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Abstract. We consider the BDDC preconditioner for Reissner-Mindlin plate problems, dis-
cretized with the MITC element, introduced and analyzed in [11]. In that contribution the authors
prove that the condition number of the ensuing linear system is independent of the plate thickness
and scalable with respect to the mesh. We here prove, in addition, that the BDDC preconditioner
of [11] is also quasi-optimal, a property which was shown only numerically in [11].

1. Introduction. The Reissner-Mindlin theory is widely used to describe the
bending behavior of an elastic plate loaded by a transverse force. Despite its simple
formulation, the discretization by means of finite elements is not straightforward,
since standard low-order schemes exhibit a severe lack of convergence whenever the
thickness is too small with respect to the other characteristic dimensions of the plate.
This undesirable phenomenon, known as shear locking, is nowadays well understood:
the most popular way to overcome the shear locking phenomenon is to reduce the
influence of the shear energy by considering a mixed formulation. A vast engineering
and mathematical literature is devoted to the design and analysis of plate elements,
see e.g. the works [12, 3, 4, 5, 8, 13, 14, 15, 19, 21, 25, 26, 27, 28, 33, 34, 9]. However, a
limited number of domain decomposition works are available for the efficient iterative
solution of the resulting discrete plate problems; a list of references is given in [11].

The goal of this paper is to improve a result already shown in [11]. In that pa-
per, the authors present and analyze a Balancing Domain Decomposition Method
by Constraints (BDDC) for the Reissner-Mindlin plate bending problem discretized
with the well known MITC elements. The BDDC preconditioner in [11] is based on
selecting the plate rotations and deflection degrees of freedom at the subdomain ver-
tices as primal continuity constraints. Introduced by Dohrmann [16] and analyzed by
Mandel, Dohrmann and Tezaur [29, 30], BDDC methods have evolved from previous
domain decomposition work on Balancing Neumann-Neumann methods. BDDC al-
gorithm have been extended in recent years from scalar elliptic problems to almost
incompressible elasticity (Dohrmann [17, 18]), the Stokes system (Li and Widlund
[24]), flow in porous media (Tu [36]), spectral element discretizations (Pavarino [31],
Klawonn et al. [23]).

In [11] the authors prove that the condition number of the preconditioned system
is independent of the plate thickness t and scalable with respect to the mesh, which
are very desirable properties in plate analysis. This means a bound on the condition
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number K as

K ≤ C(H/h) ,

with C a constant independent of t, h,H and where t, h,H represent, respectively, the
plate thickness, the mesh size and the coarse problem mesh size. The bound above
must be compared with the condition number of the non preconditioned MITC plate
bending problem Kno, which is

Kno ∼ Ch−2pt−2

with p the polynomial degree adopted.
Although the extensive numerical tests in [11] clearly show also a quasi-uniformity

property, such property does not appear among the theoretical results of that paper.
In the present contribution we prove the improved result

K ≤ C(1 + log3 (H/h)) ,

which shows that the BDDC preconditioner of [11] is also quasi-uniform. This result is
a non negligible improvement, since it gives a growth rate in h/H which is logarithmic
instead of linear. On the other hand it must be noted that the ideas used here are
very similar to, and strongly inherit from, those already present in [11].

The present paper is organized as follows. In Section 2, we present the Reissner-
Mindlin plate bending problem and its discretization with MITC finite elements. The
basic substructuring procedure is introduced in Section 3, while the BDDC algorithm
of [11] is recalled in Section 4. The theoretical analysis of the BDDC quasi-uniformity
is finally developed in Section 5.

2. The MITC Reissner-Mindlin plate bending problem. Let Ω be a
polygonal domain in R2 representing the midsurface of the plate. For simplicity of
exposition, we assume that the plate is clamped on the whole boundary ∂Ω, although
what follows extends identically to more general cases. Following the Reissner-Mindlin
model, see for instance [6], the plate bending problem requires to solve{

