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1 Introduction 11 IntroductionThe solution of elliptic boundary value problems may have anisotropic behaviour in partsof the domain. That means that the solution varies signi�cantly only in certain direction-s. Examples include di�usion problems in domains with edges and singularly perturbedconvection-di�usion-reaction problems where boundary or interior layers appear. In suchcases it is an obvious idea to re
ect this anisotropy in the discretization by using anisotrop-ic meshes with a small mesh size in the direction of the rapid variation of the solution anda larger mesh size in the perpendicular direction. Anisotropic meshes can also be advanta-geous if surfaces with strongly anisotropic curvature (the front side of a wing of an airplane,for example [31, Figure 6]) or thin layers of di�erent material are to be discretized.In order to describe the elements of anisotropic meshes mathematically, consider anelliptic boundary value problem posed over a polyhedral domain 
 � IRd, d = 2; 3. Westudy the discretization error of the �nite element method on a family of meshes Th = fKgwith the usual admissibility conditions (see, for example, Conditions (Th1){(Th5) in [17,Chapter 2]). Denote by hL;K the diameter of the �nite elementK, and by %K the supremumof the diameters of all balls contained in K. Then it is assumed in the classical �niteelement theory that hL;K . %K. The notation a . b means the existence of a positiveconstant C (which is independent of Th and of the function under consideration) such thata � Cb. This assumption is no longer valid in the case of anisotropic meshes. Conversely,anisotropic elements K are characterized byhL;K%K !1where the limit can be considered as h! 0 (as in the present paper) or "! 0 where " issome (small perturbation) parameter of the problem.Local interpolation error estimates for anisotropic elements are widely developed in theliterature [2, 3, 4, 6, 8, 11, 12, 13, 14, 19, 21, 22, 23, 26, 29, 30, 33, 35]. In particular theimproved estimates in [2, 4, 12, 13, 14, 26] are applied, for example, for the investigation ofLaplace type problems in domains with edges [3, 4, 7, 8, 25], layers in singularly perturbedproblems [5, 6, 20], and anisotropic phenomena in the solution of the Stokes problem [14].However, all these applications are restricted to conforming �nite element methods.Non-conforming methods are hardly treated. Such methods are of particular interest inmixed methods for problems like the Stokes problem or the Mindlin-Reissner plate problem.The aim of this paper is to provide basic results for a simple class of non-conformingelements, namely the Crouzeix-Raviart element [18] and modi�cations thereof. We applythem here to the simplest model problem, the Poisson problem. Other applications arepostponed to the upcoming papers [9, 10].In Section 2 we describe a family of anisotropically graded �nite element meshes whichturned out to be suited for the treatment of edge singularities in the context of conformingP1 elements [2, 4, 7]. We show in this paper that this family is also suited for non-conforming P1 elements.



2 1 IntroductionThe �nite element error of the non-conforming method can be estimated via the secondStrang lemma by the sum of an interpolation error and a consistency error. These errorsare considered in Sections 3 and 4. In particular, we derive for Crouzeix-Raviart triangularand tetrahedral elements K [18] the interpolation error estimateju� Ihu;W 1;2(K)j . ju;W 1;2(K)j (1.1)from which we can derive easilyju� Ihu;W 1;2(K)j . dXi=1 hi;K j@iu;W 1;2(K)j: (1.2)We denote by d the space dimension, by hi;K suitably de�ned element sizes, by @i thepartial derivative @=@xi, and by k � ;Xk and j � ;Xj the usual norm and seminorm in theBanach space X. A similar estimate is obtained for functions u from weighted Sobolevspaces. Both estimates hold for a general triangle/tetrahedron, in particular without anangle condition. We remark that related results were obtained in [1].Note that (1.1) is not valid for Lagrangian interpolation on the conforming P1 element.Even (1.2) is not valid for the conforming tetrahedral element [3, 4]. Modi�ed interpolantsof Scott-Zhang type have been developed to overcome these de�ciencies [2], but until nowthey are restricted to a special class of mesh. This is clearly an advantage of the non-conforming element.In Section 4 we prove for the more general equation�r� = f estimates of the consisten-cy error. The proof made certain new ideas necessary since the standard proof [18] cannotbe applied to anisotropic elements. The reason for the generality is that hence these esti-mates can be applied in the papers [9, 10] to the Stokes problem and the Reissner-Mindlinplate problem, respectively.Crouzeix-Raviart type rectangular elements, called parametric rotated Q1 element andnon-parametric rotated Q1 element were de�ned and investigated in [27] for isotropicmeshes. The anisotropic case was discussed in [15]. These authors proved that the non-parametric element, together with the P0 element for the pressure, yield a Stokes elementpairing that is stable independently of the aspect ratio. However, the estimation of theconsistency error was not addressed. We give in Sections 3 and 4 a complete treatment ofa modi�ed Crouzeix-Raviart type rectangular element. The modi�ed element generalizeseasily to a class of prismatic three-dimensional elements (pentahedra).The results of Sections 3 and 4 are applied in Section 5 in order to prove the �niteelement error estimate for the model Laplace problem in the presence of edge singularities.We obtain the optimal �nite element error estimateku� uhk1;h . hkf ;L2(
)k;where h := maxK hL;K, hL;K := maxi hi;K, andk � k2m;h :=XK j � ;Wm;2(K)j; m � 0;



2 Discretization of the model problem 3are mesh dependent (semi-)norms. For the assessment of this result it is essential to pointout that the number of elements/degrees of freedom is of the order h�3, that means, it isasymptotically not larger than that for uniform meshes where only a reduced convergenceorder h� is obtained.In the �nal section of the paper we show by a numerical test example that theseasymptotical convergence orders can be observed in calculations with practical mesh sizes.Furthermore, we compare the non-conforming with the conforming P1 element.Throughout the paper we use the following convention concerning indices. When allindices play the same role we use the index set f1; : : : ; dg (recall that d is the spacedimension). In anisotropic elements, however, one direction is distinguished, that is thestretching direction of the element. Since in two space dimensions this direction is usuallyindexed by 1, and in three space dimensions by 3, we try to avoid confusion by using theindices L (long, large) and S (short, small), in three dimensions S1; S2. In this sense wedenote the element sizes by hL and hS and the components of the vector function � by �Land �S. The aim is to compensate large norms of �S by small element sizes hS in directionxS.2 Discretization of the model problemConsider the Poisson problem with Dirichlet boundary conditions in a three-dimensionalpolyhedral domain 
, ��u = f in 
; u = 0 on @
; (2.1)with a right hand side f 2 L2(
). It is well known that the solution has in general singu-larities near corners and edges and near the lines where the type of the boundary conditionchanges. As a result, the �nite element method on quasi-uniform meshes loses accuracy.The rate of convergence is smaller in comparison with that for problems with smooth so-lutions. It has been shown under di�erent assumptions that anisotropic mesh grading isappropriate to compensate this e�ect and to obtain the optimal order of convergence forthe conforming �rst order element [2, 4, 7, 8].In [2, 4, 7] we considered in particular a prismatic domain
 = G� Z (2.2)where G � IR2 is a bounded polygonal domain and Z := (0; z0) � IR is an interval.This restriction was made there because we wanted to focus on edge singularities, andsuch domains do not introduce additional corner singularities [32, 34]. The �nite elementmeshes were graded perpendicularly to the edge and quasi-uniform in the edge direction.In this section we state �rst the regularity of the solution of problem (2.1), (2.2), andintroduce then the family of non-conforming �nite element spaces. The estimation of the�nite element error is postponed to Section 5.Denote by V0 � W 1;2(
) the space of allW 1;2(
)-functions which vanish at the bound-ary. The variational form of problem (2.1) is given byFind u 2 V0 such that (ru;rv) = (f; v) for all v 2 V0: (2.3)



