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We propose and analyse a new finite element method for convection diffusion prob-
lems based on the combination of a mixed method for the elliptic and a discontinuous
Galerkin method for the hyperbolic part of the problem. The two methods are made
compatible via hybridization and the combination of both is appropriate for the so-
lution of intermediate convection-diffusion problems. By construction, the discrete
solutions obtained for the limiting subproblems coincide with the ones obtained by the
mixed method for the elliptic and the discontinuous Galerkin method for the limiting
hyperbolic problem, respectively. We present a new type of analysis that explicitly
takes into account the Lagrange-multipliers introduced by hybridization. The use of
adequate energy norms allows to treat the purely diffusive, the convection dominated,
and the hyperbolic regime in a unified manner. In numerical tests, we illustrated the
efficiency of our approach and compare to results obtained with other methods for
convection diffusion problems.

1 Introduction
In this paper we consider stationary convection-diffusion problems of the form

div(—eVu+ fu) = f in Q,

1
u=gp onJdQp, *6%4’51,11,:91\/ on 0Ny, o
where € is a bounded open domain in R%, d = 2,3 with boundary 9Q = 9Qp U0y consisting of
a Dirichlet and a Neumann part, € is a non-negative function and 3 : Q — R? is a d-dimensional
vector field.

Similar problems arise in many applications, e.g., in the modeling of contaminant transport, in
electro-hydrodynamics or macroscopic models for semiconductor devices. A feature that makes
the numerical solution difficult is that often convection plays the dominant role in (1). In the case
of vanishing diffusion, solutions of (1) will in general not be smooth, i.e., discontinuities are prop-
agated along the characteristic direction §; nonlinear problems may even lead to discontinuities or
blow-up in finite time when starting from smooth initial data. So appropriate numerical shemes
for the convection dominated regime have to be able to deal with almost discontinuous solutions
in an accurate but stable manner. Another property that is desireable to be reflected also on the
discrete level is the conservation strucure inherent in the divergence form of (1).

Due to the variety of applications, there has been significant interest in the design and analysis
of numerical schemes for convection dominated problems. Much work has been devoted to devise
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accurate and stable finite difference and finite volume methods for the solution of hyperbolic
systems by means of appropriate upwind techniques including flux or slope limiters in the nonlinear
case.

A different approach to the stable solution of (almost) hyperbolic problems is offered by dis-
continuous Galerkin methods, introduced originally for a linear hyperbolic equation in neutron
transport [31, 26, 24]. Starting from the 70’s, discontinuous Galerkin methods have been inves-
tigated intensively and applied to the solution of various linear and nonlinear hyperbolic and
convection dominated elliptic problems with great success, cf. [7, 6, 1], and [16] for an overview
and further references. Since in practical applications, convection respectively diffusion phenom-
ena may dominate, in different parts of the computational domain, several attempts have been
made to generalize discontinuous Galerkin methods also to elliptic problems [32, 29, 21], yielding
numerical schemes very similar to interior penalty methods studied much earlier [28, 5, 2]. For
further references on this topic and a unified analysis of several discontinuous Galerkin methods
for elliptic problems, we refer to [4]. For discontinuous Galerkin methods applied to convection
diffusion problems we refer to [14, 8, 12], and to [11] for a multiscale version. Two disadvantages
of discontinuous Galerkin methods applied for problems with diffusion is that, compared to a
standard conforming discretization, the overall number of unknowns is increased substantially and
that the resulting linear systems are much less sparse.

Another very successful approach for the solution of convection dominated problems is the
streamline diffusion method [22, 25], where standard conforming finite element discretizations
are stabilized by adding in a conforming way an appropriate amount of artificial diffusion in
streamline direction. This method is easy to implement and yield stable discretizations in many
situations, but may lead to unphysically large layers near discontinuities and boundaries. For a
comparison of high order discontinuous Galerkin and streamline diffusion methods, we refer to
[20]. For an appropriate treatment of boundary layers via Nitsche’s method, see [19]. In contrast
to discontinuous Galerkin methods, the streamline diffusion method does not yield conservative
discretizations.

Herre, we follow a different approach, namely the combination of upwind techniques used in
discontinuous Galerkin methods for hyperbolic problems with conservative discretizations of mixed
methods for elliptic problems. In order to make these two different methods compatible, we will
utilize hybrid formulations for the mixed and the discontinuous Galerkin methods. It is well-
known [3, 10, 15] that hybridization can be used for the efficient implementation of mixed finite
elements for elliptic problems. Introducing the Lagrange-multipliers also in the discontinuous
Galerkin methods allows us to couple both methods naturally and yields a stable mixed hybrid
discontinuous Galerkin method with the following properties:

e For § = 0 the numerical solution coincides with that of a mixed method, cf. [3, 10], and
postprocessing techniques can be used to increase the accuracy of the solution.

e For € = 0 the solution coincides with that obtained by a discontinuous Galerkin method for
hyperbolic problems [26, 24].

e The intermediate convection-diffusion regime is treated automatically with no need to choose
stabilization parameters.

For diffusion dominated regions, the stabilization can be omitted yielding a scheme that was
studied numerically in 1D in [18]. Our analysis in Section 4.2 also includes this case. A particular
advantage of our method is that it is formulated and can be implemented elementwise, i.e., it allows
for static condensation on the element level yielding global systems for the Lagrange-multiplier
only. In this way we arrive at global systems with less unknowns and much sparser stencils than
other discontinuous Galerkin methods, while still utilizing the same upwind mechanisms.

Other extensions of mixed finite element methods to convection diffusion problems were consid-
ered in [13, 17].

The outline of this article is as follows: In Section 2, we review the hybrid formulation of the
mixed method for the Poisson equation, and then introduce a hybrid version of the discontinuous



Galerkin method for the hyperbolic subproblem. The scheme for the intermediate convection-
diffusion regime then results by a combination of the two methods for the limiting subproblems,
and we show consistency and conservation of all three methods under consideration. Section 3
presents the main stability and boundedness estimates for the corresponding bilinear forms, and
contains an a-priori error analysis in the energy norm with emphasis on the convection dominated
regime. Details on super-convergence results and postprocessing for the diffusion dominated case
are presented in Section 4. Results of numerical tests including a comparsion with the streamline
diffusion method are presented in Section 5.

2 Hybrid mixed discontinuous Galerkin methods for convection
diffusion problems

The aim of this section is to formulate the problem under consideration in detail and to fix the
relevant notation and some basic assumptions. By introducing the diffusive flur 0 = —eVu as a
new variable, we rewrite (1) in mixed form

c+eVu=0, div(c+pu)=f in Q

2
@—i—ﬁuu:g]v on 9Ny, @
v

U= gp on J0p, —€
which will be the starting point for our considerations. Here and below, v denotes the outward unit
normal vector on the boundary of some domain. We refer to Su as the convective flur and call o+ Gu
the total flux. Existence and uniqueness of a solution to (2) follows under standard assumptions
on the coefficients. For ease of presentation, let us make some simplifying assumptions.

2.1 Basic assumptions and notations

We assume that 2 is a polyhedral domain and that 0Qp = 09, i.e., 00y = 0. Let 7}, be a shape
regular partition of {2 into simplices T and let £, denote the set of facets E (element interfaces and
element faces aligned to the boundary). We assume each T and F is generated by an affine map
®p or B from a corresponding reference element 7' respectively E. With 87;, we denote the set
of all element boundaries 0T (with outward normal v). Finally, by xs we denote the characteristic
function of a set S C €.

Regarding the coefficients, we assume for simplicity that gp = 0 and that ¢ > 0 is constant
on elements T' € 7;. Furthermore, the vector field 8 is assumed to be piecewise constant with
continuous normal components across element interfaces, which implies that div3 = 0. Moreover,
such a vectorfield 3 induces a natural splitting of element boundaries into inflow and outflow parts,
i.e., we define the outflow boundary 0T°* := {z € T : Bv > 0} and OT"" = T\ 9T°*". The union
of the element in-/outflow boundaries will be denoted by 97, respectively 97,°“ and similarly,
the symbols AQ™ and Q°“* are used for the in- and outflow regions of the boundary 9.