Find θex ∈ [H1
0 (Ω)]2, uex ∈ H1

0 (Ω) such that

a(θex,η) + µkt−2(θex −∇uex,η −∇v) = (f, v) ∀η ∈ [H1
0 (Ω)]2, v ∈ H1

0 (Ω) ,

(2.1)
where µ is the shear modulus and k is the so-called shear correction factor. Above, t
represents the plate thickness, uex the deflection, θex the rotation of the normal fibers
and f the applied scaled normal load. Moreover, (·, ·) stands for the standard scalar
product in L2(Ω) and the bilinear form a(·, ·) is defined by

a(θex,η) = (Cε(θex), ε(η)),

with C the positive definite tensor of bending moduli and ε(·) the symmetric gradient
operator. Introducing the scaled shear stresses γex = µkt−2(θex − ∇uex), Prob-
lem (2.1) can be written in terms of the following mixed variational formulation:

Find θex ∈ [H1
0 (Ω)]2, uex ∈ H1

0 (Ω),γex ∈ [L2(Ω)]2 such that

a(θex,η) + (γex,η −∇v) = (f, v) ∀η ∈ [H1
0 (Ω)]2, v ∈ H1

0 (Ω)

(θex −∇uex, s)− t2

µk
(γ, s) = 0 ∀s ∈ [L2(Ω)]2 .

(2.2)

To simplify notation, and without any loss of generality, we will assume µk = 1
in the analysis that follows.
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2.1. Discretization of the problem with the MITC elements. We will now
present the discretization of the problem following the MITC (Mixed Interpolation
of Tensorial Components) elements. Since the MITC is a large family of elements,
we will keep a general standpoint without detailing the particular description of the
discrete spaces and operators, which depend on the particular MITC element chosen;
a list of elements can be found for instance in [6, 7, 13].

Let τh denote a triangular or quadrilateral conforming finite element mesh on
Ω, of characteristic mesh size h. Let Θ, U and Γ represent the discrete spaces for
rotations, deflections and shear stresses, respectively. In the sequel, we will set the
compact notation X = Θ×U . Then the Reissner-Mindlin plate bending problem (2.2)
discretized with MITC elements reads

Find (θ, u) ∈ X, γ ∈ Γ such that

a(θ,η) + (γ,Π η −∇v) = (f, v) ∀(η, v) ∈ X

(Π θ −∇u, s)− t2(γ, s) = 0 ∀s ∈ Γ ,

(2.3)

where Π : ([H1(Ω)]2 + Γ) −→ Γ is the MITC reduction operator. Using the second
equation of (2.3), shear stresses can be eliminated to obtain the following positive
definite discrete formulation:

{
Find (θ, u) ∈ X such that

b((θ, u), (η, v)) = (f, v) ∀(η, v) ∈ X ,
(2.4)

where we have introduced the compact notation

b((θ, u), (η, v)) := a(θ,η) + t−2(Π θ −∇u,Π η −∇v) . (2.5)

The MITC spaces and the associated operator Π are well known to satisfy the
following five properties, which will play a key role in the sequel. In what follows,
Q ⊂ L2(Ω) represents an ad hoc discrete auxiliary space. For the proofs of these
properties, see [7, 13].

P1. ∇U ⊂ Γ.
P2. curl Γ ⊂ Q.
P3. curl Π η = P curl η, η ∈ [H1

0 ]2, where P : L2 → Q denotes the L2 projection.
P4. {γ ∈ Γ : curl γ = 0} = ∇U .
P5. (Θ, Q) is a stable pair of spaces for the Stokes problem.

We will also require the following additional property to hold, see [8].

P6. For every edge l of the mesh, denote with τ its tangent vector. We assume that
the combined operator (Πθ|l) · τ depends only on θ|l · τ for all θ ∈ Θ. Therefore the
above combined operator is well defined also when applied to functions living only on
edges.

Note that in this paper we address directly the positive definite Problem (2.4),
in the spirit of [10, 11], instead of the mixed formulation. A vast literature exists on
the convergence analysis of the MITC elements, see for instance [7, 13, 19, 32] and
also [9, 20]. The MITC elements perform optimally with respect to the polynomial
degree and regularity of the solution, and their rate of convergence is independent of
the thickness parameter t.
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In the sequel we will need also the following mild assumptions, which are included
separately in a Remark since those conditions where not requested in [11], but are
needed here in order to derive the quasi-uniformity condition. We start by the follow-
ing definition of edge bubble functions. Let Ωi, for i = 1, .., N , be the subdomains in
which we decompose Ω, which are defined more in detail in Section 3, and let Γi be the
boundary of each Ωi. Let e be an edge of the mesh laying on Γi, and Kl represent the
element inside Ωi with l as an edge. Then an edge bubble function Bil is a quadratic
(or biquadratic in the quadrilateral case) function living on Kl which is equal to 1 at
the center of the edge l and null on the two (respectively 3) other edges of Kl. In
the quadrilateral case, we moreover enforce that Bil is null at the baricenter of Ke,
in order to make it uniquely defined. Then, we introduce the following additional
conditions on the mesh and method.