4 2 Discretization of the model problemThe existence of a unique variational solution u follows from the Lax-Milgram lemma.Let us assume that the cross-section G has only one corner with interior angle ! > �at the origin; thus 
 has only one \singular edge" which is part of the xL-axis. The caseof more than one singular edge introduces no additional di�culties because the edge sin-gularities are of local nature. The properties of the solution u can be described favourablyby using weighted Sobolev spacesV `;p� (
) := fv 2 D0(
) : kv;V `;p� (
)k <1g; ` 2 IN; p 2 [1;1]; � 2 IR:The norm is de�ned for p 2 [1;1) bykv;V `;p� (
)kp := Xi+j+k�` kr��`+i+j+k@i1@j2@k3v;Lp(
)kpwith the usual modi�cation for p =1.Lemma 2.1 The solution u of problem (2.1), (2.2) satis�es@u@xi 2 V 1;2� (
); 



 @u@xi ;V 1;2� (
)



 . kf ;L2(
)k; i 2 fS1; S2g; � > 1� �! ; (2.4)@u@xL 2 V 1;20 (
); 



 @u@xL ;V 1;20 (
)



 . kf ;L2(
)k: (2.5)Proof See for example [7, Section 2]. 2We de�ne now families of meshes Qh = fQg and Th = fKg by introducing in G thestandard mesh grading for two-dimensional corner problems, see for example [24, 28]. LetfTg be a regular isotropic triangulation of G; the elements are triangles. With h being theglobal mesh parameter, � 2 (0; 1] being the grading parameter, rT being the distance of Tto the corner, rT := inf(x1;x2)2T(x21 + x22)1=2;and with some constant R > 0, we assume that the element size hT := diamT satis�eshT � 8<: h1=� for rT = 0;hr1��T for 0 < rT � R;h for rT > R:This graded two-dimensional mesh is now extended in the third dimension using a uniformmesh size, h. In this way we obtain a pentahedral triangulation Qh or, by dividing eachpentahedron, a tetrahedral triangulation Th of 
, see Figure 2.1 for an illustration. Notethat the number of elements is of the order h�3 for the full range of �. The notation isextended to the three-dimensional case as follows. Let rQ and rK be the distance of anelement Q or K to the edge (x3-axis), respectively. Then the element sizes satisfyhL;Q � h; hS1;Q � hS2;Q � 8<: h1=� for rQ = 0;hr1��Q for 0 < rQ � R;h for rQ > R: : (2.6)



2 Discretization of the model problem 5

h1=� h
Figure 2.1: Example for an anisotropic mesh.The element sizes hi;K are used by analogy for tetrahedral elements, hi;K := hi;Q if K � Q.On Th we introduce the Crouzeix-Raviart �nite element spaceVh := fvh 2 L2(
) : vhjK 2 P1 8K; ZF [vh] = 0 8Fg (2.7)where we denote faces of elements by F and by [vh] the jump of the function vh on thefaces F . For boundary faces we identify [vh] with vh. An appropriate choice of Vh forpentahedral meshes Qh isVh := fvh 2 L2(
) : vhjQ 2 P1 � span fx2Lg 8Q; ZF [vh] = 0 8Fg: (2.8)We note that Vh 6� V0, that means the method is non-conforming. Thus rvh is notde�ned on inter-element boundaries and we de�ne the �nite element solution uh by usingthe weaker scalar product(u; v)h :=XK ZK uv or (u; v)h :=XQ ZQ uv;respectively, namely:Find uh 2 V0h such that (ruh;rvh)h = (f; vh) for all vh 2 V0h: (2.9)The �nite element error u� uh can be estimated in the norm k � k1;h by using the secondLemma of Strang,ku� uhk1;h . infvh2Vh ku� vhk1;h + supvh2Vh j(ru;rvh)h � (f; vh)jkvhk1;h : (2.10)The terms are called approximation error and consistency error, respectively. The approx-imation error is estimated by using vh = Ihv with a suitably de�ned interpolation operatorIh, see the next section. A general discussion of the consistency error is given in Section 4.We continue the estimation of the �nite element error for this model problem in Section 5.



6 3 Local interpolation error estimates3 Local interpolation error estimatesConsider �rst simplicial (triangular or tetrahedral) elements K � IRd, d = 2; 3, with faces(sides) F . The Crouzeix-Raviart interpolant Ih, Ih 2 P1, is de�ned byZF u = ZF Ihu 8F � @K: (3.1)Contrary to the Lagrangian interpolant (nodal values) this interpolant is de�ned for u 2W 1;p(K) for all p 2 [1;1]. Note further thatIhw = w 8w 2 P1: (3.2)We start with a stability estimate from which the desired local interpolation error estimatescan be derived easily.Lemma 3.1 For all p; q 2 [1;1] and u 2 W 1;p(K) the estimatek@jIhu;Lq(K)k � (measdK)1=q�1=pk@ju;Lp(K)k; j = 1; : : : ; dholds.Proof The essential ingredient is that @jIhu is constant. Let n be the outward unit normalto @K and nj be the projections of n to the xj-axis, j = 1; : : : ; d. By Green's formula and(3.1) we obtain@jIhu = (measdK)�1 ZK @jIhu = (measdK)�1XF �ZF Ihu� nj= (measdK)�1XF �ZF u� nj = (measdK)�1 ZK @ju: (3.3)The desired estimate is then a consequence of the H�older inequality,k@jIhu;Lq(K)k = (measdK)1=q j@jIhuj� (measdK)1=q�1k@ju;L1(K)k� (measdK)1=q�1=pk@ju;Lp(K)k: 2Corollary 3.2 For p; q 2 [1;1], p � q, and u 2 W 1;p(K) the estimatek@j(u� Ihu);Lq(K)k . (measdK)1=q�1=pk@ju;Lp(K)k; j = 1; : : : ; dholds.



