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In this paper, a high order hybrid mixed finite element method for solving the two dimensional Helmholtz
equation with high wave numbers is presented. The novelty of this method is in using a discrete eigenfunction
basis for solving the hybrid problem. Such basis allows inexpensive elimination of the inner degrees of freedom,
which considerably reduces the size of the resulting linear system. On a rectangular grid with hanging nodes,
the eigenfunction basis is constructed by solving a one dimensional eigenvalue problem for each pair of edge
length and polynomial order in the mesh. The eigenvalue problem can be solved efficiently for polynomial
orders up to thousand. Together with the reduced size of the linear system, this makes it possible to work with
very high order basisfunctions, and consequently high frequency waves can be resolved on a coarse mesh. The
hp−refinement is used to obtain accurate solutions for minimal number of degrees of freedom. The effectiveness
of our approach is demonstrated with numerical examples using polynomials of the degree up to thousand.

1. Introduction

The solution of the Helmholtz equation is of high interest for time harmonic wave propagation
problems in electrodynamics, especially in optics and in acoustics, hence a large variety of dif-
ferent solution methods has been developed for it. For problems posed in homogenus media,
e.g. scattering problems, integral equation methods are widely used. However, these methods
are not well suited for problems in non-homogenous media. For such problems, finite differences
(17), finite volumes (20), the Trefftz method (21), and finite element methods (FEM) are more
efficient.

When applied to wave-type problems, such as the Helmholtz equation, the standard finite
element method suffers form two major difficulties. The first difficulty is the rapid growth in the
number of degrees of freedom required to accurately solve wave-problems with high wavenum-
bers and frequencies ω. For example, for two dimensional Helmholtz equation, the number of
unknowns grows due to the pollution error (18, 19) faster than O

(
ω2
)

. The most efficient ap-
proach to control this growth is the hp refinement (2, 14, 24). The second difficulty standard
FEM faces, is the lack of good preconditioned iterative schemes for solving the resulting linear
system. Some advances in preconditioners have been made (15), but efficient precondioners for
wave-type problems do not exist at the moment.

Due to the difficulties faced by standard finite elements, a large variety of different approaches
for solving the time-harmonic wave propagation problems within the FEM framework have been
developed. The most popular ones are hp FEM (18), the least squares methods (23), the partition
of unity method (4), the discontinuous Galerkin method (3, 16), and the ultra weak variational
formulation (7, 8). Our work is based on a hybrid mixed finite element method from (22) and
it is motivated by hybrid finite element methods for the Laplace equation (6, 11, 12).

In hybrid mixed finite element methods, the normal continuity of the flux is broken across
the element interfaces and enforced again by introducing Lagrangian multipliers, supported on
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the facets. The hybridization of the mixed Helmholtz equation is more involved. In addition to
breaking the continuity of the flux, a second Lagrange multiplier has to be introduced. Without
this Lagrange multiplier, the interior degrees of freedom cannot be eliminated (see (22)). For
Helmholtz equation, the Lagrange multipliers represent the scalar field E and the normal flux
H ·nF on the facets. In the following, unknowns related to the E and H fields are called interior
degrees of freedom and unknowns related to Lagrange multipliers we call facet degrees of freedom.

After hybridization, each interior basis function is supported only on a single element. Thus,
there is no coupling between interior degrees of freedom of different elements, and these degrees
of freedom can be eliminated element by element. Such elimination reduces the original linear
system to a considerably smaller Schur complement problem for the facet unknowns.

The novelty of our method is in using a discrete eigenfunction basis, which makes both the
assembly of the system matrix and the elimination of the interior degrees of freedom, i.e. reduc-
tion to Schur complement problem, computationally inexpensive. On rectangular meshes with
hanging nodes, such a basis is constructed by solving a one dimensional eigenvalue problem
for each pair of edge lengths and polynomial orders in the mesh. The eigenvalue problem can
be solved for polynomial orders up to thousands, which together with the cheap assembly and
the reduction in problem size make it possible to use very high order basisfunctions. To obtain
exponential convergence rates, we will use this approach together with hp refinement.

The paper is organized as follows: In section 2 the mixed hybrid formulation is derived and
discussed. Section 3 states the one dimensional eigenvalue problem, which leads to the basisfunc-
tions for the interior degrees of freedom. The section concludes with a detailed discussion of the
properties of the resulting system of linear equations. The solution strategy for the linear system
of equations obtained after elimination of the inner degrees of freedom is treated in section 4.
Section 5 is devoted to hanging nodes. We discuss the consequences of hanging nodes onto the
assembly procedure and the preconditioner. The paper concludes with numerical examples in
section 6.

2. The mixed hybrid formulation

In this section, we present the mixed hybrid formulation of the Helmholtz equation. The hybrid
formulation is derived from the mixed problem:
Find a scalar field E(x, y) and a vector valued field H(x, y) such that

gradE = iω µH
div H = iω εE

in Ω (1)

with Dirichlet, Neumann, or absorbing boundary conditions

E = Ed, H · nΩ = Hn, H · nΩ =
√
ε

µ
(E − 2Ein) (2)

prescibed on Γd, Γn and Γa, respectively.

Here Ω is a bounded domain in R2 with sufficiently regular boundary ∂Ω = Γa ∪ Γn ∪ Γd.
The outer normal of Ω is denoted by nΩ. The functions Hn, Ein, and Ed are from the spaces
L2(Γn), L2(Γa), and L2(Γd). The parameter ε is a piecewise constant function, and ω, µ ∈ R+.
For applications in electromagnetics, E and H are equivalent to the electric and magnetic fields
for transverse electric modes, ω is the angular frequency, µ the magnetic permeability, and ε the
electric permittivity.