For our analysis we will utilize the broken Sobolev spaces

H(T) :={v:ue H(T), VT eT,}, s>0,

and for functions u € H*t! we define Vu € [H*(73)]¢ to be the piecewise gradient. In a natural
manner we define the inner products

(u,v)r := /Tuv dx and (u, ), = Z (u,v) 7,

TeT),

with the obvious modifications for vector valued functions. The norm induced by the volume

integrals (-,-)7, is denoted by |lullz, := /(u,u)7,, and for piecewise constant o we define
a(u,v)g, = > plau,v)r and oflul|z, = \/o?(u,u)r,. Norms and seminorms on the broken

Sobolev spaces H®(7},) will be denoted by || - ||s,7, and |- |s,7;, -



For the element interfaces we consider the function spaces

L*(&) :=={p:pe€ L*(E), VEc&}, and
L*(0T3) == {v:v e L*0T), VT €T}

Note that functions in L?(97,) are double valued on element interfaces and may be considered
as traces of elementwise defined functions. Moreover, we can identify u € L?(€,) with a function
v € L*(973,) by duplicating the values at element interfaces, so in this sense L?(&,) C L?(97,).
For u,v € Ly(07}) we denote integrals over element interfaces by

(o= [ dudsand (A par, = Y mor.
or T

and the corresponding norms are denoted by |ulsz, = +/(u,u)s7,. Again, we write a(u,v)s7;,
with the meaning . (au, v)sr.

Let us now turn to the formulation of appropriate finite element spaces. We start from piece-
wise polynomials on the reference elements, and define the finite element spaces via appropriate
mappings, cf. [9]. By Pk(T) respectively Py (F ), we denote the set of all polynomials of order
<k, and by RT}(T) := Pi(T) ® - P4x(T) we denote the Raviart-Thomas (-Nedelec) element, cf.
[30, 27] and [10]. Here the symbol & is used to denote the union of two vector spaces. For our
finite element methods we will utilize the following functions spaces:

Yp o= {7 € [La(]? 2 7|7 = @qﬂﬁ 0o®;', 7€ RTL(T)},

Vi = {vh € Ly(Q) s vp|r =00 @7, 0 € Py(T)},
My = {n € La(€n) : plp = jio @5, p =000 09, ji € Pu(E)}.

For convenience we will sometimes use the notation W), := X, X V), x Mj,. Since we assumed
that our elements T are generated by affine maps @, the finite element spaces could be defined
equivalently as the appropriate polynomial spaces on the mapped triangles, cf. [10]. This would
however complicate a generalization to non affine elements.

Let us now turn to the formulation of the finite element methods. We will start by recalling the
hybrid mixed formulation for the elliptic subproblem (3 = 0) and then introduce a hybrid version
for the discontinuous Galerkin method for the hyperbolic subproblem (e = 0). The scheme for
the intermediate convection diffusion problem then results by simply adding up the bilinear and
linear forms of the limiting subproblems.

2.2 Diffusion
For 8 = 0 equation (2) reduces to the mixed form of the Dirichlet problem

o = —eVu, dive = f, in Q, u=0 on 99, (3)
and the corresponding (dual) mixed variational problem reads

(0,77, — (u,divr)g, =0 vr € H(div, Q)
(dive,v)7, = (f,v)z, Yo € L*(Q).

While a conforming discretization of (3) allows to easily obtain conservation also on the discrete
level, it also has some disadvantages: The resulting linear system is a saddlepoint problem and
involves considerably more degrees of freedom than a standard (primal) H' conforming discretiza-
tion of (3). Both difficulties can be overcome by hybridization, cf. [3, 10, 15]. Let us shortly sketch
the main ideas: Instead of requiring the discrete fluxes to be in H(div,{2), one can use completely
discontinuous piecewise polynomial ansatz functions, and ensure continuity of the normal fluxes



over element interfaces by adding appropriate constraints. The corresponding discretized varia-
tional problem reads

%(UhaTh)Th, — (uh,diVTh)Th -+ </\h77'h7/>8’2’h =0, V1, € X,
(diVCI’h, Uh)'Th = (f,U)’]',L, VU}L S Vh
(onv, pn)oz, =0, Yun € Mp.

Note that the choice of finite element spaces allows to eliminate the dual and primal variables on
the element level, yielding a global (positive definite) system for the Lagrange multipliers only.
The global system has an optimal sparsity pattern and information on the Lagrange multipliers
can further be used to obtain better reconstructions by local postprocessing. We refer to [3, 10, 33]
for further discussion of these issues, and come back to postprocessing later in Section 4.

After integration by parts, we arrive at the following hybrid mixed finite element method.

Method 1 (Diffusion) Find (op,un, An) € Tp X Vi X My, such that
Bp(oh, wh, Ani Thy Uns ptn) = Fp(Th, Un, fin) (4)
for all T, € Xy, v, € Vi, and pp € My, where Bp and Fp are defined by

Bp(0h, U, Awi Thy U, i) :=

Lon, )7 + (Vun, 7)1, + (An — un, Ta)oz, + (0, Vor) 7, + (Onv, i — vn)os s

()

and
Fp(Th, v, pn) == —(f,vn)z,- (6)

We only mention that the case ¢ = 0 on some elements T' can be allowed in principle; for these
elements the term %(ah, Tr)T just has to be interpreted as op|7 = 0.

Remark 1 Let ¥ := [HY(73)]%, V := HY(7;) and M := {u € L*(&,) : p = 0 on 99}, and let
W := ¥ x ¥V x M denote the continuous analogue to W,. The above bilinear form is then defined
for all (o, u, \; 7, vn, pir) € W & Wy, x Wy,. This property will be used below to show consistency
of the method and obtain Galerkin orthogonality. In fact, Bp could be defined uniquely even for
all (o,u,\) € H(div; Q) x H'(T3) x L?(&y) by just omitting the terms with .

Method 1 is algebraically equivalent to the conforming RT} X P discretization of the dual
mixed formulation of (3), and can be seen as a pure implementation trick. Below, we will analyze
Method 1 in a somewhat non standard way, including the gradient of the primal variable and
the Lagrange multipliers explicitly in the energy norm. This kind of analysis is quite close to
that of of discontinuous Galerkin methods for elliptic problems, and allows us to investigate the
mixed method together with the discontinuous Galerkin method for the hyperbolic subproblem in
a uniform framework.

2.3 Convection
By setting € = 0 in (2), we arrive at the limiting hyperbolic problem
div(Bu) = f in Q, u=0 ondN™. (7

Multiplying (7) by a test function v € H'(7},), and adding stabilization (see (36)), we obtain the
discontinuous Galerkin method for hyperbolic problems [31, 26, 24]

(div(Bu), v)z, + (B (u" —u),v)azim = (f,0)7;,

where u™ := u|gp+ denotes the upwind value and 7" is the upwind element, i.e., the element
attached to E where 8- vr > 0. To incorporate the boundary condition, we define ut =0 on
O0'™. After integration by parts, and noting that v = ut on 9T°“" we obtain

(u, BVV) 7, = (Bou™, 0)ogin — (B, v)grout = —(f,0)T,.



In order to make the discontinuous Galerkin method compatible with the hybrid mixed method
formulated in the previous section, let us introduce the upwind value as a new variable A := u™,
and let us define the the symbol

[\  Ecor™
pa={ > B

for all T € 7. Note that A = {\/u} = u* on both sides of E, so {\/u} is just a new characteri-
zation of the upwind value. After discretization we now arrive at the following hybrid version of
the discontinuous Galerkin method.