3 Local interpolation error estimates 7Note that Lemma 3.1 and Corollary 3.2 hold true for arbitrary elements K, withoutany restriction to angles.For the error estimate against second derivatives of u we utilize two ingredients whichneed a condition on the elements K and a de�nition of element sizes hi;K. The �rst is thevalidity of the embedding W 1;p(K) ,! Lq(K) in the formkv;Lq(K)k . (measdK)1=q�1=p kv;Lp(K)k+ dXi=1 hi;Kk@iv;Lp(K)k! : (3.4)The second is a Deny-Lions or Bramble-Hilbert type argument, namely8v 2 W 1;p(K) 9w 2 P0 : kv � w;Lp(K)k . dXi=1 hi;Kk@iv;Lp(K)k; (3.5)which is, with w =MKv, MGv := (measdimGG)�1 ZG v; (3.6)in this simple case also a conclusion of the Poincar�e-Friedrichs inequality.Both estimates are clearly satis�ed on a reference element K̂ with hi;K = 1. If K is atriangle with two sides parallel to the coordinate axes then the estimates are satis�ed withhi;K being the lengths of these sides. If K is a tetrahedron as constructed in Section 2then the estimates are also satis�ed. We will omit the discussion of more general situationshere.Lemma 3.3 Let K be a simplicial element with element sizes hi;K such that (3.4) and(3.5) are valid where the numbers p; q 2 [1;1] are such that W 1;p(K) ,! Lq(K). Then foru 2 W 2;p(K) the estimatek@j(u� Ihu);Lq(K)k . (measdK)1=q�1=p dXi=1 hi;Kk@i@ju;Lp(K)k; j = 1; : : : ; d;holds.Proof From (3.5) we get the existence of a polynomial w 2 P1 such thatk@j(u� w);Lp(K)k . dXi=1 hi;Kk@i@ju;Lp(K)k: (3.7)Using this polynomial, equation (3.2), the triangle inequality, (3.4) with v = @j(u � w),and Lemma 3.1, we obtaink@j(u� Ihu);Lq(K)k� k@j(u� w);Lq(K)k+ k@jIh(u� w);Lq(K)k. (measdK)1=q�1=p k@j(u� w);Lp(K)k+ dXi=1 hi;Kk@i@j(u� w);Lp(K)k! :



8 3 Local interpolation error estimatesWith (3.7) and @i@jw = 0 we conclude the desired estimate. 2A similar result, but with derivatives in the direction of edges, was derived in [1] bywriting (3.3) as @jIhujK = MK@ju and using estimates for kv �MKv;Lq(K)k. The factRK̂ @j(u� Ihu) = 0 was already observed in [4, Table 2, No. 5] for the two-dimensional case.Since the solution of problems with edge singularities are well described in terms ofweighted Sobolev spaces, see Lemma 2.1, we will derive also an estimate for such functions.Lemma 3.4 Let K be a tetrahedron with rK = 0 and with element sizes hS;K and hL;K asdescribed in Section 2. For p; q 2 [1;1], �j 2 (�1; 1] and @ju 2 V 1;p�j (K) the estimatek@j(u� Ihu);Lq(K)k . (meas3K)1=q�1=ph1��jS;K k@ju;V 1;p�j (K)k; j = 1; : : : ; 3;holds.Proof Corollary 3.2 impliesk@j(u� Ihu);Lq(K)k . (meas3K)1=q�1=pk@ju;Lp(K)k. (meas3K)1=q�1=pkr1��;L1(K)k kr��1@ju;Lp(K)k:By observing kr1��;L1(K)k . h1��S;K and kr��1@ju;Lp(K)k � k@ju;V 1;p� (K)k the desiredestimate is obtained. 2We will now investigate rectangular (quadrilateral) elements K. It has been known fora long time that the space Q1 = span f1; x1; x2; x1x2g is not unisolvent when the integral onsides is prescribed as in (3.1). Therefore so-called rotated Q1 elements have been investigat-ed [27] where the polynomial space on the reference element K̂ is span f1; x1; x2; x21 � x22g.One property is that this space is preserved under a rotation of the coordinate system by90 degrees. However, estimates as in Lemmata 3.1{3.4 are not valid, see Example 3.5. In[15, 27] also the so-called non-parametric version of the rotated Q1 element was investigat-ed where the polynomial space is span f1; x1; x2; x21� x22g on the element K. It was provedin [15] that jIhu;W 1;2(K)j . ju;W 1;2(K)j holds for elements with arbitrary aspect ratio.However, the consistency error was not analyzed.Example 3.5 Consider the element K = (0; hL)� (0; hS) and the reference element K̂ =(0; 1)2. For the function u = x2L we obtain by direct calculationû = h2Lx̂2L;Îhû = h2L �12(x̂2L � x̂2S) + 12 x̂L + 12 x̂S � 112� ;Ihu = 12x2L � 12h2Lh�2S x2S + 12hLxL + 12h2Lh�1S xS � 112h2L;@S(u� Ihu) = h2Lh�2S xS � 12h2Lh�1S ;k@S(u� Ihu);L2(K)k = h2Lh�2S �hL Z hS0 �xS � 12hS�2 dxS�1=2 � h2Lh�1S (hLhS)1=2;



3 Local interpolation error estimates 9ju;W 1;2(K)j = �ZQ(2xL)2�1=2 � hL(hLhS)1=2;Xi2fL;Sg hij@iu;W 1;2(K)j = hL�ZQ 22�1=2 � hL(hLhS)1=2;and, consequently,k@S(u� Ihu);L2(K)kju;W 1;2(K)j � k@S(u� Ihu);L2(K)kPi2fL;Sghij@iu;W 1;2(K)j � hLhSwhich can become arbitrary large.We propose to use the spaceP := span f1; xL; xS; x2Lg = P1 � span fx2Lgwhich has the key property @Sw = const: for w 2 P. Since the element K is anisotropicanyway, the space can be anisotropic as well. We could try to unify both types of trialfunctions by including a dependence on the aspect ratio, for example by using the functionx̂2L � h�2L h2Sx̂2S [15], but we try to keep the explanations as simple as possible. We provenow estimates similar to the ones above. The interpolant is again de�ned by (3.1).Lemma 3.6 A function v 2 P is well de�ned when the values RF v are prescribed on thefour sides F of a rectangle K. The faces F are assumed to be parallel to the coordinateaxes.Proof Since the space is invariant with respect to translation it is su�cient to considerthe rectangle K = (0; hL)� (0; hS). Set v = a0+aLxL+aSxS+aLLx2L, then the coe�cientsare the solution of the system0BBB@ hL 12h2L 0 13h3LhS hLhS 12h2S h2LhShL 12h2L hLhS 13h3LhS 0 12h2S 0
1CCCA0BBB@ a0aLaSaLL