Before stating the hybrid formulation, we need some additional definitions. The domain Ω is
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approximated by a triangulation R. The set of interior and boundary edges of R are called its
facets and denoted by F . The parameter ε is assumed to be constant on each element R ∈ R.
The required function spaces are denoted as

U = L2 (R) := L2 (Ω)

V = H (div,R) :=
{

v ∈
(
L2(R)

)2 : div v|R ∈ L2 (R) ∀R ∈ R
}
,

UF = L2 (F) :=
{
u : u|F ∈ L2 (F ) ∀F ∈ F

}
and

W = U × V × UF × UF .

We will use the notation

∫
R
u(x) v(x) dx =

(
u, v
)
R

and
∫
∂R
u(x) v(x) ds =

〈
u, v
〉
∂R
.

for element and edge integrals. The outer normal of the element R ∈ R is denoted by nR and
normal to the facet F ∈ F by nF. For inner facets nF is equal to one of the outer normal vectors
nR of the two neighboring elements and on boundary facets nF = nR = nΩ.

Using the above definitions, the weak form of the hybrid mixed problem is

Problem 2.1 Find u = (E,H, EF , HF ) ∈W such that

ã(u, v) = f̃(v) ∀v = (e,h, eF , hF ) ∈W

with the bilinear form

ã(u, v) =
∑
R∈R

[
−
(
E,div h

)
R
− iωµ

(
H,h

)
R
−
(

div H, e
)
R

+ iωε
(
E, e

)
R

+
〈
EF ,h · nR

〉
∂R

+
〈
H · nR, eF

〉
∂R

+ β
〈
H · nF −HF ,h · nF − hF

〉
∂R

]
−
〈√

ε/µ EF , eF
〉

Γa
−
〈
HF , eF

〉
Γd
−
〈
EF , hF

〉
Γd

(3)

and linear functional

f̃(v) = −2
〈√

ε/µ Ein, eF
〉

Γa
+
〈
Hn, eF

〉
Γn
−
〈
Ed, hF

〉
Γd
. (4)

Here, the parameter β ∈ C is an arbitrary stabilization parameter. The solution of this problem
is equivalent to the solution of the mixed problem (see (22)).

Lemma 2.2: Let (Ee,He) be the exact solution of (1) with appropriate boundary conditions,
and let EeF = Ee as well as He

F = He · nF on the facets. Then ue = (Ee,He, EeF , H
e
F ) solves

problem 2.1.

Proof : Inserting ue to problem 2.1 and using the definition of boundary conditions (2), we
obtain
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∑
R∈R

[
−
(
Ee,div h

)
R
− iωµ

(
He,h

)
R
−
(

div He, e
)
R

+ iωε
(
Ee, e

)
R

+
〈
EeF ,h · nR

〉
∂R

+
〈
He · nR, eF

〉
∂R

]
−
〈
He · nΩ, eF

〉
∂Ω

= 0.

Due to the continuity of the normal component of He, the integrals
〈
He · nR, eF

〉
∂R

cancel on
all inner edges. On boundary edges this term cancels with the boundary integrals. Exchanging
EeF by Ee yields

∑
R∈R

[
−
(
Ee,div h

)
R

+
〈
Ee,h · nR

〉
∂R
− iωµ

(
He,h

)
R

−
(

div He, e
)
R

+ iωε
(
Ee, e

)
R

]
= 0.

Integration by parts gives

∑
R∈R

[(
gradEe − iωµHe,h

)
R
−
(

div He − iωεEe, e
)
R

]
= 0,

which completes the proof. �

In (22) problem 2.1 is discretized by using a broken Raviart Thomas space. We will follow the
same approach, but instead of EF , HF we introduce ”incoming” and ”outgoing” wave contribu-
tions of E, called GI and GO, which are defined as

HF = (nR · nF)

√
ε̃

µ
(GO −GI) and EF = (GO +GI) .

The parameter ε̃ is the mean of ε on the two neighboring elements. If there is a jump in the
coefficient ε across element edges, the physical incoming and outgoing waves are not equal with
GO and GI . Note that the wave outgoing form element R , GO, is equal to the wave incoming
to the neighboring element, GI , and vice versa. Consequently HF has the same sign on every
element in spite of the sign change of nR ·nF. On the boundary nR ·nF equals one, and GI and
GO are the waves incoming and outgoing from the whole domain. Inserting these new unknowns
to problem 2.1 results in the following problem formulation:

Problem 2.3 Find (E,H, GI , GO) =: u ∈W such that

aI(u, v) + aIF (u, v) + aIF (v, u) + aF (u, v) = f(v) ∀v = (e,h, gI , gO) ∈W

with the bilinear form for the inner degrees of freedom

aI(u, v) :=
∑
R∈R

[
iωε
(
E, e

)
R
−
(

div H, e
)
R
−
(
E,div h

)
R

− iωµ
(
H,h

)
R

+ β
〈
H · nR,h · nR

〉
∂R

]
, (5)
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the bilinear form for the facet degrees of freedom

aF (u, v) :=
∑
R∈R

β
〈
ε̃/µ (GO −GI), (gO − gI)

〉
∂R

(6)

−
〈√

ε̃/µ (GO +GI), (gO + gI)
〉

Γa
−
〈
2
√
ε̃/µ GO, gO

〉
Γd

+
〈
2
√
ε̃/µ GI , gI

〉
Γd
,

the bilinear form coupling inner and facet variables

aIF (u, v) :=
∑
R∈R

[〈 (
1− β

√
ε̃/µ
)
GO,h · nR

〉
∂R

+
〈 (

1 + β
√
ε̃/µ
)
GI ,h · nR

〉
∂R

]
(7)

and the linear functional

f(v) := −2
〈√

ε̃/µ Ein, (gO + gI)
〉

Γa
+
〈
En, (gO + gI)

〉
Γn
−
〈√

ε̃/µ Ed, (gO − gI)
〉

Γd
.

The above problem is complex symmetric. If there is no jump in ε across element interfaces, i.e.
ε = ε̃, we can choose β =

√
µ
ε so that there is no coupling between inner degrees of freedom and

outgoing waves. The physical interpretation is, that if there is no jump in ε at the interface, no
reflections are present, and the field in the interior of an element depends only on the incoming
waves.

