function
(i.e., 27 times the product of all barycentric coordinates on 7') which satisfies supp(br) =T,
0 < by < maxbr = 1. Let f;, denote the L?*(T)-best-approximation of f in P;(T) and
consider ¢ := brrT? and v := bp 71V /a2, 7TV = T — f + f; in (5.11) to observe

15 B By N0 7 gy i+ [ el = S dafa = rv(o,)
Equivalence of the norms || b1 /2, “||z2¢ry and || - || z2(r) on a polynomial space (the components

of rT'¥ and 77 belong to) and Young s inequality yield with Vy := H}(T)? — V (and so
Vi =HYT)3) in (5.15)

T 1/2 1 1/2 Tw
17 2oy + 2oz || P ey S | by 70 22y + 20[2T||b/ T2,
L 12 1 T
(5.16) = 5.z b/ * 7 ||i?(T)—/bT(f—fh)7“T’ da/af + 1y (v, @)
Qi T
1

1 2
1072 (f = fa) 22y + llrv |

|44 (v7 90) ||VT'

202
Inverse estimates for the polynomials by r™>? and by 7% and ar < 1/hp guarantee

he |l (v, ) lv S e lle2ery + hellar(e = Vo) [l 22
(5.17) < el +hrar |l el + hrar || Vo ||L2(T)
S [t ||L2 @) +arll vy < 7 2y + 175 [y /ar.
A multiplication of (5.16) with h2. and using (5.17) to absorb hZ|| (v, ¢) || we obtain
(5.18) I AT 2y + | b far 77 2y S hr/ar|| f = fullza) + v

This and a triangle inequality || r™* || 2¢ry < |77 |2y + || f — fa |l 22y prove

(5.19) L b 7 N2y + [ A far ™ ey S lrvllvy + he /ol £ = fullzae

The proof is the same for a parallelogram T with a different by.

In the second part of this proof, we consider an interior edge E with patch wg =
interior(U{T € 7 : E C T}) and construct functions b5 € H}(wg) for non-negative integer
k. On each of the two neighbouring elements T} and T in g = T7 U T, the function b’g
equals pr bg — qi b, on T where bg is the product of the two barycentric coordinates in 7
such that bg(s) = s/hg(1—s/hg) is quadratic in the arc-length parameter 0 < s < hp along
E. The (one-dimensional) monomial py(s) = s* for the parameter s := tg - (x — x1) (where
tg is the unit tangential vector along E and x; € E the first vertex of T') defines pi(x).

The polynomial g, (of degree < K) is chosen such that b%, is L?(T})-orthogonal to Pk (T})
12
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for j = 1,2; the parameter K is the highest degree of the polynomials r%+?, 77w 9 and

rE7  As a consequence, for k =0,..., K,

(5.20) / rT0h de =0 and / bt dae = 0.

wE wWE
Let 759 = T8 o pilg (vesp. 7P =0 3% B pilg) define real coefficients aq, . .., ax €
R? (resp. o, - .., Bk € R) and then set ¢ := Zszo ap b € HY(wp)? and v := Zf:o B bk, /a2
€ H}(wg). The equivalence of norms || bgz- |l z2(g) and || - ||z2(z) (on a polynomial space the

components of r%? and r£* belong to) and (5.20) show (with (5.12) at the end)

|75 ||%2(E) + [t ||%2(E)/Q2E S /E(TE’l9 o+ P w)ds

j=1,2"7T; E
=1y (v, ) + Z / (fn— f)vd.
j=1,271j

Since f — fj, has the integral mean zero we have with the integral mean v of v and a Poincaré
inequality on T} that, with Vg := H}(wg)® — V, Vi = H Y(wg)?), (5.21) leads to

(5.22) | r"? ||2L2(E) + | ||%2(E)/04?5
S rvllvell (e o) lv + hell £ = fullz2we) | VUl 22
The arguments in (5.17) apply to the present || (¢, v) || as well and yield

(5.23) he || 7% li2e) + he/oe (|75 |2y S lrv]

vi +he/aell = full2ws)-

A summation of the estimates (5.19) and (5.23) for all 7" and E concludes the proof since,

(5.24) ST vl + 3l

TeT Ec&

2
V*-

2 <]

Choose ¢p € Vi (extended by zero) with

IrvIiv; = leelv, = rv(es)

and set ¢; = ZEesj ¢ for some partition £ = & U --- U &y such that (wg : £ € &) are
pairwise disjoint and that J < 1. Then,

(5.25) S ollrvis =D rvler) = rvle) < lrviiv-lesllv.