1CCCA = 0BBBB@ R hL0 v(x; 0) dxR hS0 v(hL; x) dxR hL0 v(x; hS) dxR hS0 v(0; x) dx
1CCCCA :The determinant of the matrix is 16h5Lh3S 6= 0. 2Lemma 3.7 Let K be a rectangular element with sides of length hL and hS being parallelto the coordinate axes xL and xS. For p; q 2 [1;1], p � q, and u 2 W 1;p(K) the estimatesk@S(u� Ihu);Lq(K)k . (meas2K)1=q�1=pk@Su;Lp(K)k; (3.8)k@L(u� Ihu);Lq(K)k . (meas2K)1=q�1=pju;W 1;p(K)j (3.9)



10 3 Local interpolation error estimateshold. If p; q 2 [1;1] are such that W 1;p(K) ,! Lq(K), and if u 2 W 2;p(K) then theestimates k@S(u� Ihu);Lq(K)k . (meas2K)1=q�1=p Xi2fL;Sg hi;Kk@i@Su;Lp(K)k; (3.10)k@L(u� Ihu);Lq(K)k . (meas2K)1=q�1=p Xi;j2fL;Sghi;Kk@i@ju;Lp(K)k (3.11)hold.Proof As in the proof Lemma 3.1 we derivek@SIhu;Lq(K)k � (meas2K)1=q�1=pk@Su;Lp(K)k: (3.12)For @LIhu we get only a weaker (yet su�cient) estimate since this term is not constant.By using the de�nition of Ihu we get for any p; q 2 [1;1]k@̂LIhû;Lq(K̂)k . kû;W 1;p(K̂)k:Consequently,k@LIhu;Lq(K)k . h�1L (meas2K)1=q�1=p0@ku;Lp(K)k+ Xi2fL;Sghi;Kk@iu;Lp(K)k1A : (3.13)Estimate (3.8) is obtained by the triangle inequality from (3.12). For (3.9) we choosew 2 P0 such that (3.5) is satis�ed with v = u and conclude with (3.13) and by analogy tothe proof of Lemma 3.3k@L(u� Ihu);Lq(K)k� k@L(u� w);Lq(K)k+ k@LIh(u� w);Lq(K)k. h�1L (meas2K)1=q�1=p0@ku� w;Lp(K)k+ Xi2fL;Sghi;Kk@i(u� w);Lp(K)k1A� h�1L (meas2K)1=q�1=p Xi2fL;Sghi;Kk@iu;Lp(K)kwhich is even slightly sharper than (3.9).The estimates (3.10) and (3.11) are proved as the the corresponding ones in Lemma3.3. The additional terms appear in (3.11) due to the weaker estimate (3.13). 2In full analogy we treat prismatic elements Q = T � I, where T is an isotropic triangleof diameter hS;Q and I is an interval of length hL;Q. We use the polynomial spaceP := P1 � span fx2Lg; (3.14)prove unisolvence and the following error estimates. For convenience of notation they areformulated slightly weaker (yet su�cient for the application later on) than the correspond-ing estimates in Lemma 3.7.



4 Consistency error estimates 11Lemma 3.8 Let Q be a prismatic element as described above. For p; q 2 [1;1], p � q,and u 2 W 1;p(Q) the estimateju� Ihu;W 1;q(Q)j . (meas3Q)1=q�1=pju;W 1;p(Q)j (3.15)holds. If p; q 2 [1;1] are such that W 1;p(Q) ,! Lq(Q), and if u 2 W 2;p(Q) then theestimate ju� Ihu;W 1;q(Q)j . (meas3Q)1=q�1=p Xi2fS1;S2;Lg hi;Qj@iu;W 1;p(Q)j (3.16)holds. If rQ = 0, p; q 2 [1;1], �j 2 (�1; 1] and @ju 2 V 1;p�j (Q), j 2 fS1; S2; Lg, then theestimate ju� Ihu;W 1;q(Q)j . (meas3Q)1=q�1=p Xj2fS1;S2;Lg h1��jS;Q k@ju;V 1;p�j (Q)k (3.17)holds.Proof The �rst two estimates are proved as Lemma 3.7. Estimate (3.15) can be writtenas ju� Ihu;W 1;q(Q)j . (meas3Q)1=q�1=p Xj2fS1;S2;Lg k@ju;Lp(Q)k;and we obtain (3.17) in analogy to the proof of Lemma 3.4. 24 Consistency error estimates4.1 General considerations in the two-dimensional caseThe aim of this subsection is to explain the main di�culties and the ideas for the estimationof the consistency error. Therefore we concentrate on the two-dimensional case and, forlater use in other applications [9, 10], on the general di�erential equation�r � � = f in 
; (4.1)with f 2 L2(
). For simplicity, let 
 be a union of rectangles with sides parallel to theaxes of a Cartesian coordinate system (xL; xS).Let us consider a family fThgh!0 of triangulations Th = fKg of rectangular elementsK of size hL;K � hS;K, see Figure 4.1, left hand side, for an illustration. By dividing eachrectangle we obtain a triangular mesh, see Figure 4.1, right hand side. Since we need forthe considerations in this subsection only one element type at one time we denote both
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x1

x2
x1

x2
Figure 4.1: Meshes in two dimensions. Left: rectangular elements. Right: triangularelements.types of element by K. Faces (sides) of the elements are denoted by F . According toSection 3 the corresponding �nite element spaces areVh := fvh 2 L2(
) : vhjK 2 P 8K; ZF [vh] = 0 8Fg; (4.2)P := � P1 for triangular elements,P1 � span fx2Lg for rectangular elements. (4.3)In the sense of (2.10) it is our aim to derive an estimate forsupvh2Vh (�;rvh)h � (f; vh)kvhk1;h :Let us start in the usual way in order to see where di�culties arise. Denoting by n =(nL; nS) the outward unit normal to @K we obtain by Green's formula and (4.1)(�;rvh)h � (f; vh) = XK ZK(� � rvh � fvh)= XK �Z@K(� � n) vh � ZK(r � � + f)vh�= XK XF�@K ZF (� � n) vh: (4.4)Let MF : L1(F ) ! P0 be the averaging operator on the face F which preserves poly-nomials of degree zero, as de�ned in (3.6). SinceXK XF�@KF 6�@
 ZF � � n = 0and MFvh = (meas1F )�1 ZF vh = 0 for all F � @
 (4.5)