Until now, we have not made any assumptions on the mesh. As we will later see, on a structured
rectangular mesh with hanging nodes, the interior unknowns can be easily eliminated. However,
for simplicity, we will begin by consider a rectangular mesh R, such that every R ∈ R can be
written as

R = IRx × IRy = [qRx , q
R
x + hRx ]× [qRy , q

R
y + hRy ], (8)

where hx and hy are the width and height of the rectangle, and
(
qRx , q

R
y

)
is the lower left vertex

of R. The mesh with hanging nodes will be considered later
On such a mesh, two dimensional polynomial basisfunctions can be represented as a product of

one dimensional polynomials. Upon this we define the discrete functionspace Uhp corresponding
to U

Uhp =
∏
R∈R

P px(IRx )⊗ P py (IRy ).

Here P p(I) is the set of all polynomials of order less or equal to p on the interval I. We use
polynomial order px for x direction and order py for y direction. For the broken Raviart Thomas
space Vhp we get

Vhp =
∏
R∈R

(
P px+1(IRx )⊗ P py (IRy )

)
×
(
P px(IRx )⊗ P py+1(IRy )

)
,

and for the discrete version of UF

UF,hp =
∏
F∈F

P pF (F ),

where pF equals px for horizontal facets (parallel to the x-axis) and pF = py for vertical facets
(parallel to the y-axis). We will solve problem 2.3 on the finite element space Whp = Uhp×Vhp×
UF,hp × UF,hp.
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3. The eigenfunction basis

In this section we present a discrete eigenfunction basis for the spaces Uhp, Vhp and UF,hp. Such a
basis reduces the contribution of the interior bilinear form aI(u, v) in the system matrix to three
by three block diagonal. Consequently, the interior degrees of freedom can be easily eliminated,
which leads to a considerably smaller Schur complement problem for the facet degrees of freedom.
In addition, all integrals can be evaluated a priori, and costly numerical integration for high-order
polynomials is not needed.

On a uniform rectangular mesh, constructing the eigenfunction basis requires solving two one
dimensional eigenvalue problems. The computational work required to solve these problems is
O(p3), where p = max {px, py}. A Similar construction is not possible on unstructured meshes. In
fact, on such meshes the eigenbasis has to be constructed elementwise, and it has computational
cost O(p6) for each element. Such a construction would be much more costly than solving the
original problem.

The basisfunctions for interior and facet degrees of freedom are defined via the eigenfunctions
of the one dimensional eigenvalue problem

Problem 3.1 Find the eigenfunctions Ψj(s) ∈ P p+1(I) and the corresponding eigenvalues
λj ∈ C for 1 ≤ j ≤ (p+ 2) such that

∫
I

Ψ′jψ
′ ds = λjBh

(
Ψj , ψ

)
∀ψ ∈ P p+1(I)

where

Bh
(
Ψj , ψ

)
=
∫
I
iωµΨjψ ds− β

(
Ψj(q)ψ(q) + Ψj(q + h)ψ(q + h)

)
.

The eigenfunctions are orthogonal and they are normalized such that Bh
(
Ψj ,Ψk

)
= δjk. Note,

that the eigenfunction corresponding to the zero eigenvalue will be constant. In the following,
the constant eigenfunction is denoted by the index j = p+ 2.

Problem 3 is solved by expanding the eigenfunctions into an integrated Legendre polynomial
basis QiI(s) transformed to the interval I = [q, q+h], which is of order i < (p+1). Like Legendre
polynomials, the integrated Legendre polynomials can be generated by a three term recurrence
and due to orthogonality properties, they lead to a sparse, well conditioned matrix system for
the problem . This matrix system reads as

Problem 3.2 Find Ψj ∈ Cp+2 and λj ∈ C such that

D Ψj = λj M Ψj

and Ψj
TMΨk = δjk. The elements of the diagonal matrix D ∈ C(p+2)×(p+2) are

Djj =
4

h(2j − 3)
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and the non-zero entries of M ∈ C(p+2)×(p+2)

Mjj =

{
iωµh

(2j−3)2(2j−1) − 2β j = 1, 2
2iωµh

(2j−5)(2j−3)(2j−1) else

Mj j+2 = Mj+2 j =
−iωµh

(2j − 3)(2j − 1)(2j + 1)
for 1 ≤ j ≤ p.

Due to the orthogonality properties for the Integrated Legendre polynomials, this eigenvalue
problem decouples into an ”odd” and an ”even” problem. These eigenvalue problems are smaller
and therefore faster to solve.

The eigenfunctions are

Ψj(s) =
p+1∑
k=0

(
Ψj

)
k+1

QkI (s)

Ψ′j(s) =
p+1∑
k=1

(
Ψj

)
k+1

Qk ′I (s) =
2
h

p∑
k=0

(
Ψj

)
k+2

LkI (s) (9)

where LkI (s) is the Legendre polynomial of the order k on the inteval I. Using these eigenfunc-
tions, we can define the basis functions for spaces Uhp and Vhp as follows

Definition 3.3: Let R be a rectangle in R according to (8), then for 1 ≤ j ≤ (px + 2) and
1 ≤ k ≤ (py + 2) the basis functions of Uhp are defined as

ejk(x, y) =
{

Θ′j(x)Φ′k(y) for (x, y) ∈ R
0 else

and the basis functions of Vhp as

hx
jk(x, y) =

{(
Θj(x)Φ′k(y), 0

)T for (x, y) ∈ R
0 else

hy
jk(x, y) =

{(
0,Θ′j(x)Φk(y)

)T for (x, y) ∈ R
0 else

.

The functions Θj are the eigenfunctions of Problem 3 with the eigenvalue λxj , p = px, I = IRx ,
and Φk is an eigenfunction of the same problem with I = IRy , p = py and eigenvalue λyk.

