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Abstract

Hybrid discontinuos Galerkin methods are popular discretization methods in applica-
tions from fluid dynamics and many others. Often large scale linear systems arising from
elliptic operators have to be solved. We show that standard p-version domain decom-
position techniques can be applied, but we have to develop new technical tools to prove
poly-logarithmic condition number estimates, in particular on tetrahedral meshes.

1 Introduction

In this paper we are concerned with discontinuous Galerkin (DG) finite element methods for
elliptic problems [4, 12, 24]. The motivation might be to have dominant convection, or one
wants to build exactly divergence free finite element spaces for incompressible flows [11, 31], or
other. We think of operator splitting methods, where one has to solve a large scale symmetric
matrix equation in each time-step.

In recent years hybridization methods appeard, which allow to reduce the discrete system
to the element interfaces [10]. This paper is concerned with the construction and analysis of
domain decomposition methods for the Hybrid Discontinuous Galerkin (HDG) method. We
consider one element as sub-domain, and the coarse grid problem consists of mean values on
element interfaces. We prove robustness with respect to the mesh-size, and a poly-logarithmic
growth of the condition number with the polynomial order p.

There is now an established literature on high order finite element methods, from the
more theoretical point of view as well as from an applied one [43, 41, 26, 13].

We consider two strategies for domain decomposition algorithms [45], non-overlapping
Schwarz type methods [15, 20, 21] and balancing domain decomposition with constraints
(BDDC) [14, 33]. There is a big literature, in particular high order methods and three
dimensional problems are treated in [2, 5, 7, 8, 9, 19, 23, 27, 28, 30, 30, 36, 37, 38, 40, 42]. There
is a classical paper on multi-level analysis for h-version DG methods by Gopalakrishnan and
Kanschat [18], and a recent one studying higher order methods by Antonietti and Houston [3]
showing a polynomial growth of the condition number in p. We will see that the conditioning
is significantly improved by hybridization, namely to a poly-logarithmic growth. We are not
aware of particular analysis for preconditioners for high order HDG methods, even not in 2D.

The main result of the present paper is Theorem 3 proving that optimal extension from
faces to elements with Dirichlet constraints is nearly as good as extension without constraints.
With this result condition number estimates follow with the usual techniques.
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The main difficulty is to build optimal extension operators from an edge to a tetrahedron.
This problem was solved for hexahedal elements by multiplying with fast decaying functions
by Pavarino and Widlund [38]. Polynomial extension operators for simplicial elements are
usually based on smoothing operators [5, 34]. Heuer and Leydecker have analyzed such
operators also for boundary elements, i.e, for three dimensional edge to face extension.

We cannot use the existing simplicial extension operators to prove quasi-optimality of
HDG methods since they do not decay fast enough in the jump-norm. We give a new con-
struction of discrete edge-to-tetrahedron extension operators which are motivated by the
multiplication with low-energy functions of Pavarino and Widlund, but are contained in the
polynomial space on tetrahedra.

We declare some notation. With a � b we mean the existence of a generic constant c
such that a ≤ cb, where c is independent of parameters h and p. Otherwise, we denote the
dependence as c(p). The space of univariate polynomials of order p is P p, and P p(T ) is the
space of multivariate polynomials of total order p on a simplex T . To simplify notation we
redefine log p := 1 for p ∈ {0, 1}.

In Section 2 we give the hybrid DG formulation, in Section 3 we prove the main result,
Theorem 3, and show how to apply it to analyze domain decomposition algorithms for HDG.
Technical lemmas are shifed to Sections 4, 5, and 6. In Section 4 we collect properties
of orthogonal polynomials, and prove one dimensional trace estimates and construct one-
dimensional extension operators with respect to different norms. The short Section 5 gives
the proofs for extension from vertices, the technical proofs for the extension from edges are
in Section 6.