4.1 General considerations in the two-dimensional case 13we can reformulate (4.4) by(�;rvh)h � (f; vh) =XK XF�@K ZF (� � n)(vh �MFvh): (4.6)Furthermore, since RF (vh �MFvh) = 0 for all F we continue with(�;rvh)h � (f; vh) =XK XF�@K ZF (� �MF�) � n (vh �MFvh): (4.7)For the estimation of such terms the following lemma is useful.Lemma 4.1 Let F be a face of an element K. Then the estimate����ZF (v �MFv)(vh �MFvh)����. meas1Fmeas2K 0@ Xi2fL;Sgh2i;Kk@iv;L2(K)k21A1=20@ Xi2fL;Sg h2i;Kk@ivh;L2(K)k21A1=2holds for any v 2 W 1;2(K), vh 2 P.Proof We obtain by transformation to the reference face F̂ � K̂, the trace theorem, andthe Bramble-Hilbert lemmakv �MFv;L2(F )k = (meas1F )1=2kv̂ �MF̂ v̂;L2(F̂ )k . (meas1F )1=2jv̂;W 1;2(K̂)j:The transformation from K̂ to K leads tokv �MFv;L2(F )k . (meas1F )1=2(meas2K)�1=20@ Xi2fL;Sgh2i;Kk@iv;L2(K)k21A1=2 :The application of the Cauchy-Schwarz inequality and twice the previous estimate yieldsthe desired result. 2Consider now a small face FS � @K. Then we obtain by applying Lemma 4.1 theestimate����ZFS(� �MFS�) � n (vh �MFSvh)���� = ����ZFS(�L �MFS�L)(vh �MFSvh)����. h�1L;K0@ Xi2fL;Sgh2i;Kk@i�L;L2(K)k21A1=20@ Xi2fL;Sgh2i;Kk@ivh;L2(K)k21A1=2 (4.8)� 0@ Xi2fL;Sg h2i;Kk@i�L;L2(K)k21A1=2 jvh;W 1;2(K)j: (4.9)



14 4 Consistency error estimatesThis may be a su�ciently good estimate for small faces, however, for large faces we wouldget a term of order h�1S;Kh2L;K.The idea is to introduce an auxiliary �nite element space~Vh := f~vh 2 L2(
) : ~vhjK 2 span f1; xSg 8K; ZFL[~vh] = 0 8FLg (4.10)which is su�ciently close to Vh but the above mentioned term will not appear.For an arbitrary but �xed vh 2 Vh we de�ne ~vh 2 ~Vh such thatZFL vh = ZFL ~vh 8FL: (4.11)Since triangles and rectangles have exactly two large faces FL this de�nition is meaningfulfor both types of element.Both @Svh and @S~vh are constant. Even better, by Green's formula and (4.11) we get@Svh = @S~vh (4.12)since@S(vh � ~vh) = (meas2K)�1 ZK @S(vh � ~vh) = (meas2K)�1 XFL�@K ZFL(vh � ~vh)nS = 0holds. We are now prepared to prove an estimate for the consistency error.Lemma 4.2 For rectangular and triangular meshes the estimatesupvh2Vh (�;rvh)h � (f; vh)kvhk1;h. 0@XK Xi;j2fL;Sgh2i;Kk@i�j;L2(K)k21A1=2 + XK h2L;Kkf + @L�L;L2(K)k2!1=2holds provided that � 2 [W 1;2(
)]2 (4.13)and �; f satisfy (4.1).Proof We introduce ~vh as above and modify (4.4) by using (4.12) and (4.1) as follows,(�;rvh)h � (f; vh)= XK ZK(�L@Lvh + �S@S~vh � fvh)= �XK ZK(@L�L vh + @S�S ~vh + fvh) +XK Z@
 �LnL vh +XK Z@
 �SnS ~vh= �XK ZK(f + @L�L)(vh � ~vh) +XK XF�@K ZF �Lvh nL +XK XF�@K ZF �S~vh nS:(4.14)



4.1 General considerations in the two-dimensional case 15The reason of writing f + @L�L instead of �@S�S will become clear in the proof of Lemma4.6. We will now treat the three terms separately.Due to (4.11) we can apply the Poincar�e inequality. On the reference element we getkv̂h � ~̂vh;L2(K̂)k . jv̂h � ~̂vh;W 1;2(K̂)j:After transformation toK and using (4.10), (4.12) and twice the Cauchy-Schwarz inequalitywe obtain kvh � ~vh;L2(K)k . hL;Kk@Lvh;L2(K)k (4.15)����ZK(f + @L�L)(vh � ~vh)���� . hL;Kkf + @L�L;L2(K)k k@Lvh;L2(K)kXK ����ZK(f + @L�L)(vh � ~vh)���� .  XK h2L;Kkf + @L�L;L2(K)k2!1=2 kvhk1;h: (4.16)The second term of (4.14) can be estimated in the way described above, see (4.4){(4.9)and Lemma 4.1. Indeed, we getXK XF�@K ZF �Lvh nL =XK XF�@K nL ZF (�L �MF�L)(vh �MFvh). XK XF�@K meas1Fmeas2KnL0@ Xi2fL;Sg h2i;Kk@i�L;L2(K)k21A1=20@ Xi2fL;Sgh2i;Kk@ivh;L2(K)k21A1=2 :The point is that the factor meas1F (meas2K)�1nL is for all faces of order h�1L or even zero,so that we getXK XF�@K ZF �Lvh nL . 0@XK Xi2fL;Sg h2i;Kk@i�L;L2(K)k21A1=2 kvhk1;h (4.17)by using the discrete version of the Cauchy-Schwarz inequality.The third term can also be estimated in the same way. We mention only two new points.The �rst is that MF ~vh = 0 is in general only satis�ed for large faces FL � @
, compare(4.5). For small faces FS � @
 we have to use that nS = 0. Second, since @L~vh = 0 theterm h2L;Kk@L~vh;L2(K)k2 vanishes such that we can extract a factor hS;Kkvhk1;h which isused to compensate the factor meas1F (meas2K)�1 for all types of face. Hence the estimatereads XK XF�@K ZF �S~vh nS =XK XF�@K ZF (�S �MF�S)(~vh �MF ~vh)nS. XK XF�@K h�1S;K0@ Xi2fL;Sgh2i;Kk@i�S;L2(K)k21A1=2 hS;Kk@S~vh;L2(K)k