Remark 2.1. We assume the following. Given any edge l on any Γi, i =
1, 2, .., N , the function Bilτ is contained into the restriction of Θ to the element Kl.
Moreover it holds ∫

l

Π (θi · τ ) =

∫
l

θi · τ ∀l ∈ Γi, ∀θi ∈ Θi.

Furthermore, it exists a constant C ′ such that 0 < t ≤ C ′h for all meshes in the
family.

The first two conditions above are quite easy to fullfil, it is for example sufficient
that the rotation space is at least of second (polynomial) order and that a standard
definition of Π is adopted. But it is for instance satisfied also by the Duran-Liberman
element [19], even if this element does not contain all quadratic functions. The con-
dition above is satisfied by almost all the plate MITC elements in the literature.
Regarding the last condition, this is also quite natural and in general satisfied. In-
deed, when h ≤ t, we can expect that the error in the model becomes larger than the
finite element error, thus making useless any further mesh refinement.

3. Iterative substructuring. We decompose the domain Ω into N open, non-
overlapping subdomains Ωi of characteristic size H forming a shape-regular finite
element mesh τH . This coarse triangulation τH is further refined into a finer triangu-
lation τh of characteristic size h; both meshes will typically be composed of triangles
or quadrilaterals. In the sequel, we assume that the material tensor C is constant
through the whole domain; see Remark 5.1.

As it is standard in iterative substructuring methods, we first reduce the problem
to the interface

Γ =

(
N⋃
i=1

∂Ωi

)
\ ∂Ω,

by implicitly eliminating the interior degrees of freedom, a process also known as static
condensation. In variational form, this process consists in a suitable decomposition of
the discrete space X = Θ× U . More precisely, let us define W = X|Γ, i.e. the space
of the traces of functions in X, as well as the local spaces

Xi = X ∩ [H1
0 (Ωi)]

3 . (3.1)

The space X can be decomposed as

X = ⊕Ni=1Xi ⊕ H(W ) .
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Here H : W −→ X is the discrete ”plate-harmonic” extension operator defined
by solving the problem

Find H(wΓ) ∈ X such that:

b(H(wΓ),vI) = 0 ∀vI ∈ Xi i = 1, 2, ..., N

H(wΓ)|Γ = wΓ .

(3.2)

Defining the Schur complement bilinear form

s(wΓ,vΓ) = b(H(wΓ),H(vΓ)), (3.3)

it follows that the interface component of the discrete solution satisfies the reduced
system

s(uΓ,vΓ) =< f̃ ,vΓ > ∀vΓ ∈W , (3.4)

for a suitable right-hand side f̃ . In order to simplify the notation, in the sequel we
will drop the index Γ for functions in W if there is no risk of confusion. Moreover, in
the rest of the contribution C will indicate a general scalar constant, independent of
H and h, which may change on different occurrences.

4. A Balancing Domain Decomposition method by Constraints. The
BDDC preconditioner, introduced by Dohrmann [16] and analyzed by Mandel and
Dohrmann [29], applies to the classical Schur complement system and can be regarded
as an evolution of the Balancing Neumann-Neumann preconditioner. In this section,
we introduce the BDDC preconditioner of Ref. [16, 29], formulated with the notation
of Ref. [35, 11]. We need a set of preliminary definitions.

In the sequel, in order to shorten the notation, we indicate with

Γi := ∂Ωi ,

while Γij = ∂Ωi ∩ ∂Ωj , i, j ∈ {1, 2, .., N}, will represent the common edge between
two adjacent subdomains Ωi and Ωj .