2 HDG discretization

Let Ω ⊂ R3 be a polyhedral domain. Let T = {T} be a conforming triangulation of Ω
consisting of shape regular tetrahedral elements. With F = {F} we denote the set of all
faces, and FT are the faces of the element T . As usual hT = diamT is the local mesh-size.

We consider the Dirichlet problem of the Poisson equation problem, namely

−∆u = f in Ω, u = 0 on ∂Ω,

with the source f ∈ L2(Ω). We define the pth order hybrid discontinuous Galerkin finite
element space

VN := P p(T )× P p(F) :=
∏
T∈T

P p(T )×
∏
F∈F

P p(F ),

its subspace VN,0 = {(u, λ) ∈ VN : λ = 0 on ∂Ω}, and the hybrid discontinuous Galerkin
(HDG) method as: find (uN , λN ) ∈ VN,0:

A(uN , λN ; v, µ) = (f, v)L2(Ω) ∀ (v, µ) ∈ VN,0.

The HDG bilinear-form is

A(u, λ; v, µ) =
∑
T∈T

AT (u, λ; v, µ)

with the element contributions

AT (u, λ; v, µ) :=

∫
T
∇u∇v +

∫
∂T

∂u

∂n
(µ− v) +

∫
∂T

∂v

∂n
(λ− u) + α (u− λ, v − µ)j,∂T
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with a fixed α > 4 = |FT |. We choose the stabilization similar to the stabilized Bassi-Rebay
method [6, 4, 25] as

(u− λ, v − µ)j,∂T =
∑
F∈FT

(rF (u− λ), rF (v − µ))L2(T ).

The discrete lifting operator rF : P p(F )→ [P p(T )]3 is defined by

(rF (µ), v)L2(T ) = (µ, v · n)L2(F ) ∀ v ∈ [P p(T )]3.

The norm
‖u− λ‖j,F = ‖rF (u− λ)‖L2(T )

is realized by

‖u− λ‖j,F = sup
σ∈[P p(T )]3

(u− λ, σ · n)L2(F )

‖σ‖L2(T )
= sup

σ∈P p(T )

(u− λ, σ)L2(F )

‖σ‖L2(T )
. (1)

The last equality holds since the normal vector n is constant on F .
We define the norm

‖(u, λ)‖21,HDG :=
∑
T∈T

{
‖∇u‖2L2(T ) + ‖u− λ‖2j,∂T

}
with ‖u − λ‖2j,∂T =

∑
F∈FT

‖u − λ‖2j,F . We note that more general elliptic equations, with
mixed boundary conditions, variable coefficients as well as variable polynomial orders can be
treated the same way.

Theorem 1. The HDG bilinear-form A(., .) is continuous and coercive on (VN,0, ‖ · ‖1,HDG).

Proof. Continuity and coercivity are proven element-wise, i.e.,

‖∇u‖2L2(T ) + ‖u− λ‖2j,∂T � AT (u, λ;u, λ) � ‖∇u‖2L2(T ) + ‖u− λ‖2j,∂T

is shown for all u ∈ P p(T ), λ ∈ P p(FT ), and for all T ∈ T . For F ∈ FT we use Young’s
inequality ab ≤ 1

2γa
2 + γ

2 b
2 with 4 < γ < α to obtain∫

F

∂u

∂n
(u− λ) ≤ ‖∇u‖L2(T ) sup

σ∈[P p]3

∫
σn(u− λ)

‖σ‖L2(T )

≤ 1

2γ
‖∇u‖2L2(T ) +

γ

2
‖u− λ‖2j,F .

Summing over the 4 faces of T we obtain

AT (u, λ;u, λ) = ‖∇u‖2L2(T ) + 2
∑
F∈FT

∫
F

∂u

∂n
(u− λ) + α (u− λ, u− λ)j,T

≥ ‖∇u‖2L2(T ) −
4

γ
‖∇u‖2L2(T ) − γ

∑
F

‖u− λ‖2j,F + α ‖u− λ‖2j,∂T

� ‖∇u‖2L2(T ) + ‖u− λ‖2j,∂T ,

continuity is verified similar.
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Theorem 1 allows to reduce the analysis of preconditioners for A(., .) to the form generated
by the norm ‖(u, λ)‖1,HDG. Theorem 1 is also the basis for a-priori error estimates, for
example the h-version estimate

‖(u− uN , u− λN )‖1,HDG � hs‖u‖H1+s(Ω)

for 1 ≤ s ≤ p, see [31].