In the above definition, all basisfunctions corresponding to the derivative of the constant
eigenfunction are zero. These basisfunctions are kept for notational convinience, and can be
omitted in the actual implementation. The basis functions for the facets are defined similar to
Definition 3.3.

Definition 3.4: Let F ∈ F be a facet with F = IF = [q̃, q̃+ h̃] and polynomial order pF . The
basis functions for UF,hp on the facet are

gO j = gI j =
{

Ξ′j onF
0 else

for 1 ≤ j ≤ pF + 1. Here Ξj is the eigenfunction of Problem 3 corresponding to the non-zero
eigenvalue λ̃j with p = pF and I = IF .
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Note that for the constant eigenfunction Ξ′pF +2 = 0, hence it is not needed in the definition. On
a rectangle R, the polynomial order pF and the interval IF are equal to px and IRx for horizontal
edges, and to py and IRy for vertical edges.

3.1. The bilinear form aI(u, v)

As each interior basisfunction is supported only on a single element, the bilinear form aI(u, v)
can be studied element by element. On an element R the contribution of aI(u, v) to the system
matrix is

AR =

AREE AREHx
AREHy

ARHxE
ARHxHx

ARHxHy

ARHyE
ARHyHx

ARHyHy

 , (10)

where AREE collects the coupling elements of the basis functions ejk with themselves, AREHx

collects the coupling of the functions ejk with hx
mn, and so on. All of the blocks have the

dimension (px+2)(py+2)× (px+2)(py+2). We will use the notation
(
AREE

)
jk,mn

for the matrix
element

(
AREE

)
(j(py+2)+k,m(py+2)+n)

. This notation is used for all the blocks.

Lemma 3.5: In the eigenfunction basis of Definition 3.3, the matrix AR is block diagonal,
with three by three blocks .

Proof : First we investigate the matrix AREE .(
AREE

)
jk,mn

= aI
(
(ejk,0, 0, 0), (emn,0, 0, 0)

)
= iωε

(
ejk, emn

)
R

= iωε

∫
IR

x

Θ′jΘ
′
m dx

∫
IR

y

Φ′kΦ
′
n dy

= iωε λxjλ
y
k BhR

x

(
Θj ,Θm

)
BhR

y

(
Φk,Φn

)
= iωε λxjλ

y
k δjmδkn.

The matrix AREE is diagonal. For the block AREHx
we obtain

(
AREHx

)
jk,mn

= aI
(
(ejk,0, 0, 0), (0,hx

mn, 0, 0)
)

= −
(
ejk, div hx

mn

)
R

= −
∫
IR

x

Θ′jΘ
′
m dx

∫
IR

y

Φ′kΦ
′
n dy

= −λxjλ
y
k δjmδkn.

For AREHy
the calculation is in principle the same, we only have to exchange Θ and Φ. Thus

AREHx
, AREHy

and due to symmetry of aI(u, v), ARHxE
and ARHyE

are diagonal. The coupling block
between the hxjk reads as

(
ARHxHx

)
jk,mn

= aI
(
(0,hx

jk, 0, 0), (0,hx
mn, 0, 0)

)
= −iωµ

(
hx

jkhx
mn

)
R

+ β
〈
hx

jk · nR,hx
mn · nR

〉
∂R

= −λyk δjmδkn

Hence, the matrix ARHxHx
is also diagonal. By exchanging Θ and Φ one can show that ARHyHy
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Figure 1. local edge numbering

has to be diagonal. Finally we have to investigate ARHxHy
:

(
ARHxHy

)
jk,mn

= aI
(
(0,hx

jk, 0, 0), (0,hy
mn, 0, 0)

)
= −iωµ

(
hx

jk,h
y
mn

)
R

+ β
〈
hx

jk · nR,hy
mn · nR

〉
∂R

= 0

Due to symmetry of aI(u, v), ARHyHx
is also zero. Because the nine coupling blocks are zero or

diagonal, the element matrix AR can be written as a three by three block diagonal matrix, by
reordering the degrees of freedom. �

For i ≤ px + 2 and j ≤ py + 2 the coupling elements between the coefficients of the three basis
functions eij ,hx

ij and hy
ij are collected in one of these three by three diagonal blocks. Elimination

of the inner degrees of freedom is then equivalent to the inversion of three by three matrices. As
basisfunctions with i = px + 2 and j = py + 2 are included only for notational convinience, the
three by three block related to these degrees of freedom needs not to be inverted and these degrees
of freedom can be set to zero. If either i = px+2 or j = py+2 only the diagonalelement belonging
to hx

ij and hy
ij, respectively, is different from zero and needs to be inverted. The coefficients of

the other two basis functions are again zero according to the last remark.

3.2. The bilinear form aIF (u, v)

In this section we take a closer look to the element matrix BR of the rectangle R, which collects
all the coupling elements of aIF (u, v) between the element facet and interior degrees of freedom.
In the following, we use the local edge numbering according to Figure 1.

Our notation for the matrix blocks of BR is similar to the previous subsection. For example for
any boundary edge of the rectangle R with local number m,

(
BR,m
HxGO

)
jk,l

is the matrix element(
BR,m
HxGO

)
(j(py+2)+k,l)

and
(
BR,m
HxGO

)
jk,l

= aIF
(
(0,0, 0, gO l), (0,hx

jk, 0, 0)
)
, where gO l is supported

on the local edge m.
On the horizontal edges 1 and 2 the vector functions hx

ij are orthogonal to the outer normal
vector. Hence, on these edges there is coupling only between the facet and the hy

ij basis functions.
We get for the local horizontal edge m

(
BR,m
Hy•

)
jk,l

= sk

(
1± β

√
ε̃

µ

) ∫
Im

Θ′jΞ
′
l dx (11)

with the + sign for • = GI and the − sign if • = GO. Furthermore sk = −Φk(qRy ) for local edge
m = 1 and sk = Φk(qRy + hRy ) for m = 2. As sk is a linear combination of the Q0

Im and Q1
Im

expansion coefficients of Φk, the calculation of sk does not require an evaluation of the integrated
Legendre polynomials. On a uniform mesh, Θj and Ξl are basis functions of the same eigenvalue
problem, and they are orthogonal. Thus
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∫
Im

Θ′jΞ
′
l dx = δjl λ

x
j

which makes BR,m
Hy• sparse.