We introduce the local spaces W i as the spaces of discrete functions defined by
W i = W |Γi

, i = 1, 2, .., N . Let Hi : W i −→ X|Ωi
, i = 1, 2, .., N , represent the

restriction of the operator H to the domain Ωi
Find Hi(wi) ∈ X|Ωi such that:

bi(Hi(wi),vi) = 0 ∀vi ∈ Xi

H(wi)|Γi = wi .

(4.1)

where the bi(·, ·) are given by restricting the integrals in b(·, ·) to the domain Ωi,
i = 1, 2, .., N .

We then define the local bilinear forms on the space W i

si(wi,vi) = bi(Hiwi,Hivi) , ∀wi,vi ∈W i , (4.2)

For simplicity, we adopt the shortened notation

si(wi) := si(wi,wi) ∀wi ∈W i ,
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and the same for all the other bilinear forms appearing in the paper.
Furthermore, let the prolongation operators RTi , i = 1, 2, .., N be maps which

extend any function of W i to the function of W which is zero at all the nodes not
in Γi. Conversely, we call Ri, i = 1, 2, .., N , the restriction operators W →W i that
leave the function unchanged on Γi. Note that, by definition of the si, it holds

N∑
i=1

si(Riw, Riv) = s(w,v) ∀w,v ∈W . (4.3)

We also need the following definition (see for example Section 6.2.1 of Ref. [35]).
Given any node x ∈ Γ, define Nx = # {j ∈ N | x ∈ ∂Ωj}. Then, the weighted counting

operators δi : W i −→W i (and their inverse operators δ†i ) are defined by

δivi (x) = Nxvi(x) ∀x node of Γi ∩ Γ

δ†i vi (x) = N−1
x vi(x) ∀x node of Γi ∩ Γ .

(4.4)

Let the local constraint operators Ci : W i → R3cci be the operators that read the
function values at the corners of the subdomain Ωi, with cci the number of corners of
the subdomain. Then the local constrained spaces are

W i = {wi ∈W i | Ciwi = 0} . (4.5)

We will moreover introduce a global coarse space W 0 ⊂ W , whose degrees of
freedom are the function values at the subdomain corner nodes. Given the number
m of such subdomain corners, let wc ∈ R3m be a vector representing the respective
nodal values. Then the space W 0 is defined by

W 0 = {
N∑
i=1

RTi δ
†
iw0,i | Ciw0,i = RCi wc, wc ∈ R3m, si(w0,i,w0,i)→ min}, (4.6)

where RCi is the operator that extracts the corner node values for the subdomain Ωi
from the global vector wc of all the subdomain corner node values.

Any element w ∈W can be uniquely decomposed as

w = w0 +

N∑
i=1

wi , w0 ∈W 0 , wi ∈W i for i = 1, .., N . (4.7)

Let the inexact bilinear forms, see (4.6), be defined by

s̃0(w0,v0) =

N∑
i=1

si(w0,i,v0,i) ∀w0,v0 ∈W 0 ,

s̃i(wi,vi) = si(δiwi, δivi) ∀wi,vi ∈W i, i = 1, 2, .., N .

(4.8)

Finally, we define the coarse operator P0 : W −→W 0 by

s̃0(P0u,v0) = s(u,v0) ∀v0 ∈W 0, (4.9)

and the local operators Pi = RTi P̃i : W −→ RTi W i by

s̃i(P̃iu,vi) = s(u, RTi vi) ∀vi ∈W i. (4.10)

Then, our BDDC method is defined by the preconditioned operator

P =

N∑
i=0

Pi . (4.11)
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5. Quasi-uniformity of the BDDC preconditioned operator. In this sec-
tion, we bound the condition number of the preconditioned BDDC operator P in-
troduced in [11] and here described in (4.11). The results shown here are an im-
provement of those presented in [11], where a scalability result was proven, but not
a quasi-uniformity result. Indeed, the bound shown in [11] exhibits a bound of the
type ∼ C H/h, while here we can show ∼ C(1 + log3 (h/H)). Nevertheless, it must
be noted that the ideas used here are very similar to, and strongly those, from those
already present in [11].

We start by briefly re-stating the general results for BDDC preconditioners of
Ref. [29] stated in the same setting and notations of Ref. [11, 35]. The main part
lays in Section 5.1, where we will address the following fundamental assumption for
the MITC plate bending elements.

