RESIDUAL-BASED A POSTERIORI ERROR ESTIMATE FOR A MIXED REISSNER-MINDLIN PLATE FINITE ELEMENT METHOD* #### CARSTEN CARSTENSEN AND JOACHIM SCHÖBERL ABSTRACT. Reliable and efficient residual-based a posteriori error estimates are established for the stabilised locking-free finite element methods for the Reissner-Mindlin plate model. The error is estimated by a computable error estimator from above and below up to multiplicative constants that do neither depend on the mesh-size nor on the plate's thickness and are uniform for a wide range of stabilisation parameter. The error is controlled in norms that are known to converge to zero in a quasi-optimal way. An adaptive algorithm is suggested and run for improving the convergence rates in three numerical examples for thicknesses 0.1, .001 and .001. #### 1. Introduction The Reissner-Mindlin plate model [B2, BS, Ci] concerns the following problem for a plane simply connected domain Ω with polygonal boundary Γ and a parameter 0 < t < 1: Given an applied force $f \in L^2(\Omega)$ seek rotations and displacements $(\vartheta, w) \in V := H_0^1(\Omega)^2 \times H_0^1(\Omega)$ such that, for all $(\varphi, v) \in V$, (1.1) $$\int_{\Omega} \varepsilon(\vartheta) : \mathbb{C}\varepsilon(\varphi) \, dx + t^{-2} \int_{\Omega} (\vartheta - \nabla w) \cdot (\varphi - \nabla \mu) dx = \int_{\Omega} f v \, dx.$$ The discretisation of (1.1) is based on a regular triangulation \mathcal{T} and finite element spaces for the conforming or nonconforming discretisations of $H_0^1(\Omega)$ which yield a discrete space V_h . As an alternative to more complicated nonconforming plate elements from [AF, BBF, BFS, C2], the problem (1.1) can be extended by introducing a new shear-variable γ in $Q := L^2(\Omega)^2$ which is then approximated in another discrete space Q_h [AB, B2, BL, CS, Lo]. This paper concerns a stabilised version, the continuous Problem, that reads: Given $f \in L^2(\Omega)$, seek $(\vartheta, w, \gamma) \in V \times Q$ (i.e., $(\vartheta, w) \in V$ and $\gamma \in Q := L^2(\Omega)^2$) that satisfies, for all $(\varphi, v, \eta) \in V \times L^2(\Omega)^2$, (1.2) $$\mathcal{B}_{\alpha}(\vartheta, w, \gamma; \varphi, v, \eta) = \int_{\Omega} f v \, dx$$ Date: November 14, 2005. 1991 Mathematics Subject Classification. 65 N 30. Key words and phrases. Reissner-Mindlin plate, mixed finite element method, shear locking, a posteriori error estimates, reliability, efficiency, adaptive algorithm. *Supported by the DFG Research Center MATHEON "Mathematics for key technologies" in Berlin and by the Austrian Science Fund Fonds zur Förderung der wissenschaftlichen Forschung, Spezialforschungsbereich F013. with the stabilised bilinear form \mathcal{B}_{α} defined by (cf. also Section 2) $$\mathcal{B}_{\alpha}(\vartheta, w, \gamma; \varphi, v, \eta) = \int_{\Omega} \varepsilon(\vartheta) : \mathbb{C}\varepsilon(\varphi) \, dx + \int_{\Omega} \alpha^{2}(\vartheta - \nabla w) \cdot (\varphi - \nabla v) \, dx + \int_{\Omega} (\vartheta - \nabla w) \cdot \eta \, dx + \int_{\Omega} (\varphi - \nabla v) \cdot \gamma \, dx - \int_{\Omega} \beta^{2} \gamma \cdot \eta \, dx.$$ The continuous problem (1.2) is equivalent to (1.1), while their discrete counterparts and discrete solutions $(\vartheta_h, w_h, \gamma_h) \in V_h \times Q_h$, defined by replacing $V \times Q$ by $V_h \times Q_h$ in (1.2), may differ. There is a hidden stabilisation parameter α (that enters the definition of \mathcal{B}_{α}) such that classical conforming schemes are included for $\alpha = 0$. Various suggestions on the choice of α as a function of t and the local mesh-size h_T can be found in the literature [AB, B2, BL, CS, Lo] with a corresponding stability and a priori error analysis: $\alpha = 1$ was the first approach with P_1 plus cubic bubbles for ϑ_h , P_2 finite elements for w_h , and P_0 for γ_h and linear convergence in energy norms [AB, B2]. The latest suggestion reads $\alpha = 1/(h+t)$ (e.g., for the same finite elements) and linear convergence (in the norms from below) and (compared to $\alpha = 1$) with additional better convergence in L^2 -norms for $\vartheta - \vartheta_h$ resp. H^1 -norms for $w - w_h$ [CS]; for a multigrid analysis cf. [S]. This paper establishes a quite general a posteriori error analysis for the scheme (1.2) and a wide range of possibly mesh-depending stabilisation parameters α . Our main result is a reliable and efficient computable error estimator $\eta_R := (\sum_{T \in \mathcal{T}} \eta_T^2)^{1/2}$, where, for each element $T \in \mathcal{T}$ with edges $E \subset \partial T$ (and summation $\sum_{E \subset \partial T}$ over all edges of T), $$\eta_{T}^{2} := h_{T}^{2} \| \alpha_{T}^{2}(\vartheta_{h} - \nabla w_{h}) + \gamma_{h} - \operatorname{div}\mathbb{C}\varepsilon(\vartheta_{h}) \|_{L^{2}(T)}^{2} \\ + h_{T}^{2}/\alpha_{T}^{2} \| f - \operatorname{div}(\alpha_{T}^{2}(\vartheta_{h} - \nabla w_{h}) + \gamma_{h}) \|_{L^{2}(T)}^{2} \\ + (1 + \beta_{T}/h_{T})^{-2} \| \operatorname{curl} r_{h} \|_{L^{2}(T)}^{2} + (\alpha_{T}^{-1} + \beta_{T})^{-2} \| r_{h} \|_{L^{2}(T)}^{2} \\ + \sum_{E \subset \partial T} h_{E} \| [\mathbb{C}\varepsilon(\vartheta_{h})] \cdot n_{E} \|_{L^{2}(E \setminus \Gamma)}^{2} \\ + \sum_{E \subset \partial T} h_{E}/(\beta_{E}(\beta_{E} + h_{E})) \| [r_{h}] \cdot \tau_{E} \|_{L^{2}(E)}^{2} \\ + \sum_{E \subset \partial T} h_{E}/\alpha_{E}^{2} \| [\alpha_{E}^{2}(\vartheta_{h} - \nabla w_{h}) + \gamma_{h}] \cdot n_{E} \|_{L^{2}(E \setminus \Gamma)}^{2}.$$ Here, we abbreviate $r_h := \vartheta_h - \nabla w_h - \beta^2 \gamma_h$ and, for an edge E of length h_E , $[\cdot]$ denotes the jump across E, and n_E and τ_E are normal and tangential unit vectors, respectively. The results of this paper imply that η_R is a lower and upper bound of the error $$(1.4) e_h := \| \vartheta - \vartheta_h \|_{H^1(\Omega)} + \| \alpha(\vartheta - \vartheta_h - \nabla(w - w_h)) \|_{L^2(\Omega)} + \| \gamma - \gamma_h \|_{Q}.$$ The norm $\|\cdot\|_Q$ is defined in Eqns (3.7)-(3.8) below and it is in fact owing to this norm that we can obtain robust error estimates. The positive constants c_1 and c_2 in the efficiency and reliability estimate $$(1.5) c_1 \eta_R - \text{ h.o.t } \leq e_h \leq c_2 \eta_R$$ are uniform in 0 < t < 1, α , and h_T (resp. h_E) and depend only on the minimal interior angle in the triangulation \mathcal{T} and on Ω . The higher order terms (h.o.t.) in (1.5) (i.e., efficiency of η_R) are computable terms. A posteriori error estimates on other finite element schemes for (1.1) are presented in [C2, Li]. As the estimates therein, our a posteriori error bound η_T may serve as a refinement indicator within an adaptive mesh-refining algorithm. Adaptive Algorithm (A). (a) Start with coarse mesh \mathcal{T}_0 . - (b) Solve discrete problem with respect to \mathcal{T}_k . - (c) Compute η_T from (1.3) for all $T \in \mathcal{T}_k$. - (d) Compute error bound $\left(\sum_{T \in \mathcal{T}_k} \eta_T^2\right)^{1/2}$ and terminate or go to (e). (e) Mark element T red iff $\eta_T \geq \frac{1}{2} \max_{T' \in \mathcal{T}_k} \eta_{T'}$. - (f) Red-green-blue-refinement to avoid hanging nodes, update mesh \mathcal{T}_k and goto (b). We refer to [EEHJ, V1] for details on red-green-blue refinement procedures and corresponding data handling and, e.g., to [BR, EEHJ, V1] for corresponding details on the Laplace equation. The remaining part of the paper is organised as follows. Section 2 describes the mixed formulation and its discretisation \mathcal{B}_{α} which involves parameters α and β . The main results on reliable and efficient a posteriori error estimates are stated and necessary notation provided in Section 3. The proofs are divided in three main sections. Equivalence of the α -depending error norms and two residuals in V^* and Q^* is established in Section 4 while their estimation is performed in Section 5 and Section 6, respectively, where efficiency and reliability of the two residuals to their estimates is proven separately. The adaptive Algorithm (A) is run for improving the convergence rates in Section 7 in three numerical examples for various thicknesses 0.1, .001 and .001. Throughout the paper, $L^2(\Omega)$ and $H^1(\Omega)$ denote the usual Lebesgue and Sobolev spaces [BS, LM] and $H_0^1(\Omega)$ is the subspace of all functions with zero boundary values with a dual space $H^{-1}(\Omega)$. Scalar products in (any power of) $L^2(\Omega)$ are denoted by $(\cdot;\cdot)_{L^2(\Omega)}$ while its extension to the $(H_0^1(\Omega), H^{-1}(\Omega))$ -duality is denoted by $\langle \cdot; \cdot \rangle_{H^{-1}(\Omega) \times H_0^1(\Omega)}$ which differs from the scalar-product $(\cdot;\cdot)_{H^1(\Omega)}$ in (any power of) $H^1(\Omega)$. # 2. MIXED FORMULATION AND FINITE ELEMENT DISCRETISATION The weak form of the Reißner-Mindlin plate model is rewritten with bilinear forms (2.1) $$a(\vartheta, w; \varphi, v) := \int_{\Omega} \varepsilon(\vartheta) : \mathbb{C}\varepsilon(\varphi) \, dx + \int_{\Omega} \alpha^{2} (\vartheta - \nabla w) \cdot (\varphi - \nabla v) \, dx,$$ (2.2) $$b(\vartheta, w; \eta) := \int_{\Omega} (\vartheta - \nabla w) \cdot \eta \, dx,$$ (2.3) $$c(\gamma;\eta) := \int_{\Omega} \beta^2 \gamma \cdot \eta \, dx,$$ where $(\vartheta, w) = (\vartheta_1, \vartheta_2, w)$ and $(\varphi, v) \in V := H_0^1(\Omega)^3$, and $\gamma, \eta \in L^2(\Omega)^2$. The linear Green strain $\varepsilon(\vartheta) := \operatorname{sym} D\vartheta = (\frac{1}{2}(\partial \vartheta_j/\partial x_k + \partial \vartheta_k/\partial x_j))_{j,k=1,2}$ is the symmetric gradient and the elasticity operator \mathbb{C} is defined by $$\mathbb{C}\tau = \frac{E}{12(1-\nu^2)} \Big((1-\nu)\tau + \nu \operatorname{tr}(\tau) \mathbb{I} \Big),$$ where $\operatorname{tr}(\tau)$ denotes the
