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Abstract. In the present paper, we present a family of mixed
finite elements which are suitable for the discretization of slim do-
mains. The displacement space is chosen as Nédélec’s space of
tangential continuous elements, while the stress is approximated
by normal-normal continuous symmetric tensor-valued finite ele-
ments. We show stability of the system on a slim domain dis-
cretized by a tensor product mesh, where the constant of stability
does not depend on the aspect ratio of the discretization. We give
interpolation operators for the finite element spaces, and thereby
obtain optimal order a-priori error estimates for the approximate
solution. All estimates are independent of the aspect ratio of the
finite elements.

1. Introduction

In this paper, we are concerned with finite element simulations for
anisotropic structures such as thin plates or shells. For regular do-
mains, there are many methods available to discretize and solve the
problem of linearized elasticity, for example Galerkin formulations us-
ing continuous finite elements [11], or more involved mixed formulations
[2, 4, 3]. However, when the aspect ratio of the computational domain
deteriorates, severe problems arise when using standard methods for
elasticity. The stability of these methods depends on Korn’s inequality
[26, 17], where the constant is proportional to the aspect ratio of the
domain. Thus, the method suffers from locking, which results in poor
approximation properties.

To overcome these problems, beam, plate or shell models were in-
troduced. Examples are the Kirchhoff [36] and Reissner-Mindlin plate
model [27, 21]. A widely used technique for shells is the Koiter model
[19]. A main drawback of conventional plate or shell elements is the
fact that they include not only displacement- and stress-related degrees
of freedom, but also rotational quantities. Thus, coupling to standard
finite elements in well-shaped parts of the domain becomes difficult,
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and is often done by brute-force constraints which destroy convergence
properties of the respective methods. Also iterative solution techniques
have to be handled with care in the presence of rotational degrees of
freedom.

A basic concept in order to derive suitable models for thin structures
is the idea of hierarchical modeling. There, the behavior of stresses and
displacements is taken polynomial in the thickness variable. One ob-
tains a hierarchy of discretizations by increasing the order of the poly-
nomial ansatz, which is related to the p-version of a three-dimensional
finite element method. Such models were first introduced in variational
form by [37]. An overview over different discretization techniques for
anisotropic structures within a unified framework is provided in [20].
Analysis for the hierarchical approach can be found in [1, 10, 15], a-
posteriori error estimates in [5, 29, 32].

In [33, 31], we first introduced a mixed, Hellinger-Reissner type
method, where the stresses are considered as separate unknowns. We
searched for the displacement in H(curl), using tangential-continuous
Nédélec finite elements. For the stresses, we proposed the space H(div div),
discretized by symmetric tensor-valued elements with continuous nor-
mal component of the normal stress vector. The degrees of freedom for
these elements are then tangential component of the displacement and
normal component of the normal stress vector, which shall be abbre-
viated by normal-normal stress. In the present paper, we apply this
approach to a prismatic, tensor-product mesh. We see that these ele-
ments do not suffer from shear locking: In the discrete setting, we can
use a “broken norm” of piecewise strains for the displacement. Employ-
ing appropriate transformations of the finite element shape functions
from the reference element to an element in the mesh, we overcome
the difficulties arising from Korn’s inequality. We provide anisotropic
interpolation operators for the stress and displacement spaces with re-
spect to the broken norms. There we make use of the tensor product
structure and Clément-type interpolators [14, 30] which satisfy a com-
muting diagram property.

1.1. Basic notations. For some Hilbert space X, let (., .)X be the
inner product, and ‖.‖X the induced norm. By angles 〈., .〉X , we denote
the duality product between the dual space X∗ and X. For some
sufficiently regular domain Ω ⊂ R

3, let L2(Ω) be the Lebesgue space.
As a short hand for the L2 norm ‖.‖L2(Ω), we also use ‖.‖Ω. By Hk(Ω),
integer k > 0 we denote the standard Sobolev space, with semi-norm
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|.|Hk(Ω) and norm ‖.‖Hk(Ω) defined via

|v|Hk(Ω) := ‖∇kv‖L2(Ω), ‖v‖2
Hk(Ω) := ‖v‖2

L2(Ω) + |v|2Hk(Ω).

Let Hk
0 (Ω) be the subspace satisfying homogenous boundary conditions

for the function and its first k−1 derivatives. Then H−k(Ω) := Hk
0 (Ω)∗

is its dual space. We use the spaces

H(curl, Ω) := {v ∈ [L2(Ω)]3 : curl v ∈ [L2(Ω)]3},

H(div, Ω) := {q ∈ [L2(Ω)]3 : div q ∈ L2(Ω)}.

There the operators curl, div are defined via

curl v := ∇× v, div v = ∇ · v

and always understood in weak sense. For a tensor-valued function σ,
the divergence operator is defined by row-wise application. We call the
tensor symmetric, if it is equal to its transpose, σ = σT . We abbreviate
the space of symmetric tensor-valued L2-fields on Ω by L2

sym(Ω). Sim-

ilarly, Hsym(div, Ω) = [H(div, Ω)]3 ∩ L2
sym(Ω) contains the symmetric

tensor fields with divergence in [L2(Ω)]3 in the weak sense. Finally, let
C(Ω) and C(Ω̄) be the space of continuous functions on the open respec-
tively closed domains Ω and Ω̄. On a union of domains O =

⋃
i∈I Ωi, all

above spaces are defined piecewise without any continuity assumptions.
If clear from the context, the domain Ω can also be omitted.

Let now Γ ⊂ Ω̄ be an oriented, bounded, sufficiently smooth two-
dimensional manifold, and G =

⋃
i∈I Γi a union of such manifolds.

We again need the Lebesgue spaces L2(Γ), L2(G). Let nΓ denote the
unique unit normal of Γ, and let nΩ be the outward unit normal on the
boundary ∂Ω. For better readability, we will drop the subscripts Ω, Γ
whenever possible. On such a manifold with normal n, we define the
normal and tangential component vn, vτ of a vector valued function v
by

v = vnn + vτ , vn := v · n.

A tensor field σ has a normal vector σn := σn. The normal and tan-
gential parts σnn, σnτ of this vector are defined by

σn = σnnn + σnτ , σnn := nT σn.

Figure 1 displays these normal and tangential components. For a two-
dimensional vector v = (vx1

, vx2
)T ∈ R

2, its normal is defined by v⊥ :=
(−vx2

, vx1
)T .

Let now Γ be the common interface of two domains Ω1, Ω2, without
loss of generality we assume its normal n to be directed outward of
Ω1, n = nΓ = nΩ1

. For a sketch of the setting, see Figure 2. On
Γ, the brackets [[.]]Γ shall denote the jump of a discontinuous function
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Figure 1. Normal and tangential components of a vec-
tor v and normal tensor component σn with respect to
the manifold Γ.

n =n
G W

G

1

n
W

2

W

W1

2

Figure 2. Two domains Ω1, Ω2 with common interface
Γ. The normal nΓ is directed outward of Ω1.

across this interface. We denote the jump in normal direction by [[.]]n,
precisely

[[v]]Γ = v|Ω1
− v|Ω2

, [[v]]n = vnΩ1
|Ω1

+ vnΩ2
|Ω2

= [[vn]]Γ.

Again, Γ can be omitted as an index.
In this work, we consider a flat, three-dimensional domain Ω = Ωx×

Ωz. There the cross section Ωx ⊂ R
2 is assumed to be a connected

Lipschitz domain with polygonal boundary. For Ωz = (0, dz), we call
dz the thickness of Ω, which is usually considerably smaller than dx :=
diam(Ωx). To emphasize the different qualities of the in-plane and
transversal direction, we use coordinates (x, z) = (x1, x2, z). For a
vector-valued function u, we refer to its components by (ux, uz) =
(ux1

, ux2
, uz). A symmetric tensor σ can be divided into the diagonal

sub-blocks σx, σz and the off-diagonal block σxz. We use | · | to denote
the absolute value of a scalar, as well as the Euclidean norm of a vector
and the Frobenius norm of a tensor.