Assumption 5.1. Given any Γi, i = 1, 2, .., N , let Ei represent the set of the
edges of Γi. Then, we assume that there exist two positive constants k∗, k

∗ and a
boundary seminorm | · |τ(Γi) on W i, i = 1, 2, .., N , such that

|wi|2τ(Γi)
≤ k∗si(wi) ∀wi ∈W i ; (5.1)

|wi|2τ(Γi)
≥ k∗si(wi) ∀wi ∈W i ; (5.2)

|wi|2τ(Γi)
=
∑
e∈Ei

|wi|2τ(e) ∀wi ∈W i , (5.3)

where | · |τ(e) is a given seminorm on the edge e.
We notice that we cannot adopt the obvious choice |wi|τ(Γi) = si(wi), since it

can be shown that it does not satisfy (5.3), not even with a bound up to a uniform
constant. We have the following results.

Theorem 5.1. If Assumption 5.1 holds, then the condition number of the pre-
conditioned operator P in (4.11) satisfies the bound

Cond(P ) ≤ C(1 + 5k−1
∗ k∗).

The proof of the above result can be found in [29] but also, in a different form and
with a notation more consistent to that of the present paper, in [11].

Theorem 5.2. The constants k∗ and k∗ of Assumption 5.1 are bounded by

k∗ ≤ C1, k−1
∗ ≤ C2(1 + log3 (H/h)),

with constants C1, C2 depending only on the material constants and mesh regularity
and not on the plate thickness t. Therefore, we have the convergence rate bound

Cond(P ) ≤ C
(
1 + log3 (H/h)

)
,

with the constant C depending only on the material constants and mesh regularity,
and not on the plate thickness t.

The proof of this result is given in the following Section 5.1.
Remark 5.1. An extended set of numerical tests, also including jump in the

coefficients, which are in complete accordance with Theorem 5.2 can be found in [11].

5.1. Proof of Assumption 5.1. In this section we prove that Assumption 5.1
holds for the MITC plate bending problem (2.4), and show the respective bounds for
the constants k∗, k

∗.
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The local spaces W i, i = 1, 2, .., N , are composed by rotation and deflection
parts, which we indicate in the sequel as

W i = Θi × U i.

Accordingly, we indicate the rotation and deflection parts of the constrained space by

W i = Θi × Ui ,

where the functions of Θi and Ui vanish at the subdomain corner nodes. In the
sequel, given any wi = (ui,θi) ∈W i, we will indicate with Hiθi the rotation part of
its energy-harmonic extension Hiwi defined in (4.1). Similarly, Hiui will represent
the deflection part.

Proof of the upper bound (5.1). The proof of this bound is identic to that
of [11] and is included here only for completeness. We start by defining the following
edge seminorm on the rotation part

|θi|γ(e) := inf
ψ∈[H1(Ωi)]2,ψ|e=θi|e

||ε(ψ)||L2(Ωi) (5.4)

for all e ∈ Ei. Note that, simply restricting the choice in the infimum and since the
number of edges of each subdomain is finite, it holds∑

e∈Ei

|θi|2γ(e) ≤ C inf
ψ∈[H1(Ωi)]2,ψ|Γi

=θi

||ε(ψ)||2L2(Ωi)
. (5.5)

We can now introduce the following seminorm on the space W i:

|wi|2τ(Γi)
=
∑
e∈Ei

|wi|2τ(e) ∀wi = (θi, ui) ∈W i ,

|wi|2τ(e) = |θi|2γ(e) + ht−2||Π θi · τ − u′i||2L2(e) ,

(5.6)

where τ is the tangent unit vector at the boundary and the apex indicates as usual
the derivative, in the direction of τ , for functions defined on the (one dimensional)
boundary. Note that due to property (P6), the operator Π is well defined also when
restricted on boundary edges. Norm (5.6) clearly satisfies (5.3) by definition. We
will now show the remaining two properties. Consider wi = (θi, ui) ∈ W i. Using
bound (5.5) with the choice ψ = Hiθi, it follows∑

e∈Ei

|θi|2γ(e) ≤ C||ε(Hiθi)||
2
L2(Ωi)

≤ 4Cα−1 ai(Hiθi) , (5.7)

where the local bilinear forms ai(·, ·) = a|Ωi(·, ·) and α = α(E, ν) > 0 is the coercivity
constant for the elastic moduli C.