Method 2 (Convection) Find (up, ) € Vi, X My, such that

B (un, Awivns pin) = Fe(vn, i) (8)
for all (v, up) € Vi X My, with

Be(un, A vn, pin) := (un, BVR) 7, + (Bu{An/un}, pn — vn)or, (9)

and
fc(vhvﬂh) = _(f7U)Th (10)

By construction, Method 2 is algebraically equivalent to the classical discontinuous Galerkin
method. This can easily be seen by testing with p;, = xg which yields that A\, = u,™ on
the element interfaces. All terms of the bilinear form are again defined elementwise, which allows
us to use static condensation on the element level. Moreover, as in the case of pure diffusion, the
bilinear form B¢ can be extended onto W @& W), x W, which then allows to derive consistency
and use Galerkin orthogonality arguments. On facets F where 3, = 0, the Lagrange multiplier is
not uniquely defined, and we set A = 0 there.

2.4 Convection-diffusion regime

Let us now return to the original convection diffusion problem and consider the system
o+ eVu=0, divi(c+pu)=f inQ, u=0 on . (11)

Since we used the same spaces for the discretization of the elliptic and hyperbolic subproblems,
the two hybrid methods can be coupled in a very natural way by simply adding up their bilinear
and linear forms. This yields the following hybrid mixed discontinuous Galerkin method for the
intermediate convection diffusion regime.

Method 3 (Convection diffusion) Find (o, upn, Ap) € (Xh, Vi, My) such that
B(on, un, Ans Thy Uns fin) = F (O, un, An) (12)
for all T, € Xy, v, € Vi, and pp € My, where B and F are defined by

B(Oh, Uhy Ans Thy Vns fth) 2=
L(oh: )7 + (Vun, 7)1, + (Aw — Un, Th?) o3, (13)
+ (on + Bun, Vop) 1, + (onv + Bu{An/un}, tn — vi)oT,

and
.7:(7‘h,’l}h> = —(f,vh>7h. (14)

By testing with pp, = xg for E € &, we obtain that opvg + Bvg{An/un} is continuous across
element interfaces. Here, vy denotes the unit normal vector on E with fixed orientation. Thus A,
and opvE + Bvg{An/un} have unique values on the element interfaces and can be considered as
discrete traces for u and the total flux o + SBu.



2.5 Consistency and conservation

Before we turn to a detailed analysis of the finite element methods 1-3, let us summarize two
important properties, which follow almost directly from the corresponding properties of the mixed
respectively the discontinuous Galerkin method for limiting subproblems. For sake of completeness
we sketch the proofs in the present framework.

Proposition 1 (Consistency) The methods 1-3 are consistent, i.e., let u denote the solution of
the problem (3), (7), respectively (11) and define 0 = —eVu and A = u. Then the corresponding
variational equations (4), (8) and (12) hold, if oy, un, Ap are replaced by o, v and .

PROOF. Method 1: Let u denote the solution of (3), and make the substitutions as mentioned in
the proposition. Then, we obtain by testing the bilinear form Bp with (74,0, 0)

BD(*€V’LL, U, U Th, 07 O)
= —(Vu, )7, + (Vu, )7, — (U — u, Thv)a7;,\00 — (U, ThV) 002
= —<U7ThV>aQ =0.

Next we test with (0, vp,0) and integrate by parts to recover
Bp(—eVu,u,u;0,vp,0) = —(div(—eVu),vn) 7, = —(f,vn)7,,

which follows since u is the solution of (3). Finally, testing with (0,0, up) we obtain

ou
BD(_evuaua U, 0707/141) = <_687n7/1/h>87’h = 07

which holds since div(eVu) = f € L? implies ¢eVu € H(div;Q) and thus the normal flux —e2%

on
is continuous across element interfaces. Note that at this point we formally require some extra
regularity, e.g., u € H'(Q) N H3/?*¢(T;) or ¢ = —eVu € L3(Q) for some s > 2, in order to

ensure that the moments (e3%, uy) are well-defined for up € My, cf. [10]. As already mentioned
in Remark 1 this extra regularity assumption can be dropped by appropriately defining Bp.
Summarizing we have shown that Method 1 is consistent.

Next, consider Method 2 and let u denote the solution of (7). Substituting w for up and Ap in
(8) - (10) and testing with (vp,0) we obtain after integration by parts

BC (ua U3 Vh, O) = (le(ﬁu), Uh)Th - <6V’u’a U}l>89i" = _(fa Uh)Th .

Now test with (0, up,), then we have

BC(U,U;O,‘LLh) = <5quuh>8Th - 07

since u and pup are single valued and (3, appear two times with different signs for each element
interface. Thus we have proven consistency of Method 2.
Finally, Method 3 is consistent as it is the sum of two consistent methods. O

While consistency is a key ingredient for the derivation of a-priori error estimates, conservation is
a property of the discrete methods which is desired for physical reasons, since it inhibits unphysical
increase of mass or total charge. This is particularly important for time dependent problems. If a
finite element scheme allows to test with piecewise constant functions, conservation can be shown
to hold locally (for each element) as well as globally as long as the discrete fluxes are single valued
on element interfaces.

Proposition 2 (Conservation) The methods 1-8 are locally and globally conservative.



PROOF. Let us first show the local conservation of Method 1 by testing (4) with (0, x7,0). This
yields

—(f,1)r = Bp(un, An, 0130, x7,0) = —(owv, L)ar,

that is, the total flux over an element boundary equals the sum of internal sources, and hence the

method is locally conservative. By testing with (0,0, xg) for some E € &, we obtain continuity

of the normal fluxes o,V across element interfaces, and so the scheme is also globally conservative.
Now to Method 2: Testing with (xr,0) we get

(fv 1)T = BC(Uh, >\h; XT, 0) = <6U)‘h7 1>8Ti" + <5l/uh7 1>8T"“t7

so the total flux over the element boundaries equals the sum of internal sources and fluxes over
the boundary of the domain. Note that 3,{An/up} defines our unique flux on element interfaces.
Now let E € &, such that E = 9T N dTL". By testing with (0, xg), we obtain

0= Be(un; An; 0,x8) = (Bu{An/un}t Dorgue + (Bu{An/unt, 1oz
= (Byun; Dorgue + (BuAn, Lorin
so the total outflow over a facet on one element levels the inflow over the same facet on the

neighboring element.
Finally, Method 3 is conservative as it is the sum of two conservative methods. O

3 A priori error analysis

As already mentioned previously, our analysis of the hybrid methods under consideration is in-
spired by that of discontinuous Galerkin methods [24, 4], in particular we will utilize similar mesh
dependent energy norms for proving stability and boundedness of the bilinear- and linear forms.
We will show stability of Method 1 in the norm

. 1/2
(v, )l = (2Nl + ellVollZ, + £IA = uldg) ", (15)

and stability of Method 2 will be analysed with respect to the norm

h 2 2 1/2
I Mo = (Z18TulE, + 15,1 1A—ulds,) (16)

Here by |(| and |8, | we understand appropriate bounds for § respectively (3, on single elements
or facets. Note, that for e ~ hf (the crossover from diffusion dominated to convection dominated
regime) all terms in (15) and (16) scale uniformly with respect to €, 5 and h. For proving the
boundedness of the bilinear forms we require slightly different norms

1/2
(ry v, i)lllp e = (7,0, ) D +2170134,) " (17)

and

i Ml o= (L, + 18, 1M b3 ) (18)

These norms scale again in the same manner with respect to h, € and § as their counterparts
(15) and (16), and therefor it can be shown easily that the additional terms do not disturb the
approximation.



3.1 Pure diffusion - Method 1
Below we will require the following prepraratory result.

Lemma 1 Letv, € Vi, and up, € My, be given. Then there exists a unique solution 7 € Xy, defined
elementwise by the variational problems

(7,p)r = (Von,p)r, Vp € [Pp_1(T))*
(v, q)or = (n, Q)oT, Vg € Pr(0T).

Moreover, there exists a constant c; only depending on the shape of the elements such that
1717 < et (IVonllF, + hlpnldz)' (19)
holds.

