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Abstract. Recent results prove that Nédélec edge elements do
not achieve optimal rate of approximation on general quadrilateral
meshes. In particular, lowest order edge elements provide stable
but non convergent approximation of Maxwell’s eigenvalues. In
this paper we analyze a modification of standard edge element
that restores the optimality of the convergence. This modification
is based on a projection technique that can be interpreted as a
reduced integration procedure.

1. Introduction

In this paper we consider the finite element approximation on general
quadrilateral meshes of the Maxwell eigenvalue problem: find λ ∈ R

such that for a nonvaninshing u : Ω → R
2 it holds

(1)

curl curlu = λu in Ω

div u = 0 in Ω

u · t = 0 on ∂Ω,

where Ω is a polygonal domain and t denotes a unit vector tangent to
its boundary ∂Ω.

It is well known that standard finite elements are not well suited for
the approximation of problem (1) and that the use of edge finite ele-
ments provides good results in two and three dimensions when affine

meshes are employed. We refer the reader to the papers [10, 5, 3, 4,
12, 6] (see also [9, 11] for a survey). When the mesh is non affine,
i.e., when the actual elements cannot be obtained by affine transfor-
mation from a reference element, the situation is more complicated.
A recent result (see [1]) implies that on general quadrilateral meshes
(such meshes are in general bilinear, hence nonaffine) edge elements do
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not achieve optimal approximation properties. Lowest order edge ele-
ment, in particular, do not provide convergent approximation to (1) on
general quadrilateral meshes. We shall show numerical results confirm-
ing this claim in Section 4. When using general order edge element, a
suboptimal rate of convergence is to be expected; in Section 4 we find
numerical demonstrations of this behavior as well.

In this paper, we present a modification of edge finite elements which
restores the optimal rate of convergence for any order of approximation.
This modification can be interpreted as a reduced integration procedure
or as a projection technique. In particular it is worth mentioning that,
when implemented as a reduced integration scheme, our method does
not require any additional cost with respect to the standard one. On
affine meshes, modified edge elements coincide with the stantard ones.

The structure of the paper is as follows: in Section 2 we present the
standard variational formulation (VF) of problem (1) and its equivalent
mixed formulation (MF). The finite element formulation (VFh) associ-
ated with (VF) is known to be not convergent on general quadrilateral
meshes. Moreover, we consider the discretization (MFh) of (MF), to-
gether with the projection scheme (EPh) and the reduced integration
procedure (RIh). In Section 3, which is the core part of this paper, we
proof that actually the three formulations (MFh), (EPh), and (RIh)
are equivalent. As a consequence of the theory developed in [1], this
shows that they provide optimally convergent solutions to our prob-
lem on general distorted quadrilateral meshes. Finally, in Section 4 we
show numerical results fully confirming our theory.

2. Discrete eigenvalue problems

Let Ω be a polygonal domain in R
2. We are dealing with the Hilbert

spaces

V = H0(curl) = {v ∈ [L2(Ω)]2 : curlv ∈ L2, v · t = 0 on ∂Ω}

Q = L2(Ω)

and the following standard Variational Formulation for problem (1).
Find 0 6= λ ∈ R such that for 0 6= u ∈ V it holds

(VF) (curlu, curlv) = λ(u, v) ∀v ∈ V.

An equivalent Mixed Formulation reads: find λ ∈ R such that for
0 6= p ∈ Q and u ∈ V it holds

(MF)
(u,v) + (curlv, p) = 0 ∀v ∈ V,

(curlu, q) = −λ(p, q) ∀q ∈ Q.
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For the discretization of (1) we consider a sequence of regular meshes
of quadrilateral elements. The definition of regularity in this case differs
from the standard one for triangular meshes, since we have to make
sure that the quadrilaterals do not degenerate to triangles. A possible
definition, according to [8, A.2, pp. 104–105] or [13], is the following
one. From a generic quadrilateral K we obtain four triangles by the
four possible choices of three vertices from the vertices of K, and we
define ρK as the smallest diameter of the inscribed circles to these
four triangles. The shape constant of K is then σK := hK/ρK where
hK = diam(K). A mesh sequence is said regular if the shape constants
for the meshes can be uniformly bounded.

The bilinear transformation from the reference element K̂ (here and
in the following, a hat supscript denotes quantities related to the ref-
erence element) to the actual one K is denoted by

FK : K̂ → K.

Let Nk denote the Nédélec edge finite element space on the reference
element K̂ and Qk = curl(Nk) the space of polynomials of separate
degree at most k in x̂ and ŷ, for k ≥ 0. Then the finite element
approximations of V and Q are given by

Vh = {v ∈ V : v|K ◦ FK ∈ (FK)−TNk}

and

Qh = {q ∈ Q : q|K ◦ FK ∈ Qk}.

We explicitly notice that, on general quadrilateral meshes, curl Vh 6⊂
Qh. In particular the inclusion is false when the Jacobian of FK is not
constant.

It is known that a finite element scheme based on formulation (VF)
cannot converge optimally on general meshes, due to the bad approx-
imation properties of the space Vh. For the sake of completeness, we
write down such scheme explicitly: find 0 6= λh ∈ R such that for
0 6= uh ∈ Vh it holds

(VFh) (curluh, curlv) = λh(uh, v) ∀v ∈ Vh.

Numerical results showing the bad behavior of scheme (VFh) are pre-
sented in Section 4.

The approximation of the mixed formulation (MF) is: find λh ∈ R

such that for 0 6= ph ∈ Qh and uh ∈ Vh it holds

(MFh)
(uh,v) + (curlv, ph) = 0 ∀v ∈ Vh,

(curluh, q) = −λh(ph, q) ∀q ∈ Qh.
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Theorem 1. The eigenpairs computed with scheme (MFh) converge

to Maxwell’s eigenvalues on general quadrilateral meshes.