trace of $\tau \in \mathbb{R}^{2\times 2}$, \mathbb{I} is the 2×2 -unit matrix, and E is Young's modulus and ν is the Poisson ratio of the elastic plate. On the product space $V\times L^2(\Omega)^2$ we define the bilinear form $$\mathcal{B}_{\alpha}(\vartheta, w, \gamma; \varphi, v, \eta) := a(\vartheta, w; \varphi, v) + b(\vartheta, w; \eta) + b(\varphi, v; \gamma) - c(\gamma; \eta).$$ The critical parameter is the small thickness t > 0 of the plate which enters (2.1)-(2.3) through $\beta^2 := 1/(t^{-2} - \alpha^2) \in L^2(\Omega)$ where $\alpha \in L^{\infty}(\Omega)$ is a parameter with $0 < \alpha < 1/t$ to stabilise the finite element discretisation of (2.1)-(2.3) that employs discrete subspaces $V_h \times Q_h$ of $V \times L^2(\Omega)^2$. The Discrete Problem reads: Seek $(\vartheta_h, w_h, \gamma_h) \in V_h \times Q_h$ that satisfies, for all $(\varphi_h, v_h, \eta_h) \in V_h \times Q_h$, (2.4) $$\mathcal{B}_{\alpha}(\vartheta_h, w_h, \gamma_h; \varphi_h, v_h, \eta_h) = \int_{\Omega} f v_h \, dx.$$ The discrete spaces $V_h \times Q_h$ are \mathcal{T} -piecewise polynomials (the index h may refer to the mesh-size of \mathcal{T} but we neglect further sub-indices such as \mathcal{T}_h , α_h etc.) based on a regular triangulation \mathcal{T} of Ω in the sense of Ciarlet [Ci, BS], i.e., \mathcal{T} is a finite partition of Ω in closed triangles or parallelograms; two distinct elements T_1 and T_2 in \mathcal{T} are either disjoint, or $T_1 \cap T_2$ is a complete edge E or a common node of both T_1 and T_2 . The triangulation satisfies a minimum angle condition, i.e., the angles in the triangles or parallelograms are assumed to belong to the interval $(c_{\theta}, \pi - c_{\theta})$ for some positive constant c_{θ} and so are bounded uniformly away from 0 and π ; in addition let c_{θ} be also a lower bound for the aspect ratios of parallelograms in \mathcal{T} . The set of all edges in \mathcal{T} is denoted as \mathcal{E} and $\cup \mathcal{E}$ is the union of all edges, i.e., the skeleton of all boundaries of elements in \mathcal{T} . For an element $T \in \mathcal{T}$, let $\mathcal{P}_k(T)$ denotes the vector space of algebraic polynomials of (total resp. partial) degree $\leq k$ (if T is a triangle resp. a parallelogram) regarded as a mapping on the domain $T \subset \mathbb{R}^2$. Then, $$(2.5) \quad \mathcal{L}^k(\mathcal{T}) := \left\{ p \in L^2(\Omega) : \forall T \in \mathcal{T}, \ p|_T \in \mathcal{P}_k(T) \right\} \quad \text{and} \quad \mathcal{S}_0^1(\mathcal{T}) := \mathcal{L}^1(\mathcal{T}) \cap H_0^1(\Omega).$$ Various choices of $V_h \times Q_h$ and mesh-depending parameters $\alpha = \alpha_T \in L^{\infty}(\Omega)$ can be found in [AB, B2, BL, CS, Lo]. Those results cover a stability and a priori error analysis while this paper establishes an a posteriori error analysis. ## 3. A POSTERIORI ERROR BOUND AND ADAPTIVE ALGORITHM For the regular triangulation \mathcal{T} of Ω in (closed) triangles or parallelograms let \mathcal{N} be the (finite) set of all vertices and let $\mathcal{K} := \mathcal{N} \cap \Omega$ be the set of interior ones. For simplicity, we assume that the triangulation matches the domain exactly, i.e., $\cup \mathcal{T} = \overline{\Omega}$ and there are no hanging nodes. The set of edges $E = \text{conv}\{x,y\}$ for two distinct $x,y \in \mathcal{N}$ is denoted as \mathcal{E} . Their union $\cup \mathcal{E}$ is the skeleton of edges, i.e., the set of all points in $\overline{\Omega}$ which belong to some edge. With each edge, we associate a unit normal vector n_E and a perpendicular tangential unit vector τ_E . For a \mathcal{T} -piecewise uniformly continuous function, the square brackets $[\cdot]$ is defined as the jump over the edges: If $E = T_+ \cap T_-$ is a common edge of two distinct T_+ and T_- in \mathcal{T} then, for $x \in E$, the jump [G](x) is the limit of $G(x + \delta n_E) - G(x - \delta n_E)$ as $\delta \to 0^+$. (The limit exists if $x \notin \mathcal{K}$ since $x \pm \delta n_E \in T_\pm$ and G is uniformly continuous on each T_\pm .) In this way, $[\cdot]$ is defined on the skeleton $\cup \mathcal{E} \setminus \partial \Omega$ of all inner boundaries of elements. The diameter of T is denoted as h_T and the length of E is h_E . For compact notation, let $h_T \in L^{\infty}(\Omega)$ and $h_{\mathcal{E}} \in L^{\infty}(\cup \mathcal{E})$ be given as \mathcal{T} - resp. \mathcal{E} -piecewise constant weights (3.1) $$h_T|_T := h_T \text{ and } h_{\mathcal{E}}|_E := h_E \text{ for } T \in \mathcal{T} \text{ and } E \in \mathcal{E}.$$ The discrete problem is supposed to generate discrete solutions $(\vartheta_h, w_h, \gamma_h) \in V \times L^2(\Omega)^2$ which are neither expected to be uniquely determined nor to belong to a discrete space $V_h \times Q_h$. We merely suppose that $(\vartheta_h, w_h, \gamma_h)$ is \mathcal{T} -piecewise smooth (such that all the derivatives in (3.3) and related traces and jumps on the edges exists in the classical sense and are integrable), i.e., we suppose (3.2) $$(\vartheta_h, w_h, \gamma_h) \in H^2(\mathcal{T})^2 \times H^2(\mathcal{T}) \times H^2(\mathcal{T})^2$$ where, for k = 1, 2, $H^k(\mathcal{T}) := \{ \eta \in L^2(\Omega) : \forall T \in \mathcal{T}, \ \eta|_T \in H^k(T) \}$. As a minimal condition, we suppose that $(\vartheta_h, w_h, \gamma_h)$ satisfies (2.4) for all $(\varphi_h, v_h, \eta_h) \in \mathcal{S}_0^1(\mathcal{T})^3 \times \mathcal{L}^0(\mathcal{T})^2$. For each element $T \in \mathcal{T}$, with $\alpha|_T$ constant equal to α_T , $\beta_T := (t^{-2} - \alpha_T^2)^{-1/2}$, and for all For each element $T \in \mathcal{T}$, with $\alpha|_T$ constant equal to α_T , $\beta_T := (t^{-2} - \alpha_T^2)^{-1/2}$, and for all $E \in \mathcal{E}$ with $\alpha_E = \min\{\alpha_T : E \subset T \in \mathcal{T}\}$, $\beta_E := \max\{\beta_T : E \subset T \in \mathcal{T}\}$, we define indicators η_T and η_E by and $r_h := \vartheta_h - \nabla w_h - \beta^2 \gamma_h$ (3.3) $$\eta_{T}^{2} := h_{T}^{2} \| \alpha_{T}^{2}(\vartheta_{h} - \nabla w_{h}) + \gamma_{h} - \operatorname{div}\mathbb{C}\varepsilon(\vartheta_{h}) \|_{L^{2}(T)}^{2} \\ + h_{T}^{2}/\alpha_{T}^{2} \| f - \operatorname{div}(\alpha_{T}^{2}(\vartheta_{h} - \nabla w_{h}) + \gamma_{h}) \|_{L^{2}(T)}^{2} \\ + (1 + \beta_{T}/h_{T})^{-2} \| \operatorname{curl} r_{h} \|_{L^{2}(T)}^{2} + (\alpha_{T}^{-1} + \beta_{T})^{-2} \| r_{h} \|_{L^{2}(T)}^{2},$$ (3.4) $$\eta_{E}^{2} := h_{E} \| [\mathbb{C}\varepsilon(\vartheta_{h})] \cdot n_{E} \|_{L^{2}(E \setminus \Gamma)}^{2} + h_{E}/(\beta_{E}(\beta_{E} + h_{E})) \| [r_{h}] \cdot \tau_{E} \|_{L^{2}(E \setminus \Gamma)}^{2}$$ $$(3.4) \eta_E^2 := h_E \| \left[\mathbb{C}\varepsilon(\vartheta_h) \right] \cdot n_E \|_{L^2(E\setminus\Gamma)}^2 + h_E/(\beta_E (\beta_E + h_E)) \| \left[r_h \right] \cdot \tau_E \|_{L^2(E)}^2 + h_E/\alpha_E^2 \| \left[\alpha_E^2 (\vartheta_h - \nabla w_h) + \gamma_h \right] \cdot n_E \|_{L^2(E\setminus\Gamma)}^2.$$ $$([r_h] \cdot \tau_E := 0 - r_h|_{\Gamma} \text{ for } E \subset \Gamma.)$$ This paper establishes the reliability and efficiency of the a posteriori error bound η_R , (3.5) $$\eta_R^2 = \sum_{T \in \mathcal{T}} \eta_T^2 + \sum_{E \in \mathcal{E}} \eta_E^2,$$ and the error norms in V and Q defined, for $(\varphi, v) \in V$ and $\eta \in Q$, by (3.6) $$\| (\varphi, v) \|_{V} := \{ \| \varphi \|_{H^{1}(\Omega)}^{2} + \| \alpha(\varphi - \nabla v) \|_{L^{2}(\Omega)}^{2} \}^{1/2}$$ (3.7) $$\|\eta\|_{Q,0} := \inf_{\substack{n=p+q, \text{ div } p=0}} \left\{ \|p\|_{H^{-1}(\Omega)}^2 + \|q/\alpha\|_{L^2(\Omega)}^2 \right\}^{1/2},$$ (3.8) $$\|\eta\|_{Q} := \left\{ \|\eta\|_{Q,0}^{2} + \|\beta\eta\|_{L^{2}(\Omega)}^{2} \right\}^{1/2}.