Eeé'j Eeé‘j

By construction and since (wg : E € &;) are pairwise disjoint,

(5.26) loslls = D leslin = D lIrvl

Eégj EGSJ-

2
Vg:

A combination of (5.25)-(5.26) shows (the main part of) (5.24). This concludes the proof. [
13



6. RELIABLE AND EFFICIENT COMPUTABLE ESTIMATES FOR THE RESIDUAL IN Q*

This section is devoted to the reliable and efficient estimation of rg € Q* with the L?(2)-
representation 7, := U, — Vwy, — %75, which is L2-orthogonal to @, owing to the Galerkin

property, in the norm || - ||+ by g,
h2
(6.1) o= ) mH curl 7 |agry + D /(1 + B) 72y

TeT TeT

+3 |l ] 7E B -

The estimator is a lower and upper bound of the residual || g |
efficiency proof are based on the following lemma.

o+. The reliability and

Lemma 6.1. If Q is simply connected, we have
(7h; Curl 2) 12

02 sup S el
sem oy 12llz2) + 18V 2|2

(6.3) [rn/(/a+B) 2@ S e lle-

(rp; Curl 2) 120
(6.4) 7ol Jre
cem@\{oy 12l + It Va2
(6.5) I7q llox < llra/Bllr2@)-
Proof. The definition of || 7||q (where p,q € L*(Q)?, p+ q # 0, and divp = 0) reads

Q*s

o Sllarn|lze@ +  sup

(Th; P + @) 12(0)

(6.6) I7q llg- = sup 1/2
P I a0+ a/a ag) + 180+ @) 2 |
Since ) is simply connected and p € L?(Q) is divergence free, we have p = Curlz :=

(—02/0z9,02/0x1) for some z € H'(Q)) [GR]. Adding a constant to z, if necessary, we
obtain fQ zdxr = 0 and infer from the existence of solutions to the Stokes equations that
z = divn for some n € H}(Q2)? [GR]; furthermore, writing ¢ = (—n9,1m1) € H}(Q)?,

(6.7) z=roty and ¢ lgy0) < cull 22,

where ¢4 depends only on §2. Using this and an integration by parts, we deduce

| z[lr2@) = (2310t ) L2(0) = <Curlz;w>H—1(Q)><Hé(Q) = (p; ¢>H—1(Q)xH5(Q)
<|pla-r @ I ¥la@ < asllplla-@ll 2 2@
and (by duality and integration by parts) || p ||z = || Curl z [|g-1) < || 2 || L2(q), whence
(6.8) Iplla-1@) < 12 lle2@) < cullpllo-r@)-
Therefore, a substitution of p = Curlz and || p||z-1) by || 2 [|2() in (6.6) shows

o~ sup (7h; g + Curl 2) 12 (g

ger2(), zemi@) |1 2 Lz + [ @/l 2@ + | B(g + Curl 2) || o)
14
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The right-hand side of (6.9), equivalent to || g ||g+, allows immediate proofs of (6.2) and
(6.3): For ¢ = 0, we obtain (6.2); for z = 0 we deduce (6.3) for a proper ¢ € L?(2)? from

(rn/(1/a+B);q(1/a+ B)) 2@ _ (Th; @) 2() < V2(rh; @) 129
lq(1/a+ B) |2 lq(t/a+B) 2@ ~ llg/all2@) + 1 8 2@

In the verification of (6.4) show a triangle inequality,

1692 s = 1 Curl = 20y < [ #(g + Curl 2) [l szoy + [ £ 120,
and t < a~ ! resp. t < 3 that

(6.10) || 2[lz2@) + 1t V220 + [ ¢/ a2
< Iz llz2ge) + 2l ¢/ [[r20) + || B(g + Curl 2) [| 2.
A substitution of the lower bound || 2 || p2) + || £ V2 || 12(q) Tesp. || ¢/ || 2(q) for (6.10) in the

terms (74; Curl 2) 2(q) resp. (74;q)r2(q) of the right-hand side of (6.9) shows (6.4).
The estimate (6.5) follows immediately from (6.6). O

The error estimator 7 is a (global) reliable upper bound.