Proof. This is an immediate consequence of the third estimate in The-
orem 12 of [1], which can be used to show the uniform convergence
of the discrete resolvent operator associated with (MFh) towards the
resolvent operator of (MF). ¤

Let us introduce the L2 projection operator PQh
: L2 → Qh

(PQh
p, qh) = (ph, qh) ∀qh ∈ Qh.

We the help of PQh
we can now define the primal finite element method

with Explicit Projection: find 0 6= λh ∈ R such that for 0 6= uh ∈ Vh it
holds

(EPh) (PQh
curluh, PQh

curlvh) = λh(uh,vh) ∀vh ∈ Vh

Let us consider an integration rule1 on the reference square K̂ given
by k2 nodes {xi} and weights {ωi} such that for q ∈ Q2k−1(K̂) it holds

∫
K̂

q(x̂) dx̂ =
k2∑
i=1

ωiq(xi).

We then define the discrete inner product associated to the quadrature
rule

(p, q)h =
∑
K

k2∑
i=1

ωip(FK(xi))q(FK(xi)) det(F ′

K(xi)).

The primal formulation with Reduced Integration then reads: find 0 6=
λh ∈ R such that for 0 6= uh ∈ Vh it holds

(RIh) (curluh, curlvh)h = λh(uh,vh) ∀vh ∈ Vh

3. Equivalence of discrete formulations

Theorem 2. The three discrete formulations discussed in Section 2

and presented in (MFh), (EPh), and (RIh) provide the same solutions

(λh,uh).

Proof. We start to prove the equivalence between (MFh) and (EPh).
Let (uh, ph) solve (MFh) for a certain (nonvanishing) λh. From the
second line of (MFh) there follows

ph = λ−1

h PQh
curluh,

1We notice that such rule can be obtained, for instance, by tensor product of
one dimensional Gauss rule
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and plugging this relation into the first line shows that uh actually
solves (EPh):

(uh,vh) − λ−1

h (PQh
curluh, curlvh) = 0.

Viceversa, if uh ∈ Vh is a solution of (EPh), then

(uh, ph) = λ−1

h PQh
curluh

solves (MFh).
Finally, we show that (MFh) and (RIh) provide the same solution.
We observe that there is a one-to-one relation between finite element

functions in Qh and function values at the integration points

(2) qh ∈ Qh ↔ {q(FK(xi))}.

Namely, both spaces have the same dimension (k2 times the number of
elements), and q(FR(xi)) = 0 ∀K ∀i implies q = 0:

‖qh‖
2

L2
=

∑
K

k2∑
i=1

ωiJ(qh(xi)
2)2 = 0.

Thanks to (2) and the fact that the mapping from the reference
square to a generic quadrilateral is bilinear, the numerical integration
rule is exact for evaluating (curluh, qh) and (ph, qh). Then

∫
K

curluhqh dx =

∫
K̂

J−1 ˆcurlûhq̂hJ dx̂ =

∫
R̂

ˆcurlûhq̂h dx̂

=
k2∑
i=1

ωi
ˆcurlûh(xi)q̂h(xi).

Thus, the discrete problem MFh is equivalent to

(3)
(uh,vh) + (curlvh, ph)h = 0 ∀vh ∈ Vh

(curluh, qh)h = −λh(ph, qh)h ∀qh ∈ Qh.

Then (3) is equivalent to

(4)
(uh,vh) + (curlvh, ph)h = 0 ∀vh ∈ Vh

curluh(FK(xi)) = λhph(FK(xi)) ∀K ∀i.

The second equation in (4) allows us to express ph at the integra-
tion points; plugging this expression into the first equation of (4)
gives (RIh). ¤
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Figure 1. A mesh of distorted quadrilaterals
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Figure 2. Lowest order edge elements on uniform mesh

4. Numerical results

In this section we report on some basic numerical results, which
fully confirm the theory of Section 3. Our domain Ω is the square
of size π, so that the eigenvalues of (1) are λ = m2 + n2, m,n ∈ N

(λ = 1, 1, 2, 4, 4, . . . ). For our computations we use two mesh sequences.
The first one is a uniform decomposition of Ω into subsquares, while
the second one (presented in Figure 1) is made of distorted trapezoids
in such a way that the distortion factor is constant as h goes to zero.

4.1. Lowest order edge elements. The computations performed
with lowest order edge elements show in a clear way the lack of con-
vergence on distorted meshes. In Figure 2, the optimal second order of
convergence on the uniform mesh sequence is apparent (different lines
correspond to the convergence history for different eigenvalues2; in each
graph we plotted the first four or five eigenvalues; some of them may
be overlapping on symmetric meshes), while in Figure 3 is is clear that
the discrete eigenvalues converge to a wrong value (see [7, 2]).

2the rank of each eigenvalue is listed in the legend
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Figure 3. Lowest order edge elements on distorted mesh
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Figure 4. Lowest order edge elements with reduced in-
tegration on distorted mesh

In Figure 4, however, it is evident that the optimal convergence order
is recovered when scheme (RIh) (or, equivalently, (EPh)) is used3.

4.2. Second order edge elements. When higher order edge elements
are used on distorted meshes, we still observe converge but with a lower
order than the optimal one. This behavior is well understood from
Figures 5 (optimal order on uniform mesh) and 6 (suboptimal order on
distorted mesh).

The optimal order is restored (see Figure 7) when scheme (RIh) (or,
equivalently, (EPh)) is used4.
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Figure 5. Second order edge elements on uniform mesh
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Figure 6. Second order edge elements on distorted mesh
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Figure 7. Second order edge elements with reduced in-
tegration on distorted mesh
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