Theorem 2. For F ∈ FT let Pk denote the L2(F )-orthogonal projector onto P k(F ), with
P−1 = 0. For λ ∈ P p(F ) there holds

‖λ‖2j,F ' h−1
T

p∑
k=0

p(p− k + 1) ‖(Pk −Pk−1)λ‖2L2(F )

Proof. By an affine-linear transformation to the reference tetrahedron and reference face

T = {(x, y, z) : y ≥ 0, z ≥ 0, |x|+ y + z ≤ 1}, (2)

F = {(x, y, 0) : y ≥ 0, |x|+ y ≤ 1} (3)

one obtains the scaling in the mesh-size. By means of Jacobi and Legendre polynomials (see
Section 4), the Dubiner basis polynomials [16, 26]

ϕij(x, y) = Pi

( x

1− y

)
(1− y)iP

(0,2i+1)
j (1− 2y) for i+ j ≤ p

form an L2(F )-orthogonal basis for P p(F ). Expand

λ(x, y) =
∑
i+j≤p

λijϕij(x, y)

σ(x, y, z) =
∑
i+j≤p

ϕij

( x

1− z
,

y

1− z

)
(1− z)i+jσij(z)

with σij ∈ P p−i−j . By the change of variables

g : F × [0, 1]→ T : (ξ, η, z) 7→ (x, y, z) := ((1− z)ξ, (1− z)η, z)

with det g′ = (1− z)2 we express

‖σ‖2L2(T ) =

∫
F

∫ 1

0
(1− z)2σ((1− z)ξ, (1− z)η, z)2 dz d(ξ, η).

Due to orthogonality there holds

‖σ‖2L2(T ) =
∑
i+j≤p

‖ϕij‖2L2(F )

∫ 1

0
(1− z)2i+2j+2σ2

ij(z) dz

and
(λ, σ)L2(F ) =

∑
i+j≤p

‖ϕij‖2L2(F )λijσij(0).

4



There holds

sup
σ∈P p(T )

(λ, σ)2
L2(F )

‖σ‖2L2(T )

= ‖σ∗‖2L2(T ),

where σ∗ ∈ P p(T ) solves

(σ∗, τ)L2(T ) = (λ, τ)L2(F ) ∀ τ ∈ P p(T ).

The components σ∗ij ∈ P p−i−j of the L2(T )-orthogonal decomposition

σ∗(x, y, z) =
∑
i+j≤p

ϕij

( x

1− z
,

y

1− z

)
(1− z)i+jσ∗ij(z)

solve ∫ 1

0
(1− z)2i+2j+2σ∗ij(z) τ(z) dz = λijτ(0) ∀ τ ∈ P p−i−j ,

and there holds∫ 1

0
(1− z)2i+2j+2σ∗ij(z)

2 dz = sup
σij∈P p−i−j

(λijσij(0))2∫ 1
0 (1− z)2i+2j+2σ2

ij(z) dz
.

From Lemma 6 below we get

|σij(0)|2 � p(p− i− j + 1)

∫ 1

0
(1− z)2i+2j+2σ2

ij(z) dz

is sharp, and thus ∫ 1

0
(1− z)2i+2j+2σ∗ij(z)

2 dz ' p(p− i− j + 1)λ2
ij .

Thus there holds

sup
σ∈P p(T )

(λ, σ)2
L2(F )

‖σ‖2L2(T )

'
∑
i+j≤p

p(p− i− j + 1)λ2
ij‖ϕij‖2L2(F )

=

p∑
k=0

p(p− k + 1)
∑
i+j=k

λ2
ij‖ϕij‖2

=

p∑
k=0

p(p− k + 1)‖(Pk −Pk−1)λ‖2L2(F ).