$$ In the infimum of (3.7), $p \in L^2(\Omega)$ is divergence free, written div p = 0, in the sense that it is $L^2(\Omega)$ -orthogonal to $\nabla H_0^1(\Omega)$, the gradients of functions in $H_0^1(\Omega)$, and $q \in L^2(\Omega)$. Remark 3.1. The set Q equals $L^2(\Omega)^2$ and their norms are equivalent. However, the constants in the equivalence inequalities dependent on t, $\alpha(h,t)$, and $\beta(h,t)$ and thus we need to specify $(Q, \|\cdot\|_Q)$. Remark 3.2. The norm $\|\cdot\|_{Q,0}$ is the norm in $H^{-1}(\operatorname{div},\Omega)$ in case that α is a global constant. The main contribution of this paper is the proof of reliability and efficiency of the error in the aforementioned norms and the error estimator η_R . As α is usually chosen as a function of t and h_T and since the elements are shape-regular (whence $h_{T_1}/h_{T_2} \lesssim 1$ for $T_1 \cap T_2 \neq \emptyset$) it is not a too restrictive assumption that the quotient of two α_T is bounded for two neighbour elements; for future reference to those bounds, we introduce (3.9) $$\kappa(\alpha, \mathcal{T}) := \max_{T_1, T_2 \in \mathcal{T}, T_1 \cap T_2 \neq \emptyset} \alpha_{T_1} / \alpha_{T_2}.$$ Let $(\vartheta, w, \gamma) \in H_0^1(\Omega)^2 \times H_0^1(\Omega) \times L^2(\Omega)^2$ solve (1.2) and suppose that $(\vartheta_h, w_h, \gamma_h)$ as in (3.2) satisfies (2.4) for all $(\varphi_h, v_h, \eta_h) \in \mathcal{S}_0^1(\mathcal{T})^3 \times \mathcal{L}^0(\mathcal{T})^2$. **Theorem 3.1.** Suppose that α satisfies $0 < \alpha < 1/t$ and $\alpha \le c_3/h$. Then, there exists a positive $(h_{\mathcal{T}}, h_{\mathcal{E}}, t)$ -independent constant c_4 which depends only on Ω , c_3, c_{Θ} , and on $\kappa(\alpha, \mathcal{T})$, such that **Theorem 3.2.** Suppose that α satisfies $0 < \alpha < 1/t$ and $\alpha \le c_3/h$. Then, there exists positive $(h_{\mathcal{T}}, h_{\mathcal{E}}, t)$ -independent constants c_5 and c_6 which depend only on Ω , c_3 , c_{Θ} , and on $\kappa(\alpha, \mathcal{T})$, such that $$(3.11) c_5 \eta_R
\le \| (\vartheta - \vartheta_h, w - w_h) \|_V + \| \gamma - \gamma_h \|_Q + c_6 \inf_{f_h \in \mathcal{L}^1(\mathcal{T})} \| h_{\mathcal{T}} / \alpha (f - f_h) \|_{L^2(\Omega)}.$$ The remaining sections are devoted to the proof of both theorems. ### 4. Equivalence of error and residual norms This section is devoted to the proof of equivalence between the error and the residual with respect to the norms in $V \times Q$ and $V^* \times Q^*$, respectively, with emphasis on the independence of the equivalence constants from α, h , and t. According to Korn's inequality and setting of the parameters E>0 and $0<\nu<1$, the energy norm $\|\mathbb{C}^{1/2}\varepsilon(\cdot)\|_{L^2(\Omega)}$ is equivalent to the Sobolev norm $\|\cdot\|_{H^1_0(\Omega)}$ with the global positive constants c_7 and c_8 which merely depend on Ω and \mathbb{C} , i.e., for all $\varphi\in H^1_0(\Omega)^2$, $$(4.1) c_7 \|\varphi\|_{H_0^1(\Omega)}^2 \le \int_{\Omega} \varepsilon(\varphi) : \mathbb{C}\varepsilon(\varphi) dx \le c_8 \|\varphi\|_{H_0^1(\Omega)}^2.$$ Thus the bilinear form $a(\cdot;\cdot)$ is elliptic and continuous with constants $c_9 := \min\{1, c_7\}$ and $c_{10} := \max\{1, c_8\}$, i.e., for all $(\varphi, v) \in V$, (4.2) $$c_9 \| (\varphi, v) \|_V^2 \le a(\varphi, v; \varphi, v) \le c_{10} \| (\varphi, v) \|_V^2.$$ The norm $\|\cdot\|_{Q,0}$ is chosen such that both, stability and continuity of the bilinear form b are satisfied with bound 1. **Lemma 4.1.** The stability and continuity conditions of the bilinear form b with respect to the norms $\|\cdot\|_V$ and $\|\cdot\|_{Q,0}$ are fulfilled with the optimal constant one, i.e., (4.3) $$\|\eta\|_{Q,0} = \sup_{(\varphi,v)\in V\setminus\{0\}} \frac{b(\varphi,v;\eta)}{\|(\varphi,v)\|_{V}} \quad \text{for all } \eta\in Q.$$ *Proof.* Let $(\varphi, v) \in V$, $\eta = p + q \in Q$ with div p = 0 (i.e., $\int_{\Omega} p \cdot \nabla v \, dx = 0$) and deduce $$b(\varphi, v; \eta) = \int_{\Omega} (\varphi - \nabla v) \cdot (p + q) \, dx$$ $$= \int_{\Omega} \varphi \cdot p \, dx + \int_{\Omega} \alpha (\varphi - \nabla v) \cdot q / \alpha \, dx$$ $$\leq \|\varphi\|_{H_0^1(\Omega)} \|p\|_{H^{-1}(\Omega)} + \|\alpha (\varphi - \nabla v)\|_{L^2(\Omega)} \|q / \alpha\|_{L^2(\Omega)}$$ $$\leq \|(\varphi, v)\|_V \left\{ \|p\|_{H^{-1}(\Omega)}^2 + \|q / \alpha\|_{L^2(\Omega)}^2 \right\}^{1/2}.$$ Since the split $\eta = p + q$ was arbitrary, this estimate shows (4.4) $$\sup_{(\varphi,v)\in V\setminus\{0\}} \frac{b(\varphi,v;\eta)}{\|(\varphi,v)\|_V} \le \|\eta\|_{Q,0} \quad \text{for all } \eta \in Q.$$ An explicit decomposition $\eta = p + q$ will be constructed to show inequality reverse to (4.4). Given $\eta \in Q \setminus \{0\}$, let $(\vartheta, w) \in V$ solve, for all $(\varphi, v) \in V$, $$(4.5) \qquad (\vartheta;\varphi)_{H_0^1(\Omega)} + (\alpha^2(\vartheta - \nabla w);\varphi - \nabla v)_{L^2(\Omega)} = -b(\varphi,v;\eta).$$ (The same arguments that show ellipticity of a prove that of the bilinear form on left-hand side of (4.5) and so imply unique existence of $(\vartheta, w) \in V$.) The choice $(\varphi, v) = (\vartheta, w)$ in (4.5) shows Set $q:=-\alpha^2(\vartheta-\nabla w)$ and $p:=\eta-q$. Because of (4.5), we have, for all $v\in H_0^1(\Omega)$, $$(p; \nabla v)_{L^2(\Omega)} = (\eta + \alpha^2(\vartheta - \nabla w); \nabla v)_{L^2(\Omega)} = 0$$ and so div p = 0. Furthermore, (4.5) (with v = 0) shows The proof of the missing inequality is concluded for $\eta = p + q$ with (4.6)(4.7) and $$\begin{split} \| \, \eta \, \|_{Q,0}^2 & \leq & \| \, p \, \|_{H^{-1}(\Omega)}^2 + \| \, q/\alpha \, \|_{L^2(\Omega)}^2 \\ & = & \| \, \vartheta \, \|_{H^1_0(\Omega)}^2 + \| \, \alpha(\vartheta - \nabla w) \, \|_{L^2(\Omega)}^2 \\ & = & \| \, (\vartheta, w) \, \|_V^2 \leq \sup_{(\varphi, v) \in V} \frac{b(\vartheta, v; \eta)^2}{\| \, (\varphi, v) \, \|_V^2}. \end{split}$$ **Theorem 4.2** (Braess, 1996). The bilinear form $\mathcal{B}_{\alpha}(\cdot;\cdot)$ provides an isomorphism between $V \times Q$ and its dual, i.e., for all $(\vartheta, w, \gamma) \in V \times Q$, we have (when in the supremum $(v, \varphi, \eta) \in V \times Q \setminus \{0\}$) $$(4.8) \quad \frac{\min\{c_9, c_{10}^{-1}\}}{\sqrt{13}} \|(w, \vartheta, \gamma)\|_{V \times Q} \le \sup_{(v, \varphi, \eta)} \frac{\mathcal{B}_{\alpha}(\vartheta, w, \eta; \varphi, w, \gamma)}{\|(v, \varphi, \eta)\|_{V \times Q}} \le (1 + c_{10}) \|(w, \vartheta, \gamma)\|_{V \times Q}.$$ Remark 4.1. The bounds for the global stability and continuity estimates only depend on the bounds of the norm equivalence (4.1). If we use the energy norm $\|\mathbb{C}^{1/2}\varepsilon(\cdot)\|_{L^2(\Omega)}$ instead of the $H_0^1(\Omega)$ -norm, then $c_7 = 1 = c_8$ and the constants in Theorem 4.2 are absolute constants $1/\sqrt{13}$ and 2. Remark 4.2. Theorem 4.2 is an immediate consequence of Theorem 2 in [B1] and this leads to a proof different from the proof below. Proof of Theorem 4.2. To prove the stability we define operators $A: V \to V$, $B: V \to Q$, $B^*: Q \to V$, and $C: Q \to Q$ by $(A(\vartheta, w); (\varphi, v))_V = a(\vartheta, w; \varphi, v)$, $(B(\vartheta, w); \eta)_Q = (B^*\eta; \vartheta, w)_V = b(\vartheta, w; \eta)$, and $(C\eta; \gamma)_Q = c(\eta; \gamma)$. The operators A and C are selfadjoint (with respect to the scalar product in V and Q), respectively. Since A is elliptic, $A^{\pm 1/2}$ and A^{-1} are well defined. Lemma 4.1 proves the isometry of B^* with respect to the norms $\|\cdot\|_{Q,0}$ and $\|\cdot\|_V$, i.e., for all $\eta \in Q$, For fixed $(\vartheta, w, \gamma) \in V \times Q$ set $$f := A(\vartheta, w) + B^* \gamma \in V,$$ $$g := B(\vartheta, w) - C\gamma \in Q,$$ and eliminate the primal variable $(w, \vartheta) = A^{-1}(f - B^*\gamma)$. With the Schur complement S, $$S := BA^{-1}B^* + C : Q \to Q$$ selfadjoint isomorphism, (since A and C are elliptic) this implies the identity $$(4.10) S\gamma = BA^{-1}f - g.$$ The continuity and ellipticity bounds on $S^{\pm 1}$ (may depend on α, β, h, t and so) are analysed explicitly in the sequel. For $\eta \in Q$, the definition of S and (4.2) yield $$(S\eta;\eta)_{Q} = ((BA^{-1}B^{*} + C)\eta;\eta)_{Q} = (A^{-1}B^{*}\eta;B^{*}\eta)_{V} + (C\eta;\eta)_{Q}$$ $$\leq c_{9}^{-1} \|B^{*}\eta\|_{V}^{2} + c(\eta;\eta) = c_{9}^{-1} \|\eta\|_{Q,0}^{2} + c(\eta;\eta) \leq c_{9}^{-1} \|\eta\|_{Q}^{2},$$ and, similarly, one verifies the reverse estimate to finally obtain Since C is elliptic, $(A^{-1}B^*\gamma; B^*\gamma)_V \leq (S\gamma; \gamma)_Q = ||S^{1/2}\gamma||_Q^2$. This and (4.10) lead to $$\|S^{1/2}\gamma\|_{Q}^{2} = (BA^{-1}f - g; \gamma)_{Q}$$ $$\leq \|A^{-1/2}f\|_{V} \|A^{-1/2}B^{*}\gamma\|_{V} + \|S^{-1/2}g\|_{Q} \|S^{1/2}\gamma\|_{Q}$$ $$\leq (\|A^{-1/2}f\|_{V} + \|S^{-1/2}g\|_{Q}) \|S^{1/2}\gamma\|_{Q}, \text{ whence}$$ $$(4.13) \qquad \|S^{1/2}\gamma\|_{Q} \leq \|A^{-1/2}f\|_{V} + \|S^{-1/2}g\|_{Q}.