16 4 Consistency error estimates. 0@XK Xi2fL;Sgh2i;Kk@i�S;L2(K)k21A1=2 kvhk1;h (4.18)where we have also used (4.12).Combining (4.14) and (4.16){(4.18) we conclude the desired estimate. 24.2 The three-dimensional case under speci�c assumptionsIn this subsection we want to extend the considerations of the previous one into three spacedimensions. The following two points are taken into account.First, while the extension to prismatic elements is straightforward this is not the casefor tetrahedral elements. The main reason is that rectangular, triangular and prismaticelements have exactly d (d is the space dimension) large faces which are used to de�ne ~vin (4.11). One out of three tetrahedral elements has, however, four large sides. Thereforethe approach has to be modi�ed slightly.Second, we assume in Lemma 4.2 that � 2 [W 1;2(
)]2. In view of Lemma 2.1 we willnow weaken this assumption to�S1; �S2 2 V 1;2� (
); � 2 [0; 1); (4.19)�L 2 V 1;20 (
) ,! W 1;2(
): (4.20)Note that due to (4.1), (4.19), and (4.20) in general@S1�S1; @S2�S2 62 L2(
); but @S1�S1 + @S2�S2 2 L2(
): (4.21)In the sense of Section 2, but slightly more general, consider a family of pentahedraltriangulations Qh = fQg. The triangular faces FS;Q of each element Q are parallel to thexS1; xS2-plane. They are isotropic with diameter hS;Q. When necessary we will also use thenotation hS1;Q and hS2;Q which are both identical with with hS;Q. The rectangular facesFL;Q are parallel to the xL-axis and have a size of order hL;Q � hS;Q.Each element Q 2 Qh can be divided into three tetrahedra K such that an admissibletetrahedral triangulation Th = fKg is obtained. We denote the faces of the tetrahedra byFK and introduce the element sizes hL;K, hS;K, hS1;K, and hS2;K by analogy to above.Let us �rst prove a lemma which is analogous to Lemma 4.1.Lemma 4.3 Let F be a face of a tetrahedral element K. Then the estimate����ZF (v �MFv)(vh �MFvh)���� . meas2Fmeas3K �0@ Xi2fL;S1;S2gh�2�i;KS;K h2i;Kkr�i;K@iv;L2(K)k21A1=20@ Xi2fL;S1;S2g h2i;Kk@ivh;L2(K)k21A1=2



4.2 The three-dimensional case under speci�c assumptions 17holds for any v 2 V 1;2�i;K (K), �i;K 2 [0; 1), vh 2 P = P1. By r = (x2S1 + x2S2)1=2 we denotethe distance to the xL-axis.With adapted notation the statement holds for pentahedral elements Q with P := P1 �span fx2Lg as well.Proof We modify the proof of Lemma 4.1 slightly. Instead of the Cauchy-Schwarz in-equality we apply the H�older inequality to obtain����ZF (v �MFv)(vh �MFvh)���� � kv �MFv;L1(F )k kvh �MFvh;L1(F )k: (4.22)For the �rst factor we get in analogy to the proof of Lemma 4.1kv �MFv;L1(F )k . (meas3K)�1(meas2F ) Xi2fL;S1;S2ghi;Kk@iv;L1(K)k:The L1-norm can be estimated by a weighted L2-norm by using the Cauchy-Schwarz in-equality and a direct calculation,kw;L1(K)k � kr��i;K ;L2(K)k kr�i;Kw;L2(K)k � h��i;KS;K (meas3K)1=2kr�i;Kw;L2(K)k:Note that kr��i;K ;L2(K)k is not �nite for �i;K � 1 and zero distance of K to the xL-axis.Note further that the estimate is very coarse when K has non-zero distance to the xL-axisand �i;K > 0. But this is not the interesting case.The second factor of (4.22) is estimated by using that norms in �nite spaces are equiv-alent, kvh �MFvh;L1(F )k = kv̂h �MF̂ v̂h;L1(F̂ )k� kv̂h �MF̂ v̂h;L1(K̂)k. kv̂h �MF̂ v̂h;W 1;2(K̂)k:Since RF̂ v̂h�MF̂ v̂h = 0 we can use the Poincar�e inequality to get rid of the L2-part of thenorm on the right hand side. Using further that @̂iMF̂ v̂h = 0 and transforming from K̂ toK we getkvh�MF vh;L1(F )k . jv̂h;W 1;2(K̂)j . (meas3K)�1=20@ Xi2fL;S1;S2g h2i;Kk@ivh;L2(K)k21A1=2 :Combining all these estimates leads to the desired result. 2The �nite element space Vh is de�ned in (2.7) and (2.8) for tetrahedral and pentahedralmeshes. Similarly to (4.10) we introduce an auxiliary �nite element space~Vh := f~vh 2 L2(
) : ~vhjQ 2 span f1; xS1; xS2g 8Q; ZFL;Q[~vh] = 0 8FL;Qg: (4.23)



18 4 Consistency error estimatesWe point out that we have di�erent spaces Vh for Th and Qh but in both cases the samespace ~Vh. In analogy to (4.11) we de�ne for an arbitrary but �xed vh 2 Vh a function~vh 2 ~Vh such that ZFL;Q vh = ZFL;Q ~vh 8FL;Q: (4.24)An equality like (4.12) can only be shown for pentahedral meshes. It does not hold in thetetrahedral case since the derivative @ivh, i 2 fS1; S2g, is only piecewise constant in Q.However, it turns out to be su�cient to have the following lemma.Lemma 4.4 For any pentahedron Q 2 Qh which can be but needs not to be divided intothree tetrahedra K, the equationZQ @i(vh � ~vh) = 0; i 2 fS1; S2g; (4.25)is valid.Proof If vh is de�ned with respect to Qh then we simply have by Green's formula and(4.24) ZQ @i(vh � ~vh) = XFL;Q�@Qni ZFL;Q(vh � ~vh) = 0; i 2 fS1; S2g;where ni is the component of the outward unit normal n in direction of the xi-axis.In the tetrahedral case we have intermediately more terms,ZQ @i(vh � ~vh) = XK�QZK @i(vh � ~vh) = XK�QZ@K(vh � ~vh)ni= XF�intQni ZF ([vh]� [~vh]) + XFL;Q�@Qni ZFL;Q(vh � ~vh);but also these terms vanish due to the de�nition of Vh and ~Vh. 2Since equality (4.12) was used to prove (4.15) we have to modify this estimate in thetetrahedral case.Lemma 4.5 For any pentahedron Q 2 Qh which is divided into three tetrahedra K, theestimateskvh � ~vh;Lq(Q)k . (meas3Q)1=q�1=p XK�Q Xi2fL;S1;S2g hi;Qk@ivh;Lp(K)k; (4.26)XK�Q k@i(vh � ~vh);Lq(K)k . (meas3Q)1=q�1=p XK�Q jvh;W 1;p(K)j; i 2 fL; S1; S2g; (4.27)are valid for any p; q 2 [1;1].