We observe that

p

h
‖u− λ‖2L2(F ) � ‖u− λ‖

2
j,F �

p2

h
‖u− λ‖2L2(F ). (4)

Often αp2

h ‖u−λ‖
2
L2(F ) with a sufficiently large parameter α is chosen as penalty term. Usually

α is chosen on the safe side. We will see in the numerical examples that the condition
number does increase with α. In this paper we prove quasi-optimal condition numbers for
the presented stabilization, it does not carry over to the weighted L2-stabilization.

The benefit is two-fold, on one side the method is guaranteed to be stable, for any α > |FT |,
on the other side the condition number is proven to have only poly-logarithmic growth.
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3 Domain decomposition preconditioning

The analysis of non-overlapping DD preconditioners is based on stable decompositions of
finite element functions. For that, quasi-optimal extension procedures are essential. The
main result of our work is to construct an extension operator, and bound its norm.

For F ∈ F and a fixed T ∈ T such that F ⊂ T we define the trace semi-norm

‖λ‖2F = inf
u∈P p(T )

{
‖∇u‖2L2(T ) + ‖u− λ‖2j,F

}
and the trace norm

‖λ‖2F,0 = inf
u∈P p(T )

{
‖∇u‖2L2(T ) + ‖u− λ‖2j,F +

∑
F ′∈FT
F ′ 6=F

‖u− 0‖2j,F ′
}
.

The semi-norm ‖λ‖F mimics the H1/2(F ) semi-norm, i.e. the trace semi-norm correspond-
ing to arbitrary H1-optimal extension onto the element T , while the norm ‖λ‖F,0 mimics the

H
1/2
00 -norm, i.e., the trace norm corresponding to H1-optimal extension under Dirichlet con-

straints on ∂T \F . Note that for continuous finite element spaces ‖λ‖
H

1/2
00

is defined only for

λ = 0 on ∂F . For hybrid DG, both norms ‖λ‖F and ‖λ‖F,0 are defined for the same space
P p(F ).

Theorem 3. Let λF ∈ P p(F ) with
∫
F λ = 0. Then here holds

‖λ‖2F,0 � (log p)γ ‖λ‖2F

with γ = 3.

Proof. It is enough to consider the reference element T . Let u be the minimizer corresponding
to ‖λ‖F . Thanks to a Poincare - type inequality and Theorem 2 there holds

‖u‖H1(T ) � ‖∇u‖2L2(T ) +
(∫

F
u
)2

� ‖∇u‖2L2(T ) +
(∫

F
u− λ

)2
+
(∫

F
λ
)2

� ‖∇u‖2L2(T ) + ‖u− λ‖2j,F .

We modify the function u by subtracting vertex and edge contributions:

u2 = u−
∑
V⊂F
EV→T u(V )

u3 = u2 −
∑
E⊂F
EE→T u2|E

In Theorem 11 and Theorem 18 below we prove that the function u3 is in P p, vanishes on
∂F , and satisfies

‖∇u3‖2L2(T ) + ‖u− u3‖2j,F � log p ‖u‖2H1(T ).

There holds ‖u3‖2
H

1/2
00 (F )

� (log p)2 ‖u3‖2H1/2(F )
[8], Lemma 4.7. Now take

ũ := EMS
F→T u3|F
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as the Muñoz-Sola extension [34]. Finally we get

‖∇ũ‖2L2(T ) + ‖ũ− λ‖2j,F � (log p)γ‖λ‖2F ,

and together with ũ = 0 on ∂T \ F we have proven the result.

We note that in [38, 8, 37] and others estimates with (log p)2 have been obtained for
continuous finite elements. It might be that our result can also be improved to (log p)2. One

approach would be to directly estimate the
∫
F

1
dist(x,∂F )u(x)2 dx term of the H

1/2
00 (F )-norm.