Throughout this paper, by a � b we mean that there exists a
(generic) constant C, independent of the aspect ratio of the domain
Ω or underlying anisotropic mesh sizes, such that a ≤ Cb. Similarly,
a � b stands for a ≥ Cb, and a ≃ b abbreviates a � b and b � a.
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1.2. Linear elasticity. The equations of linearized elasticity are given
by Hooke’s law (1) and the equilibrium equation (2)

Aσ = ε(u) in Ω,(1)

div σ = −f in Ω.(2)

Here the vector field u is the unknown displacement, ε(u) := 1
2
(∇u +

(∇u)T ) is the strain, σ represents the symmetric stress tensor, and A is
the compliance tensor. The boundary ∂Ω consists of a non-trivial part
ΓD ⊆ ∂Ω, where displacement boundary conditions are posed, and the
remaining part ΓT = ∂Ω\ΓD, where traction boundary conditions are
prescribed. We assume that the displacement u is given on ΓD, and
surface tractions σn are prescribed on ΓT . For simplicity, let all data
be homogenous,

(3) u = 0 on ΓD, σn = 0 on ΓT .

Otherwise, all data enter naturally into the solution spaces and varia-
tional formulations considered below.

As the compliance tensor A is invertible, the stresses can be elim-
inated, which yields a primal formulation for the displacements only.
Then one basically searches for u ∈ Vprimal := {v ∈ [H1(Ω)]3 : v =
0 on ΓD}, such that

(4)

∫

Ω

(A−1ε(u)) : ε(v) dx =

∫

Ω

f · v dx ∀v ∈ Vprimal.

One may then use standard nodal finite elements to approximate the
displacement u. For more detail, see e.g. [11]. The method suffers from
shear locking, as the aspect ratio of the domain and the underlying
finite element discretization deteriorates.

In [28], mixed formulations for elasticity were introduced. The Hellinger-
Reissner formulation of elasticity is to find u ∈ Vmixed, σ ∈ Σmixed such
that ∫

Ω

(Aσ) : τ dx +

∫

Ω

div τ · u dx = 0 ∀τ ∈ Σmixed,(5)

∫

Ω

div σ · v dx = −

∫

Ω

f · v dx ∀v ∈ Vmixed.(6)

There, the solution spaces are

Vmixed := [L2(Ω)]3,

Σmixed := {τ ∈ Hsym(div) : τn = 0 on ΓT}.

In this formulation, all smoothness assumptions are put onto the stress
field, the displacement u ∈ [L2(Ω)]3 is left totally discontinuous. In
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order to have a conforming finite element method, one needs to ap-
proximate σ by symmetric, normal continuous finite elements. This is
possible, but only at high computational cost: in [2, 3, 6], simplicial
finite elements for two- and three-dimensional mixed elasticity were
constructed. The local dimensions of the respective lowest-order fi-
nite elements for the stress space is 24 in two, and 162 in three space
dimensions.

In [33], we derived a finite element method which lies in between
these two concepts. There,

(7) V := {v ∈ H(curl) : vτ = 0 on ΓD}

is chosen as displacement space. This implies to search for the stresses
in the tensor-valued space

Σ := {τ ∈ H(div div) : τnn = 0 on ΓT},

where H(div div, Ω) := {τ ∈ L2
sym(Ω) : div div τ ∈ H−1(Ω)}. Here, the

first divergence operator is understood row-wise, while the second one
is the standard operator acting on a vector-valued function. In [7, 8],
it was shown that functions in H(curl) have a tangential trace, which
implies that V is well-defined in equation (7). The tangential trace lies

in the space H
−1/2
⊥ (curl∂Ω, ∂Ω), for details see [8]. In [31], we showed

that functions from H(div div) have a normal-normal trace, such that
for σ ∈ H(div div), σnn is well defined. The proper trace space is

H
−1/2
n (∂Ω), for an exact definition of this space see [31, Theorem 3.34].

Physically, this normal-normal trace can be understood as the normal
component of the surface stress vector.

One finally obtains a variational problem of the standard form

(8)
a(σ, τ) + b(τ, u) = 0 ∀τ ∈ Σ,
b(σ, v) = −〈f, v〉 ∀v ∈ V.

There, the bilinear forms are defined via

a(σ, τ) =

∫

Ω

(Aσ) : τ dx,

b(τ, v) = 〈div τ, v〉H(curl).

One can then show (see [31]), that the infinite dimensional variational
problem (8) is well posed, and there holds the stability estimate

‖σ‖H(div div) ≤ C(Ω)‖f‖H(curl)∗ .

Let now T be a triangulation of Ω, and let E , F denote the sets of
element edges/interfaces, respectively. In two space dimensions, these
sets coincide. A piecewise smooth function lies in H(curl), if and only if
its tangential component is continuous across interfaces and on edges.
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Therefore, Nédélec elements [24, 25] are the appropriate choice for the
discretization. In [31] we showed that it is then necessary to have
the stress field normal-normal continuous. We showed, that for τ ∈
H(div div), v ∈ H(curl) piecewise smooth on T , the duality product
b(τ, v) = 〈div τ, v〉H(curl) can be evaluated by

b(τ, v) =
∑

T∈Th

{∫

T

div τ · v dx −

∫

∂T

τnτ · vτ ds
}

(9)

=
∑

T∈Th

{
−

∫

T

τ : ε(v) dx +

∫

∂T

τnnvn ds
}

.(10)

Indeed, this characterization holds, as long as the integrals can be
understood in the sense of duality products. The equivalence of the
integral representations (9), (10) can be shown by integration by parts.

In [31], we provided finite element spaces Σk, Vk of arbitrary order
k on a simplicial mesh. For these spaces, we saw that the Galerkin
approximation of (8) yields a stable system. Moreover, we obtained an
optimal order of convergence as the mesh size tended towards zero. In
the present paper, we are concerned with finding a similar method for
a prismatic, tensor product mesh. We lay special emphasis on the fact
that all estimates and constants are independent of the aspect ratio of
the finite elements.

This paper is organized as follows: In Section 2, we provide finite
element spaces of arbitrary order on a prismatic mesh, which are well-
suited to approximate equation (8). Section 3 is devoted to the stability
analysis of the discrete problem, where special care is taken to avoid
any dependence on the aspect ratio of the finite elements. Interpolation
operators, which lead to a-priori error estimates with respect to the
anisotropic mesh-sizes, are presented in Section 4. Finally, Section 5
contains numerical results.

2. Discretization

In this section, we find a discretization for the infinite dimensional
problem (8). We first specify a tensor product mesh, by choosing shape
regular triangulations with respect to the x and z directions separately.
On this mesh, we construct a finite element space, exploiting the tensor
product structure of the volume discretization.

2.1. Anisotropic triangulation. Let T x := {Tx} be a shape-regular
triangulation of the cross section Ωx, and let hx denote the correspond-
ing mesh size. Moreover, let T z := {T z} be a subdivision of Ωz into
segments of maximum length hz. For both triangulations, we can define



8 A. PECHSTEIN
1

AND J. SCHÖBERL
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a set of element interfaces, which we denote by Fx and F z respectively.
There Fx := {Fx} corresponds to all triangle edges in the plane. In
vertical direction, F z := {F z} is the set of points defining the subdivi-
sion. From this, we derive the tensor product mesh

T := {T =Tx×T z : Tx ∈ T x, T z ∈ T z},

which consists of prismatic elements of diameter hx and height hz. The
set of element interfaces or facets can be divided into an in-plane and
a vertical part, addressed by F‖, F⊥, respectively

F := F‖ ∪ F⊥

= {Tx × F z : Tx ∈ T x, F z ∈ F z} ∪ {Fx × T z : Fx ∈ Fx, T z ∈ T z}.