4.2 The three-dimensional case under speci�c assumptions 19Proof Consider the reference element Q̂ := f(x̂S1; x̂S2; x̂L) 2 IR3 : 0 < x̂S1 < 1; 0 < x̂S2 <1� x̂S1; 0 < x̂L < 1g with three rectangular faces FL;Q̂ � @Q̂. We have for any ŵh 2 VhjQ̂~̂wh = XFL;Q̂(meas2FL;Q̂)�1 ZFL;Q̂ ŵh! '̂FL;Q̂ (4.28)where '̂FL;Q̂ 2 span f1; x̂S1; x̂S2g is the polynomial which is equal to one on FL;Q̂ andvanishes at the midpoints of the other two rectangular faces. Hencek ~̂wh;Lq(Q̂)k . kŵh;L1(Q̂)k: (4.29)We prove now that jjj � jjj,jjj ŵh jjj := X̂K�Q̂ jŵh;W 1;p(K̂)j+ ����ZQ̂ ŵh���� ; (4.30)is a norm in VhjQ̂. It is simple to see that jjj � jjj is a seminorm. Assume now that jjj v̂h jjj = 0for some v̂h 2 VhjQ̂. Consequently jv̂h;W 1;p(K̂)j = 0 for any K̂ � Q̂, this means that v̂his piecewise constant. Since by de�nition (2.7) RF̂ [v̂h] = 0 on the interior faces, v̂h is evenconstant in Q̂. Since RQ̂ v̂h = 0 we obtain v̂h � 0. Hence jjj � jjj is a norm.Since all norms in �nite spaces (VhjQ̂ is ten-dimensional) are equivalent, we concludefrom (4.29), (4.30)kŵh � ~̂wh;Lq(Q̂)k . kŵh;Lq(Q̂)k+ kŵh;L1(Q̂)k. X̂K�Q̂ jŵh;W 1;p(K̂)j+ ����ZQ̂ ŵh���� :Set ŵh = vh �MQ̂v̂h and note that ŵh � ~̂wh = v̂h � ~̂vh by (4.28). Hencekv̂h � ~̂vh;Lq(Q̂)k . X̂K�Q̂ jv̂h;W 1;p(K̂)j:The a�ne transformation from Q̂ to Q leads to the estimate (4.26).Estimate (4.27) is trivial for i = L since @L~vh = 0. For i 2 fS1; S2g we use theequivalence of norms and Lemma 4.4 on the reference element,k@i~̂vh;Lq(Q̂)k � ����ZQ̂ @i~̂vh���� = ������ X̂K�Q̂ZK̂ @iv̂h������ . X̂K�Q̂ k@iv̂h;Lp(K̂)k:Consequently X̂K�Q̂ k@i(v̂h � ~̂vh);Lq(K̂)k . X̂K�Q̂ k@iv̂h;Lp(K̂)k:By transformation from Q̂ to Q we conclude estimate (4.27). 2We are now prepared to prove the consistency error estimate.



20 4 Consistency error estimatesLemma 4.6 For pentahedral and tetrahedral meshes the estimatesupvh2Vh j(�;rvh)h � (f; vh)jkvhk1;h .0@XQ Xi;j2fL;S1;S2gh�2�i;j;KS;K h2i;Qkr�i;j;K@i�j;L2(Q)k21A1=2+ XQ h2L;Qkf + @L�L;L2(Q)k2!1=2
holds provided that � and f satisfy (4.1), (4.19) and (4.20), and �i;j;K 2 [0; 1) for all Kand for all j 2 fL; S1; S2g.We prove the lemma for the case of tetrahedral meshes. In the other case the proof isanalogous; some simpli�cations could be made.Proof We introduce ~vh 2 ~Vh by (4.23), (4.24) and modify the proof of Lemma 4.2 byusing (4.25) instead of (4.12). Let us �rst write(�;rvh)h � (f; vh) = XK ZK[�L@Lvh + �S1@S1~vh + �S2@S2~vh � fvh] +XK ZK[�S1@S1(vh � ~vh) + �S2@S2(vh � ~vh)]: (4.31)The �rst term is known from the proof of Lemma 4.2 and will be estimated similarly,only taking into account the weaker assumption (4.19) instead of (4.13). By using Green'sformula and being careful about (4.21) we haveXK ZK[�L@Lvh + �S1@S1~vh + �S2@S2~vh � fvh]= XK ZK[� � r~vh + �L@L(vh � ~vh)� fvh]= XK ZK[�(r � �)~vh � @L�L(vh � ~vh)� fvh] +XK Z@K ((� � n)~vh + �L(vh � ~vh)nL)= �XQ ZQ(f + @L�L)(vh � ~vh) +XK Z@K (�LvhnL + �S1~vhnS1 + �S2~vhnS2) (4.32)The right hand side of (4.32) is analogous to that of (4.14). So we can proceed as in theproof of Lemma 4.2. We have only to use Lemma 4.5 instead of estimate (4.15), Lemma4.3 instead of Lemma 4.1, and the equalityXK Z@K(�S1nS1 + �S2nS2)~vh =XQ Z@Q(�S1nS1 + �S2nS2)~vh:



5 Error estimates for the model problem 21It remains to estimate the second term of (4.31). Using Lemma 4.4 and the operatorMQ : L1(Q)! P0, MQw := (meas3Q)�1 RQw, we get������ Xj2fS1;S2gXQ XK�QZK �j@j(vh � ~vh)������= ������ Xj2fS1;S2gXQ XK�QZK(�j �MQ�j)@j(vh � ~vh)������� Xj2fS1;S2gXQ k�j �MQ�j;L1(Q)k XK�Q k@j(vh � ~vh);L1(K)k! : (4.33)As in the proof of Lemma 4.3 we use the Poincar�e inequality and the H�older inequality toget k�j �MQ�j;L1(Q)k . Xi2fL;S1;S2ghi;Qk@i�j;L1(Q)k. (meas3Q)1=2 Xi2fL;S1;S2gh��i;j;KS;Q hi;Qkr�i;j;K@i�j;L2(Q)k:(4.34)Combining (4.33), (4.34) and using Lemma 4.5 we conclude������ Xj2fS1;S2gXQ XK�QZK �j@j(vh � ~vh)������. Xj2fS1;S2gXQ 0@ Xi2fL;S1;S2gh��i;j;KS;Q hi;Qkr�i;j;K@i�j;L2(Q)k1A XK�Q jvh;W 1;2(K)j!By using the discrete Cauchy-Schwarz inequality we �nish the proof. 25 Error estimates for the model problemIn view of the second Lemma of Strang, estimate (2.10), we have to bound the globalinterpolation error and the consistency error for the family of meshes de�ned by (2.6). Theproperties of u were stated in Lemma 2.1.Theorem 5.1 Let u be a function satisfying (2.4), (2.5). Then the estimateku� Ihuk1;h . h kf ;L2(
)kholds if � < �=!.