If one succeeds with that estimate, then that improved γ can be used immediately in the
following condition number estimates.

3.1 Schwarz type domain decomposition

To analyze Scharz-type domain decomposition methods one has to prove stable decomposi-
tions into sub-spaces [32].

For λ ∈ P p(F) we define the Schur-complement norm

‖λ‖2S = inf
u∈P p(T )

‖(u, λ)‖21,HDG.

Theorem 4. Let λ ∈ P p(F). Define the coarse grid component as

λH ∈ P 0(F) such that

∫
F
λH =

∫
F
λ,

and for F ∈ F define the local components λF as

λF =

{
λ|F − λH|F on F

0 for F ′ 6= F

Then there holds
‖λH‖2S +

∑
F∈F
‖λF ‖2S � (log p)γ‖λ‖2S

Thus, the additive Schwarz preconditioner CASM applied to the facet Schur-complement SA
of A leads to a condition number estimate

κ(C−1
ASMSA) � (log p)γ

Proof. From the definitions of the norms there follows∑
F∈F
‖µ|F ‖2F � ‖µ‖2S �

∑
F∈F
‖µ|F ‖2F,0 ∀µ ∈ P p(F).

Since
∫
F λF = 0 we have∑

F∈F
‖λF ‖2S �

∑
F∈F
‖λF |F ‖2F,0 � (log p)γ

∑
F∈F
‖λF |F ‖2F = (log p)γ

∑
F∈F
‖λ|F ‖2F � (log p)γ‖λ‖2S ,

and

‖λH‖2S = ‖λ−
∑
F∈F

λF ‖2S � ‖λ‖2S + ‖
∑
F∈F

λF ‖2S � ‖λ‖2S +
∑
F∈F
‖λF |F ‖2F,0 � (log p)γ‖λ‖2S .

Due to finite overlap of the sub-spaces, the the largest eigenvalue of C−1
ASMS is bounded by a

constant, and thus the condition number is bounded by (log p)γ .
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3.2 BDDC preconditioners

To define a BDDC preconditioner one sub-divides degrees of freedom into primal and dual,
see [14, 33]. The dual ones are treated discontinuous, and thus can be eliminated on the
element-level. In our case we choose the mean value on the face as primal, all others are dual
degrees of freedom. Thus, the remaining global system involves only one degree of freedom
per face.

Theorem 5. The BDDC preconditioner with mean values on faces leads to a condition num-
ber

κ(C−1
BDDCSA) � (log p)γ

Proof. Let λ be double-valued on faces with consistent mean-values, this means

λ = (λT )T∈T ∈
∏
T∈T

P p(FT ),

such that ∫
F
λT =

∫
F
λT ′ for F = T ∩ T ′.

Define the average λ̃ ∈ P p(F) as

λ̃ =

∑
T :F⊂T λT |F∑
T :F⊂T 1

.

We have to prove continuity of the averaging operator, i.e.

‖λ̃‖2S ≤ c(p)
∑
T∈T
‖λT ‖2S,T ,

where ‖λT ‖2S,T := infu∈P p(T )

{
‖∇u‖2L2(T ) + ‖u− λ‖2j,∂T

}
.

We use
∫
F λ̃ =

∫
F λT to apply Theorem 3 for estimating

‖λ̃‖2S =
∑
T∈T
‖λ̃|∂T ‖2S,T �

∑
T∈T

{
‖λT ‖2S,T + ‖λ̃|∂T − λT ‖2S,T

}
≤

∑
T∈T

{
‖λT ‖2S,T +

∑
F∈FT

‖λ̃∂T − λT ‖2F,0
}

� (log p)γ
∑
T∈T

{
‖λT ‖2S,T +

∑
F∈FT

‖λ̃∂T − λT ‖2F
}

� (log p)γ
∑
T∈T

{
‖λT ‖2S,T +

∑
F∈FT

‖λT ‖2F
}

� (log p)γ
∑
T∈T
‖λT ‖2S,T

The condition number κ(C−1
BDDCA) is given by the continuity bound c(p) = (log p)γ .
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4 Traces and polynomial extensions on the interval