First recalling (P6) and the definition of gradient, then using the Agmon inequal-
ity (see [1, 2]) and an inverse estimate, we get∑

e∈Ei

ht−2||Π θi · τ − u′i||2L2(e) =
∑
e∈Ei

ht−2|| (ΠHiθi −∇Hiui)|e · τ ||2L2(e)

≤ Ct−2||ΠHiθi −∇Hiui||2L2(Ωi)
,

(5.8)

where the constant C depends only on the mesh shape regularity. Finally, combin-
ing (5.7) and (5.8) with definition (5.6) we get

|wi|2τ(Γi)
≤ 4Cα−1 ai(Hiθi) + Ct−2||ΠHiθi −∇Hiui||2L2(Ωi)

≤ k∗bi(Hiwi) = k∗si(wi) ,
(5.9)
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where k∗ is a new constant depending only on the mesh regularity and material
parameters. Assumption (5.1) is proved.

Proof of the lower bound (5.2). Assumption (5.2) is without doubt the more
involved; this is where the present contribution constitutes an improvement with
respect to [11].

We start recalling that the definition of edge bubble functions was given at the
end of Section 2.1. Consider now wi = (θi, ui) ∈ W i. We introduce the following
splitting of the rotation variable. Let

θ2
i ∈ Θ2

i := span
{
Bilτ

}
l∈Γi

,

be defined by ∫
l

θ2
i · τ =

∫
l

θi · τ − u′i ∀l ∈ Γi,

and let θ1
i = θi − θ2

i so that θi = θ1
i + θ2

i . Note that, by construction, it holds∫
l

u′i − θ
1
i · τ = 0 ∀e ∈ Γi. (5.10)

We introduce also the related splitting of wi

wi = w1
i +w2

i , w1
i = (ui,θ

1
i ), w

2
i = (0,θ2

i ).

We have the following lemma.
Lemma 5.3. It exists a constant C > 0 independent of h such that for all edges

e of all subdomains Ωi

||wi||τ(e) = ||(ui,θi)||τ(e) ≥ C
(
||(ui,θ1

i )||τ(e) + ||(0,θ2
i )||τ(e)

)
.

Proof. It is clearly sufficient to show

||(0,θ2
i )||τ(e) ≤ C||wi||τ(e) (5.11)

for some (possibly different) constant C. From the definition of θ2
i and Remark 2.1

it follows immediately ∫
l

θ2
i · τ =

∫
l

Π θi · τ − u′i ∀l ∈ Γi. (5.12)

For every face l ∈ Γi, since θ2
i |l = c Bil |lτ for some c ∈ R, a scaling argument and

bound (5.12) easily give

||θ2
i ||L2(l) ≤ C||

1

|l|

∫
l

θ2
i · τ ||L2(l) = C|| 1

|l|

∫
l

u′i −Π θi · τ ||L2(l)

≤ C||u′i −Π θi · τ ||L2(l).

(5.13)

By an inverse inequality and recalling Remark 2.1 we obtain

|(0,θ2
i )|2τ(e) = |θ2

i |2γ(e) + ht−2||Π θ2
i · τ ||2L2(e) ≤ C

(
h−1||θ2

i ||2L2(e) + ht−2||θ2
i ||2L2(e)

)
≤ Cht−2||θ2

i ||2L2(e).

(5.14)
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Bound (5.11) follows combining equations (5.13) and (5.14).
We have also the following result.
Lemma 5.4. It exists a constant C > 0 independent of h such that

si(w
2
i ) ≤ C |w2

i |2τ(Γi)
.

Proof. Let θ̂ be the extension of θ2
i inside Ωi obtained by setting all the internal

degrees of freedom to zero. Then, the couple (θ̂, 0), restricted on the boundary Γi is
equal to w2

i = (θ2
i , 0). As a consequence, by definition of energy-harmonic extension,

it holds

si(w
2
i ) = bi(Hw2

i ,Hw2
i ) ≤ bi( (θ̂, 0), (θ̂, 0) )

= ||ε(θ̂)||2L2(Ωi)
+ t−2||Π θ̂||2L2(Ωi)

.
(5.15)