PROOF. The existence of a unique solution 7 follows with standard arguments, and the norm
estimate then follows by the usual scaling argument and the equivalence of norms on finite dimen-
sional spaces, cf. [10] for details. O

Since the estimate (19) uses an inverse inequality, the constant ¢; depends on the shapes of the el-
ements. Lemma 1 now allows us to construct a suitable test function for establishing the following
stability estimate.

Proposition 3 (Stability) There exists a positive constant cp independent of the meshsize h
such that the estimate

Bp (O, W, Aw Thy Uns fin)
sup

> cp ||| (oh, un, An)l D (20)
(Th,Vn 1k )70 H|(Thavh7ﬂh)H|D

holds for all (op,up, Ap) € Zp X Vi X My,.

PROOF. Let us start with testing the bilinear form (5) with (op, —up, —An), which yields

Bp(on, un, An;on, —vn, —pn) =2|onll, -

Now let 7 be defined as in Lemma 1 with y, replaced by f(An —un) and Vuy, replaced by eVuy,
so that ,
177, < er (5 1A = wnl3g, + €[ Vun|F)? (21)

holds with constant c¢; independent of the meshsize h. For v > 0 we then obtain

Bp(on, un, An;¥7,0,0)
=y2(on, 7)1, +Y(Vun, 7)1, + (A — un, 7)o,

2 ~
> —acllonllF, — T 17T, + (el Vunllz, + 5[\ —unl3s,)
2
cry
> —gllonllF, + (v - 5 ) (el VunlZ, + £ 120 — unl3s),

where we used (21) for the last estimate. The assertion of the proposition now follows by choosing
~v = 1/¢r and combining the estimates for the two choices of test functions. O

We want to emphasize at this point that ellipticity holds regardless of the value of ¢; in (21);
only the ellipticity constant c¢p depends on c¢; and thus on the quality of the mesh. This is
certainly an advantage of the mixed discretization in comparison to, e.g., the symmetric interior
penalty method and also some other discontinuous Galerkin methods for elliptic problems, where
sufficiently much penalization has to be added in order to ensure stability, see [4] for details.

After using a Galerkin orthogonality in the analysis below, we will need boundedness of Bp on
the larger space W @& Wy, X W,



Proposition 4 (Boundedness) There exists a constant Cp independent of h such that the es-
timate
1Bp (0,1, A Ty Ons pin)| < Cp | (05w, A) [l (785 vy ) [l 0 (22)

holds for all (o,u,\) € W @& Wy, and (Th,vp, ) € Wh.

PROOF. We consider only the term (A — u, 7,v) o7, in detail. Using the Cauchy-Schwarz and a
discrete trace inequality |mpv|or < ﬁ”ThHT, we obtain [(A — u, Tpv)ar| < ﬁp\ — uloT, |77
The result then follows by standard estimates for the remaining terms and summing up over all

elements. 0

The above dicrete trace inequality cannot be used for the term involving ov, since 0 € W ® W,.
Therefore an additional term appears in the norm ||| - ||| p,«-

3.2 Pure convection - Method 2

Since Method 2 is equivalent to the discontinuous Galerkin method for hyperbolic problems, our
analysis is carried out in a similar manner to that presented in [24].

Proposition 5 (Stability) There exists a constant cc independent of the meshsize h such that

the estimate
Be(un, Ans vns pin)
sup

(Vhspn) |H(Uh7,uh)|||c

holds for all (up, Ap) € Vi x My,

2 cc |l (un, An)llle (23)

PrOOF. We start by choosing test functions vy, = —uy and pp = —Ap. Since div@ = 0 we have
(up, BVuR)r = %(B,,uh,uhbT on each element, and thus

Be(uns An; —tn, —An)
= —%Wﬂm,uman + BodAn/unt, un)oz, — (Bu{An/un}, An)o,
=1+ 2)+6)= ().
Recall that A, equals 0 on 9f2, and let us rearrange the terms (1)-(3) in the following way:

1 1 1
(1) = =5 (Boun, un)oz, = i\ﬁuHuh\?gTﬂ — §|ﬁy||uh|§f[}?m,

T2
(2) = (Bu{dn/un}, un)oz, = 1Bullunfrow — 8ol (Ans un)ozn
(3) = —(B 0w/} Moz = 1Bl Bee = 1Bl oy sz
Now let T1, Ty denote two elements sharing the facet E = T¢" N 9T, Since )y, is single valued

on E by definition, we have Ap| orout = Al Ty, that means we can shift the terms only involving
the Lagrange multiplier between neighboring elements. Summing up, we obtain

1
(x) = §|5u||)\h - Uh%’f,;

Let us now include a second term in the stability estimate by testing the bilinear form with
Vp = ffyﬁﬁVuh for some v > 0, which yields
Be(un, Ansvn, 0) = *%(Umﬂv(ﬁvuh))n + %<ﬁv{)\h/uh}aﬂvuh>aﬁl
LBV un|z, + % (Bo(An — un), BVun) oz
> (i l18Vunlz, = 18ulIAn — unl3a,)-

10



For the last estimate we used Youngs’ inequality and a discrete trace inequality. The result

now follows by choosing v = i and combining the estimates for the two different test func-
tions. Note that by inverse inequalities and due to our scaling of v, with h/|3], it follows that

Il(vr, 0)|llc < C ||| (un,0)]|c with a constant C' independent of the meshsize.

Proposition 6 (Boundedness) There exists a constant Ceo independent of h such that the es-
timate

|Be (s As v, pn)| < Ce | (ws A) e [Il(vn, pa)llle (24)
holds for allu € V &V, A € M ® My, and (v, un) € Vi X My,.

PrOOF. The assertion follows directly from the definition of the norms and the Cauchy-Schwarz
inequality. O

3.3 Convection-diffusion - Method 3

Due to the structure of Method 3 as the combination of Methods 1 and 2, the stability and
boundedness of the bilinear form (13) follows almost directly from the corresponding properties of
the bilinear forms for the limiting subproblems. The appropriate norms for the analysis of Method
3 are given by

1/2

llons wn Al = (Il (ons wns An) 1D + I (s Ar)IE) (25)

and

(s Ml = (I( s A) %0+ Il s MIIZ) (26)

i.e., they are just assembled from the norms used for the analysis of the elliptic and hyperbolic
subproblems. Note that all terms in the norm scale appropriately, e.g., in the diffusion dominated
case (|Blh < €) the terms comming from the convective part can be absorbed by the terms
stemming from the stability of the diffusion part. Let us now state the properties of B in detail.

Proposition 7 (Stability) There exists a positive constant cg not depending on the meshsize h

such that
B(on, Un, An; Th, Un, [h)
sup

(Th VR, tn) |||(Thavhauh)”|
holds for all (o, up, Ap) € X, X Vi, X My,.

2 cg |l (on, un, An)ll| (27)

Proor. We will show the inf-sup stability by testing with the functions used in the previous
stability estimates, i.e., 7, = op + a7, v, = —up + 'y%ﬂVuh, wh = —Ap. In view of Proposition 3
and 5, it only remains to estimate the additional term comming from the test function ”yl—gl BVup
inserted in the diffusion bilinear form, viz.

h h h
Bp(on, un, /\h;()ﬁmﬁkuo) = *VW(%V(ﬁVWL)) +Vm(0’hl/, BVup)
h .. h . ..
= vm(dlvah,BVuh) > —VmﬂdlvahHHﬁVuhH

> —cy (ol + el Vunl®) 2 —e3 [l (o un 2) I

This term can be absorbed by the stability estimate for the diffusion problem as long as -y is chosen
to be sufficiently small. Note that v does not depend on h, € or 3, i.e., the stability constant cp
does not depend on these parameters. O

The boundedness of the bilinear form follows directly by combining the two results for the
limiting subproblems.
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Corollary 1 (Boundedness) There exists a constant Cp independent of the meshsize h such
that

1B, w, A 7, vns )| < C Il (0, u, A) (Il (T vny 1) (28)
holds for all (o,u,\) € W @ Wy, and (Th,vp, i) € Wh.