In-plane facets F‖ ∈ F‖ are triangular, whereas vertical facets F⊥ ∈ F⊥

are quadrilaterals.
For an element T , ∆T denotes the union of all neighboring elements,

i.e. elements sharing at least one vertex with T . For a facet F , ∆F =
T1 ∪ T2 is the union of the two adjacent elements. In case F is a
boundary facet, ∆F contains only one adjacent element. Define hF =
(|∆F |)/(2|F |) to be the average height of these neighboring elements
perpendicular to F . For a boundary facet set instead hF = (|∆F |)/|F |.
For an in-plane facet F‖, this means the height of the adjacent prismatic
elements, which implies hF‖

≃ hz. For a facet F⊥ perpendicular to the
cross section, we have hF⊥

≃ hx.

2.2. Finite element spaces. In this section, we define anisotropic
finite element spaces Vk for the displacement space V and Σk for the
stress space Σ for arbitrary polynomial order k.

In order to simplify the notation in the sequel, we agree on a special
convention: For an arbitrary vector α ∈ R

d of dimension d = 1, 2
or 3, let Tα denote a simplex of dimension d. Then P k

α(Tα) shall
be the usual polynomial space in variables α of total degree up to
k. For α1 ∈ R

d1 , α2 ∈ R
d2 , and two simplices Tα1 , Tα2 of dimensions

d1, d2, let T = Tα1 × Tα2 be the tensor product domain. We define
Qk1,k2

α1,α2
(T ) := P k1

α1
(Tα1)⊗P k2

α2
(Tα2) as the space of polynomials of mixed

order. On a union T of such domains, all spaces are defined piecewise,
without any continuity conditions. As an example for clarifying the
meaning of this notation, we first set α = z. Then d = 1, and T z is
the unit segment. P k

z (T z) is the usual polynomial space in z of order
up to k. For α = x = (x1, x2) and Tx the unit triangle, P k

x
(Tx) is the

polynomial space of total order k on the triangle in variables x1, x2.
The tensor product space Qk1,k2

x,z (Tx × T z) is the standard polynomial
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space of degree k1 with respect to x and degree k2 with respect to z
on the prism Tx × T z.

To derive suitable elements for the volume discretization, we need
corresponding elements for the in-plane as well as for the transversal
directions. They naturally define tensor-product elements for prisms.

We construct all shape functions on the reference element. We use
tangential components of the displacement and normal-normal com-
ponents of the stress tensor as degrees of freedom. Then, we map
the shape functions to an element T in the mesh using transforma-
tions which preserve these quantities. For the exact definition of these
transformations we refer to Section 2.3. In the global finite element
space, they are continuous across interfaces. In [31], it was shown
that such a finite element space Σk is appropriate for the discretiza-
tion of Σ = H(div div). Although it is not a strictly conforming space,
Σk /∈ Σ, its use was rectified by means of an extensive finite element
analysis. It was shown that the pair of spaces allows for optimal order
approximation properties when appropriate discrete norms are used.

In the following, we specify the prismatic reference element T̂ . The
hat will denote that the respective quantity is associated to the ref-
erence element. For example, we use the local reference coordinates
x̂, ẑ, while for a finite element space Q, Q̂ is the space spanned by
the shape functions on T̂ . Let T̂ z be the reference segment (0, 1)

with vertices V̂ z
1 = 0, V̂ z

2 = 1. The reference triangle T̂x has vertices

V̂ x

1 = (1, 0), V̂ x

2 = (0, 1) and V̂ x

3 = (0, 0). We introduce barycentric
coordinates λz

m, λx

m with respect to these elements,

λz
1(ẑ) = 1 − ẑ, λz

2(ẑ) = ẑ,

λx

1 (x̂) = x̂1, λx

2 (x̂) = x̂2, λx

3 (x̂) = 1 − x̂1 − x̂2.

Then T̂ = T̂x × T̂ z is the reference prism. Figure 3 shows a sketch of
the respective elements.

2.2.1. In-plane and transversal finite element spaces. We need the fol-
lowing finite element spaces of order k on the cross section Ωx

Lk
x

:= {w ∈ P k
x
(T x) : w continuous},

N k
x

:= {v ∈ [P k
x
(T x)]2 : vτ continuous},

Σk
x

:= {τ ∈ [P k
x
(T x)]2×2

sym : τnn continuous},

Pk
x

:= P k
x
(T x).
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Figure 3. Triangular and prismatic reference element

In z direction, we use continuous and non-continuous finite element
spaces

Lk
z := Σk

z := {w ∈ P k
z (T z) : w cont.},

Pk
z := N k

z := P k
z (T z).

Most of the spaces defined above are well known: Lk
x
,Lk

z = Σk
z are the

Lagrange spaces of piecewise polynomial, continuous functions in the
plane or on the line, respectively. Also Pk

x
, Pk

z = N k
z are the standard

L2-conforming spaces of piecewise polynomial functions. Moreover, N k
x

is the Nédélec type II space as introduced in [25]. In our analysis and
computations, we use the hierarchical basis provided in [35, 38].

We now give an explicit basis for the in-plane space Σ̂k
x

on the ref-

erence triangle T̂x. Let ℓi : [−1, 1] → R be the Legendre polyno-
mial of order i. Moreover, we define the scaled Legendre polynomial
ℓS
i (x̂, t̂) := t̂iℓi(

x̂
t̂
). Using these, we define families of polynomials on

the unit segment and triangle, which span different polynomial spaces.
There, we use i, j as indices denoting the order of the respective poly-
nomials, whereas m shall correspond to a vertex or edge number. Thus,
quantities involving m are always to be seen modulo 3, whereas poly-
nomial orders i, j are assumed to be non-negative.

vz
j (z) := ℓj(1 − 2λz

1),

ux

ij(x̂) := ℓS
i (λx

1 − λx

2 , λx

1 + λx

2 )ℓj(1 − 2λx

3 ),

vx,m
i (x) := ℓS

i (λx

m+1 − λx

m+2, λ
x

m+1 + λx

m+2), m = 1, 2, 3.

Then the family {vz
j : 0 ≤ j ≤ k} spans P k

z (T̂ z), and {ux

ij, 0 ≤ i+j ≤ k}

spans P k
x
(T̂ ). The scaled Legendre polynomials {vx,m

i : 0 ≤ i ≤ k},

restricted to edge F̂x

m, are a basis for P k
x
(F̂x

m), which is extended into

the interior of the triangle T̂x. We now construct symmetric tensor
valued basis functions which correspond to the degrees of freedom for
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the normal-normal stress along an element edge. From a direct cal-
culation, one can see that the tensor ŝm(x̂) = sym[∇λx,⊥

m+1 ⊗ ∇λx,⊥
m+2]

has a vanishing normal-normal component on two edges, whereas it is
constant on the edge F̂x

m opposite vertex m. Thus, we can define shape
functions corresponding to this edge by multiplying ŝm by polynomials
spanning P k

x
(F̂x

m). We define the family of edge basis functions

(11) Φ̂
F̂ x

m

k := {ŝF̂ x

m

j := vx,m
j ŝm : 0 ≤ j ≤ k}, m = 1, 2, 3.

The normal-normal trace of Φ̂
F̂ x

m

k spans P k
x
(F̂x

m).

Multiplying ŝm with b̂x

m := λx

m, we obtain an element bubble. This
function has vanishing normal-normal trace on all edges of the triangle
T̂ . The family

Φ̂b,x
k := {ŝT x

mij := ux

ij b̂x

mŝm : 0 ≤ i + j ≤ k − 1,m = 1, 2, 3}

spans the bubble space of order k, and is linearly independent [31]. We
use the following local space on the reference element

Σ̂x

k := span

(
3⋃

m=1

Φ̂
F̂ x

m

k ∪ Φ̂b,x
k

)
.