In this section we collect some properties of Jacobi polynomials which can be found in [44],
Chapter 4, or [1], then we prove trace and extension estimates on the interval. Let w =
(1 − x)α(1 + x)β be the weight function, for us α, β ∈ N0 is sufficient. The nth-order Jacobi

polynomial P
(α,β)
n is defined by Rodrigues’ Formula as

P (α,β)
n (x) :=

1

(−2)nn!w(x)

dn

dxn

(
w(x)(1− x2)n

)
.

There holds the orthogonality relation∫ 1

−1
wP (α,β)

n P (α,β)
m dx = δn,m

2α+β+1

2n+ α+ β + 1

(n+ α)! (n+ β)!

n! (n+ α+ β)!
,

and boundary values are

P (α,β)
n (1) =

(
n+ α

n

)
.

The Legendre polynomials are Pn := P
(0,0)
n , and the integrated Legendre polynomials are

defined as

Ln(x) =

∫ x

−1
Pn−1(s) ds.

We often use

‖Pn‖2L2([−1,1]) =
2

2n+ 1
,

and we need
(2n+ 1)Ln+1 = Pn+1 − Pn−1.

Parameters can be shifted by

(2n+ α+ β)P (α−1,β)
n = (n+ α+ β)P (α,β)

n − (n+ β)P
(α,β)
n−1 ,

and by telescoping one obtains for the particular choice α = 1

(m+ β + 1)P (1,β)
m =

m∑
n=0

(2n+ β + 1)P (0,β)
n . (5)

Differentiating Jacobi polynomials gives

d

dx
P (α,β)
n =

1

2
(n+ α+ β + 1)P

(α+1,β+1)
n−1 . (6)

Lemma 6 (Trace inequality 1D). For v ∈ Pn there holds

v(0)2 ≤ S(α, β, n)

∫ 1

0
yα(1− y)βv(y)2 dy, (7)

and for every n there exists an l
(α,β)
n ∈ Pn such that l

(α,β)
n (0) = 1 and∫ 1

0
yα(1− y)βl(α,β)

n (y)2 dy ≤ S(n, α, β)−1,
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with

S(n, α, β) =
(n+ α+ 1)! (n+ α+ β + 1)!

α! (α+ 1)!n! (n+ β)!
.

For a fixed α there holds

S(n, α, β) ' (n+ 1)α+1(n+ 1 + β)α+1.

Proof. Estimate (7) is sharp for the solution of the constrained minimization problem

min
v(0)=1

∫ 1

0
yα(1− y)βv(y)2 dy.

By choosing the representation

v(y) =

n∑
k=0

ckP
(α,β)
k (1− 2y),

the minimization problem can be rephrased as

min
c∈Rn+1

bT c=1

cTDc

with b ∈ Rn+1 and D ∈ Rn+1×n+1 diagonal with components

bk = P
(α,β)
k (1) =

(k + α)!

α! k!

Dk,k =

∫ 1

0
yα(1− y)βP

(α,β)
k (1− 2y)2 dy =

∫ 1

−1

(1− z
2

)α(1 + z

2

)β
P

(α,β)
k (z)2 1

2
dz

=
1

2k + α+ β + 1

(k + α)! (k + β)!

k! (k + α+ β)!

Using the method of Lagrange multipliers we obtain(
D b
bT 0

)(
c
λ

)
=

(
0
1

)
.

With the Schur complement

S = bTD−1b =
n∑
k=0

b2k
Dk,k

=
n∑
k=0

(2k + α+ β + 1)
(k + α)! (k + α+ β)!

(α!)2 k! (k + β)!
,

the solution is given by λ = −1
S and c = 1

SD
−1b. The value of the minimum is S−1.