$$ Similar arguments for the primal variable $(w, \vartheta) = A^{-1}(f - B^*\gamma)$ show $$\begin{split} \|\,A^{1/2}(\vartheta,w)\,\|_V^2 &= (A(\vartheta,w);(\vartheta,w))_V = (f-B^*\gamma;(\vartheta,w))_V \\ &\leq \|\,A^{-1/2}f\,\|_V\,\|\,A^{1/2}(\vartheta,w)\,\|_V + \|\,A^{-1/2}B^*\gamma\,\|_V\,\|\,A^{1/2}(\vartheta,w)\,\|_V \\ &\leq (\|\,A^{-1/2}f\,\|_V + \|\,S^{1/2}\gamma\,\|_Q) \|\,A^{1/2}(\vartheta,w)\,\|_V, \quad \text{whence} \\ (4.14)\,\|\,A^{1/2}(\vartheta,w)\,\|_V &\leq \|\,A^{-1/2}f\,\|_V + \|\,S^{1/2}\gamma\,\|_Q. \end{split}$$ The lower bounds in (4.2) resp. (4.12) in the first inequality, (4.14) in the second, and (4.13) in the third imply $$\max\{c_9^{-1}, c_{10}\}^{-1/2} \| (\vartheta, w, \gamma) \|_{V \times Q} \le \| A^{1/2}(\vartheta, w) \|_V + \| S^{1/2}\gamma \|_Q$$ $$\le \| A^{-1/2}f \|_V + 2 \| S^{1/2}\gamma \|_Q \le 3 \| A^{-1/2}f \|_V + 2 \| S^{-1/2}g \|_Q.$$ This and the bounds on $A^{-1/2}$ resp. $S^{-1/2}$ in (4.2) resp. (4.12) (with a Cauchy inequality in \mathbb{R}^2 at the end) lead to $$\max\{c_{9}^{-1}, c_{10}\}^{-1} \| (\vartheta, w, \gamma) \|_{V \times Q} \leq 3 \| f \|_{V} + 2 \| g \|_{Q} \leq \sqrt{3^{2} + 2^{2}} \| (f, g) \|_{V \times Q}$$ $$= \sqrt{13} \sup_{(v, \varphi, \gamma) \in (V \times Q) \setminus \{0\}} \frac{((f, g); (\varphi, v, \gamma))_{V \times Q}}{\| (v, \varphi, \gamma) \|_{V \times Q}} = \sqrt{13} \sup_{(v, \varphi, \gamma) \in (V \times Q) \setminus \{0\}} \frac{\mathcal{B}_{\alpha}(w, \vartheta, \gamma; v, \varphi, \gamma)}{\| (v, \varphi, \eta) \|_{V \times Q}}$$ which is the first claimed inequality in the theorem. The proof of the second follows, for (ϑ, w, γ) , $(\varphi, v, \eta) \in V \times Q$, from $$\mathcal{B}_{\alpha}(\vartheta, w, \gamma; \varphi, v, \eta) = a(\vartheta, w; \varphi, v) + b(\vartheta, w; \eta) + b(\varphi, v; \gamma) - c(\gamma, \eta)$$ $$\leq \left(a(\vartheta, w; \vartheta, w) + \|\vartheta, w\|_{V}^{2} + \|\gamma\|_{Q,0}^{2} + c(\gamma, \gamma)\right)^{1/2}$$ $$\times \left(a(\varphi, v; \varphi, v) + \|\eta\|_{Q,0}^{2} + \|(\varphi, v)\|_{V}^{2} + c(\eta, \eta)\right)^{1/2}$$ $$\leq (1 + c_{10})\|(\vartheta, w, \eta)\|_{V \times Q}\|(\varphi, v, \gamma)\|_{V \times Q}. \quad \Box$$ The theorem relates the error to the two residuals in V^* and Q^* estimated in Section 5 and 6, respectively. Corollary 4.3. The discretisation error is equivalent to the sum of residuals, i.e., there holds (with equivalence constants which depend only on c_7 and c_8) $$(4.15) \qquad \| (\vartheta - \vartheta_h, w - w_h, \gamma - \gamma_h) \|_{V \times Q}$$ $$\approx \| f - a(\vartheta_h, w_h; \cdot) - b(\cdot; \gamma_h) \|_{V^*} + \| b(\vartheta_h, w_h; \cdot) - c(\cdot; \gamma_h) \|_{Q^*}.$$ *Proof.* Theorem 4.2 relates the error (ϑ, w, η) to the dual norm of the residuals, i.e., $$\|(\vartheta - \vartheta_h, w - w_h, \gamma - \gamma_h)\|_{V \times Q} \approx \sup_{(\varphi, v, \eta) \in (V \times Q) \setminus \{0\}} \frac{\mathcal{B}_{\alpha}(\vartheta - \vartheta_h, w - w_h, \gamma - \gamma_h;
\varphi, v, \eta)}{\|(v, \varphi, \eta)\|_{V \times Q}}$$ $$= \sup_{(\varphi, v, \eta) \in (V \times Q) \setminus \{0\}} \frac{f(v) - a(\vartheta_h, w_h; \varphi, v) - b(v, \varphi; \gamma_h) - b(\vartheta_h, w_h; \eta) + c(\eta, \gamma_h)}{\|(v, \varphi, \eta)\|_{V \times Q}}$$ $$\approx \sup_{(\varphi, v) \in V \setminus \{0\}} \frac{f(v) - a(\vartheta_h, w_h; \varphi, v) - b(v, \varphi; \gamma_h)}{\|(v, \varphi)\|_{V}} + \sup_{\eta \in Q \setminus \{0\}} \frac{-b(\vartheta_h, w_h; \eta) + c(\eta; \gamma_h)}{\|\eta\|_{Q}}.$$ # 5. Reliable and Efficient Computable Estimates for the residual in V^* This section is devoted to the proof of equivalence of the dual norm $||r_V||_{V^*}$ of the primal residual $r_V := f - a(\vartheta_h, w_h; \cdot) - b(\cdot; \gamma_h)$ and the computable error estimator η_V , $$\eta_V^2 := \sum_{T \in \mathcal{T}} \left(h_T^2 \| \alpha_T^2 (\vartheta_h - \nabla w_h) + \gamma_h - \operatorname{div} \mathbb{C} \varepsilon(\vartheta_h) \|_{L^2(T)}^2 \right)$$ $$(5.1) + h_T^2/\alpha_T^2 \| f - \operatorname{div}(\alpha_T^2(\vartheta_h - \nabla w_h) + \gamma_h) \|_{L^2(T)}^2$$ $$+ \sum_{E \in \mathcal{E}} \left(h_E \| \left[\mathbb{C}\varepsilon(\vartheta_h) \right] \cdot n_E \|_{L^2(E \setminus \Gamma)}^2 + h_E/\alpha_E^2 \| \left[\gamma_h + \alpha^2(\vartheta_h - \nabla w_h) \right] \cdot n_E \|_{L^2(E \setminus \Gamma)}^2 \right).$$ Recall $\alpha_E := \min\{\alpha_{T_1}, \alpha_{T_2}\}$ if $E = T_1 \cap T_2$ is the joint edge of the distinct elements $T_1, T_2 \in \mathcal{T}$ and $\alpha_T := \alpha|_T$ is supposed to be constant on each $T \in \mathcal{T}$. **Theorem 5.1.** There exists an $(h_{\mathcal{T}}, t)$ -independent constant c_{11} , which depends on α and \mathcal{T} only through $\kappa(\alpha, \mathcal{T})$, $c_3 = \|\alpha h_{\mathcal{T}}\|_{L^{\infty}(\Omega)}$, and c_{Θ} , such that $$||r_V||_{V^*} \le c_{11} \, \eta_V.$$ The proof is based on a refined approximation property of the Clément-interpolant (or any other weak approximation operator which is locally exact for affine functions) of Lemma 5.2 in which the upper bound $\|(\varphi, v)\|_V$ is more involved than $\|(D\varphi, \alpha \nabla v)\|_{L^2(\Omega)}$. **Lemma 5.2.** There exists an $(h_{\mathcal{T}}, t)$ -independent constant c_{12} , which depends on α and \mathcal{T} only through $\kappa(\alpha, \mathcal{T})$, $c_3 = \|\alpha h_{\mathcal{T}}\|_{L^{\infty}(\Omega)}$, and c_{Θ} , such that, given $(\varphi, v) \in V$, there exists $(\varphi_h, v_h) \in S_0^1(\mathcal{T})^3$ which satisfies $$\sum_{T \in \mathcal{T}} h_T^{-2} \|\varphi - \varphi_h\|_{L^2(T)}^2 + \sum_{T \in \mathcal{T}} \alpha_T^2 / h_T^2 \|v - v_h\|_{L^2(T)}^2$$ $$+ \sum_{E \in \mathcal{E}} h_E^{-1} \|\varphi - \varphi_h\|_{L^2(E)}^2 + \sum_{E \in \mathcal{E}} \alpha_E^2 / h_E \|v - v_h\|_{L^2(E)}^2 \le c_{12} \|(\varphi, v)\|_V^2.$$ Proof. The Clément approximation operator for a scalar v defines a \mathcal{T} -piecewise affine v_h by their nodal values. For a node z at the boundary, $v_h(z) = 0$, and at an interior node z with a patch $\omega_z := \operatorname{interior}(\cup \{T \in \mathcal{T} : z \in T\})$ we let $v_h(z) = p(z)$ where p is the $L^2(\omega)$ -best-approximation of $v_h|_{\omega_z}$ in $\mathcal{P}_1(\omega_z)$. The two components of φ_h are defined by the same procedure applied on the two components of φ . Well-established approximation estimates [BS, Cl, Ci, V1] prove that the terms on the left-hand side of (5.3) which contain $\varphi - \varphi_h$ are bounded by a constant times $\|D\varphi\|_{L^2(\Omega)} \leq \|(\varphi, v)\|_V$. It therefore remains to prove (5.4) $$\sum_{T \in \mathcal{T}} \alpha_T^2 / h_T^2 \|v - v_h\|_{L^2(T)}^2 + \sum_{E \in \mathcal{E}} \alpha_E^2 / h_E \|v - v_h\|_{L^2(E)}^2 \lesssim \|(\varphi, v)\|_V^2,$$ which is completely standard up to the weights $\alpha \lesssim h_T^{-1}$. Indeed, from the proof of first order convergence and stability of the Clément operator we know $$(5.5) h_T^{-2} \|v - v_h\|_{L^2(T)}^2 + h_E^{-1} \|v - v_h\|_{L^2(E)}^2 + \|\nabla v_h\|_{L^2(T)}^2 \lesssim \|\nabla v\|_{L^2(\omega_T)}^2$$ for each element $T \in \mathcal{T}$ with an edge $E \subset \partial T$ and its patch $\omega_T := \operatorname{interior}(\bigcup \{K \in \mathcal{T} : K \cap T \neq \emptyset\})$. Suppose in the first case that one vertex of T belongs to the boundary $\partial \Omega$. Then, the intersection of $\partial \omega_T$ with $\partial \Omega$ contains at least one edge and so (after $\alpha \lesssim h_T^{-1}$) a Friedrichs inequality shows A multiplication of (5.5) with $\alpha_T \geq \alpha_E$, a triangle inequality, and (5.6) yield (5.7) $$\alpha_{T} h_{T}^{-1} \|v - v_{h}\|_{L^{2}(T)} + \alpha_{E} h_{E}^{-1/2} \|v - v_{h}\|_{L^{2}(E)} \lesssim \kappa(\alpha, \mathcal{T}) \|\alpha \nabla v\|_{L^{2}(\omega_{T})}$$ $$\lesssim \kappa(\alpha, \mathcal{T}) \|\alpha(\varphi - \nabla v)\|_{L^{2}(\omega_{T})} + \kappa(\alpha, \mathcal{T}) \|D\varphi\|_{L^{2}(\omega_{T})}.$$ In the second case, the vertices of T are interior nodes and so $(v - v_h)|_T$ remains the same if we change v to v - z for an affine function z with on ω_T when we change v_h accordingly (cf. the above mentioned construction for details and a proof); the Clément approximation operator locally preserves affine functions. We choose the constant vector $A := \nabla z$ as the integral mean of φ on ω_T . As a consequence, (5.5) can be recast as $$(5.8) h_T^{-2} \|v - v_h\|_{L^2(T)}^2 + h_E^{-1} \|v - v_h\|_{L^2(E)}^2 + \|\nabla v_h - A\|_{L^2(T)}^2 \lesssim \|\nabla v - A\|_{L^2(\omega_T)}^2.$$ Hence (after $\alpha \leq h_T^{-1} \leq 1/\text{diam}(\omega_T)$ on ω_T) a Poincaré inequality shows (5.9) $$\|\alpha(\varphi - A)\|_{L^{2}(\omega_{T})} \lesssim \|h_{\tau}^{-1}(\varphi - A)\|_{L^{2}(\omega_{T})} \lesssim \|D\varphi\|_{L^{2}(\omega_{T})}.$$ A multiplication of (5.8) with α_T , a combination with (5.9), and the above arguments yield $$\alpha_T h_T^{-1} \| v - v_h \|_{L^2(T)} + \alpha_E h_E^{-1/2} \| v - v_h \|_{L^2(E)} \lesssim \kappa(\alpha, \mathcal{T}) \| \alpha(\nabla v - A) \|_{L^2(\omega_T)}$$ $$(5.10) \qquad \lesssim \kappa(\alpha, \mathcal{T}) \| \alpha(\varphi - \nabla v) \|_{L^2(\omega_T)} + \kappa(\alpha, \mathcal{T}) \| D\varphi \|_{L^2(\omega_T)}.