Theorem 6.2. Suppose that Q is simply connected and that T consists of triangles. There
exists an (hr,t)-independent constant ci5, which depends on o and T only through (o, T),
and cg, such that

(6.11) e

Q* < C151Q-
Proof. The (closure of the) domain is split into two (essentially) disjoint (closed) sets A; and
Ag according to the value of § on neighbouring elements by

Ay = UW{T €T : 2t <Pk for some K € T with KNT # 0},

Ay = U{TeT:2t>0kforall KeT with KNT #0}.
(Ay is {T" € T : 2t < (r} enlarged by neighbour elements.) Define r; := r; on A; and
r; =0 on w\ A; for each j = 1,2 so that we have r;, = ry + 5. The estimates (6.4) and

(6.5) can be separately applied to r; and ry (see the proof of Lemma 6.1) and show, with
I 2 [[lo == | 2 |2y + t]| V2120 for w € Q, that

I7rq llor < 71 llor + |Ira o

(12, Curl 2) r2(q)

(6.12) < N /Bleeany +llara 2+ sup
zeHL(Q)\{0} I 2 [le

We claim 1/t < « on A;. For a proof consider (not necessarily distinct) T, K € 7 with

KNT # 0 and 2t < Bg. As a consequence, the definition of Bx yields 1/t < 2ag/v/3 and

with ax < k(a,T) ar the assertion 1/t < . This estimate yields

(6.13) 1/851/(1/a+B) on Ay, whence |[71/8|[r2(a,) S -
Because of aw < 1/t <2/ on Ay, we have
(6.14) lars llzagay < 2 minfa, 1/8} s iacay < 270.
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Given z € H'(Q) \ {0}, it remains to check (rp;Curlz)/[||z|la < ng. The bound of
(r9, Curl 2) 12(q) = (r2; Curl(z — 23,)) 12(q) utilises the observation that 7, and so ro is L*(2)-
orthogonal onto 7 -piecewise constants such as Curl z;, for the Clément approximation z, to
zin S§§(T). Besides ||z — zn||r2(r) S ||12]12(wy), We have

(6.15) hp 2 = zullTery + hg' 12 = 2nllzem) + 11V (2 = )220y S 1V 7200
as in (55) With ||Z — Zh||L2(T) S min{Hz||L2(wT), hT”VZ“LQ(wT)} and ﬁT S 2t if T C AQ,
(6.16) (L4 Or/hr) ||z = 2nllzry S N2ll2or) + IV 200r) S 112 llor-

For each edge E C Ay NOT with neighbour 7" € 7, we have fg :=max{f8x : EC K € T} <
2t and a trace inequality [Cl], [BS, p. 35],

1/2 1/2 1/2
(6.17) 12 = 2nllizcey S N1z = 2l (12 = 2l + 1V = 201 )).

The definition of the norm ||| z |||, and (6.16)-(6.17) show eventually that

1/2
©18)  (Be(t+Be/he))” e =l S =112 BY2 192132 < 112 or
A T-piecewise integration by parts, Cauchy inequalities, (6.16), and (6.18) yield
(ro; Curl 2) 2y = (ro; Curl(z — 23)) r2(q) = (curly 793 2 — 21) 2() + ([12] - Te3 2 — 2n) L2(Ue)
< D VBe(L+ Be/he) |12 =zl | [r2) - 76/v/Be(1 + Be/he) |l 125)
Eecg
+ > (14 Br/he) 12 = 2nll2ery || curlen/(1+ Br/hr) |2
TeT
1/2
(6.19) S Wzllalg+ Y sl 7o/v/Be(+ Be/hs) [2)
ECOAs
1/2
S Mzlle@md+ D - m2/v/Be(+ Be/he) l72m)
ECOA,