As a last ingredient for deriving the a-priori error estimates, we have to establish some approxi-
mation properties of our finite dimensional spaces with respect to the norms under consideration.

3.4 Interpolation operators and approximation properties

Let us start by introducing appropriate interpolation operators and then recall some basic inter-
polation error estimates. For T € 7p,, E € &, and functions u € L*(T), A € L*(E) we define the
local L? projections H;‘gu and HE)\ by

(u — Eu,v)7 = 0, Yoy, € Pi(T),

respectively
A =TIZA, pn)e =0, Vun € Pr(E).
These interpolation operators satisfy the following error estimates, cf [9].

Lemma 2 Let Hf and HE be defined as above. Then the estimates

lu = i ullr < Chefulsr, 0<s<k+1,
IV (u =T w) |7 < Ch®|ulsta,r, 0<s<k,
lu =T ullor + lu — T ullor < CR*F2(ulsp r, 0<s<k,

hold with a constants C independent of h.

The corresponding interpolation operators for functions on 7 respectively &, are defined elemen-
twise and are denoted by the same symbols.
For the flux function o we utilize the Raviart-Thomas interpolant defined by

(o0 — 1o, pu)r =0, Vpn € [Pe-1(T)]%,
(o0 —TIET o), pp) g = 0, Yupn € Py(E), E C OT.

In order to make moments of ov be well-defined on single facets E one has to require some extra
regularity, e.g., ¢ € H(div,T) N L*(T) for some s > 2 or o € HY/?+¢(T), cf. [10]. Under such an
assumption, the following interpolation error estimates hold [10, 34].

Lemma 3 Let H,’fT be defined as above. Then the estimates
lo — I o||r + h1/2||(0 ~ 1 o) v|lor < Ch¥|o|s T, 1/2<s<k+1,
|div(o — TIE 0)||p < Ch¥|dive|sr, 1<s<k+1.

hold with constant C independent of h.

Applying these results elementwise, we immediately obtain the following interpolation error esti-
mates for the mesh dependent norms used above.

Proposition 8 Let u € H'(Q) N H3/2%4(T;,), and set o := —eVu. Then

(o =T o, u — TFu, X — TR W) ||| p.o < Ch¥Ve|ulsi1 1,5 1/2 < s <k, (29)
and for u € H'(Q) there holds
ll(u = 1w, A = W)l e < CRHY2V/ 18] [ul g1 7, 0<s<k, (30)

with constants C not depending on u or h. The same estimates hold if the x-norms are replaced
by their counterparts without *.

12



Remark 2 The estimates of Proposition 8 hold with obvious modifications, if the smoothness s
or the polynomial degree k vary locally. We assume uniform polynomial degree and smoothness
only for ease of notation here.

The interpolation error estimate (29) is suboptimal regarding the approximation capabilities of
the flux interpolant. In fact by Lemma 3 one can obtain

ﬁ”a ~ o < Ch*Velu|si1 T, for1/2<s<k+1,

so the best possible rate is h¥*1 instead of h* as for ||| -|||p in (29). We will use this fact in Section
4 to derive super convergence results for the primal variable uy,.

3.5 A priori error estimates

The error of the finite element approximation can be decomposed into an approximation error and
a discrete error. Let (op, up, Ap) denote the discrete solution of (12), and let u be the solution of
(11) and define 0 := —eVu. Then we have
Il (o = o, u = wn, u = An)| (31)
<l = I oy u — T w,u = TEw) |+ [l (IET o — on, T w — up, T — ) ]

Using stability and boundedness of the bilinear form, and applying Galerkin orthogonality, the
second term can now also be estimated by the interpolation error.

Proposition 9 Let (o, un, \n) € Wi, denote the solution of (12), and let u € HY(Q)NH3/2+2(T;,)
be the solution of the convection diffusion problem (11). Then there exists a constant C independent
of the meshsize h such that the estimate

I (—eVu) = op, T u — up, I u — Ap)|| < Ch* (Ve + b2 \/|8])ul s,
holds for 1/2 < s < k.

PROOF. Let us define 0 = —eVu, A = u. By application of the stability estimate (20), Galerkin
orthogonality and the boundedness (22) of the bilinear form, we obtain
cg (T o — on, M w — up, T w — A )|

< sup B0 — op, T u — up, TEw — A 7hy Ohs )/ || (Ths Ok ) ||
(Th sV 1k )70

= sup B(HkRTU — 0, ng —u, Hk;Eu — U; Th, Vh, ,uh)/ |H (Tha Uh, ,U’h)m
(Th,Vnkn)#0

< Cp || (T o — o, g u — u, M u —u) ]« -
The assertion follows directly from (29). O
The complete error estimate can now be derived by combining (31) and Proposition 8.

Theorem 1 (Energy norm estimate) Let (op,un, An) be the finite element solution of Method
3, and let u € H(Q) N H3/?*¢(T;,) denote the solution of (11) and o := —eVu. Then

(o = o, u = wnyu = )| < Ch* (Ve + B2V 18] |ulss1,7,
holds for 1/2 < s < k with constant C' independent of the meshsize h.

In the convection dominated case, the error estimate coincides with the well known error esti-
mates for the discontinuous Galerkin and the streamline diffusion method for hyperbolic problems,
cf. [24, 25].
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Corollary 2 Let e < |B|h on each element, and let the conditions of Theorem 1 hold. Then the
estimate

(o = onyu = un,u = M)l < CRH2\/|B]Jul 1,7,
holds for 1/2 < s < k with constant C' independent of the parameters e, 5 and h.

This estimate holds in particular for the limiting hyperbolic problem (¢ = 0) in which case
o =op =0 and ||(m,v,w)]]| = |l[(v,)|l|lc, and so Method 3 collapses with Method 2, i.e., the
discontinuous Galerkin method for hyperbolic problems.

In analogy to standard error estimates for mixed methods for the Poisson problem, we obtain
the following convergence result in the diffusion dominated regime.

Corollary 3 Let € > |5|h and let the conditions of Theorem 1 hold. Then the estimate
(o = on,w—un, A= M)l < Ch*Velulssr,7,
holds for 1/2 < s < k with constant C independent of €, 5 and h. Moreover, we have |||-||lp ~ ||| -]l|-

Clearly, this estimate holds also for Method 1 in the case of pure diffusion. Let us remark once
again that all terms in the a-priori error estimates are defined locally, so the smoothness index s
and the polynomial degree k can vary locally, allowing for hp-adaptivity.

4 Super convergence and postprocessing for diffusion

dominated problems
The best possible rate for ﬁ lo — || guaranteed by Theorem 1 and Corollary 3 is k¥, which is one
order suboptimal regarding the interpolation error estimate of Lemma 3. It is well-known however
that in the purely elliptic case, the optimal rate h**1 can be obtained by a refined analysis, and

we will derive corresponding results below. Since we consider the case of dominating diffusion in
this section, we assume for ease of notation that e = 1 in the sequel.

4.1 Refined analysis for pure diffusion

Although the estimate (29) is optimal concerning the approximation error with respect to the
norm ||| - || p, we can obtain better error estimates for o = —Vu, i.e., we will show that ||o — oy||
depends only on the interpolation error ||o — i o||, and thus optimal convergence for oy, can be
expected. We refer to [3, 10, 33] for corresponding results in the mixed framework.

Proposition 10 Let (o, up, Ap) denote the solution of (4), and let u, o := —Vu be the solution
of problem (3). Then

ll(on = o un = Mg u, Ap = TZw) || < CA*Julsi1.0 (32)
holds for 1/2 < s < k + 1 with constant C independent of h.
PROOF. Let us first consider the following term.