It is a full polynomial space, Σx

k = P k
x
(T̂x).

2.2.2. A tensor product finite element space. We propose to use

Vk :=
{
v ∈ [L2(Ω)]3 : vx ∈ N k

x
⊗ Lk+1

z , vz ∈ Lk+1
x

⊗N k
z , vτ = 0 on ΓD

}
,

Σk :=
{
τ ∈ L2

sym(Ω) : τx ∈ Σk
x
⊗Pk+1

z , τxz ∈ Pk
x
⊗Pk

z , τz ∈ Pk+1
x

⊗Σk+1
z ,

τnn = 0 on ΓT

}
.

The displacement space defined above coincides with the standard
Nédélec space on a tensor product mesh, see e.g. [22, 16]. We concen-
trate on the construction of basis functions for the stress space on the
reference element T̂ .

Using the constant, in-plane tensors ŝm, we can construct tensor
fields Ŝx

m satisfying Ŝx

m,nn = 0 on all prism faces but the quadrilateral
opposite vertex m. By multiplication with bx

m = λx

m, we obtain an
element bubble with vanishing normal-normal trace

Ŝx

m :=

(
ŝm 0
0 0

)
, B̂x

m := bx

mŜx

m, m = 1, 2, 3.

For the upper and lower triangular face, the unit normal is n = ±ez,
and therefore τ̂nn = τ̂z. The tensor field Ŝz defined below has a constant
normal-normal component on those two faces, whereas it vanishes on
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the quadrilateral faces. We get a bubble function by multiplication
with bz := λz

1λ
z
2

Ŝz :=

(
0 0
0 1

)
, B̂z := bzŜz.

To span the space of piecewise constant symmetric tensor fields, we
need two additional functions Ŝxz

m . These have vanishing normal-
normal components on all facets, and are therefore bubble functions
(we set bxz

m = 1)

Ŝxz
m :=

(
0 exm

eT
xm

0

)
, B̂xz

m := bxz
m Ŝxz

m = Ŝxz
m , m = 1, 2.

For convenience, we use {B̂m,m ∈ JB} and {Ŝm,m ∈ JS} for the

respective unions of B̂x

m, B̂z, B̂xz
m and Ŝx

m, Ŝz, Ŝxz
m , whenever we do not

care about the special type of the respective tensor field.

We can now introduce finite element spaces Σ̂F̂ consisting of shape
functions associated to each facet F̂ . This is done multiplying the “facet
basis tensors” Ŝm by families of polynomials. In case of a triangular
facet F̂‖,m, this space is

Σ̂
F̂‖,m

k := span{ux

ij(x̂)Ŝzλz
m(ẑ) : 0 ≤ i + j ≤ k + 1}.

For a quadrilateral F̂⊥,m opposite edge m, we use

Σ̂
F̂⊥,m

k := span{vx,m
i vz

j Ŝ
x

m : 0 ≤ i ≤ k, 0 ≤ l ≤ k + 1}.

In Section 2.3, we provide a map from the reference element to an
element T in the mesh, which preserves normal-normal continuity of
the stress tensor. Using this map, it is possible to define the local finite
element space ΣF

k associated to each facet F ∈ F . Restricted to facet
F , the normal-normal components of ΣF

k span a full polynomial space:

{σnn|F : σ ∈ ΣF
k } =

{
P k+1

x
(F ) if F ∈ F‖,

Qk,k+1
x,z (F ) if F ∈ F⊥.

The union of these spaces spans the facet space Σf
k :=

⊕
F∈F ΣF

k .

Finally, we propose a basis for the local bubble space Σ̂b
k. We define

Σ̂b
k := span

(
{ux

ijv
z
l B̂

x

m : m = 1, 2, 3, 0 ≤ i+j ≤ k−1, 0 ≤ l ≤ k+1} ∪

{ux

ijv
z
l B̂

xz : 0 ≤ i+j, l ≤ k} ∪

{ux

ijv
z
l B̂

z
m : m = 1, 2, 0 ≤ i+j ≤ k+1, 0 ≤ l ≤ k−1}

)
.
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The two subspaces together build the local finite element space, Σ̂k :=
Σ̂f

k + Σ̂b
k. The respective components σ̂x, σ̂xz, σ̂z of σ̂ ∈ Σ̂k span poly-

nomial spaces,

Σ̂k =
{
σ̂ ∈ [L2(Ω)]3×3

sym : σ̂x ∈ Qk,k+1
x,z , σ̂xz ∈ Qk,k

x,z, σ̂z ∈ Qk+1,k+1
x,z

}
.

2.3. Finite element transformations. In the previous section, we
provided bases for the finite elements on the reference element T̂ . We
still need to transform these functions to an element T by a conforming
transformation, which we describe in detail in the following. First,
let ΦT : T̂ → T be the mapping from the reference element to an
element T ∈ T . By FT , we denote its Jacobian, and by JT the Jacobi
determinant. Similarly, for a facet F or an edge E, by JF , JE we mean
the transformation of measures of the facet transformation F̂ → F or
the edge transformation Ê → E, respectively. Tangential and normal
vectors can be computed from the corresponding reference quantities
using the covariant and contravariant or Piola transforms: The unit
tangential vector τE of an edge E is related to the unit tangent τ̂Ê of

the reference edge Ê via τE = τ̂ÊFT /JE. For the unit normal nF of a
facet F , we have nF = JT F−T

T n̂F̂ /JF .
The transformation ΦT is linear in (x, z), the Jacobian FT is constant.

Moreover, as we use a tensor product mesh, the Jacobian is block
diagonal

FT =

(
FT x 0

0 FT z

)
.

The sub-blocks stem from shape-regular triangulations, thus there holds

|FT x |−1
s ≃ |F−1

T x |s ≃ h−1
x

, |FT z |−1
s ≃ |F−1

T z |s ≃ h−1
z .

Here, |A|s denotes the spectral norm of the matrix A.

For (x̂, ẑ) ∈ T̂ let (x, z) = ΦT (x̂, ẑ) be the corresponding point in
T . Functions v ∈ Vk and σ ∈ Σk are transformed like

(12)
v(x, z) = F−T

T v̂(x̂, ẑ),

σ(xz) = 1
J2

T

(
FT σ̂(x̂, ẑ)F T

T

)
.

For the strain of a vector-valued function v ∈ Vk, one can easily see

ε(v)(xz) = F−1
T ε̂(v̂)(x̂, ẑ)F−T

T .
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Note that the following integral values are preserved for v ∈ Vk, σ ∈ Σk

and each polynomial q,
∫

E

vτ q ds =

∫

Ê

v̂F−1
T FT τ̂ q

JE

JE

dŝ =

∫

Ê

v̂τ̂ q dŝ,

∫

F

σnnJF q ds =

∫

F̂

1

J2
T

n̂T σ̂n̂
J2

T

J2
F

J2
F q dŝ =

∫

F̂

σ̂n̂n̂ q dŝ.

We will use these quantities to define degrees of freedom for the re-
spective spaces later on. For the global finite element spaces Vk, Σk

continuity of these degrees of freedom across inter-element interfaces is
required only.

Using the transformations (12), and transforming the shape func-
tions derived before, we obtain finite element spaces Vk, Σk. For the
respective traces on element faces, we observe the following: The tan-
gential component of a displacement v ∈ Vk spans [P k

x
]2 on a triangular

face, and Qk,k+1
x,z ×Qk+1,k

x,z on a rectangular face. Similarly, the normal-

normal component of σ ∈ Σk spans P k
x

on triangular, as well as Qk,k+1
x,z

on quadrilateral faces. From the construction of the finite element
bases, it is obvious that Σk can be split into a facet and a bubble part,
Σk = Σf

k + Σb
k, also globally. There Σf

k matches the facet-based space

Σ̂f
k on the reference element, as well as Σb

k matches Σ̂b
k.