$$ A Summation of (5.7) resp. (5.10) over all $T \in \mathcal{T}$ and $E \in \mathcal{E}$ concludes the proof of (5.3). Proof of Theorem 5.1. Given $(\varphi, v) \in V$, \mathcal{T} -piecewise integrations by parts shows $$r_{V}(\varphi, v) = f(v) - a(\vartheta_{h}, w_{h}; \varphi, v) - b(v, \varphi; \gamma_{h})$$ $$= \int_{\Omega} fv \, dx - \int_{\Omega} \varepsilon(\vartheta_{h}) : \mathbb{C}\varepsilon(\varphi) \, dx - \int_{\Omega} (\alpha^{2}(\vartheta_{h} - \nabla w_{h}) + \gamma_{h}) \cdot (\varphi - \nabla v) \, dx$$ $$= \sum_{T \in \mathcal{T}} \int_{T} (r^{T, w} \, v + r^{T, \vartheta} \cdot \varphi) dx + \sum_{E \in \mathcal{E}} \int_{E} (r^{E, w} \, v + r^{E, \vartheta} \cdot \varphi) ds$$ $$(5.11)$$ with the element and edge residual terms $$r^{T,\vartheta} = \operatorname{div}\mathbb{C}\varepsilon(\vartheta_h) - \alpha_T^2(\vartheta_h - \nabla w_h) - \gamma_h, \quad r^{E,\vartheta} = [\mathbb{C}\varepsilon(\vartheta_h)] \cdot n_E, r^{T,w} = f - \operatorname{div}(\alpha_T^2(\vartheta_h - \nabla w_h) + \gamma_h), \quad r^{E,w} = -[\gamma_h + \alpha^2(\vartheta_h - \nabla w_h)] \cdot n_E.$$ The Galerkin orthogonality allows the substitution of (φ, v) by $(\varphi - \varphi_h, v - v_h)$ in (5.11) for (φ_h, v_h) as in Lemma 5.2. From this and the lemma, we infer with Cauchy inequalities $$(5.13) r_{V}(v,\varphi) \leq \sum_{T \in \mathcal{T}} h_{T} \| (r^{T,\vartheta}, r^{T,w}/\alpha_{T}) \|_{L^{2}(T)} h_{T}^{-1} \| (\varphi - \varphi_{h}, \alpha_{T}(v - v_{h})) \|_{L^{2}(T)}$$ $$+ \sum_{E \in \mathcal{E}} h_{E}^{1/2} \| (r^{E,\vartheta}, r^{E,w}/\alpha_{E}) \|_{L^{2}(E)} h_{E}^{-1/2} \| (\varphi - \varphi_{h}, \alpha_{E}(v - v_{h})) \|_{L^{2}(E)}$$ $$\leq \sqrt{c_{12}} \eta_{V} \| (\varphi, v) \|_{V}. \qquad \Box$$ The estimator η_V is efficient: The converse inequality of (5.2) holds even in a more local form than stated (cf. the proof of (5.14) below). **Theorem 5.3.** There exists an $(h_{\mathcal{T}}, t)$ -independent constant c_{13} , which depends on α and \mathcal{T} only through $\kappa(\alpha, \mathcal{T})$, $c_3 = \|\alpha h_{\mathcal{T}}\|_{L^{\infty}(\Omega)}$, and c_{Θ} , such that (5.14) $$\eta_V \le c_{13} \left(\|r_V\|_{V^*} + \inf_{f_h \in \mathcal{L}^1(\mathcal{T})} \|h_{\mathcal{T}}/\alpha(f - f_h)\|_{L^2(\Omega)} \right).$$ Proof. For each triangle T adopt notation from (5.12) and let b_T be the cubic bubble-function (i.e., 27 times the product of all barycentric coordinates on T) which satisfies $\operatorname{supp}(b_T) = T$, $0 \le b_T \le \max b_T = 1$. Let f_h denote the $L^2(T)$ -best-approximation of f in $\mathcal{P}_1(T)$ and consider $\varphi := b_T r^{T,\vartheta}$ and $v := b_T \bar{r}^{T,w}/\alpha_T^2$, $\bar{r}^{T,w} := r^{T,w} - f + f_h$ in (5.11) to observe Equivalence of the norms $||b_T^{1/2} \cdot ||_{L^2(T)}$ and $||\cdot||_{L^2(T)}$ on a polynomial space (the components of $r^{T,\vartheta}$ and $\bar{r}^{T,w}$ belong to) and Young's inequality yield with $V_T := H_0^1(T)^3 \hookrightarrow V$ (and so $V_T^* = H^{-1}(T)^3$) in (5.15) $$\| r^{T,\vartheta} \|_{L^{2}(T)}^{2} + \frac{1}{2\alpha_{T}^{2}} \| \bar{r}^{T,w} \|_{L^{2}(T)}^{2} \lesssim \| b_{T}^{1/2} r^{T,\vartheta} \|_{L^{2}(T)}^{2} + \frac{1}{2\alpha_{T}^{2}} \| b_{T}^{1/2} \bar{r}^{T,w} \|_{L^{2}(T)}^{2}$$ $$= -\frac{1}{2\alpha_{T}^{2}} \| b_{T}^{1/2} \bar{r}^{T,w} \|_{L^{2}(T)}^{2} - \int_{T} b_{T}(f - f_{h}) \bar{r}^{T,w} dx / \alpha_{T}^{2} + r_{V}(v,\varphi)$$ $$\leq \frac{1}{2\alpha_{T}^{2}} \| b_{T}^{1/2} (f - f_{h}) \|_{L^{2}(T)}^{2} + \| r_{V} \|_{V_{T}^{*}} \|
(v,\varphi) \|_{V_{T}}.$$ Inverse estimates for the polynomials $b_T r^{T,\vartheta}$ and $b_T \bar{r}^{T,w}$ and $\alpha_T \lesssim 1/h_T$ guarantee $$(5.17) h_{T} \| (v, \varphi) \|_{V} \lesssim \| \varphi \|_{L^{2}(T)} + h_{T} \| \alpha_{T}(\varphi - \nabla v) \|_{L^{2}(T)}$$ $$\leq \| \varphi \|_{L^{2}(T)} + h_{T} \alpha_{T} \| \varphi \|_{L^{2}(T)} + h_{T} \alpha_{T} \| \nabla v \|_{L^{2}(T)}$$ $$\lesssim \| r^{T,\vartheta} \|_{L^{2}(T)} + \alpha_{T} \| v \|_{L^{2}(T)} \leq \| r^{T,\vartheta} \|_{L^{2}(T)} + \| \bar{r}^{T,w} \|_{L^{2}(T)} / \alpha_{T}.$$ A multiplication of (5.16) with h_T^2 and using (5.17) to absorb $h_T^2 \| \left(v, \varphi \right) \|_V$ we obtain This and a triangle inequality $\| r^{T,w} \|_{L^2(T)} \le \| \bar{r}^{T,w} \|_{L^2(T)} + \| f - f_h \|_{L^2(T)}$ prove The proof is the same for a parallelogram T with a different b_T . In the second part of this proof, we consider an interior edge E with patch $\omega_E := \operatorname{interior}(\cup \{T \in \mathcal{T} : E \subset \partial T\})$ and construct functions $b_E^k \in H_0^1(\omega_E)$ for non-negative integer k. On each of the two neighbouring elements T_1 and T_2 in $\overline{\omega}_E = T_1 \cup T_2$ the function b_E^k equals $p_k b_E - q_k^j b_{T_j}$ on T_j where b_E is the product of the two barycentric coordinates in T_j such that $b_E(s) = s/h_E(1-s/h_E)$ is quadratic in the arc-length parameter $0 < s < h_E$ along E. The (one-dimensional) monomial $p_k(s) = s^k$ for the parameter $s := t_E \cdot (x - x_1)$ (where t_E is the unit tangential vector along E and $x_1 \in E$ the first vertex of T) defines $p_k(x)$. The polynomial q_k (of degree $\leq K$) is chosen such that b_E^k is $L^2(T_j)$ -orthogonal to $\mathcal{P}_K(T_j)$ for j=1,2; the parameter K is the highest degree of the polynomials $r^{T_j,\vartheta}$, $\bar{r}^{T_j,w}$, $r^{E,\vartheta}$, and $r^{E,\vartheta}$. As a consequence, for $k=0,\ldots,K$, (5.20) $$\int_{\omega_E} r^{T,\vartheta} b_E^k dx = 0 \quad \text{and} \quad \int_{\omega_E} \bar{r}^{T,w} b_E^k dx = 0.$$ Let $r^{E,\vartheta} =: \sum_{k=0}^K \alpha_k \, p_k|_E$ (resp. $r^{E,w} =: \sum_{k=0}^K \beta_k \, p_k|_E$) define real coefficients $\alpha_0, \ldots, \alpha_K \in \mathbb{R}^2$ (resp. $\beta_0, \ldots, \beta_K \in \mathbb{R}$) and then set $\varphi := \sum_{k=0}^K \alpha_k \, b_E^k \in H_0^1(\omega_E)^2$ and $v := \sum_{k=0}^K \beta_k \, b_E^k / \alpha_E^2 \in H_0^1(\omega_E)$. The equivalence of norms $\|b_E^{1/2} \cdot \|_{L^2(E)}$ and $\|\cdot\|_{L^2(E)}$ (on a polynomial space the components of $r^{E,\vartheta}$ and $r^{E,w}$ belong to) and (5.20) show (with (5.12) at the end) (5.21) $$|| r^{E,\vartheta} ||_{L^{2}(E)}^{2} + || r^{E,w} ||_{L^{2}(E)}^{2} / \alpha_{E}^{2} \lesssim \int_{E} (r^{E,\vartheta} \cdot \varphi + r^{E,w} v) ds$$ $$= \sum_{j=1,2} \int_{T_{j}} (r^{T_{j},\vartheta} \cdot \varphi + \bar{r}^{T_{j},w} v) dx + \int_{E} (r^{E,\vartheta} \cdot \varphi + r^{E,w} v) ds$$ $$= r_{V}(v,\varphi) + \sum_{j=1,2} \int_{T_{j}} (f_{h} - f) v dx.$$ Since $f - f_h$ has the integral mean zero we have with the integral mean \bar{v} of v and a Poincaré inequality on T_j that, with $V_E := H_0^1(\omega_E)^3 \hookrightarrow V$, $V_E^* = H^{-1}(\omega_E)^3$, (5.21) leads to $$(5.22) \| r^{E,\vartheta} \|_{L^{2}(E)}^{2} + \| r^{E,w} \|_{L^{2}(E)}^{2} / \alpha_{E}^{2}$$ $$\lesssim \| r_{V} \|_{V_{E}^{*}} \| (\varphi, v) \|_{V} + h_{E} \| f - f_{h} \|_{L^{2}(\omega_{E})} \| \nabla v \|_{L^{2}(\omega_{E})}.$$ The arguments in (5.17) apply to the present $\|(\varphi, v)\|_V$ as well and yield $$(5.23) h_E \| r^{E,\vartheta} \|_{L^2(E)} + h_E/\alpha_E \| r^{E,w} \|_{L^2(T)} \lesssim \| r_V \|_{V_E^*} + h_E/\alpha_E \| f - f_h \|_{L^2(\omega_E)}.$$ A summation of the estimates (5.19) and (5.23) for all T and E concludes the proof since, (5.24) $$\sum_{T \in \mathcal{T}} \|r_V\|_{V_T^*}^2 + \sum_{E \in \mathcal{E}} \|r_V\|_{V_E^*}^2 \lesssim \|r_V\|_{V^*}^2.$$ Choose $\varphi_E \in V_E$ (extended by zero) with $$||r_V||_{V_E^*}^2 = ||\varphi_E||_{V_E}^2 = r_V(\varphi_E)$$ and set $\varphi_j = \sum_{E \in \mathcal{E}_j} \varphi_E$ for some partition $\mathcal{E} = \mathcal{E}_1 \cup \cdots \cup \mathcal{E}_J$ such that $(\omega_E : E \in \mathcal{E}_j)$ are pairwise disjoint and that $J \lesssim 1$. Then, (5.25) $$\sum_{E \in \mathcal{E}_i} \|r_V\|_{V_E^*}^2 = \sum_{E \in \mathcal{E}_i} r_V(\varphi_E) = r_V(\varphi_j) \le \|r_V\|_{V^*} \|\varphi_j\|_V.$$ By construction and since $(\omega_E : E \in \mathcal{E}_j)$ are pairwise disjoint, (5.26) $$\|\varphi_j\|_V^2 = \sum_{E \in \mathcal{E}_j} \|\varphi_E\|_{V_E}^2 = \sum_{E \in \mathcal{E}_j} \|r_V\|_{V_E^*}^2.$$ A combination of (5.25)-(5.26) shows (the main part of) (5.24). This concludes the proof. \Box # 6. Reliable and Efficient Computable Estimates for the residual in Q^* This section is devoted to the reliable and efficient estimation of $r_Q \in Q^*$ with the $L^2(\Omega)$ representation $r_h := \vartheta_h - \nabla w_h - \beta^2 \gamma_h$, which is L^2 -orthogonal to Q_h owing to the Galerkin property, in the norm $\|\cdot\|_{Q^*}$ by η_Q , (6.1) $$\eta_Q^2 := \sum_{T \in \mathcal{T}} \frac{h_T^2}{(h_T + \beta_T)^2} \| \operatorname{curl} r_h \|_{L^2(T)}^2 + \sum_{T \in \mathcal{T}} \| r_h / (1/\alpha + \beta) \|_{L^2(T)}^2 + \sum_{E \in \mathcal{E}} \frac{h_E}{\beta_E (h_E + \beta_E)} \| [r_h] \cdot \tau_E \|_{L^2(E)}^2.