On the vertical edges m = 3, 4 we have only nonzero matrix elements between the hx
jk and the

facet basis functions. We end up with

(
BR,m
Hx•

)
jk,l

= sj

(
1± β

√
ε̃

µ

) ∫
Im

Φ′kΞ
′
l dy. (12)

Again + is taken for • = GI and− for • = GO, and sj = −Θj(qRx ) form = 3 and sj = Θj(qRx +hRx )
for m = 4. As for horizontal edges, sj can be expressed by the Q0

Im and Q1
Im expansion coefficients

of Θj . Using orthogonality of Φk and Ξl the integral simplifies to

∫
Im

Φ′kΞ
′
l dx = δkl λ

y
k.

3.3. The bilinear form aF (u, v)

In this subsection we are going to find the matrix representation C of the bilinear form aF , which
describes the coupling between the facet degrees of freedom. Because each facet basis function
is supported on one facet, there is no coupling between unknowns belonging to different facets.
Writing C as blockmatrix, only the diagonal blocks Cii, describing the coupling of the degrees
of freedom of the facet Fi with themselves are nonzero.

As the notation for in and out going waves is related to a certain element it is not suitable
for working with facet degrees of freedom. Instead it is more appropriate to denote the facet
degrees of freedom as left and right going waves on vertical and as up and down going waves
on horizontal facets. We will use the notation G+ for up and right going waves, and G− for left
and down going waves, respectively. If the facet has local edge numbering 1 or 3 on an element
(compare Figure 1) G+ = GI and G− = GO, if it has local edge numbering 2 or 4, the situation
is vice versa.

In the basis of Definition 3.4 the matrix Cii has a block diagonal structure

Cii =
(
CiiG+G+

CiiG+G−

CiiG−G+
CiiG−G−

)
=
(
α1D(λ̃k) α2D(λ̃k)
α2D(λ̃k) α3D(λ̃k)

)
. (13)

Here D(λ̃k) ∈ C(p̃+1)×(p̃+1) is a diagonal matrix with Dkk = λ̃k. Depending on facet Fi , the
parameter α is defined as
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α1 = α3 = −α2 = 2β
ε̃

µ
forFi ∩ ∂Ω = ∅

α1 = α3 = −α2 = β
ε̃

µ
forFi ⊂ Γn

α1 = α3 =

(
β
ε̃

µ
−

√
ε̃

µ

)
; α2 =

(
−β ε̃

µ
−

√
ε̃

µ

)
forFi ⊂ Γa

α1 =

(
β
ε̃

µ
± 2

√
ε̃

µ

)
; α2 = −β ε̃

µ
; α3 =

(
β
ε̃

µ
∓ 2

√
ε̃

µ

)
forFi ⊂ Γd.

The sign in α1 and α3 in the last line depends on wether the incident wave onto the domain is
represented by G+ or by G−.

4. Solving the system of equations

Summarizing the last section, we end up with the following linear system of equations(
A B
BT C

)(
uinner
ufacet

)
=
(

0
f

)
where the element matrices AR and BR are collected in A and B, respectively. uinner represents
the inner degrees of freedom, and the facet degrees of freedom are collected in ufacet. When
solving the linear system of equations we first eliminate all the interior degrees of freedom and
solve the resulting system for the facet degrees of freedom

S ufacet = f with S = C −BTA−1B. (14)

First, let us take a closer look onto the structure of the Schur complement matrix S, especially
onto BTA−1B. Because inner basisfunctions are supported only on a single element, A does
not couple inner degrees of freedom belonging to different elements. B describes the coupling
between the element degrees of freedom and the degrees of freedom belonging to its edges.
Consequently, the Schur complement matrix S has coupling blocks only between facets, which
are edges of the same element. Hence, interior facets couple apart from themselves to two parallel
edges and to four perpendicular edges, whereas boundary facets couple to one parallel facet and
to two perpendicular ones. Using the structures of A and B, it is obvious that the coupling
blocks between parallel edges and with the edge itself (the diagonal block) have a two by two
blockdiagonal structure. The coupling blocks to perpendicular edges are full.

We solve the Schur complement system (14) with a preconditioned conjugate gradient method
(PCG), using the complex symmetric inner product xTy. Although this method works well in
our numerical examples, there exists no rigorous convergence analysis. As a preconditioner, an
additive Schwartz-type method is used. The preconditioner P has the structure

P =
∑(

P ii
)−1

where P ii describes the coupling of degrees of freedom on facet i with themselves, and it is equal
to the corresponding diagonal block in the Schur complement matrix S. Writing P ii as two by
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two block matrix

P ii =
(
P iiG+G+

P iiG+G−

P iiG−G+
P iiG−G−

)
, (15)

these blocks can be computed for inner horizontal facets with

P iiG+G+
= CiiG+G+

−
(
BR,1
HyGI

)T (
ARHyHy

)−1
BR,1
HyGI

−
(
BR,2
HyGO

)T (
ARHyHy

)−1
BR,2
HyGO

P iiG+G−
= CiiG+G−

−
(
BR,1
HyGI

)T (
ARHyHy

)−1
BR,1
HyGO

−
(
BR,2
HyGO

)T (
ARHyHy

)−1
BR,2
HyGI

P iiG−G+
= CiiG−G+

−
(
BR,1
HyGO

)T (
ARHyHy

)−1
BR,1
HyGI

−
(
BR,2
HyGI

)T (
ARHyHy

)−1
BR,2
HyGO

P iiG−G− = CiiG−G− −
(
BR,1
HyGO

)T (
ARHyHy

)−1
BR,1
HyGO

−
(
BR,2
HyGI

)T (
ARHyHy

)−1
BR,2
HyGI

.