The discrete problem is to find v ∈ Vk, σ ∈ Σk such that

(13)
a(σ, τ) + b(τ, u) = 0 ∀τ ∈ Σk,
b(σ, v) = −〈f, v〉 ∀v ∈ Vk.

3. Discrete stability

In this section, we will see that the discrete mixed problem (13) is
well posed, there exists a unique solution, which is bounded by the right
hand side. For the analysis of the discrete problem, we do not use the
natural norms of H(curl) and H(div div) as in the continuous setting.
This is due to the fact that the finite element space Σk is not strictly
conforming for Σ = H(div div), as shown in [31]. Thus, the natural
H(div div) norm does not necessarily exist for the discrete solution.
Instead, we use a broken H1-type norm for the displacements, as well
as the L2 norm for the stresses. Precisely, they are given by

‖v‖2
Vk

:=
∑

T∈T

‖ε(v)‖2
T +

∑

F∈F

h−1
F ‖[[v]]n‖

2
F ,

‖τ‖2
Σk

:= ‖τ‖2
Ω.

Note that we do not use piecewise gradients for the displacements,
as commonly done for a broken H1 norm. Instead, we take piecewise
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strains only. This way we are able to avoid the use of Korn’s inequality,
which will finally lead to results independent of the aspect ratio of the
finite elements. We state that in the scope of this paper, no claims on
stability or convergence with respect to the polynomial degree k are
made.

The following lemma states a discrete trace inequality for Σk on the
element level.

Lemma 1. Let T ∈ T be an element with facets FT = {F ∈ F : F ⊂
∂T}.

(1) For σ ∈ Σk, there holds the trace inequality

(14)
∑

F∈FT

hF‖σnn‖
2
F � ‖σ‖2

T .

(2) Let g be in the normal-normal trace space on ∂T of Σk, i. e.
g ∈ P k+1

x
(F‖) for a triangular facet F‖, g ∈ Qk,k+1

x,z (F⊥) for a
quadrilateral facet F⊥. Then there exists an extension σ ∈ Σk

such that σnn = g on ∂T , and

(15) ‖σ‖2
T �

∑

F∈FT

hF‖g‖
2
F .

In both estimates, the constant may depend on the polynomial degree
k.

Proof.

(1) As described in Section 2.3, we decompose the finite element

space Σk into a facet and a bubble part, Σk = Σf
k + Σb

h. For
σ ∈ Σk, this implies a splitting σ = σf + σb, where

σf =
∑

F∈F

σF and σF ∈ ΣF
k .

Due to the linear independence of the basis functions, on the
finite dimensional space there holds

(16) ‖σ‖T � ‖σf‖T + ‖σb‖T ≥ ‖σf‖T .

Let σF be corresponding to face F . For an in-plane facet F‖, σF‖

is of the special form σF‖ = (q/J2
T ) FT ŜzF T

T , where q is a scalar-
valued, piecewise polynomial function. Therefore, all entries

but σ
F‖
z are zero. On the reference element, we have, using the

tensor product structure of the element transformation,

|FT σ̂F‖F T
T |2 = |q|2|FT ŜzF T

T |2 ≃ |q|2|FT̂ z |4s ≃ h4
z|q|

2 ≃ h4
F‖
|σ̂F‖|2.
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Recall, that | · | denotes the Frobenius norm, whereas | · |s is
the spectral norm of a tensor. On a quadrilateral facet F⊥,
we obtain similarly for a shape function σF⊥ = (q/J2

T ) FT Ŝx

i F T
T

that

|FT σ̂F⊥F T
T |2 = |q|2|FT Ŝx

i F T
T |2 ≃ |q|2|FT̂ x |4s ≃ h4

x
|q|2 ≃ h4

F⊥
|σ̂F⊥ |2.

Using these equivalences and the fact that, on the reference
element, ‖σ̂F‖T̂ and ‖σ̂F

nn‖F̂ are equivalent norms due to the

finite dimension of the space Σ̂F̂
k , we obtain

‖σf‖2
T =

∫

T

σf : σf dx =

∫

T̂

1

J4
T

|FT σ̂fF T
T |2JT dx̂

≃
∑

F∈FT

J−3
T h4

F

∫

T̂

|σ̂F |2 dx̂

≃
∑

F∈FT

J−3
T h4

F

∫

F̂

|σ̂F
n̂n̂|

2 dŝ

=
∑

F∈FT

J−3
T h4

F

∫

F

J4
F |σ

F
nn|

2 1

JF

ds.

Inserting hF ≃ JT /JF into the estimate above, we get

‖σf‖2
T ≃

∑

F∈FT

hF‖σ
F
nn‖

2
F =

∑

F∈FT

hF‖σnn‖
2
F .

Together with (16), this implies the discrete trace inequality
(14).

(2) Let σf be the unique extension of g to the space Σf
k(T ). Due

to the equivalence

‖σf‖2
T ≃

∑

F∈F

hF‖σ
f
nn‖

2
F =

∑

F∈F

hF‖g‖
2
F

shown in part (1), we have found the required extension in σf .

2

Lemma 2. The bilinear form b : Σk × Vk → R is inf-sup stable, there

exists a positive constant β̃ > 0 such that

(17) inf
v∈Vk

sup
σ∈Σk

b(σ, v)

‖σ‖Σk
‖v‖Vk

≥ β̃.

The constant β̃ may depend on the polynomial degree k, but we ex-

plicitely state that β̃ is independent of the anisotropic mesh sizes hx, hz

and their ratio.



ANISOTROPIC MIXED FINITE ELEMENTS FOR ELASTICITY 17

Proof. Let v ∈ Vk be given, we want to find σ ∈ Σk such that

b(σ, v) ≥ β̃‖σ‖Σk
‖v‖Vk

.

We construct σ as a combination ασf + βσb, where σf ∈ Σf
k , σb ∈ Σb

k,
and the constants α, β ∈ R are to be specified later.

Due to the matching polynomial degrees, we can choose σf such that

σf
nn|F = −h−1

F [[v]]n,F ∀F ∈ F .

From the proof of Lemma 1, we immediately see that there exists a
constant c2 > 0 such that

(18) ‖σf‖2
Σk

≤ c2
2

∑

F∈F

hF‖σ
f
nn‖

2
F = c2

2

∑

F∈F

h−1
F ‖[[v]]n‖

2
F .

For the definition of σb, we need to introduce the block tensor

F̃T :=

(
hxIx 0

0 hzIz

)
,

where Ix, Iz denote the identity sub-blocks of the 3× 3 identity matrix
I. Due to the tensor product structure of the Jacobian FT , and the
shape-regularity of the in-plane and transversal meshes, we have that
|FT |s ≃ |F̃T |s independent of the aspect ratio hx/hz. We choose σb

such that, on the reference element

σ̂b := J2
T

∑

m∈JB

(
ε̂(v̂) : F̃−T

T ŜmF̃−1
T

)
F̃−T

T B̂mF̃−1
T .

Obviously, σ̂b is a bubble function, i.e. σ̂b
nn = 0 on ∂T̂ . Computing the

respective polynomial degrees of its sub-blocks, one verifies σ̂b ∈ Σ̂k.
The tensor field σb is obtained by transformation to element T .