The summation in the last sums in (6.19) is over all edges £ which do not belong to the
boundary € but to the boundary of Ay. While the jumps of [ry] - 7z do contribute to 7 the
remaining jumps of [rs] - 7 = [ry] - TE — [r1] - 7 do not; we employed a triangle inequality
in the last step and focus on the estimate of || [r1] - 75/\/Be(1 + B&/hEe) |r2(m) for an edge
E =T NT, with T; C A;, T; € T, for j = 1,2. Therefore, the definition of Ay leads to
fr, < 2t for j = 1,2 while there exists a K € T with K N7} # ) and 2t < k. Thus

(6.20) 4/t — 403 = 4/3% < 1/t?,  whence 3/t* < 4o’

The reverse arguments show 4a3. < 3/t* and so, with ax < k(o, 7)o, and (6.20),
(6.21) 1/t Sax Sap S1/t, whence ar, ~ 1/t.

This, 0 < «, and the definition of 3 show

(6.22) 1/87 =1/t* —aj, <1/t* S af,, whence 1/ S min{l/Brn, o}

On the other hand, r; vanishes on T and equals r, on 77, hence, the jump [ri] - 75 equals

the trace (rp, - 7g|r, )|g of ry, - 7 on T}. A trace inequality for r;, on £ C 0T} and the inverse
16



estimate hg || Vry [[r2¢) S || 78 || 2(my) for the polynomial 7|7, show
(6.23)

1rad 7 ooy < Nndes ey S bl ey + RNV iy < bl ey
With 87, < g and (6.22)-(6.23) we deduce
(6.24) ] - 76/ Be(L+ Be/he) 2 S a2y /Be < Il min{a, 1/8Y o 2.
The evaluation of (6.24) in (6.19) concludes the proof. O

Remark 6.1. The assumption on triangles can be weakened to the hypothesis on parallel-
ograms T € T that [,.pry,dz vanishes for all p € Py(T). (The only condition is that
Jq, curl z, 7, dz = 0 which is then satisfied for z|r in Pi(T') resp. Q1(T)).)

The error estimator 7 is efficient: The converse inequality of (6.11) holds even in a more

local form than stated (cf. the proof of (6.25) below).

Theorem 6.3. Suppose that 2 is simply connected. Then there exists an (hr,t)-independent
constant ¢y, which depends on « and T only through r(a,T), and cg, such that

(6.25) no < ci6 ||

Proof. For each triangle T let by be a bubble-function as in the first part of the proof of
Theorem 5.3; set z|r := by curlry, /(1 + Br/hy) € Hy(T) and define ||| - ||| == || - [|12() +
|8V - |2y for w € Q. Then, equivalence of the norms || byl - llz2(ry and || - ||p2¢r for

polynomials, an 7 -piecewise integration by parts, and (6.2) of Lemma 6.1 show

(6.26) || curlyry H%Q(Q) S (1 + B/hg)z; curly ry) 20
= (Curly 2(1 + B/h7);rn) 2@ < 7@ llo- Il (1 + B/h7)z |lo-

By || Vbr ||po(ry S 1/hr and (the inverse estimate) hr || V curlry, |[z2(ry S || curlry, [[221)
(627) |H (1 + ﬁT/hT)Z H’T = H bT Curlrh HLQ(T —+ ﬁT H V(bT curlrh) HL2 T) S H curlrh ”Lz T)

+ ﬁT<|| Vbop curlry || 2oy + || V curlry, ||L2(T)) (1+ Br/hr) || curlry || 27

Combining (6.26)-(6.27) we deduce the asserted estimate of the volume contributions

(6.28) | curly vy, /(1 + Br/hr) |20 S ||

The related proof of the estimate on the edge contributions is more involved. For each E € &,
say E = conv{a,b} for end-points a,b € N and with patch wg consider op :={z € wp : 0 <
Tg - (r — a) < hg}, which might be strictly smaller than wg if some inner angles are larger
than /2. The reduced patch o consists of (at most) two (neighbouring) elements 7} and T5
on which we define 0% € H} (o) C Hi (wg) as in the second part of the proof of Theorem 5.3.