(16)

For inner vertical facets we get

P iiG+G+
= CiiG+G+

−
(
BR,3
HxGI

)T (
ARHxHx

)−1
BR,3
HxGI

−
(
BR,4
HxGO

)T (
ARHxHx

)−1
BR,4
HxGO

P iiG+G−
= CiiG+G−

−
(
BR,3
HxGI

)T (
ARHxHx

)−1
BR,3
HxGO

−
(
BR,4
HxGO

)T (
ARHxHx

)−1
BR,4
HxGI

P iiG−G+
= CiiG−G+

−
(
BR,3
HxGO

)T (
ARHxHx

)−1
BR,3
HxGI

−
(
BR,4
HxGI

)T (
ARHxHx

)−1
BR,4
HxGO

P iiG−G− = CiiG−G− −
(
BR,3
HxGO

)T (
ARHxHx

)−1
BR,3
HxGO

−
(
BR,4
HxGI

)T (
ARHxHx

)−1
BR,4
HxGI

(17)

with the blocks of AR defined in (10), the blocks of BR defined in (11) and (12) and the Cii

from (13). For boundary edges we only have to consider one of the two summands, which one
depends if the neighboring element is on the righthand (upper) or lefthand (lower) side of the
edge.
By the structure of the AR, BR, and Cii the four blocks of P ii are diagonal, and therefore very
cheap to invert.

5. Hanging Nodes

There are several disadvantages of the approach discussed above. For example, a very fine mesh
is required for a good approximation of an arbitrary domain. This is undesirable, as regions
where ε is constant are meshed with fine elements, even though large elements with high order
basis functions are more appropriate. Furthermore refinement to specific points of the mesh,
where singularities of the solution are expected, is not possible at all.

5.1. The Mesh

One way to handle this problem is to use a rectangular mesh with hanging nodes. For a rectan-
gular mesh with hanging nodes, the interior degrees of freedom can be eliminated in a similar
manner as for a uniform rectangular mesh. The major difference is, that the eigenvalue problem
has to be solved for each element size and polynomial order appearing in the mesh. Consequently
it is convenient to use only a small number of different sized elements. Therefore, an element,
which needs to be refined, is devided into four equally sized elements with the polynomial orders
px and py chosen as half of the polynomial orders of the original element. With this strategy the
total number of unknowns during the refinement process is kept approximately constant. Let hx
and hy be the dimensions of the element in the initial uniform mesh. Then element dimensions
after n refinement steps are

(
1
2

)n
hx and

(
1
2

)n
hy. Hence if the polynomial order of the initial

uniform mesh was constant, in the worst case n eigensolutions are required.
Figure 2 illustrates a simple mesh after a few refinement steps. During the refinement of one

element each of the long boundary facets in F is exchanged by the two new ones. Thus the shaded
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Figure 2. a mesh with hanging nodes

element in the mesh of Figure 2 has instead of the blue facet f0 the three boundary edges f1, f2

and f3, plotted in red. As for the uniform mesh, the facet basisfunctions are derivatives of the
eigenfunctions of Problem 3.

5.2. The coupling between facet and interior degrees of freedom

In the hanging node case the matrix representations of the bilinear forms aI(u, v) and aF (u, v)
are similar to the uniform case, but for the bilinear form aIF (u, v) the situation is different. Here
the coupling blocks between the inner degrees of freedom and the facet degrees of freedom of
a hanging node edge are not sparse anymore. In the following we will demonstrate this for a
horizontal hanging node edge with local number f of the element R according to (8). The interior
basis functions of R are according to Definition 3.3, and the facet with its basis functions obeys
Definition 3.4. We assume that the hanging node facet f is a facet of level n, thus its length is
h̃ = (1/2)nhRx .

Inserting the basis functions into the bilinear form aIF , we end up with the coupling block
BR,f
Hy• from (11). The difference to the uniform mesh case is, that now Θj and Ξl are solutions

of different eigenvalue problems, and consequently they are not orthogonal anymore. In the
following we will examine the integral

∫
If Θ′jΞ

′
l dx more closely. Therfore we assume that facet

f with If = In and order p̃ = pn arises after n refinement steps from I0 = IRx with polynomial
order p0 = pRx . After refinement step k we obtain a facet with Ik = [qk, qk+hk] and order pk from
the facet with Ik−1, where hk = 1

2hk−1, qk either equals qk−1 or qk−1 + hk and the polynomial
order pk = 1

2pk−1.
With the corresponding eigenvector Θj of Θj and Ξl of Ξl obtained from Problem 3.2, and the

matrices E ∈ C(p0+1)×(p0+1), Ẽ ∈ C(pn+1)×(pn+1) with Ejk = (Θj)k and Ẽlk = (Ξl)k, respectively,
we can express as in (9) Θ′j and Ξ′l by the Legendre polynomials

∫
If

Θ′jΞ
′
l dx =

4
h0hn

p0+1∑
m=1

pn+1∑
q=1

EjmẼlq

∫
If

Lm−1
I0

Lq−1
In

dx.

Next we introduce the transformation matrices T+
k , T

−
k ∈ C(pk−1+1)×(pk+1) with

(
T+
k

)
ij

= (2j − 1)
∫ 1

0
Li−1

[−1,1] L
j−1
[0,1] dx

(
T−k
)
ij

= (2j − 1)
∫ 0

−1
Li−1

[−1,1] L
j−1
[−1,0] dx.
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With these matrices we can approximate Legendre polynomials Li−1
Ik−1

by Legendre polynomials
on Ik:

Li−1
Ik−1

=
pk+1∑
j=1

2j − 1
hk

(∫
Ik

Li−1
Ik−1

Lj−1
Ik

dx

)
Lj−1
Ik

=
pk+1∑
j=1

(
T±k
)
ij
Lj−1
Ik

Here we take T−k if qk = qk−1 and T+
k else. Doing this step by step, Lm−1

I0
can be approximated

by the polynomials Lq−1
In

, and we end up with

∫
If

Θ′jΞ
′
l dx =

4
h0hn

pn+1∑
s=1

pn+1∑
q=1

(
E

n∏
k=1

T±k

)
js

Ẽlq

∫
If

Ls−1
In

Lq−1
In

dx.