Since θ̂ is obtained from θ2
i setting all the internal degrees of freedom to zero, with a

scaling argument applied to (5.15) it is easy to check

si(w
2
i ) ≤ C

(
h−1||θ2

i ||2L2(Γi)
+ ht−2||θ2

i ||2L2(Γi)

)
. (5.16)

Recalling Remark 2.1 and with an argument similar to that used in (5.13), we get
from (5.16)

si(w
2
i ) ≤ Cht−2||θ2

i ||2L2(Γi)
= Cht−2||θ2

i · τ ||2L2(Γi)

≤ Cht−2||Π θ2
i · τ ||2L2(Γi)

≤ C|(0,θ2
i )|2τ(Γi)

= |w2
i |2τ(Γi)

.
(5.17)

We now show the following result.
Proposition 5.5. It exists a constant C > 0 independent of h such that

si(w
1
i ) ≤ C (1 + log3 (1 + h/H)) |w1

i |2τ(Γi)
.

Proof. In the sequel, Qi will indicate the restriction of the auxiliary space Q,
introduced in (P5), to the domain Ωi. We start by solving the following rotated
Stokes problem

Find θ̃ ∈ Θ|Ωi , p ∈ Qi/R s.t.

(∇θ̃,∇η̃) + (p, curl η) = 0 ∀η ∈ Θ|Ωi
∩ [H1

0 (Ωi)]
2

(curl θ̃, q) = 0 ∀q ∈ Qi/R
θ̃ = θ1

i on Γi .

(5.18)

Due to the stability property (P5), problem (5.18) has a unique solution and, using
standard techniques, it can be shown that

|θ̃|H1(Ωi) ≤ C|θ
1
i |H1/2(Γi) . (5.19)

Using an integration by parts, (5.18) and recalling the definition of θ1
i yields∫

Ωi

curl θ̃ =

∫
Γi

θ1
i · τ =

∫
Γi

u′i = 0 . (5.20)
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As a consequence of the second identity in problem (5.18) and due to (5.20) one has

(curl θ̃, q) = 0 ∀q ∈ Qi, (5.21)

i.e.

P curl θ̃ = 0 , (5.22)

where the projection operator P was defined in property (P3).
Combining (5.22) with property (P3) we get curl Πθ̃ = 0, which, due to (P4),

gives the existence of a function Ψ ∈ U |Ωi
such that

Π(θ̃) = ∇Ψ . (5.23)

We now introduce the additional problem
Find ũ ∈ U |Ωi

s.t.

(∇ũ−∇Ψ,∇v) = 0 ∀v ∈ U |Ωi ∩H1
0 (Ωi)

ũ = ui on Γi .

(5.24)

Using identity (5.23) we obtain

||Πθ̃ −∇ũ||L2(Ωi) = ||∇Ψ−∇ũ||L2(Ωi) = |Ψ− ũ|H1(Ωi) . (5.25)

Note that by definition (5.24) it holds

ũ−Ψ = Hi(ui −Ψ|Γi
) , (5.26)

with Hi the standard harmonic extension in the discrete space U i.
First using (5.26) and well known properties of the discrete Harmonic extension

(see for instance [35]), then using Lemma 7.1 in [11] and an inverse inequality, we get

|Ψ− ũ|2H1(Ωi)
≤ C|(Ψ|Γi)− ui|2H1/2(Γi)

≤ C
(
1 + log2(H/h)

) ∑
e∈Ei

|(Ψ|Γi)− ui|2H1/2(e)

≤ C
(
1 + log2(H/h)

)
h−1

∑
e∈Ei

||(Ψ|Γi)− ui||2L2(e) .

(5.27)
We now observe that, for all edges l in Γi, due to the definition of θ1

i and Remark 2.1
it holds∫

l

(Ψ|Γi
− ui)′ =

∫
l

∇Ψ|Γi
· τ − u′i =

∫
l

Π θ̃ |Γi
· τ − u′i =

∫
l

θ1
i · τ − u′i = 0.

As a consequence, it is immediate to check that Ψ(ν) = ui(ν) for all points ν in Γi
which are vertexes of the mesh τh. Therefore the continuous and piecewise linear nodal
interpolant (living on Γi) to the function Ψ|Γi − ui is null. A standard interpolation
result then gives, for all e ∈ Ei,

h−1||(Ψ|Γi)− ui||2L2(e) ≤ Ch|(Ψ|Γi)− ui|2H1(e) = Ch||(Ψ|Γi − ui)′||2L2(e)

= Ch||Π θ1
i · τ − u′i||2L2(e) .