Bp(MET o — o, TTFu — u, TTEw — u; 71, vp, Ay)
= Mo -0, Th)T, — (Fu —u, divy) e, + (ITEwy — u, ThV)oT;,
+ (div(TT o — ), op) 7, + (U7 0 = 0)v, ),

= (HgTU =0, Th) T,

where the last equality follows from the definition of the interpolants. Then in the same manner
as in the proof of Proposition 9 we obtain

ep Il Ao = o, T w — up, I u — Ap)|lp < [0 — ol
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and the statement follows by application of the triangle inequality and the interpolation error
estimate (29). 0

Note that for the modified error (32), the best possible rate now is h**!, which is optimal in
view of the interpolation error estimates. As we show next, the estimates for (I} u — up) and
(ITFu — Ap,) can even be improved if we assume that the domain €2 is convex, cf. [33] for similar
results in the mixed framework.

Proposition 11 Let Q be convex and v € H'(Q) N H3/2%2(T,) be the solution of (3). Moreover,
let up, denote the discrete solution obtained by Method 1. Then the estimate

T, _ < s+1 |u|s+2,Tm k=0
T w — upllo < Ch { T (33)

holds for 1/2 < s <k+1 (resp. 0<s <1 for k=0). If in addition f is piecewise constant, then
T w — unllo < Ch*FH|ulsi1,7, (34)
holds also for k = 0.

PROOF. Let ¢ € HZ(Q) denote the solution of the Poisson equation A¢ = I} u — uj, with
homogeneous Dirichlet conditions, and let z := V¢. Due to convexity of {2 we have

Il < ¢ ITMfu —unllo  and ¢ — | < cA™ FFED NI w — uplo.
Using the definition of ¢ and z we obtain
1T w — up |2 = (TFu — up, dive) = (T u — up, div(TTET 2)) = (00 — op, TTET 2)
= (0 —on, I} 2 = Vo) — (div(o — an), ¢ — I ¢)
< lo = onllolTF" 2 = Vllo + [div(e — o1 loll¢ — TTx 6lo-

The first estimate now follows by Lemma 3. If f is piecewise polynomial of order k then
div(c — 03) = 0, so the last term in the above estimate vanishes and we conclude the second
assertion. 0

4.2 The diffusion dominated case

Let us show now that similar results still hold in the presence of convection as long as diffusion
is sufficiently dominating. In this case, we can discretize the convective term without upwind
stabilization, and we therefore consider the following bilinear form instead of (9)

BgU(uh, /\h; Vh, /j,h) = (Uh7 ﬂvvh)'fh + <ﬂu)\ha Hh — Uh>BTh~ (35)

Such a discretization for the convective part was investigated numerically but not analysed pre-
viously in [18] for a 1D problem. There, the authors conjectured that this discretization already
introduces some stabilization, which is not the case as is clear from our analysis.

Consistency and conservation: Substituting the continuous solution u for uy and A in (35) we
obtain after integration by parts that

—(div(Bu),vn) 7, + (Bot, pn)or, = —(div(Bu),vh)z, = (—f, va) 7,

so the bilinear form Bg U is consistent. The scheme is also conservative, since the flux 8, in
(35) is single valued on element interfaces. Moreover, we have

B (un, An; vny ) = BEY (wny Ans s i) + |80l (A — wns i — vn)ozou, (36)

which clarifies what kind of upwind was used for the discontinuous Galerkin stabilization in (9).
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Stability: Testing the bilinear form BgU with v, = —uy, and pp = —Ap, we obtain

BEY (uny Ans —tun, —An) = —(un, BVup) 7, — (Bodn, An — un)or;,

1
= —§<ﬁuuh,uh>an — (BuAhs A — un)oT,

1 1
i‘ﬂuHuh - /\h%j’}z" - i‘ﬂuHuh - /\h%'f}fmt
Note that by adding stabilization the stabilization term |8, | |up — An |3 o, the last term becomes
h
strictly positive, i.e.,
. _ RNU . 2
Be (un, Aw; —tn, —=An) = Be” (un, Ans —un, —An) + |Bu] [An — Uh|affhwt
1
= §|5u|\)\h - uh|?97h>

and we recover the first part of the stability estimate of Proposition 5.
Following the approach for the convection dominated case, we now consider the following method
for for the diffusion dominated regime, cf. also [18]:

Method 4 (no upwind) Find (o, un, An) € Wy, such that
BNY (o, wn, A Thy Ok th) = F(n, pin), (37)

holds for all (T, vp, pun) € Wi, where BNY := Bp + BYU.

For the proof of stability of the bilinear form BNV, we require that the convection is sufficiently
small. A sufficent condition is given by

|ﬁu‘ |Ah - uh%Th S CD H| (O'}L,U}“ )‘}L)|||2Da V(O'}L,Uh, Ah) € Wh- (38)

Remark 3 Recall that the stability constant cp and thus the validity of condition (38) depends
only on the constant of an inverse inequality and thus on the shape of the elements. Moreover,
since both norms are defined elementwise, it is possible to decide for each element separately if
stabilization should be added or not. Clearly, (38) can be shown to hold if |3|h < cre is valid on
each element with constant ¢y only depending on the shape of the individual elements.

Using (38) as the characterization of dominating diffusion, we can now prove the following stability
result.

Proposition 12 Let (38) be valid. Then the estimate

NU )
BYY(0h, Uh, Ak} Thy Un, [th)

sup

CD 2
2 — Wl on, un, An )l (39)
(rnonpn)20 M (Thy oy pn)lllp 2 P

holds for all (op,up, An) € Wy, with cp denoting the stability constant of Proposition 3.

Since the convective terms can be absorbed by the diffusion terms, the boundedness result of
Corollary 1 applies with [|| - [[|(.) replaced by || - [|p,(+). Using the stability estimate (39), the
following a-priori error estimate is obtained in a similar manner as Proposition 10 for the purely
elliptic case.

Proposition 13 Let condition (38) be wvalid and (on,un, An) denote the solution of Method 4.
Moreover, let u € HY(Q) N H3/?>t¢(T,) denote the solution of problem (11), and set o := —Vu.
Then

ll(on — oy un — gu, Ay = Mw) [ p < CB°Jufsi1,0

holds for all 1/2 < s < k 4+ 1 with constant C' independent of h.
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PROOF. In view of Proposition 10 we only have to ensure that the convective term does not disturb
the estimate. Following the proof of Proposition 10, i.e., testing with the same test functions as
there, we obtain the additional term

BgU(qu - u, HkEu — U; Vh, :u'h) = (ng —u, /vah)Th + <5U(HkEu - 'LL), Hh — vh>6Th - 07

since BV, € Pi(T) on each element, and G, (up — vp) € Pi(E) for each facet. The result now
follows along the lines of the proof of Proposition 10. O

Proposition 13 allows us to derive a superconvergence estimate for ||[II} u — up ||z, like in the
purely elliptic case.

Proposition 14 Let Q be convex and u be the solution of (11) with B satisfying (38). Moreover,
let up, denote the discrete solution of Method 4. Then

k=0
Ilu —u < ORpstL \U|s+2,Th )
|| k hHT;L = ‘U|s+1,Th k>0,

holds for 1/2 < s < k +1 respecively 0 < s <1 in case k = 0.

PROOF. By means of Proposition 13, the result follows in the same way as Proposition 11. O

Due to the lack of a condition div(e —o},) = 0, which is valid in the purely elliptic case, we can not
obtain (34) here. So in the lowest order case, superconvergence holds only under some additional
smoothness of the solution w.

4.3 Postprocessing

The super convergence results of the previous section can now be utilized to construct better
approximations @, € Pry1(7p) by local postprocessing. Here, we follow an approach proposed
by Stenberg [33] for the mixed discretization of the Poisson equation (3), and construct our
postprocessed solution from the approximations of the primal and the dual variable. Alternative
approaches based on the Lagrange multipliers can be found in [3, 10].