If we use now orthogonality relations between the Legendre polynomials, the integral simplifies
to ∫

If

Θ′jΞ
′
l dx =

2
h0

(
E

(
n∏
k=1

T±k

)
DẼT

)
jl

.

Here D ∈ C(pn+1)×(pn+1) is a diagonal matrix with Dii = 2
2i−1 .

The coupling blocks of vertical edges can be treated in a similar fashion. Note that these blocks
are full, and consequently all the coupling blocks of the Schur complement matrix between edges
of the same element are full, too.

5.3. The Preconditioner

In order to solve the resulting linear system, we again use an additive Schwartz preconditioner
with a PCG iteration. The additive preconditioner is block diagonal and it is constructed from
blocks P ii in a similar manner to the uniform case.

In the case of a edge with a hanging node as either of its endpoints, the edge to edge coupling
block of the Schur complement matrix is full. In this case the block P ii is constructed by treating
the facet F as if neither of its endpoints is a hanging node and the rectangles R1, R2 surrounding
the facet share polynomial order with the facet. Following this strategy the set of eigenfunctions
Φk (if F is vertical) and Θj (if F is horizontal), respectively, needed for the basisfunctions of R1

and R2, is equal to the set of Ξl, which is used for the construction of the facet basis functions.
Hence we get for the integrals

∫
IF ΦkΞl dx = δklλk in (12) and

∫
IF ΘjΞl dx = δjlλj in (11),

respectively. Consequently the ”modified” blocks BR in the construction of the preconditioner
(16) and (17) are no longer full, like for building up the Schur complement matrix. With this
approach, the four blocks of P ii are again diagonal. Inversion of P is then equivalent to the
inversion of a block diagonal matrix, with two by two blocks. Note that for edges, with neither
of the endpoints a hanging node, P ii is equal to the corresponding block in the Schur complement
matrix. Applying the preconditioner is then equivalent to the inversion of the degrees of freedom
on this edge.

6. Results

The following numerical results were computed on a square domain Ω = (0, 2)2. Absorbing
boundary conditions with Ein = exp

(
− (y−1)2

0.1

)
on edge x = 0 and Ein = 0 elsewhere were
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β 1
5

1
4

1
3

1
2 1 2 3 4 5

ε = 1
16 95 89 81 76 66 54 44 40 44

ε = 1
4 120 105 94 78 59 41 51 55 58

ε = 1 140 121 102 73 35 54 79 88 103
ε = 4 108 86 62 34 65 99 151 194 239
ε = 16 50 34 47 70 131 317 597 919 1366

Table 1. iteration numbers for different values of ε and β
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Figure 3. The figure shows the number of iterations for different stabilization parameters β. In the four plots we vary
the value of ε in the perturbed region, and choose εper = 64 (top left), εper = 16 (top right), εper = 4 (bottom left) and

εper = 1
32

(bottom right)

posed on the boundary edges. The physical interpretation of this problem is a wave incoming
from the lefthand side with a Gaussian amplitude.

We begin this section by studying the dependency between the number of iterations required
to solve the linear system (14) with the preconditioned iterative scheme presented in section 4
and the value of the stabilization parameter β. First, we will consider a constant ε on a uniform
mesh of 4×4 elements with polynomial order 50 in both spatial directions and µ = 1, ω = 10π.
The number of iterations required to solve this problem for different values of ε and β are given
in Table 1.

Based on these results, the best choice for the stabilization parameter is β =
√
µ/ε, which

corresponds to our previous observations in Section 2. Choosing this β eliminates the coupling
terms between the outgoing waves and the inner degrees of freedom on a each element. In this
case, the fields in the interior of the element depend only on the incoming waves, and couple
via the incoming waves to the outgoing waves. Furthermore we observe, that the number of
iterations for large values of ε is very sensitive to the choice of the parameter β.

Finding a good value for β is even more crucial if ε is not constant. One way to choose β
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Figure 4. In both plots, the red, green, blue, magenta and cyan lines represent values of ω such that the size of one element
is 3, 9, 22, 56 and 143 wavelength, respectively. With an underlaying mesh of 2 times 2 element for the lefthand plot, this
results in values of ω = 6π, 18π, 44π, 106π and 286π. For the righthand plot the mesh consists of 12 times 12 elements, and
therfore ω = 36π, 108π and 264π.

would be to take use elementwise constant β|R =
√
µ/ε̃. However, this choice fits poorly to the

presented method. As the eigenvalue Problem 3 depends on the stabilizing parameter, it has to
be solved for each element with different value of β, regardless of the size. Furthermore, if β
has different value on two neighboring elements, the coupling blocks between at least the inner
degrees of freedom of one element and the edge degrees of freedom of the common edge are full.
Therfore, β is best chosen as a global constant.

In order to demonstrate the dependence of the number of iterations on the value of β we
choose µ = 1, ω = 15π and consider a piecewise constant ε

ε =
{
εper for x ∈ (1, 5

3)× (1
3 , 1)

1 else ,

where the value of the perturbation εper is varied. A uniform mesh of 6× 6 elements and poly-
nomial order 120 in both directions is considered. Such a mesh conforms to the perturbation,
which is of the size of four elements. In Figure 3 the number of required iterations is plotted for
different values of εper and β.