We need the following two inequalities

‖σb‖2
Σk

≤ c3

∑

T∈T

‖ε(v)‖2
T ,(19)

∫

T

σb : ε(v) dx ≥ c1‖ε(v)‖2
T .(20)

The upper bound (19) for ‖σb‖Σk
can be shown by a straightforward

transformation to the reference element, where one uses the definition
of σb and the similarity |FT |s ≃ |F̃T |s.We now concentrate on estimate

(20). Using that {Ŝx

m, Ŝz, Ŝxz
m } form a basis for the piecewise constant

symmetric tensor fields, that the bubble functions {B̂x

m, B̂z, B̂xz
m } are
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linearly independent, and the spectral equivalence of F̃T and FT , we
obtain
∫

T

σb : ε(v) dx =

∫

T̂

1

J2
T

σ̂b : ε̂(v̂)JT dx̂

=

∫

T̂

∑

m∈JB

(
ε̂(v̂) : F̃−T

T ŜmF̃−1
T

)
F̃−T

T B̂mF̃−1
T : ε̂(v̂)JT dx̂

=

∫

T̂

∑

i∈JB

(
F̃−1

T ε̂(v̂)F̃−T
T : Ŝm

)2
b̂mJT dx

≃

∫

T̂

∣∣F̃−1
T ε̂(v̂)F̃−T

T

∣∣2JT dx̂

≃

∫

T̂

∣∣F−1
T ε̂(v̂)F−T

T

∣∣2JT dx̂ = ‖ε(v)‖2
T .

We can now show the following lower bound for b(σ, v), where we
use the estimates from above, as well as Young’s inequality in the last
line

b(σ, v) =
∑

T∈T

∫

T

ε(v) : σ dx −
∑

F∈F

∫

F

σnn[[v]]n ds

=
∑

T∈T

∫

T

ε(v) : (ασf + βσb) dx −
∑

F∈F

∫

F

ασf
nn[[v]]n ds

(20),(18)

≥
∑

T∈T

[
βc1‖ε(v)‖2

T − α‖σf‖T‖ε(v)‖T

]
+
∑

F∈F

αh−1
F ‖[[v]]n‖

2
F

(18)

≥
∑

T∈T

[
βc1‖ε(v)‖2

T −
∑

F⊂∂T

αc2h
−1/2
F ‖[[v]]n‖F‖ε(v)‖T

]
+
∑

F∈F

αh−1
F ‖[[v]]n‖

2
F

≥
∑

T∈T

(
βc1 −

αc2γ
2

2
)‖ε(v)‖2

T +
∑

F∈F

αh−1
F

(
1 −

c2

2γ2

)
‖[[v]]n‖

2
F .

Setting γ2 = c2, α = 1, β = (1 + c2
2)/(2c1), the estimate above together

with (18), (19) yields the required result.

2

We can now prove stability of the discrete problem (13).

Theorem 3. The discrete, mixed system (13) is well-posed. There
exists a unique solution (uk, σk) ∈ Vk × Σk. It satisfies the a-priori
error estimate

‖u − uk‖Vk
+ ‖σ − σk‖Σk

≤ c
(

inf
vk∈Vk

‖u − vk‖Vk
+ inf

τk∈Σk

‖σ − τk‖Σk

)
,
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where (u, σ) denotes the exact solution to the underlying elasticity prob-
lem (8). The constant c > 0 is independent of the anisotropic mesh
sizes hx, hz and their ratio hx/hz, but may depend on the polynomial
degree k.

Proof. Following [9, Proposition 2.6, Proposition 2.7], we need
boundedness of the bilinear forms a(·, ·), b(·, ·) with respect to the dis-
crete norms, coercivity of a(·, ·) and an inf-sup condition on the finite
element spaces for b(·, ·). Continuity and coercivity for a(·, ·) can easily
be shown, as we use the L2 norm for Σk. Boundedness of b(·, ·) follows
from Lemma 1, (1). Together with Lemma 2 ensuring inf-sup stability,
we obtain the required result.

2

4. Interpolation operators and error estimates

In this section, we propose interpolation operators IN
k for the dis-

placement space Vk, and IΣ
k for the stress space Σk. Using standard

theory for mixed problems, as can be found in [9], interpolation er-
ror estimates directly lead to a-priori estimates for the approximation
errors ‖u − uh‖Vk

and ‖σ − σh‖Σk
. For a sufficiently smooth solution

(u, σ) to problem (8), we achieve the error bound

‖σ − σh‖Σk
+ ‖u − uh‖Vk

� hm
x

(
‖∇m

x
σ‖L2(Ω) + ‖∇m

x
ε(u)‖L2(Ω)

)
+

hm
z

(
‖∇m

z σ‖L2(Ω) + ‖∇m
z ε(u)‖L2(Ω)

)
,

where the constant hidden in “�” is independent of hx, hz and the ratio
hx/hz.

We will see that it is necessary to have the interpolation operator
IN
k for the stress space well-defined for L2 functions, and bounded with

respect to the L2 norm. This goal is achieved using quasi-interpolation
operators first introduced in [30]. To construct the interpolation oper-
ator IΣ

k , we introduce degrees of freedom for Σk. These nodal values
naturally lead to a nodal interpolation operator. To ensure that all
degrees of freedom can be evaluated, we set

ΣT := {σ ∈ L2
sym(Ω) : σnn ∈ L2(F) cont.}.

4.1. In-plane and transversal interpolation. For α ∈ {x, z}, we
need interpolation operators

IL
α,k :L2(Ωα) → Lk

α, IN
α,k :L2(Ωα) → N k

α ,

IΣ
α,k :ΣT α → Σk

α, IP
α,k :L2(Ωα) → Pk

α.
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The last one of these operators, IP
α,k, is an element-wise L2 projec-

tion onto the space of piecewise polynomials. For the stress space,
we will introduce the nodal interpolation operator IΣ

α,k in the end of

Section 4.1. The spaces Lk
x
,Lk

z = Σk
z are Lagrange spaces of piece-

wise polynomial, continuous functions. A first idea is to use the nodal
Lagrange interpolation operator there (see e.g. [13]). However, this
operator is not well defined on L2(Ωα), as it needs point evaluation.
Similarly, the nodal Nédélec interpolation operator (e.g. provided in
[22]) is not well defined on L2(Ωα) or even H(curl, Ωα), as it needs to
evaluate line integrals along edges of the form

∫
E

vτ ds.
In the H1 setting, local averaging operators have been introduced

in [14, 34] to overcome these difficulties. In [30], quasi-interpolation
operators based on the idea of the Clément operator were developed
for H1, H(curl), H(div) and L2. We will use these for IL

α,k and IN
α,k.

Note that in [30], they are only provided for the lowest order case. In
[31], we showed that all ideas can be transferred directly to operators
of arbitrary order. They satisfy standard approximation properties on
a shape regular mesh. Let l,m be integers, l = 0, 1 and l < m ≤ k + 1,
then we have for sufficiently smooth functions u, v, q

‖u − IL
α,ku‖Hl(T α) � hm−l

α |u|Hm(∆Tα ),(21)

‖v − IN
α,kv‖Hl(T α) � hm−l

α |v|Hm(∆Tα),(22)

‖q − IP
α,kq‖Hl(T α) � hm−l

α |q|Hm(∆Tα ).(23)

We note that the interpolation operators above keep the degrees of
freedom of the respective spaces for polynomial functions. In the next
lemma we show that the strain is approximated by the Nédélec inter-
polation operator.

Lemma 4. Let T α be a shape-regular triangulation for Ωα with α ∈
{x, z}, and let us fix an element Tα ∈ T α. For u ∈ Hm+1(∆T α) with
1 ≤ m ≤ k, the Nédélec interpolation operator with respect to α satisfies

(24) ‖εα(u − IN
α,ku)‖T α � hm

α ‖∇
m
α εα(u)‖∆Tα .

Proof. As IN
α,k preserves polynomials up to order k, we have, abbre-

viating P k = [P k(∆T α)]dim(α) ,

‖εα(u − IN
α,ku)‖T α = inf

q∈P k
‖εα((id − IN

α,k)(u − q))‖T α.