Let us define @y, € Pgy1(7p) elementwise by the variational problems

(Vuy, Vou)pr = —(opn, V)1, Vo € Pry1(T) : (v,1)7 =0
(U;;, 1)E = (Uh, l)T
Then the following order optimal error estimate holds.

Proposition 15 Let Q be conver and u denote the solution of (11) with (38) being valid. More-
over, let (on,un, An) be the solution of Method (4) and uj be defined as above. Then

IV (uj, — u)]

7 < C'hs|u|s+1,’fn

and

k=0
W —u < Cherl |u|s+2,Tha
” h H'Th = |U|s+1,Th7 k>0,

for all 1/2 < s < k + 1 with constant C' independent of the meshsize h. For k = 0, the second
estimate holds for 0 < s <1.

PROOF. Let @y € HY(Q) N Pri1(75) denote the finite element solution of the standard H! con-
forming finite element method applied to the solution of (3). Then ||V(u—ap)||7, < Ch®|ulst1,T,
for 0 < s < k+ 1. Moreover, ||u — @] < Ch** ' u|sp1 7, for 0 < s < k + 1, since we assumed
convexity of Q and f € Ly. Now define oy, := (I — IIJ) (@, — uj},). Then
IVOnl7 = (VI =105 (an — up), Vin)r = (V(@n — u}), Von)r
= (V(’&,h — u), V’f)h)T + (Vu + Oh, Vf)h)T
< [IVorl[r(V(w = an)llr + llon + Vaull)7.
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Summing up over all elements and using the estimates for (u — @) and Proposition 13 yields
IV(u = wp)llz, < [IV(u—an)llz + IV (@n —up)llz,

= IV (u—an)lz, + [[Von|z,

S Chg |u|s+1,Th7
which already is the first part of the result. In order to establish the L? estimate, note that by
¢, = 0 we obtain |7, ||z < Ch||Vo, |7 via an inverse inequality. Hence

lu = wpllr < llu = Gnllr + [ldn — ujllz
< llu = anllz + a7 + 15 (@n — uj)llz

= |lu— anllz + 0wz + 1T (@ — w)llz + [T§ (u — un) |-
Summing up over all elements, and using that
TG (n — w7, < [lan —ullz, < CR*Muloa g,

and Proposition 14, we conclude the L? estimate. O

Remark 4 In the purely elliptic case (8 = 0) with f piecewise constant, we can obtain the
optimal estimate [|u — u}| < h*!|u|s1,7, also for the case k = 0 by using the estimate (34)
instead of Proposition 14.

5 Implementation and numerical tests

Let us now illustrate the theoretical results derived in the previous section by some numerical
tests. As a model problem, let us consider

—eAu+BVu=f in Q:=(0,1)

40
u=g on O, (40)

where € and ( are constant on the whole domain. Since for the limiting hyperbolic problem our
method is equivalent to the discontinuous Galerkin method, we will compare our results mainly
to those obtained by the streamline diffusion method [22, 25, 23]. For a detailed comparison of
hp-versions of the streamline diffusion method with discontinuous Galerkin methods for first order
hyperbolic problems we refer to [20].

The variational form of the streamline diffusion method is formally derived by using v + a8Vv
as a test function in the variational formulation of (40). Assuming g = 0 for simplicity, this yields

Method 5 (streamline diffusion) Find u € H}(Q) N H%(T;,) such that

e(Vu, Vou)r, + (BVu,v)r, + a[—e(Au, BVv) 7, + (8Vu, 3Vv)z, |
= (f,v)z, + a(f, BV).
In order to obtain stability of the method, the stabilization parameter has to be choses appropri-
ately, depending on the shape of the elements in the mesh. Typically, the stabilization parameter is

in the order of h/|3|, where h is the local mesh size. For higher order methods, also the polynomial
degree influences the choice of «, cf. [20]. For our numerical tests we us

o = max{h|8| — 2¢,0}/|]2.

In this way, stabilization is “turned oftf” in the diffusion dominant regime. In a similar manner,
we add edge stabilization (36) to our mixed hybrid discontinuous Galerkin method with a factor

& = max{h|8,| - 2¢,03/ (k| ).
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5.1 Numerical tests

With a first example, we want to illustrate that our method is capable of dealing with boundary
layers near outflow boundaries very well, and in contrast to the streamline diffusion method, we
do not obtain large layers. In a second example, we then show that even without any kind of shock
stabilization, discontinuities can be treated rather well even for almost hyperbolic problems. As a
general remark we would like to emphasize that we always compare our method using polynomials
of order k with the streamline diffusion method using polynomials of degree k+ 1. Thus, formally
the approximation properties of our finite element spaces is one order less. However, as our
numerical results indicate, this affects the results only in the diffusion dominated case, where
according to our theory we can increase the approximations by local postprocessing. This is
illustrated in Example 3.

Example 1: 1In the first test we set ¢ = 0 and

£ = Bily+ (P = /(1 = e+ Bl + (/e — 1)/ (1= /)
For € > 0, the exact solution to (40) is then given by

(e, g) = o+ (5 = /(1= ] o+ (B0~ 1)/(1 = 2/,

i.e., the solution has boundary layers at the top and right outflow boundaries. For a numerical
study, we set e = 0.01 and 8 = (2, 1), and then solve the problem numerically for various meshsizes
h and polynomial degrees k. Table 1 displays the errors of the numerical solutions obtained with
Method 3 and the streamline diffusion method.

streamline diffusion mixed hybrid DG
h ne k=1 | k=2 | k=3 k=0 | k=1 k=2
0.25 32 0.21 | 0.19 | 0.19 || 0.065 | 0.040 | 0.033
0.125 128 0.15 | 0.13 | 0.13 || 0.048 | 0.036 | 0.025
0.0625 | 512 || 0.097 | 0.088 | 0.088 || 0.040 | 0.026 | 0.014
0.03125 | 2048 || 0.056 | 0.050 | 0.050 || 0.032 | 0.014 | 0.0052

Table 1: L? errors obtained for Example 1 on uniform meshes with meshsize
h and ne elements using order k polynomials.

The exact solution is almost bilinear away from the boundary layers. Therefore one cannot
expect to gain much from further increasing the polynomial degree. Note however, that in the
mixed-hybrid-DG(0) method, the solution u is approximated only by piecwise constant functions.
Nevertheless, the error is smaller than the one obtained by any of the streamline-diffusion(k)
methods. This indicates that most of the error in the streamline diffusion method actually stems
from adding the stabilization term. This also explains why the streamline-diffusion(k) methods do
not give better results for increased polynomial degree, while our mixed-hybrid-DG method does.

Since in our example the location of boundary layers is determined a-priori, one should of course
use local mesh refinement towards the outflow boundaries. The exact solution using adaptive
grids are plotted in Figure 1. In Table 2 we summarise the numerical results obtained on adaptive
meshes. In order to obtain an error of less than 0.051 we can use the streamline-diffusion(2) method
with 898 elements, the mixed-hybrid-DG(0) method with 320 elements or the mixed-hybrid-DG(1)
method with only 8 elements. Similar results are also obtained in the second Example below. If
we continue to locally refine the mesh towards the boundary layer, the problem becomes diffusion
dominant (at least in the boundary layers), and the streamline-diffusion(k+1) method gives better
results then the mixed-hybrid-DG (k) method. In the current example, this happens at about 5000
elements. In the diffusion dominant region, we can however improve the solution obtained by our
hybrid method by local postprocessing, cf. Example 3 below.
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Figure 1: Example 1: exact solution and locally adapted mesh with 878 elements.

streamline diffusion mixed hybrid DG
h ne k=1 | k=2 | k=3 k=0 k=1 k=2
0.125 46 0.16 | 0.16 | 0.16 || 0.061 | 0.038 | 0.026
0.0625 | 125 0.12 | 0.11 | 0.11 || 0.058 | 0.027 | 0.015
0.03125 | 320 || 0.080 | 0.078 | 0.078 || 0.043 | 0.016 | 0.0066
0.015625 | 878 || 0.054 | 0.051 | 0.046 || 0.032 | 0.0080 | 0.0022

Table 2: L2 error of numerical solutions obtained with the streamline-
diffusion(k) and the mixed-hybrid-DG(k) method for adaptively re-
fined mesh with ne elements and minimal meshsize h.