Motivated by the previous results, we propose to choose the global constant β as

βopt =
√
µ

ε̂
,

where ε̂ can be interpreted as effective ε of the domain. Based on our experiences, a good value
for
√
ε̂ is the mean value of

√
ε

√
ε̂ =

1
A

∫
Ω

√
ε dx

on the computational domain Ω with area A. Figure 3 shows, that using this definition is a
good choice for the stabilizing constant. Apart from this, we should mention that the number of
iterations increases with increasing ε.

Next we investigate the dependence of the number of iterations on the frequency ω and the
polynomial order for different uniform meshes. In the following simulations ε, µ and β were chosen
to be one. In Figure 4, the number of iterations is plotted against the polynomial order in one
spatial direction for different values of the wavelength. From these plots we conclude that for a
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Figure 5. number of iterations for different uniform meshes

polynomial order far too small to resolve the solution, a small number of iterations is required
to get a solution. When the polynomial order is increased, the number of iterations grows very
rapidly, or the solver does not converge at all. At a polynomial order between three and four
times the number of waves per element the number of iterations drops down to a minimum,
and we are able to resolve the solution. This goes along with literature. From (1) we know, that
at least π unknowns per wavelength are needed to resolve the wave. A further increase of the
polynomial order leads only to a small growth in the number of iterations. Moreover, the number
of iterations at the minimum depends on the mesh, but it seems to be almost independent of ω.
For 2 times 2 elements we need about 10 iterations, for 12 times 12 elements about 100 iterations
are necessary.

In Figure 5 we study the dependence of the number of iterations on the element size in a
uniform mesh. The angular frequency was chosen such that the size of each element is 22 wave-
lengths. The polynomial order was chosen as 105 for both spatial directions, which is equivalent
to about 4 unknowns per wavelength. From Figure 5, one can observe that when the solution can
be resolved, the number of iterations is proportional to the number of elements in one spatial
direction. Our interpretation of this observation is that the incoming wave, fixed by the func-
tion Ein on the lefthand boundary of the computational domain, requires a constant number
of iterations to ”propagate” through one element. Based on Figure 4 the number of iterations
seems to be almost independent of the angular frequency for meshes with three or more degrees
of freedom per wavelength, hence we conclude that this ”speed of propagation” is independent
of this quantity.

Figure 6 illustrates the computational times for a uniform mesh of 4 times 4 elements, and a
mesh of 8 times 8 elements for different polynomial orders. All the computations were done on
an Intel 2 GHz processor. The angular frequency was chosen such that the size of each element
was nine wavelengths. Figure 5 shows that for a polynomial order p the solution process and the
set up of the matrices has the complexity O(p2). Since the number of iterations increases very
slowly if the wave can be resolved, the time per iteration is of order p2. For polynomial orders
less than 30 the discretization could not resolve the solution and a large number of iterations
was required. In Figure 6 this is seen as a perturbation of the computational times. Although
the dependence of the eigenvalue problem is of an higher order than p2, for relevant polynomial
orders the solution of the eigenvalue problem is much faster than the solution process.

Next, we will consider a mesh with hanging nodes. The computational domain and the bound-
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Figure 7. number iterations for different refinement levels and wavelength (left) and the hanging nodes mesh of refinement
level 10 (right)

ary conditions are the same as for the previous test cases. The mesh was generated from a single
element (refinement level zero) by refining towards the point P = (1.51, 1.01). The following
refinement strategy was used: in each refinement step, an element is divided into four equally
sized elements, if it contains the point P . In view of approximation properties, we want to avoid
arbitrary level hanging nodes. Therfore we also refine elements with edge length h, if the point
P is within a distance c h from the element. The constant c defines indirectly the maximal level
of the hanging nodes, which is allowed on the edge. Figure 7 shows tenth level mesh, consisting
of 61 elements, which was generated with c = 0.1.

On this mesh, we studied the dependence of the number of iterations on the refinement level
and angular frequency ω. Independently of the angular frequency, we observe the same features.
For small refinement levels, the number of iterations increases rapidely with increasing refinement
level. At refinement level five, the number of iterations reaches a constant level. As discussed
above, in the uniform mesh case (refinement level one) the number of iterations seems to be
independent of the angular frequency. This is no longer true in the hanging node case. For a
growing angular frequency, which is equivalent to an increase of the number of waves in the
domain, the number of iterations grows as well.

We conclude the result section with a large scale problem. We assume that an incoming wave
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Figure 8. mesh of the domain with obstacle

Figure 9. amplitude of the solution for scattering at an obstacle

with an Gauss error distribution shaped amplitude is scattered at an obstacle. The computational
domain is a rectangle with the dimension (0, 5.5)× (0, 4). In order to enforce an incoming wave
from left, we set Ein = exp

(
− (y−2)2

0.4

)
for x = 0 and Ein = 0 elsewhere. The shape of the obstacle

is visualized in green in the mesh of the computational domain in Figure 8. The obstacle has a
length of 4.8, and its width is 2. We assume ε to be one in the background (red area of the mesh)
and two in the obstacle. Choosing ω = 80π results in an effective length of 135 wavelength of
the obstacle. We started the meshing process with one single element covering the rectangular
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domain (refinement level zero). In each refinement step, the actual mesh is refined towards the
boundary of the obstacle. More precisely, in each refinement step, an element with edge lenght
h and polynomial order p is divided into four smaller elements with a polynomial order p

2 , if
the boundary of the obstacle crosses the element, or if the distance between element and the
boundary is smaller than c h with the constant c = 0.1. After 8 refinement steps, we obtained
the mesh of Figure 8 contains 1588 elements. The polynomial order of the refinement level zero
was 1250 into each spatial direction. The largest elements in the mesh are of level two, and they
have consequently polynomial order 313. The level eight elements near the interface are of order
five.

In Figure 9 the amplitude, or more precisely the absolute value of the field E is plotted. These
results were obtained on an Intel 2 GHz processor. The solution of the eigenvalue problems was
done in 0.73 seconds, and the set up procedure took 6.97 seconds. The most time consuming
part was the solution process. For the 1835 iterations 2912 seconds were necessary.
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