Given [ry,] - 75 set ¢ = Yon_, i bl € Hi (o) C Hi (wg) with (¢g)|z = bz [r4] - 75 and so
(6.29) h' N 0 lizor) + hE I Vo 2 S 1)+ 7o 2

To cover the situation of very small Gg/hg, we employ an idea of Verfiirth [V2] and consider,
for 0 < §p := min{1, Bg/hg}, the affine bijection ® : op — w9, defined by

(6.30) O(x)=a+stg+dptng forx=a+stg+tng,
17



onto a smaller domain w%, (s := 75 - (x — a), t := ng - (x — a)); ® describes a stretch in

the direction ng by a factor d5. We define ¥ := &~ : w% — op with constant derivative
B =1 ®7g+ 06! ng®ng and its determinant det B = 1/dg; let zp := ¢po Vg €
H}(w3) C Hi(wg) and set p% = Bg(1 + Bg/hg) for each E € €. The family (25 : E € &)

regarded as functions in as finite overlap and so z := 2B is well-define
ded as f i in H}(Q)) has fini 1 d pes 2B/ PE | ll-defined

in Hj(2). Since 2|z = (¢r)|E, an integration by parts shows (after equivalence || 6}3/2 A IZ00)
and || - ||z2(g) for polynomials)

631) [1[ra] - 7e/pe [Poce S 3 052 / [ra) - 75 25 ds

EcE

= ZPE2 / ri - Curl zg dv = (rp; Curl 2) 2(q) < [ 7q |

)
EcE wg

o Il = e,

where we used the transformed analogy fw5 curlry, zg dx = 0 of (5.20). Since zp = ¢ppo VU,
E
we infer from a transformation formula that

1/2
(6:32) l2m l1owy) < 057 168 l2wr and || Ve llawy) < Vor + 10k | Vor 20p).

Since the wg have finite overlap, Bg := || 8 ||L=(,), @ combination of (6.29) and (6.32) show
(6:33) 1121 S 3220 I2aug, + B2 1| Vi [2ag )/
Beg

S D (6 + B2/ Ghe)| [ra] - 76 |72 /ok < D Il - 7o /pe 22
Ee& Ecg

because, in any case, (6hg + (%/(0hg)) < p%. A combination of (6.31) and (6.33) proves
| [rn] - 7¢/pe ||%2(U5) S|l rg |lg+- The remaining assertion (6.3) is already verified. O

7. NUMERICAL EXPERIMENTS

Three numerical examples illustrate that (i) the expected experimental convergence rate
on a unit square and small polynomial degrees even for a uniform mesh-refining in Subsection
7.2, (ii) the Algorithm (A) improves the convergence rate to the optimal value in the two
remaining singular examples, and (iii) local refinements for cubic polynomial degree (i.e.
p = 3 below) indicate boundary layers and singular points for.

7.1. Computer implementation. Throughout this section, we report on various numerical
aspects of a finite element realisation of (2.4) after [CS] in Netgen/NGSolve. This amounts
in (2.4) with three components of

Vi = S5 x (8 Byia(T))?

(that is piecewise polynomials of degree p+ 1, p, p enriched by bubble functions in the second
and third component) with B, equal to the cubic bubble function times a polynomial of
degree < p — 1 on each triangle, while

Qn = LP Y T).

We realized (2.4) for a stabilization a = 1/(h+t) with p = 1, 2, 3 and displayed the numerical

results throughout this section. Further numerical experiments (not displayed) proved to us
18



that the curves for the estimators and the phenomena described here are (qualitatively) very
similar to the results and conclusions discussed in the subsequent subsections.

The discrete system of equations (2.4) with N degrees of freedom (i.e. the dimension of
the discrete system) was solved by a sparse direct solver. In all cases, e.g. for the right-hand
side and all 7 terms in the error estimators (1.3) are fully evaluated with exact quadrature
formulae without any approximation.

The results for sequence of uniform meshes and the adaptive meshes are the output of
Algorithm (A). There thickness ¢ = 0.1,0.01,0.001 cover the range of applications for the
RM plate. A thicker domain would need a 3D simulation, a thinner plane would rather be
approximated by a Kirchhoff plate. The material parameters read £ = 1 and v = 0.2 for a
unit square or an L-shaped plate (2.