22 5 Error estimates for the model problemProof We prove the lemma for the case of tetrahedral meshes, pentahedral meshes canbe treated in the same way. The estimation of the global error is reduced to the evaluationof the local errors where we distinguish between the elements far from the singular edge,rK > 0, and the elements touching the edge, rK = 0.For all elements K with rK > 0 we can apply Lemma 3.3 with p = q = 2, and use thatr�� < r��K in K,ju� Ihu;W 1;2(K)j . 3Xi=1 hi;Kj@iu;W 1;2(K)j. Xi2fS1;S2g hi;Kr��K ��@iu;V 1;2� (K)��+ hL;K ��@Lu;V 1;20 (K)�� (5.1)for any � > 1 � �=!. We apply now the assumption (2.6) and obtain for rK � R and� = 1 � � the relation hi;Kr��K � hr1����K = h (i 2 fS1; S2g). The choice � = 1 � �is admissible due to the re�nement condition � < �=!. In the case rK > R we havehi;Kr��K . hR�� � h. Combining this with (5.1) we obtainju� Ihu;W 1;2(K)j . h Xi2fS1;S2g ��@iu;V 1;2� (K)��+ h ��@Lu;V 1;20 (K)�� : (5.2)Consider now the elements K with rK = 0. We use Lemma 3.4 with p = q = 2,�S1;K = �S2;K = � = 1� � 2 (1� �=!; 1), �L;K = 0,ju� Ihu;W 1;2(K)j . Xi2fS1;S2g h1��S;Kk@ju;V 1;2� (K)k+ hL;Kk@Lu;V 1;20 (K)k. h Xi2fS1;S2g

@iu;V 1;2� (K)

 + h 

@Lu;V 1;20 (K)

 : (5.3)We also used that h1��S;K � h(1��)=� = h for � = 1� �.Summing up the square of the estimates (5.2), (5.3) over all elements we obtainju� Ihu;W 1;2(
)j . h 2Xi=1 

@iu;V 1;2� (
)

+ h 

@Lu;V 1;20 (
)

 :By applying Lemma 2.1 the theorem is proved. 2Theorem 5.2 Let u be the solution of (2.1), (2.2). Then the estimatesupvh2Vh j(ru;rvh)h � (f; vh)jkvhk1;h . h kf ;L2(
)kholds if � < �=!.



5 Error estimates for the model problem 23Proof In view of Lemma 4.6 it remains to prove0@XQ Xi;j2fL;S1;S2gh�2�i;j;QS;Q h2i;Qkr�i;j;Q@i@ju;L2(Q)k21A1=2 . h kf ;L2(
)k; (5.4) XQ h2L;Qkf + @2Lu;L2(Q)k2!1=2 . h kf ;L2(
)k: (5.5)The second estimate is trivial since hL;Q = h for all Q and kf + @2Lu;L2(
)k . kf ;L2(
)kdue to (2.5).In the left hand side of (5.4) we set �i;j;Q = � if rQ = 0 and i; j 2 fS1; S2g, and�i;j;Q = 0 otherwise. Then we insert the de�nition (2.6) of hi;Q and proceed similarly tothe proof of Theorem 5.1, namely0@XQ Xi;j2fL;S1;S2gh�2�i;j;QS;Q h2i;Qkr�i;j;Q@i@ju;L2(Q)k21A1=2
= 0@ XQ:rQ=0 Xi;j2fS1;S2gh2(1��)S;Q kr�@i@ju;L2(Q)k2 + XQ:rQ=0 Xi2fL;S1;S2gh2L;Qk@i@Lu;L2(Q)k2++ XQ:rQ>0 Xi;j2fL;S1;S2gh2i;Qk@i@ju;L2(Q)k21A1=2
. 0@h2(1��)=� XQ:rQ=0 Xi2fS1;S2g j@iu;V 1;2� (Q)j2 + h2 XQ:rQ=0 j@Lu;V 1;20 (Q)j2++h2 XQ:rQ>00@ Xi2fS1;S2g r2(1����)Q j@iu;V 1;2� (Q)j2 + j@3u;V 1;20 (Q)j21A1A1=2 :With � = 1 � � > 1 � �=!, by using the Cauchy-Schwarz inequality, and by applyingLemma 2.1 we get the desired estimate (5.4). This �nishes the proof. 2Corollary 5.3 Let u be the solution of (2.1), (2.2) and let uh be the �nite element solutionde�ned by (2.9). Assume that the mesh is re�ned according to � < �=!. Then the �niteelement error can be estimated byku� uhk1;h . h kf ;L2(
)k;ku� uh;L2(
)k . h2 kf ;L2(
)k:



24 6 Numerical testProof The �rst estimate follows from Theorems 5.1 and 5.2 via (2.10). The secondestimate can be proved in the standard way by using the �rst estimate, see, for example,[16, xIII.1]. 2By analogy one can prove for �=! < � � 1 thatju� uh;W 1;2(
)j . h�=(�!)�" kf ;L2(
)kku� uh;L2(
)k . h2�=(�!)�2" kf ;L2(
)kfor arbitrary small " > 0, compare [7]. That means that we get for the unre�ned mesh(� = 1) only an approximation order �=! � ". We conjecture that the " can be omittedbut this needs another way of proof.6 Numerical testConsider the Laplace equation with Dirichlet boundary conditions,��u = 0 in 
; u = g on @
;in the three-dimensional domain
 = f(x1; x2; x3) = (r cos �; r sin�; z) 2 IR3 : r < 1; 0 < � < 3�=2; 0 < z < 1g:The right hand side g is taken such thatu = (10 + z) r2=3 sin 23�is the exact solution of the problem. It has the typical singular behaviour at the edge.We constructed tetrahedral meshes as described in Section 2, with � = 1 (quasi-uniform) and � = 0:5 (anisotropically re�ned) and with di�erent numbers of elements.The numerical solution was computed by using conforming and non-conforming P1 ele-ments. From these numerical solutions and the known exact solution, the energy normku � uhk1;h and the L2-norm ku � uh;L2(
)k of the �nite element error was computedin the four cases. Figures 6.1 and 6.2 show the plot of these norms against the numberN of unknowns and the number Nel of elements, respectively. A double logarithmic scalewas used such that the slope of the curves corresponds to the approximation order. Theexample veri�es the theoretically predicted convergence orders.Comparing the conforming with the non-conforming strategy we see that the conform-ing strategy is superior when the number of unknowns is considered whereas the non-conforming strategy is superior when the number of elements is taken into consideration.A good criterion for a comparison is computing time. The amount of computational workis proportional to the number of elements in the assembling step and whereas it is propor-tional to the number of unknowns in one iteration of the solver. The latter statement is,however, only partially convincing since the amount of work depends also on the number
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Figure 6.1: Comparison of uniform vs. graded meshes and conforming vs. non-conformingmethods: energy norm of the error against number of nodes (left), energy norm of theerror against number of elements (right).
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Figure 6.2: Comparison of uniform vs. graded meshes and conforming vs. non-conformingmethods: L2(
)-norm of the error against number of nodes (left), L2(
)-norm of the erroragainst number of elements (right).
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