$$ The estimator is a lower and upper bound of the residual $||r_Q||_{Q^*}$. The reliability and efficiency proof are based on the following lemma. **Lemma 6.1.** If Ω is simply connected, we have (6.2) $$\sup_{z \in H^1(\Omega) \setminus \{0\}} \frac{(r_h; \operatorname{Curl} z)_{L^2(\Omega)}}{\|z\|_{L^2(\Omega)} + \|\beta \nabla z\|_{L^2(\Omega)}} \lesssim \|r_Q\|_{Q^*},$$ (6.3) $$||r_h/(1/\alpha+\beta)||_{L^2(\Omega)} \lesssim ||r_Q||_{Q^*},$$ (6.4) $$|| r_Q ||_{Q^*} \lesssim || \alpha r_h ||_{L^2(\Omega)} + \sup_{z \in H^1(\Omega) \setminus \{0\}} \frac{(r_h; \operatorname{Curl} z)_{L^2(\Omega)}}{||z||_{L^2(\Omega)} + ||t \nabla z||_{L^2(\Omega)}},$$ $$\| r_Q \|_{Q^*} \le \| r_h / \beta \|_{L^2(\Omega)}.$$ *Proof.* The definition of $\|\eta\|_Q$ (where $p, q \in L^2(\Omega)^2$, $p+q \neq 0$, and div p=0) reads (6.6) $$|| r_Q ||_{Q^*} = \sup_{p,q} \frac{(r_h; p+q)_{L^2(\Omega)}}{\left\{ || p ||_{H^{-1}(\Omega)}^2 + || q/\alpha ||_{L^2(\Omega)}^2 + || \beta(p+q) ||_{L^2(\Omega)} \right\}^{1/2}}.$$ Since Ω is simply connected and $p \in L^2(\Omega)$ is divergence free, we have $p = \operatorname{Curl} z := (-\partial z/\partial x_2, \partial z/\partial x_1)$ for some $z \in H^1(\Omega)$ [GR]. Adding a constant to z, if necessary, we obtain $\int_{\Omega} z \, dx = 0$ and infer from the existence of solutions to the Stokes equations that $z = \operatorname{div} \eta$ for some $\eta \in H_0^1(\Omega)^2$ [GR]; furthermore, writing $\psi = (-\eta_2, \eta_1) \in H_0^1(\Omega)^2$, (6.7) $$z = \operatorname{rot} \psi \quad \text{and} \quad \|\psi\|_{H_0^1(\Omega)} \le c_{14} \|z\|_{L^2(\Omega)},$$ where c_{14} depends only on Ω . Using this and an integration by parts, we deduce $$||z||_{L^{2}(\Omega)} = (z; \operatorname{rot} \psi)_{L^{2}(\Omega)} = \langle \operatorname{Curl} z; \psi \rangle_{H^{-1}(\Omega) \times H_{0}^{1}(\Omega)} = \langle p; \psi \rangle_{H^{-1}(\Omega) \times H_{0}^{1}(\Omega)}$$ $$\leq ||p||_{H^{-1}(\Omega)} ||\psi||_{H_{0}^{1}(\Omega)} \leq c_{14} ||p||_{H^{-1}(\Omega)} ||z||_{L^{2}(\Omega)}$$ and (by duality and integration by parts) $\|p\|_{H^{-1}(\Omega)} = \|\operatorname{Curl} z\|_{H^{-1}(\Omega)} \le \|z\|_{L^{2}(\Omega)}$, whence (6.8) $$||p||_{H^{-1}(\Omega)} \le ||z||_{L^{2}(\Omega)} \le c_{14} ||p||_{H^{-1}(\Omega)}.$$ Therefore, a substitution of $p = \operatorname{Curl} z$ and $||p||_{H^{-1}(\Omega)}$ by $||z||_{L^{2}(\Omega)}$ in (6.6) shows (6.9) $$|| r_h ||_{Q^*} \approx \sup_{q \in L^2(\Omega), z \in H_0^1(\Omega)} \frac{(r_h; q + \operatorname{Curl} z)_{L^2(\Omega)}}{|| z ||_{L^2(\Omega)} + || q/\alpha ||_{L^2(\Omega)} + || \beta(q + \operatorname{Curl} z) ||_{L^2(\Omega)}}.$$ The right-hand side of (6.9), equivalent to $||r_Q||_{Q^*}$, allows immediate proofs of (6.2) and (6.3): For q=0, we obtain (6.2); for z=0 we deduce (6.3) for a proper $q\in L^2(\Omega)^2$ from $$\frac{(r_h/(1/\alpha+\beta);q(1/\alpha+\beta))_{L^2(\Omega)}}{\|q(1/\alpha+\beta)\|_{L^2(\Omega)}} = \frac{(r_h;q)_{L^2(\Omega)}}{\|q(1/\alpha+\beta)\|_{L^2(\Omega)}} \le \frac{\sqrt{2}(r_h;q)_{L^2(\Omega)}}{\|q/\alpha\|_{L^2(\Omega)} + \|\beta q\|_{L^2(\Omega)}}.$$ In the verification of (6.4) show a triangle inequality, $$||t \nabla z||_{L^2(\Omega)} = ||t \operatorname{Curl} z||_{L^2(\Omega)} \le ||t(q + \operatorname{Curl} z)||_{L^2(\Omega)} + ||t q||_{L^2(\Omega)},$$ and $t < \alpha^{-1}$ resp. $t < \beta$ that (6.10) $$||z||_{L^{2}(\Omega)} + ||t\nabla z||_{L^{2}(\Omega)} + ||q/\alpha||_{L^{2}(\Omega)}$$ $$\leq ||z||_{L^{2}(\Omega)} + 2||q/\alpha||_{L^{2}(\Omega)} + ||\beta(q + \operatorname{Curl} z)||_{L^{2}(\Omega)}.$$ A substitution of the lower bound $||z||_{L^2(\Omega)} + ||t\nabla z||_{L^2(\Omega)}$ resp. $||q/\alpha||_{L^2(\Omega)}$ for (6.10) in the terms $(r_h; \operatorname{Curl} z)_{L^2(\Omega)}$ resp. $(r_h; q)_{L^2(\Omega)}$ of the right-hand side of (6.9) shows (6.4). The estimate (6.5) follows immediately from (6.6). The error estimator η_Q is a (global) reliable upper bound. **Theorem 6.2.** Suppose that Ω is simply connected and that \mathcal{T} consists of triangles. There exists an $(h_{\mathcal{T}}, t)$ -independent constant c_{15} , which depends on α and \mathcal{T} only through $\kappa(\alpha, \mathcal{T})$, and c_{Θ} , such that *Proof.* The (closure of the) domain is split into two (essentially) disjoint (closed) sets A_1 and A_2 according to the value of β on neighbouring elements by $$A_1 := \bigcup \{ T \in \mathcal{T} : 2t < \beta_K \text{ for some } K \in
\mathcal{T} \text{ with } K \cap T \neq \emptyset \},$$ $$A_2 := \bigcup \{ T \in \mathcal{T} : 2t \ge \beta_K \text{ for all } K \in \mathcal{T} \text{ with } K \cap T \neq \emptyset \}.$$ $(A_1 \text{ is } \{T \in \mathcal{T} : 2t < \beta_T\} \text{ enlarged by neighbour elements.})$ Define $r_i := r_h$ on A_i and $r_j := 0$ on $\omega \setminus A_j$ for each j = 1, 2 so that we have $r_h = r_1 + r_2$. The estimates (6.4) and (6.5) can be separately applied to r_1 and r_2 (see the proof of Lemma 6.1) and show, with $|||z|||_{\omega} := ||z||_{L^2(\omega)} + t ||\nabla z||_{L^2(\omega)}$ for $\omega \subseteq \Omega$, that $$|| r_{Q} ||_{Q^{*}} \leq || r_{1} ||_{Q^{*}} + || r_{2} ||_{Q^{*}}$$ $$\leq || r_{1}/\beta ||_{L^{2}(A_{1})} + || \alpha r_{2} ||_{L^{2}(A_{2})} + \sup_{z \in H^{1}(\Omega) \setminus \{0\}} \frac{(r_{2}, \operatorname{Curl} z)_{L^{2}(\Omega)}}{||| z |||_{\Omega}}.$$ We claim $1/t \lesssim \alpha$ on A_1 . For a proof consider (not necessarily distinct) $T, K \in \mathcal{T}$ with $K \cap T \neq \emptyset$ and $2t < \beta_K$. As a consequence, the definition of β_K yields $1/t \leq 2\alpha_K/\sqrt{3}$ and with $\alpha_K \leq \kappa(\alpha, T) \alpha_T$ the assertion $1/t \lesssim \alpha$. This estimate yields (6.13) $$1/\beta \lesssim 1/(1/\alpha + \beta)$$ on A_1 , whence $||r_1/\beta||_{L^2(A_1)} \lesssim \eta_Q$. Because of $\alpha < 1/t \le 2/\beta$ on A_2 , we have (6.14) $$\|\alpha r_2\|_{L^2(A_2)} \le 2 \|\min\{\alpha, 1/\beta\} r_2\|_{L^2(A_2)} \le 2 \eta_Q.$$ Given $z \in H^1(\Omega) \setminus \{0\}$, it remains to check $(r_h; \operatorname{Curl} z)/|\|z\||_{\Omega} \leq \eta_Q$. The bound of $(r_2, \operatorname{Curl} z)_{L^2(\Omega)} = (r_2; \operatorname{Curl}(z-z_h))_{L^2(\Omega)}$ utilises the observation that r_h and so r_2 is $L^2(\Omega)$ -orthogonal onto \mathcal{T} -piecewise constants such as $\operatorname{Curl} z_h$ for the Clément approximation z_h to z in $\mathcal{S}^1_0(\mathcal{T})$. Besides $\|z-z_h\|_{L^2(T)} \lesssim \|z\|_{L^2(\omega_T)}$, we have $$(6.15) h_T^{-2} \|z - z_h\|_{L^2(T)}^2 + h_E^{-1} \|z - z_h\|_{L^2(E)}^2 + \|\nabla(z - z_h)\|_{L^2(T)}^2 \lesssim \|\nabla z\|_{L^2(\omega_T)}^2$$ as in (5.5). With $||z-z_h||_{L^2(T)} \lesssim \min\{||z||_{L^2(\omega_T)}, h_T||\nabla z||_{L^2(\omega_T)}\}$ and $\beta_T \leq 2t$ if $T \subset A_2$, $$(6.16) (1 + \beta_T/h_T) \|z - z_h\|_{L^2(T)} \lesssim \|z\|_{L^2(\omega_T)} + t \|\nabla z\|_{L^2(\omega_T)} \lesssim \|z\|_{\omega_T}.$$ For each edge $E \subset A_2 \cap \partial T$ with neighbour $T \in \mathcal{T}$, we have $\beta_E := \max\{\beta_K : E \subset K \in \mathcal{T}\} \le 2t$ and a trace inequality [Cl], [BS, p. 35], The definition of the norm $|||z|||_{\omega_T}$ and (6.16)-(6.17) show eventually that $$(6.18) \qquad \left(\beta_E(1+\beta_E/h_E)\right)^{1/2} \|z-z_h\|_{L^2(E)} \lesssim \|z\|_{\omega_T}^{1/2} \beta_E^{1/2} \|\nabla z\|_{L^2(\omega_T)}^{1/2} \leq \|z\|_{\omega_T}.$$ A \mathcal{T} -piecewise integration by parts, Cauchy inequalities, (6.16), and (6.18) yield $$(r_{2}; \operatorname{Curl} z)_{L^{2}(\Omega)} = (r_{2}; \operatorname{Curl}(z - z_{h}))_{L^{2}(\Omega)} = (\operatorname{curl}_{T} r_{2}; z - z_{h})_{L^{2}(\Omega)} + ([r_{2}] \cdot \tau_{\mathcal{E}}; z - z_{h})_{L^{2}(\cup \mathcal{E})}$$ $$\leq \sum_{E \in \mathcal{E}} \sqrt{\beta_{E}(1 + \beta_{E}/h_{E})} \|z - z_{h}\|_{L^{2}(E)} \|[r_{2}] \cdot \tau_{E}/\sqrt{\beta_{E}(1 + \beta_{E}/h_{E})} \|_{L^{2}(E)}$$ $$+ \sum_{T \in \mathcal{T}} (1 + \beta_{T}/h_{T}) \|z - z_{h}\|_{L^{2}(T)} \|\operatorname{curl} r_{h}/(1 + \beta_{T}/h_{T}) \|_{L^{2}(T)}$$ $$\leq \|\|z\|_{\Omega} (\eta_{Q}^{2} + \sum_{E \subset \partial A_{2}} \|[r_{2}] \cdot \tau_{E}/\sqrt{\beta_{E}(1 + \beta_{E}/h_{E})} \|_{L^{2}(E)}^{2})^{1/2}$$ $$\leq \|\|z\|_{\Omega} (\eta_{Q}^{2} + \sum_{E \subset \partial A_{2}} \|[r_{1}] \cdot \tau_{E}/\sqrt{\beta_{E}(1 + \beta_{E}/h_{E})} \|_{L^{2}(E)}^{2})^{1/2}.