The rigid body motions are reproduced by IN
α,k. This, and the fact

that P k contains the piecewise rigid body motions, ensures that we
may employ an inverse inequality for the strain tensor, which relies on
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Korn’s inequality on an element of the shape-regular triangulation T α.
Together with the L2 continuity of IN

α,k, we may estimate

‖εα(u − IN
α,ku)‖T α ≤ inf

q∈P k

(
‖εα(u − q)‖T α + ‖εα(IN

α,k(u − q))‖T α

)

� inf
q∈P k

(
h−1

α ‖u − q‖T α + h−1
α ‖IN

α,k(u − q)‖T α

)

� inf
q∈P k

h−1
α ‖u − q‖∆Tα .

A Bramble-Hilbert argument, see e.g. [18] gives, for 0 ≤ m ≤ k

‖εα(u − IN
α,ku)‖T α � hm+1−1

α ‖∇m+1
α u‖∆Tα .

In case of α = x, one can show ‖∇m
x

εx(u)‖∆Tx
≃ ‖∇m+1

x
u‖∆Tx

for
m ≥ 1 by a direct evaluation of the respective terms. For α = z,
the strain and gradient operator coincide. Putting these estimates
together, we obtain

‖εα(u − IN
α,ku)‖T α � hm

α ‖∇
m
α εα(u)‖∆Tα .

2

A main achievement of [30] was the statement that the interpolation
operators for the Lagrange and Nédélec spaces satisfy a commuting
diagram property,

(25) ∇αIL
α,k+1 = IN

α,k∇α.

This property will be a crucial tool in the analysis of the approxima-
tion properties of the tensor product interpolation operator constructed
later.

So far, we provided quasi-interpolation operators for all spaces except
for the stress space Σk

x
. In the sequel, we propose a nodal interpolation

operator for Σk
x
. It is well defined for tensor-valued symmetric L2 func-

tions with their normal-normal component continuous across interfaces
F , and in L2(F ). Note that all estimates are done on the shape regular
triangulation T x.

To construct a nodal interpolation operator, we need degrees of free-
dom for Σk

x
. We propose a unisolvent set of degrees of freedom, which

are preserved by the H(div div) conforming transformation (12). For
Fx ∈ Fx and Tx ∈ T x they are given by

ΨF x

i (σx) :=

∫

F x

JF xσx,nnℓi dsx, 0 ≤ i ≤ k,

ΨT x

mij(σx) :=

∫

T

JT xσx : (F−T
T x bx

mŝmF−1
T x )ux

ij dx, 0 ≤ i + j ≤ k − 1, m = 1, 2, 3.
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Note that bx

mŝm,m = 1, 2, 3 are the in-plane bubble functions defined
in Section 2.2. In [31], it was shown that these functionals are linearly
independent.

Thus there exists a unique local polynomial nodal basis ΦT x

:=⋃
F x∈F(T x){φ

F x

i } ∪ {φT x

ijl }, which matches these degrees of freedom and

spans P k
x
(Tx):

span(ΦT x

) = P k
x
(Tx).

We can now define the nodal interpolator by

IΣ
x,k(σ) :=

∑

F x∈Fx

k∑

i=0

ΨF x

i (σx)φF x

i +
∑

T x∈T x

∑

0≤m≤3,
0≤i+j≤k−1

ΨT x

mij(σx)φT x

mij.

The interpolation operator preserves polynomials up to order k. Note
that it naturally commutes with the finite element transformation from
Section 2.3. By a Bramble-Hilbert argument on the uniform triangu-
lation, we obtain for sufficiently smooth σx that

‖σx − IΣ
x,kσx‖T x � hm

x
‖∇m

x
σx‖∆Tx

, 0 ≤ m ≤ k + 1.

4.2. Tensor product interpolation operators. We can now define
an interpolation operator for the displacement space Vk on the tensor
product domain,

(26) IN
k := IN

x,k ⊗ IL
z,k+1 × IL

x,k+1 ⊗ IN
z,k.

The in-plane deformation ux is interpolated by the Nédélec operator
in plane, and continuously in the thickness-direction, the transversal
displacement uz is interpolated vice versa.

For the stress space, we define, denoting the symmetry of the tensor,

(27) IΣ
k (σ) :=

(
(IΣ

x,k ⊗ IP
z,k+1)σx (IP

x,k ⊗ IP
z,k)σxz

sym (IP
x,k+1 ⊗ IΣ

z,k+1)σz

)
.

From the definition of the quasi-interpolation operators it is clear
that interpolation and differentiation with respect to different direc-
tions commute, i.e. for α, β ∈ {x, z}, α 6= β

∇αIL
β,k = IL

β,k∇α, ∇αIN
β,k = IN

β,k∇α.

In the following, we provide two lemmas, that result in an interpo-
lation error estimate for IN

k with respect to the broken norm ‖.‖Vk
.

Lemma 5. Let T ∈ T , and for integer m ≤ k let the function u ∈
H(curl) additionally satisfy u ∈ Hm+1(∆T ). Then the product space
interpolation operator IN

k defined via (26) satisfies the local anisotropic
error estimate for m ≤ k

(28) ‖ε(u − IN
k u)‖T � hm

x
‖∇m

x
ε(u)‖∆T

+ hm
z ‖∇

m
z ε(u)‖∆T

.
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Proof. For u ∈ [Hm+1(T )]3, we bound the three different blocks
εx(u), εz(u), εxz(u) of the strain tensor separately. The bounds on
the diagonal blocks εx(u), εz(u) follow straightforwardly and along the
same line, we show the estimate for the x-block

1
2
‖εx(u − IN

x,kI
L
z,k+1u)‖2

T ≤ ‖(id − IL
z,k+1)εx(u)‖2

T + ‖IL
z,p+1εx(u − IN

x,ku)‖2
T

� h2m
z ‖∇m

z εx(u)‖2
∆T

+ ‖εx(u − IN
x,ku)‖2

∆T

� h2m
z ‖∇m

z εx(u)‖2
∆T

+ h2m
x

‖∇m
x

εx(u)‖2
∆T

.

In the off-diagonal block εxz(u), we rely on the commuting diagram
property (25) of the quasi-interpolators

1
2
‖εxz(u − IN

k u)‖2
T = 1

8
‖∇x(uz − IN

z,kI
L
x,k+1uz) + ∇z(ux − IN

x,kI
L
z,k+1ux)‖2

T

= 1
8
‖(id − IN

x,kI
N
z,k) (∇xuz + ∇zux)︸ ︷︷ ︸

=2εxz(u)

‖2
T

≤ ‖(id − IN
x,k)εxz(u)‖2

T + ‖IN
x,k(id − IN

z,k)εxz(u)‖2
T

� h2m
x

‖∇m
x

εxz(u)‖2
∆T

+ h2m
z ‖∇m

z εxz(u)‖2
∆T

.

2

Lemma 6. Let α ∈ {x, z}, and F ∈ F such that its normal lies in
direction α, i.e. n = (0, 0, 1) for α = z and n = (nx1

, nx2
, 0) for α = x.

Let u ∈ H(curl) be in Hm+1(∆T ) for all T ∈ ∆F . The tensor product
interpolation operator IN

k satisfies the local anisotropic error estimate

(29)
∥∥[[u − IN

k u
]]

n

∥∥2

F
�
∑

T∈∆F

h2m+1
α ‖∇m

α εα(uα)‖2
∆T

.

Proof. Let β ∈ {x, z}, β 6= α be the orthogonal direction to α. Due
to the choice of F , we have hF ≃ hα. From the definition of IN

k , we see

(IN
k u)α = IN

α,kI
L
β,k+1uα.

As the jump in normal direction depends only on the α component, we
get by the triangle inequality
∥∥[[u − IN

k u
]]

n

∥∥
F

≤
∥∥[[uα − IN

α,kI
L
β,k+1uα

]]∥∥
F

≤
∥∥[[(id − IL

β,k+1)uα

]]∥∥
F

+
∥∥[[IL

β,k+1(id − IN
α,k)uα

]]∥∥
F
.