Since the error is not immediately accessible, the convergence history plots exclusively
display the equivalent estimator ng.

7.2. Unit Square. The unit square domain € = (0,1)? is loaded with a constant volume
force f = 1. Figure 1 displays the convergence history for uniform mesh-refining and the
p-th order scheme and the thicknesses ¢t = 107% for p, k = 1,2, 3 plus adaptive mesh-refining
exclusively for p = 3.
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Ficure 1. Example of Subsection 7.2: The error estimator ng is plotted as
a function of the degrees of freedom N for polynomial degrees p = 1,2, 3,
thickness” ¢t = 107% for k = 1,2,3, and for uniform and (solely for p = 3)
adaptive mesh refinements.
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The experimental convergence rates are p for p = 1,2 but sub-optimal for p = 3 and
hence Algorithm (A) was run for p = 3 and indeed improves the empirical convergence rate
up to order three (with the exception of the last few entries for ¢ = 0.001 which we view
as numerical instability). Except for the last few entries for the thinnest plate (where a
Kirchhoff plate theory seems to be preferable) the convergence history seems to be robust
with respect to the thickness parameter.

In the first example, adaptivity significantly improves the convergence speed in comparison
with a uniform mesh-refining for the degree p = 3 while there is no real improvement for
p = 1,2. Our interpretation is that the regularity of the exact solution is quite high to
ensure the optimal second order convergence but not high enough to allow for third order
convergence.

7.3. Small Stamps. The second example illustrates small singularities in the right-hand
side. The unit square domain Q = (0,1)? is loaded with a piecewise constant volume
force f(x,y) which equals zero or 400 (which corresponds to a total force 1) on the stamp
(0.3,0.35) x (0.2,0.25).

Figure 2 displays the convergence history for uniform and adaptive mesh-refining and the
p-th order scheme and the thicknesses t = 107% for p = 1,2,3 and k¥ = 1,2. The coarsest
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FI1GURE 2. Example of Subsection 7.3: The error estimator ng is plotted as
a function of the degrees of freedom N for polynomial degrees p = 1,2, 3,
thickness’ ¢t = 107* for £k = 1,2, and for uniform and adaptive mesh refine-

ments.
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mesh resolved (0.3,0.35) x (0.2,0.25) and hence already is reasonably fine. The uniform
mesh-refinements lead to sub-optimal convergence rates while the adaptive Algorithm (A)
yields optimal convergence rates with significant improvements for p = 2 and p = 3.

The adaptive mesh-refining via Algorithm (A) resolves (i) boundary layers (stronger for
smaller t) along the boundary of the domain as well as (ii) singularities of the loads (i.e.,
location of the jumps of the right-hand side) at the boundary of (0.3,0.35) x (0.2,0.25).
Figure 3 displays a mesh with 5267 element domains and N = 206961 degrees of freedom
for t = .01 with a combination of local refinements along 02 and near the vertices of
(0.3,0.35) x (0.2,0.25) for p = 3.

FiGURE 3. Triangulation for the example from Subsection 7.3 generated
by the adaptive Algorithm (A) with 5267 element domains with p = 3,
N = 206961 degrees of freedom, and thickness ¢ = .01. One observes some bal-
ance of local mesh-refining towards the outer boundaries (for boundary layer
resolution) and towards the vertices of the stamp with discontinuities of the
applied load.
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7.4. L-Shaped Plate. An L-shaped plate 2 = (—1,1)?\ [0,1]? is clamped along the two
edges of the domain which form the re-entering corner and is free at the remaining boundary.
The (unknown) exact solution is expected to be singular near the origin at the re-entering
corner even though the load is uniformly distributed.

Figure 4 displays the convergence history for uniform mesh-refining and the p-th order
scheme and the thicknesses t = 107 for p, k = 1,2, 3.
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F1GURE 4. Example of Subsection 7.4: The error estimator ng is plotted as
a function of the degrees of freedom N for polynomial degrees p = 1,2, 3,
thickness’ t = 107% for k = 1,2, 3, and for uniform mesh refinement.

The experimental convergence rates are sub-optimal and significantly improved by the
adaptive Algorithm (A) as depicted in figure 5.
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