$$ The summation in the last sums in (6.19) is over all edges E which do not belong to the boundary Ω but to the boundary of A_2 . While the jumps of $[r_h] \cdot \tau_E$ do contribute to η_Q the remaining jumps of $[r_2] \cdot \tau_E = [r_h] \cdot \tau_E - [r_1] \cdot \tau_E$ do not; we employed a triangle inequality in the last step and focus on the estimate of $\|[r_1] \cdot \tau_E / \sqrt{\beta_E(1 + \beta_E/h_E)}\|_{L^2(E)}$ for an edge $E = T_1 \cap T_2$ with $T_j \subset A_j$, $T_j \in \mathcal{T}$, for j = 1, 2. Therefore, the definition of A_2 leads to $\beta_{T_j} \leq 2t$ for j = 1, 2 while there exists a $K \in \mathcal{T}$ with $K \cap T_1 \neq \emptyset$ and $2t < \beta_K$. Thus (6.20) $$4/t^2 - 4\alpha_K^2 = 4/\beta_K^2 < 1/t^2$$, whence $3/t^2 < 4\alpha_K^2$. The reverse arguments show $4\alpha_{T_1}^2 \leq 3/t^2$ and so, with $\alpha_K \leq \kappa(\alpha, \mathcal{T})\alpha_{T_1}$ and (6.20), (6.21) $$1/t \lesssim \alpha_K \lesssim \alpha_{T_1} \lesssim 1/t$$, whence $\alpha_{T_1} \approx 1/t$. This, $0 < \alpha$, and the definition of β show (6.22) $$1/\beta_{T_1}^2 = 1/t^2 - \alpha_{T_1}^2 \le 1/t^2 \lesssim \alpha_{T_1}^2, \text{ whence } 1/\beta_{T_1} \lesssim \min\{1/\beta_{T_1}, \alpha_{T_1}\}.$$ On the other hand, r_1 vanishes on T_2 and equals r_h on T_1 , hence, the jump $[r_1] \cdot \tau_E$ equals the trace $(r_h \cdot \tau_E|_{T_1})|_E$ of $r_h \cdot \tau_E$ on T_1 . A trace inequality for r_h on $E \subset \partial T_1$ and the inverse estimate $h_E \| \nabla r_h \|_{L^2(T_1)} \lesssim \| r_h \|_{L^2(T_1)}$ for the polynomial $r_h|_{T_1}$ show (6.23) $||[r_1] \cdot \tau_E||_{L^2(E)} \le ||r_h|_{T_1} ||_{L^2(E)} \lesssim h_E^{-1/2} ||r_h||_{L^2(T_1)} + h_E^{1/2} ||\nabla r_h||_{L^2(T_1)} \lesssim h_E^{-1/2} ||r_h||_{L^2(T_1)}.$ With $\beta_{T_1} \le \beta_E$ and (6.22)-(6.23) we deduce (6.24) $$\|[r_1] \cdot \tau_E / \sqrt{\beta_E (1 + \beta_E / h_E)} \|_{L^2(E)} \lesssim \|r_h\|_{L^2(T_1)} / \beta_E \lesssim \|\min\{\alpha, 1/\beta\} r_h\|_{L^2(T_1)}.$$ The evaluation of (6.24) in (6.19) concludes the proof. Remark 6.1. The assumption on triangles can be weakened to the hypothesis on parallelograms $T \in \mathcal{T}$ that $\int_T p \, r_h \, dx$ vanishes for all $p \in P_1(T)$. (The only condition is that $\int_\Omega \operatorname{curl} z_h \, r_h \, dx = 0$ which is then satisfied for $z_h|_T$ in $P_1(T)$ resp. $Q_1(T)$.) The error estimator η_Q is efficient: The converse inequality of (6.11) holds even in a more local form than stated (cf. the proof of (6.25) below). **Theorem 6.3.** Suppose that Ω is simply connected. Then there exists an $(h_{\mathcal{T}}, t)$ -independent constant c_{16} , which depends on α and \mathcal{T} only through $\kappa(\alpha, \mathcal{T})$, and c_{Θ} , such that $$(6.25) \eta_Q \le c_{16} \| r_Q \|_{Q^*}.$$ Proof. For each triangle T let b_T be a bubble-function as in the first part of the proof of Theorem 5.3; set $z|_T := b_T \operatorname{curl} r_h/(1 + \beta_T/h_T) \in H^1_0(T)$ and define $||| \cdot |||_{\omega} := || \cdot ||_{L^2(\omega)} + || \beta \nabla \cdot ||_{L^2(\omega)}$ for $\omega \subseteq \Omega$. Then, equivalence of the norms $||b_T^{1/2} \cdot ||_{L^2(T)}$ and $|| \cdot ||_{L^2(T)}$ for polynomials, an T-piecewise integration by parts, and (6.2) of Lemma 6.1 show (6.26) $$\| \operatorname{curl}_{\mathcal{T}} r_h \|_{L^2(\Omega)}^2 \lesssim ((1 + \beta/h_{\mathcal{T}})z; \operatorname{curl}_{\mathcal{T}} r_h)_{L^2(\Omega)}$$ = $(\operatorname{Curl}_{\mathcal{T}} z(1 + \beta/h_{\mathcal{T}}); r_h)_{L^2(\Omega)} \leq \| r_Q \|_{Q^*} \| \| (1 + \beta/h_{\mathcal{T}})z \| \|_{\Omega}.$ By $\|\nabla b_T\|_{L^\infty(T)} \lesssim 1/h_T$ and (the inverse estimate) $h_T \|\nabla \operatorname{curl} r_h\|_{L^2(T)} \lesssim \|\operatorname{curl} r_h\|_{L^2(T)}$, (6.27) $$||| (1 + \beta_T/h_T)z|||_T = ||b_T \operatorname{curl} r_h||_{L^2(T)} + \beta_T ||\nabla(b_T \operatorname{curl} r_h)||_{L^2(T)} \lesssim ||\operatorname{curl} r_h||_{L^2(T)} + \beta_T (||\nabla b_T \operatorname{curl} r_h||_{L^2(T)} + ||\nabla \operatorname{curl} r_h||_{L^2(T)}) \lesssim (1 + \beta_T/h_T) ||\operatorname{curl} r_h||_{L^2(T)}.$$ Combining (6.26)-(6.27) we deduce the asserted estimate of the volume contributions (6.28) $$\| \operatorname{curl}_{\mathcal{T}} r_h / (1 + \beta_{\mathcal{T}} / h_{\mathcal{T}}) \|_{L^2(\Omega)} \lesssim \| r_Q \|_{Q^*}.$$ The related proof of the estimate on the edge contributions is more involved. For each $E \in \mathcal{E}$, say $E = \text{conv}\{a,b\}$ for end-points $a,b \in \mathcal{N}$ and with patch ω_E consider $\sigma_E := \{x \in \omega_E : 0 < \tau_E \cdot (x-a) < h_E\}$, which might be strictly smaller than ω_E if some inner angles are larger than $\pi/2$. The reduced patch σ_E consists of (at most) two (neighbouring) elements T_1 and T_2 on which we define $b_E^k \in H_0^1(\sigma_E) \subseteq H_0^1(\omega_E)$ as in the second part of the proof of Theorem 5.3. Given $[r_h] \cdot \tau_E$ set $\phi_E := \sum_{k=0}^K \alpha_k b_E^k \in H_0^1(\sigma_E) \subseteq H_0^1(\omega_E)$ with $(\phi_E)|_E = b_E[r_h] \cdot \tau_E$ and so (6.29) $$h_E^{-1/2} \| \phi_E \|_{L^2(\omega_E)} + h_E^{1/2} \| \nabla \phi_E \|_{L^2(\omega_E)} \lesssim \| [r_h] \cdot \tau_E \|_{L^2(E)}.$$ To cover the situation of very small β_E/h_E , we employ an idea of Verfürth [V2] and consider, for $0 < \delta_E := \min\{1, \beta_E/h_E\}$, the affine bijection $\Phi : \sigma_E \to \omega_E^{\delta}$ defined by (6.30) $$\Phi(x) := a + s \tau_E + \delta_E t n_E \text{ for } x = a + s \tau_E + t n_E,$$ onto a smaller domain ω_E^{δ} ($s := \tau_E \cdot (x - a)$, $t := n_E \cdot (x - a)$); Φ describes a stretch in the direction n_E by a factor δ_E . We define $\Psi_E := \Phi^{-1} : \omega_E^{\delta} \to \sigma_E$ with constant derivative $B := \tau_E \otimes \tau_E + \delta^{-1} \ n_E \otimes n_E$ and its determinant $\det B =
1/\delta_E$; let $z_E := \phi_E \circ \Psi_E \in H_0^1(\omega_E^{\delta}) \subseteq H_0^1(\omega_E)$ and set $\rho_E^2 := \beta_E(1 + \beta_E/h_E)$ for each $E \in \mathcal{E}$. The family $(z_E : E \in \mathcal{E})$ (regarded as functions in $H_0^1(\Omega)$) has finite overlap and so $z := \sum_{E \in \mathcal{E}} z_E/\rho_E^2$ is well-defined in $H_0^1(\Omega)$. Since $z|_E = (\phi_E)|_E$, an integration by parts shows (after equivalence $\|b_E^{1/2} \cdot \|_{L^2(E)}$ and $\|\cdot\|_{L^2(E)}$ for polynomials) (6.31) $$\| [r_h] \cdot \tau_{\mathcal{E}} / \rho_{\mathcal{E}} \|_{L^2(\cup \mathcal{E})}^2 \lesssim \sum_{E \in \mathcal{E}} \rho_E^{-2} \int_E [r_h] \cdot \tau_E z_E ds$$ $$= \sum_{E \in \mathcal{E}} \rho_E^{-2} \int_{\omega_E^{\delta}} r_h \cdot \operatorname{Curl} z_E dx = (r_h; \operatorname{Curl} z)_{L^2(\Omega)} \leq \| r_Q \|_{Q^*} \| \| z \|_{\Omega},$$ where we used the transformed analogy $\int_{\omega_E^{\delta}} \operatorname{curl} r_h z_E dx = 0$ of (5.20). Since $z_E = \phi_E \circ \Psi$, we infer from a transformation formula that $$(6.32) \quad \|z_E\|_{L^2(\omega_E^{\delta})} \le \delta_E^{1/2} \|\phi_E\|_{L^2(\omega_E)} \quad \text{and} \quad \|\nabla z_E\|_{L^2(\omega_E^{\delta})} \le \sqrt{\delta_E + 1/\delta_E} \|\nabla \phi_E\|_{L^2(\omega_E)}.$$ Since the ω_E have finite overlap, $\beta_E := \|\beta\|_{L^{\infty}(\Omega_E)}$, a combination of (6.29) and (6.32) show $$(6.33) \quad |\|z\||_{\Omega}^{2} \lesssim \sum_{E \in \mathcal{E}} (\|z_{E}\|_{L^{2}(\omega_{E}^{\delta})}^{2} + \beta_{E}^{2} \|\nabla z_{E}\|_{L^{2}(\omega_{E}^{\delta})}^{2}) / \rho_{E}^{4}$$ $$\lesssim \sum_{E \in \mathcal{E}} (\delta h_{E} + \beta_{E}^{2} / (\delta h_{E})) \|[r_{h}] \cdot \tau_{E}\|_{L^{2}(E)}^{2} / \rho_{E}^{4} \leq \sum_{E \in \mathcal{E}} \|[r_{h}] \cdot \tau_{E} / \rho_{E}\|_{L^{2}(E)}^{2}$$ because, in any case, $(\delta h_E + \beta_E^2/(\delta h_E)) \leq \rho_E^2$. A combination of (6.31) and (6.33) proves $\|[r_h] \cdot \tau_{\mathcal{E}}/\rho_{\mathcal{E}}\|_{L^2(\cup \mathcal{E})}^2 \lesssim \|r_Q\|_{Q^*}$. The remaining assertion (6.3) is already verified. #### 7. Numerical Experiments Three numerical examples illustrate that (i) the expected experimental convergence rate on a unit square and small polynomial degrees even for a uniform mesh-refining in Subsection 7.2, (ii) the Algorithm (A) improves the convergence rate to the optimal value in the two remaining singular examples, and (iii) local refinements for cubic polynomial degree (i.e. p = 3 below) indicate boundary layers and singular points for. 7.1. Computer implementation. Throughout this section, we report on various numerical aspects of a finite element realisation of (2.4) after [CS] in Netgen/NGSolve. This amounts in (2.4) with three components of $$V_h = \mathcal{S}_0^{p+1} \times (\mathcal{S}_0^p \oplus B_{p+2}(\mathcal{T}))^2$$ (that is piecewise polynomials of degree p+1, p, p enriched by bubble functions in the second and third component) with B_{p+2} equal to the cubic bubble function times a polynomial of degree $\leq p-1$ on each triangle, while $$Q_h = \mathcal{L}^{p-1}(\mathcal{T})^2.