Example 2: For a second test, we set f = 0, 3 = (2,1) as before, and ¢ = 1075, so we are
dealing with an (almost) hyperbolic problem. Additionally, we introduce a discontinuity in the
boundary conditions, i.e., we set u(0,y) = H(y — 0.5) on the left inflow boundary (H(-) denotes
the Heavyside function), and we set v = 0 on the remaining part of the boundary. The exact
solution for € = 0 (the boundary conditions at the outflow boundaries have to be omitted in this
case) is given by

1 y>05(1+x)

0 else.

u(w,y) = {

Below we use the solution of the purely hyperbolic problem also for calculation of the numerical
errors of the finite element solutions. Again, we solve on uniform meshes (not aligned to the
discontinuity) and compare the solutions obtained with Method 3 and the streamline upwind
method for different polynomial degrees.

streamline diffusion | mixed hybrid DG
h ne || k=1|k=2]| k=3 || k=0 | k=1 | k=2
0.25 32 0.33 | 0.25 | 0.23 || 0.22 | 0.15 | 0.11
0.125 128 || 0.25 | 0.19 | 0.18 || 0.18 | 0.11 | 0.087
0.0625 | 512 | 0.18 | 0.14 | 0.13 | 0.15 | 0.090 | 0.069
0.03125 | 2048 || 0.13 | 0.10 | 0.096 || 0.12 | 0.070 | 0.053

Table 3: L? errors of streamline-diffusion(k) and mixed-hybrid-DG (k)
method for uniformly refined meshes with mehssize h and ne
elements for polynomial degree k.

Since the exact solution is piecewise constant, increasing the polynomial degree can only yield
improvements of the approximations in the boundary and internal layers. As in the previous
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example, we can highly improve the performance by using locally adapted meshes. The corre-
sponding numerical results are listed in Table 4. In Figure 2 we plot solutions obtained with the

streamline diffusion | mixed hybrid DG
h ne || k=1 |k=2| k=3 | k=0 | k=1 | k=2
0.25 15 || 0.37 | 0.26 | 0.24 | 0.23 | 0.15 | 0.11
0.125 54 0.27 | 0.21 | 0.18 0.20 | 0.11 0.10
0.0625 | 140 || 0.20 | 0.15 | 0.14 || 0.16 | 0.093 | 0.082
0.03125 | 368 || 0.14 | 0.11 | 0.10 || 0.13 | 0.075 | 0.064

Table 4: L? errors of streamline-diffusion(k) and mixed-hybrid-DG (k)
method for adaptively refined meshes with ne elements and
minimal meshsize h for polynomial degree k.

streamline-diffusion(3) and mixed-hybrid-DG(2) method on an appropriate adaptive mesh. Both

Figure 2: Streamline-diffusion(3) and mixed-hybrid-DG(2) solution obtained on appropriate
adapted meshes with 878 respectively 798 elements.

solutions resolve the discontinuity at the interior layer rather stably and oscillations are located
only within the elements touching the discontinuity. Moreover, although the mesh is not aligned
with the flow direction 3, the numerical diffusion is very small and the jump of the solution stays
within one element throughout the domain. Note also that the mixed hybrid DG method deals
with the outflow boundary in a more natural way than the streamline diffusion method, so no
mesh refinement is needed at the boundary layers.

Let us now turn to a diffusion dominated problem an illustrate the increase in accuracy obtained
by local post-processing discussed in Section 4.3.

Example 3: Set 8 = (2,1), e = 0.1 and f = 1 in (40), and let v = 0 at the boundary. As an
approximation for the true solution we take the conforming finite element solution with polynomial
degree 8. We solve problem (40) with Method 3 and 4 respectively, and compare the numerical
results with those obtained by the streamline diffusion method. As outlined above, we decrease
the stabilization parameter with the meshsize such that no stabilization is added for |3|h < 2e.
The results obtained for various mesh sizes and polynomial degrees are summarized in Table 5.
Since the problems become diffusion dominant for a meshsize of h ~ 0.1, the streamline-
diffusion(k+1) methods give better results than the hybrid(k) methods in the last two lines of
Table 5. For improving the approximation for the mixed hybrid DG method in that case, we now
apply local postprocessing as discussed in Section 4. In Table 6 we list the results obtained with the
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streamline diffusion mixed hybrid DG
h ne k=2 k=3 k=1 k=2
0.25 32 0.071 0.071 0.020 0.0064
0.125 128 0.022 0.021 0.0078 0.0015
0.0625 | 512 0.00056 | 0.000046 0.0024 | 0.00025
0.03125 | 2048 || 0.000076 | 0.0000032 || 0.00065 | 0.000034

Table 5: L? errors of streamline-diffusion(k) and mixed-hybrid-DG (k)
method for uniform meshes with ne elements and meshsize h for
polynomial degrees k.

mixed-hybrid DG method and postprocessing, and we compare with the L? best approximation
errors for the according finite element spaces.

postprocessed 12-projection
h ne k=2 k=3 k=2 k=3
0.25 32 0.011 0.0031 0.0063 0.0019
0.125 128 0.0025 0.00043 0.0015 0.00027
0.0625 | 512 0.00042 | 0.000037 0.00025 | 0.000023
0.03125 | 2048 || 0.000057 | 0.0000026 || 0.000034 | 0.0000016

Table 6: L? errors of postprocessed solution of the mixed-hybrid-DG (k-1)
method and the best piecewise polynomial approximation of order
k on uniform meshes with ne elements and meshsize h.

Throughout our numerical experiments, the error of the postprocessed solution is always in the
order of 1-3 times the best approximation error. Moreover, the mixed hybrid DG method with
postprocesing always yielded slightly more accurate results than the standard confoming finite
element method (which agrees with the streamline diffusion method in the diffusion dominating
regime) with the corresponding polynomial degree.

5.2 Concluding remarks

In this paper we proposed a new finite element method for convection diffusion problems based
on a mixed discretization for the elliptic part and a discontinuous Galerkin formulation for the
convective part. The two methods are made compatible via hybridization, and the Lagrange
multipliers play an essential role for the stabilization of the method and throuhgout the analysis.

Like other discontinuous Galerkin methods, but in contrast to the streamline diffusion method,
the presented scheme is locally and globaly conservative, which makes it a natural candidate
for problems where conservation is important, e.g., for time dependent problems. Moreover,
the treatment of boundary layers is very natural and allows a seamless change from convection
dominated to purely hyperbolic regimes, where the outflow boundary conditions just disappear
also in the numerical scheme. In the hyperbolic limit, our method corresponds to (a hybrid
version of) the classical discontinuous Galerkin method and thus inherits the stabilizing features
of discontinuous Galerkin methods for hyperbolic problems.

The (hybrid) mixed methods allows a more natural treatment of elliptic operators than the
discontinuous Galerkin methods. In particular, the the discretization of diffusion terms does
not increase the stencil of the scheme. In contrast to the streamline diffusion method and to
several variants of discontinuous Galerkin methods, the stabilization parameter is always smaller
or equal to 1, and inverse inequalities respectively the shape of the triangles only affect the stability
constant. In the diffusion dominated regime, we can apply local postprocessing in order to improve
the approximation of the primal variable by one order.
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A particular advantage of our method from a computational point of view is that it is formulated
and can be implemented purely element wise. This allows static condensation of the primal and
flux variables on the element level, and only the Lagrange multipliers appear in the global system.
Thus the presentend mixed hybrid discontinuous Galerkin method has smaller stencils as well as
fewer degrees of freedom than standard discontinuous Galerkin methods, but still provides the
same stability.
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