(5.28)

Combining (5.25) with (5.27) and (5.28) yields

||Πθ̃ −∇ũ||2L2(Ωi)
≤ C

(
1 + log2(H/h)

)
h
∑
e∈Ei

||Π θ1
i · τ − u′i||2L2(e), (5.29)
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which in turn finally gives

t−2||Πθ̃ −∇ũ||2L2(Ωi)
≤ C

(
1 + log2(H/h)

)
ht−2

∑
e∈Ei

||Π θ1
i · τ − u′i||2L2(e)

= C
(
1 + log2(H/h)

)
ht−2||Π θ1

i · τ − u′i||2L2(Γi)
.

(5.30)

We are now ready to bound si(w
1
i ). By definition, the local energy harmonic

extension Hiw1
i = (Hiθ1

i ,Hiui) is given by
Find Hi(w1

i ) ∈W i such that:

bi(Hiw1
i ,v) = 0 ∀v ∈ Xi

Hiw1
i |Γi

= w1
i ,

(5.31)

where Xi is defined in (3.1). Let in the sequel w̃ ∈ X|Ωi
be given by w̃ = (θ̃, ũ) with

θ̃ defined in (5.18) and ũ defined in (5.24). Note that, due to the definitions (5.18),
(5.24) and (5.31) we have

Hiw1
i − w̃ = 0 on Γi .

Therefore (Hiw1
i − w̃) ∈ Xi and, due to (5.31), it satisfies

bi(Hiw1
i − w̃,v) = −bi(w̃,v) ∀v ∈ Xi . (5.32)

As a consequence of (5.32) it easily follows

bi(Hiw1
i − w̃) ≤ bi(w̃) , (5.33)

which, recalling the definition of si, gives

si(w
1
i ) = bi(Hiw1

i ) ≤ 4bi(w̃) . (5.34)

Therefore, we need to bound

bi(w̃) = ai(θ̃) + t−2||Πθ̃ −∇ũ||2L2(Ωi)

≤ C||ε(θ̃)||2L2(Ωi)
+ t−2||Πθ̃ −∇ũ||2L2(Ωi)

.
(5.35)

From (5.19) we get

||ε(θ̃)||2L2(Ωi)
≤ |θ̃|2H1(Ωi)

≤ C|θ1
i |H1/2(Γi) . (5.36)

Recalling that θ1
i vanishes at the subdomain corner nodes, we can apply Lemma 7.1

in [11] and get from (5.36)

||ε(θ̃)||2L2(Ωi)
≤ C(1 + log2H/h)

∑
e∈Ei

|θ1
i |2H1/2(e) . (5.37)

Furthermore, using again that θ1
i vanishes at the subdomain corner nodes, we combine

Lemma 7.2 in [11] and (5.37) in order to obtain

||ε(θ̃)||2L2(Ωi)
≤ C(1 + log3H/h)

∑
e∈Ei

|θ1
i |2γ(e) . (5.38)
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Finally, joining (5.34), (5.35), (5.38), (5.30) and recalling definition (5.6) it follows

si(w
1
i ) ≤ C

((
1 + log3 (H/h)

)∑
e∈Ei

|θ1
i |2γ(e) +

(
1 + log2 (H/h)

)
ht−2||Πθ1

i − u′i||2L2(Γi)

)
≤ C

(
1 + log3 (H/h)

)
|w1

i |2τ(Γi)
.

(5.39)

The upper bound now follows combining the three previous results. Indeed, first
recalling the splitting wi = w1

i + w2
i and using a triangle inequality, then applying

Lemma 5.4 and Proposition 5.5, finally using Lemma 5.3 yields

si(wi) ≤ 2
(
si(w

1
i ) + si(w

2
i )
)
≤ C

(
(1 + log3 (1 + h/H)) |w1

i |2τ(Γi)
+ |w2

i |2τ(Γi)

)
≤ C(1 + log3 (1 + h/H))|wi|2τ(Γi)

.

Bound (5.2) is therefore proved with

k−1
∗ = C (1 + log3H/h),

with the constant C depending only on the material constants and mesh regularity.
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