$$ We realized (2.4) for a stabilization $\alpha = 1/(h+t)$ with p = 1, 2, 3 and displayed the numerical results throughout this section. Further numerical experiments (not displayed) proved to us that the curves for the estimators and the phenomena described here are (qualitatively) very similar to the results and conclusions discussed in the subsequent subsections. The discrete system of equations (2.4) with N degrees of freedom (i.e. the dimension of the discrete system) was solved by a sparse direct solver. In all cases, e.g. for the right-hand side and all 7 terms in the error estimators (1.3) are fully evaluated with exact quadrature formulae without any approximation. The results for sequence of uniform meshes and the adaptive meshes are the output of Algorithm (A). There thickness t=0.1,0.01,0.001 cover the range of applications for the RM plate. A thicker domain would need a 3D simulation, a thinner plane would rather be approximated by a Kirchhoff plate. The material parameters read E=1 and $\nu=0.2$ for a unit square or an L-shaped plate Ω . Since the error is not immediately accessible, the convergence history plots exclusively display the equivalent estimator η_R . 7.2. Unit Square. The unit square domain $\Omega = (0,1)^2$ is loaded with a constant volume force f = 1. Figure 1 displays the convergence history for uniform mesh-refining and the p-th order scheme and the thicknesses $t = 10^{-k}$ for p, k = 1, 2, 3 plus adaptive mesh-refining exclusively for p = 3. FIGURE 1. Example of Subsection 7.2: The error estimator η_R is plotted as a function of the degrees of freedom N for polynomial degrees p=1,2,3, thickness' $t=10^{-k}$ for k=1,2,3, and for uniform and (solely for p=3) adaptive mesh refinements. The experimental convergence rates are p for p=1,2 but sub-optimal for p=3 and hence Algorithm (A) was run for p=3 and indeed improves the empirical convergence rate up to order three (with the exception of the last few entries for t=0.001 which we view as numerical instability). Except for the last few entries for the thinnest plate (where a Kirchhoff plate theory seems to be preferable) the convergence history seems to be robust with respect to the thickness parameter. In the first example, adaptivity significantly improves the convergence speed in comparison with a uniform mesh-refining for the degree p=3 while there is no real improvement for p=1,2. Our interpretation is that the regularity of the exact solution is quite high to ensure the optimal second order convergence but not high enough to allow for third order convergence. 7.3. **Small Stamps.** The second example illustrates small singularities in the right-hand side. The unit square domain $\Omega = (0,1)^2$ is loaded with a piecewise constant volume force f(x,y) which equals zero or 400 (which corresponds to a total force 1) on the stamp $(0.3,0.35) \times (0.2,0.25)$. Figure 2 displays the convergence history for uniform and adaptive mesh-refining and the p-th order scheme and the thicknesses $t = 10^{-k}$ for p = 1, 2, 3 and k = 1, 2. The coarsest FIGURE 2. Example of Subsection 7.3: The error estimator η_R is plotted as a function of the degrees of freedom N for polynomial degrees p = 1, 2, 3, thickness' $t = 10^{-k}$ for k = 1, 2, and for uniform and adaptive mesh refinements. mesh resolved $(0.3, 0.35) \times (0.2, 0.25)$ and hence already is reasonably fine. The uniform mesh-refinements lead to sub-optimal convergence rates while the adaptive Algorithm (A) yields optimal convergence rates with significant improvements for p = 2 and p = 3. The adaptive mesh-refining via Algorithm (A) resolves (i) boundary layers (stronger for smaller t) along the boundary of the domain as well as (ii) singularities of the loads (i.e., location of the jumps of the right-hand side) at the boundary of $(0.3, 0.35) \times (0.2, 0.25)$. Figure 3 displays a mesh with 5267 element domains and N=206961 degrees of freedom for t=.01 with a combination of local refinements along $\partial\Omega$ and near the vertices of $(0.3, 0.35) \times (0.2, 0.25)$ for p=3. FIGURE 3. Triangulation for the example from Subsection 7.3 generated by the adaptive Algorithm (A) with 5267 element domains with p=3, N=206961 degrees of freedom, and thickness t=.01. One observes some balance of local mesh-refining towards the outer boundaries (for boundary layer resolution) and towards the vertices of the stamp with discontinuities of the applied load. 7.4. **L-Shaped Plate.** An L-shaped plate $\Omega = (-1,1)^2 \setminus [0,1]^2$ is clamped along the two edges of the domain which form the re-entering corner and is free at the remaining boundary. The (unknown) exact solution is expected to be singular near the origin at the re-entering corner even though the load is uniformly distributed. Figure 4 displays the convergence history for uniform mesh-refining and the p-th order scheme and the thicknesses $t = 10^{-k}$ for p, k = 1, 2, 3. FIGURE 4. Example of Subsection 7.4: The error estimator η_R is plotted as a function of the degrees of freedom N for polynomial degrees p = 1, 2, 3, thickness' $t = 10^{-k}$ for k = 1, 2, 3, and for uniform mesh refinement. The experimental convergence rates are sub-optimal and significantly improved by the adaptive Algorithm (A) as depicted in figure 5. # ACKNOWLEDGMENT The authors are pleased to thank one anonymous referee for Remark 4.2. #### REFERENCES - [AB] D.N. Arnold, F. Brezzi: Some new elements for the Reissner-Mindlin plate model. In *Boundary value problems for partial differential equations and applications*, eds. J.L. Lions and C. Baiocchi (Masson, 1993), pp. 287-292. - [AF] D.N. Arnold, R.S. Falk: A uniformly accurate finite element method for the Reissner-Mindlin plate model. SIAM J. Numer. Anal. 26 (1989) 1276—1290. FIGURE 5. Convergence history for the example of Subsection 7.4 with the adaptive Algorithm (A), where the error estimator η_R is plotted as a function of the degrees of freedom N for polynomial degrees p = 1, 2, 3 and thickness' $t = 10^{-k}$ for k = 1, 2, 3 and for adaptive mesh refinement. - [BR] I. Babuška, W.C. Rheinboldt: Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15 (1978) 736–754. - [BBF] K.J. Bathe, F. Brezzi, M. Fortin: Mixed-interpolated elements for Reissner-Mindlin plates. *Internat. J. Numer. Methods. Engrg.* **28** (1989) 1787—1801. - [BL] D. Boffi, C. Lovadina: Analysis of new augmented Lagrangian formulations for mixed finite element schemes. *Numer. Math.* **75** (1997) 405—419. - [B1] D. Braess: Stability of saddle point problems with penalty. M2AN 30 No. 6 (1996) 731—742. - [B2] D. Braess: Finite Elements. Cambridge University Press (1997). - [BF] F. Brezzi, M. Fortin: Mixed and hybrid finite element methods. Springer-Verlag (1991).
- [BFS] F. Brezzi, M. Fortin, R. Stenberg: Error analysis of mixed-interpolated elements for Reissner-Mindlin plates. *Math. Models and Methods in Appl. Sci.* 1 (1991) 125—151. - [BS] S.C. Brenner, L.R. Scott: The mathematical theory of finite element methods. Texts in Applied Mathematics 15 Springer New York 1994. - [CS] D. Chapelle. R. Stenberg: An optimal low-order locking-free finite element method for Reissner-Mindlin plates. *Math. Mod. Meth. Appl. Sc.* 8 (3) (1998) 407—430. - [C1] C. Carstensen: Quasi-interpolation and a posteriori error analysis in finite element method. M2AN 33 (1999) 1187-1202. - [C2] C. Carstensen: Residual-Based A Posteriori Error Estimate for a Nonconforming Reissner-Mindlin Plate Finite Element. SIAM J. Numer. Anal. 39 (2002) 2034–2044. - [Ci] P.G. Ciarlet: The finite element method for elliptic problems. North-Holland, Amsterdam (1978). - [Cl] P. Clément: Approximation by finite element functions using local regularization. RAIRO Sér. Rouge Anal. Numér. R-2 (1975) 77—84. - [EEHJ] K. Eriksson, D. Estep, P. Hansbo, C. Johnson: Introduction to adaptive methods for differential equations. *Acta Numerica* (1995) 105—158. - [GR] V. Girault, P.-A. Raviart: Finite Element Methods for Navier-Stokes Equations. Berlin-Heidelberg-New York-Tokyo: Springer 1986. - [Li] E. Liebermann: A posteriori error estimator for a mixed finite element method for the Reissner-Mindlin plate. *Math. Comp.* (2000) - [Lo] C. Lovadina: A new class of finite elements for Reissner-Mindlin plates. SIAM J. Numer. Anal. 33 (1996) 2457—2467. - [LM] J.L. Lions, E. Magenes: Non-homogeneous boundary value problems and applications, Vol. I. Berlin–Heidelberg–New York: Springer 1972. - [S] J. Schöberl, Multigrid Methods for a class of parameter dependent problems in primal variables, Technical Report 99-03 Spezialforschungsbereich F013, 1999, Johannes Kepler University, 4040-Linz, Austria. - [V1] R. Verfürth: A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley-Teubner (1996). - [V2] R. Verfürth: Robust a posteriori error estimators for singularly perturbed reaction-diffusion equations. Numer. Math. 78 (1998) 479—493. HUMBOLDT-UNIVERSITT ZU BERLIN, UNTER DEN LINDEN 6, 10099 BERLIN, GERMANY E-mail address: cc@math.hu-berlin.de SFB F013 Numerical and Symbolic Scientific Computing, Johannes Kepler University Linz, Freistädterstrasse 313, A-4020 Linz, Austria. E-mail address: joachim@sfb013.uni-linz.ac.at