Due to the linearity of IL
β,k+1 it commutes with the jump operator

for any piecewise smooth function v, i.e. IL
β,k+1[[v]] = [[IL

β,k+1v]]. As u
is supposed to be continuous on ∆F , it is continuous across F , and
thereby ∥∥[[(id − IL

β,k+1)uα

]]∥∥
F

= 0.



24 A. PECHSTEIN
1

AND J. SCHÖBERL
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We now concentrate on the second term in the estimate above. Again,
using linearity and boundedness in L2 of IL

β,k+1, we obtain
∥∥[[IL

β,k+1(id − IN
α,k)uα

]]∥∥
F
�
∥∥[[(id − IN

α,k)uα

]]∥∥
F
.

In [31], we provided a Korn-type inequality in the spirit of [23, Theo-
rem 3.1] and the preceding work [12]. It states that, provided a shape
regular, simplicial triangulation T α, on a facet Fα ∈ Fα

(30)
∥∥[[(id − IN

α,0)uα

]]∥∥2

F α � hα

∑

T α∈∆Fα

‖εα(uα)‖2
T α .

By the hierarchical definition of the Nédélec interpolation operator, we
have

IN
α,0I

N
α,kuα = IN

α,0uα and ε(IN
α,0uα) = 0.

When using higher order interpolation operators, one can thus deduce
easily

∥∥[[(id − IN
α,k)uα

]]∥∥2

F α � hα

∑

T α∈∆Fα

‖εα(uα − IN
α,kuα)‖2

T α(31)

≤ h2m+1
α

∑

T α∈∆Fα

‖∇m
α εα(uα)‖2

∆Tα
,(32)

where we have to use Lemma 4 to obtain estimate (32).
The facet F is the tensor product of a simplicial element T β and

a facet Fα. As all functions are supposed to be piecewise smooth,
Fubini’s theorem is applicable, and integration with respect to α, β
may be done independently. Using this and the bound (32), we may
estimate

∥∥[[(id − IN
α,k)uα

]]∥∥2

F
=

∫

T β

∫

F α

∣∣[[uα − IN
α,kuα]]

∣∣2 dsαdβ

� h2m+1
α

∑

T α∈∆Fα

∫

T β

∫

∆Tα

|εα(uα)|2 dα dβ

≤ h2m+1
α

∑

T∈∆F

‖εα(uα)‖2
∆T

,

which concludes our proof.

2

Corollary 7. For m ≤ k and u ∈ [Hm+1(Ω)]d, there holds the inter-
polation error estimate

‖u − IN
k u‖2

Vk
� h2m

x
‖∇m

x
ε(u)‖2

Ω + h2m
z ‖∇m

z ε(u)‖2
Ω.
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Lemma 8. The interpolation operator IΣ
k defined in (27) satisfies the

approximation property

‖σ − IΣ
k σ‖T � hm

x
‖∇m

x
σ‖∆T

+ hm
z ‖∇

m
z σ‖∆T

for m ≤ k + 1 and σ ∈ Hm(∆T ) on an element T ∈ T .

Proof. The result follows directly by bounding the respective sub-
blocks of σ − IΣ

k σ. We will do the calculations for the x-block, the
estimate for the other two sub-blocks follows the same line.
∥∥(σ − IΣ

k σ
)

x

∥∥
T

=
∥∥σx − IΣ

x,kI
P
z,k+1σx

∥∥
T

≤
∥∥σx − IP

z,k+1σx

∥∥
T

+
∥∥IP

z,k+1(σx − IΣ
x,kσx)

∥∥
T

.

By the approximation properties of the two interpolation operators IΣ
x,k

and IP
z,k+1 and the L2 continuity of the latter one, we obtain

∥∥(σ − IΣ
k σ
)

x

∥∥
T
� hm

x
‖∇m

x
σx‖∆T

+ hm
z ‖∇

m
z σ‖∆T

.

2

4.3. Anisotropic error estimates. We provide an error estimate for
the finite element solution on the tensor product domain. In Theo-
rem 3 we employed standard theory for mixed problems to bound the
discretization error by the best-approximation error. Now, estimating
this quantity by the interpolation errors from Corollary 7 and Lemma 8,
we arrive at the following theorem.

Theorem 9. Let (u, σ) be the solution to the continuous problem (8)
and (uh, σh) ∈ Vk × Σk be the approximation determined by (13). Let
T be a tensor-product mesh for Ω as defined above. If u ∈ Hm+1(Ω)
and σ ∈ Hm(Ω),

‖σ − σh‖Σk
+ ‖u − uh‖Vk

� hm
x

(
‖∇m

x
σ‖L2(Ω) + ‖∇m

x
ε(u)‖L2(Ω)

)
+

hm
z

(
‖∇m

z σ‖L2(Ω) + ‖∇m
z ε(u)‖L2(Ω)

)
.

We emphasize that the constant hidden in “�” is independent of the
anisotropic mesh sizes hx, hz and their ratio hx/hz.

5. Numerical examples

As a first example, we consider a plate, where the cross section is
the unit square, Ωx = [0, 1]× [0, 1]. We use a coarse triangular mesh of
mesh size hx ≃ 0.4. We assume the material to be homogenous and
isotropic, and set Young’s modulus E = 1, Poisson ratio ν = 0.4. We
apply a volume force in vertical direction f = (0, 0, dz)

T in Ω.
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We discretize the domain using a coarse tensor-product mesh. The
in-plane triangulation T x consists of 16 elements, in thickness direc-
tion we use one to four elements. This implies that the mesh size in
thickness direction varies from hz = dz to hz = 0.25 · dz. We first
do all computations for dz = 0.1, so the aspect ratio of the domain is
1/10. We use adaptive refinement in x-direction, but keep the mesh
size fixed in z-direction. We use finite element spaces of orders one
and two. In Figure 4, we plot the error against the number of degrees
of freedom. The different curves correspond to different discretizations
with respect to the z-direction using one, two and four elements in
thickness direction. As expected, a linear or quadratic rate of conver-
gence is achieved in the first refinement steps, indicated by the slope
of the error curve almost parallel to the given reference slopes. For the
different discretizations with respect to z-direction, the error curve sat-
urates at different points. This saturation happens as soon as the total
error is dominated by the error due to the mesh size hz.In Figure 5, we
used a plate of thickness dz = 0.01, and one element in thickness direc-
tion. Again, we plot the error using adaptive refinement in x-direction,
and find the almost optimal order of convergence. Moreover, we ap-
ply the p-version of the finite element method. We use the same coarse
mesh as for the h-version, but perform one level of geometric refinement
towards the sides of the plate. We keep this mesh fixed, and do calcu-
lations for increasing polynomial order, namely k = 1, . . . 4. We see the
exponential convergence one generally expects for high-order methods,
although exponential convergence with respect to the polynomial de-
gree was not shown rigorously in the current work. The stability proofs
in Section 3 may thus be not optimal.

Our next example is a cylindrical shell of thickness dz = 0.01. We
discretize the shell by prismatic, curved elements, where the order of the
element mapping is equal to the order of the underlying finite element
spaces. Note that curved elements are not covered by the theory in the
previous sections. We used both our mixed finite elements, as well as a
standard primal H1 conforming discretization. For the standard primal
method, we choose elements of polynomial order k = 5, while for the
new mixed method elements of order k = 3 are used. The standard
discretization leads to 49 722 coupling degrees of freedom, while for
the proposed mixed methods, 42 451 coupling degrees of freedom arise.
In Figure 6, we plot the absolute value of the stress |σ|. Clearly, the
mixed method leads to better results even though the polynomial order
is chosen lower than for the standard method.
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Figure 4. Estimated error vs. degrees of freedom for
a square plate of thickness dz = 0.1, with one, two and
four elements in transverse direction (hz = 0.1, 0.05 and
0.025), top order k = 1, bottom order k = 2.
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