By means of the Paule/Schorn implementation [35] of Gosper’s algorithm, V. Pillwein
computed

S =
(n+ α+ 1)! (n+ α+ β + 1)!

α! (α+ 1)!n! (n+ β)!
.

More on computer algebra techniques in finite element methods is found in [39].
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We continue with a hand-proof for the asymptotic behavior:

S ' c(α)

n∑
k=0

(k + 1)α(k + β + 1)α+1

= c(α)
n∑
k=0

(k + 1)α
α+1∑
j=0

(
α+ 1

j

)
(k + 1)jβα+1−j

' c(α)
α+1∑
j=0

(
α+ 1

j

)
(n+ 1)j+α+1βα+1−j

= c(α)(n+ 1)α+1(n+ β + 1)α+1.

Lemma 7. For v ∈ Pn there holds

(v(0)− v(1))2 � log n

∫ 1

0
y(1− y)v′(y)2 dy (8)

v(0)2 � log n

∫ 1

0
y(1− y)(v′(y)2 + v(y)2) dy (9)

Proof. To verify (8) we follow the lines of Lemma 6. Now we expand

v(y) =

n∑
k=0

ckP
(0,0)
k (1− 2y),

from (6) there follows

v′(y) = −
n∑
k=1

ck(k + 1)P
(1,1)
k−1 (1− 2y),

and now

bk = P
(0,0)
k (1)− P (0,0)

k (−1) = 1 + (−1)k

Dk,k = (k + 1)2

∫ 1

0
y(1− y)P

(1,1)
k−1 (1− 2y)2 dy = (k + 1)2 k

(2k + 1)(k + 1)
,

and thus

S =

p∑
k=0

b2k
Dk,k

=

n∑
k=0

k even

4 (2k + 1)

(k + 1)k
'

n∑
k=0

1

k + 1
' log n

Estimate (9) follows from (8) as follows: for ṽ(y) := (1− y)v(y) we apply (8) to obtain

v(0)2 = ṽ(0)2 � log n

∫ 1

0
y(1− y)ṽ′(y)2 dy

= log n

∫ 1

0
y(1− y)[−v(y) + (1− y)v′(y)]2 dy

� log n

∫ 1

0
y(1− y)

(
v(y)2 + v′(y)2

)
dy

11



Next we prove that the minimal energy extension in certain norms is also quasi-optimal
in related norms:

Lemma 8. We define for n, β ∈ N0

lβn := argmin
v∈Pn,v(0)=1

∫ 1

0
y(1− y)βv(y)2 dy.

Then there holds ∫ 1

0
y(1− y)βlβn(y)2 dy � 1

(n+ 1)2(n+ β + 1)2
, (10)∫ 1

0
(1− y)βlβn(y)2 dy � 1

(n+ 1)(n+ β + 1)
, (11)∫ 1

0
y(1− y)β+1

(
(lβn)′(y)

)2
dy � 1. (12)

Proof. The optimizer lβn was calculated in the proof of Lemma 6 with α = 1, namely

lβn(y) =
n∑
k=0

ckP
(1,β)
k (1− 2y),

with bk = k + 1 and Dk,k = 1
2k+β+2

k+1
k+β+1 . We get

ck =
bk

Dk,kS
=

(2k + β + 2)(k + β + 1)

S
,

and S ' (n + 1)2(n + β + 1)2. Inequality (10) was proven in Lemma 6. To verify (11) we

utilize (5) to re-expand lβn in terms of Jacobi-polynomials P
(0,β)
n :

lβn(y) =
n∑
k=0

ck

k∑
j=0

2j + β + 1

k + β + 1
P

(0,β)
j (1− 2y)

=

n∑
j=0

n∑
k=j

2j + β + 1

k + β + 1
ckP

(0,β)
j (1− 2y)

=
1

S

n∑
j=0

n∑
k=j

(2k + β + 2)(2j + β + 1)P
(0,β)
j (1− 2y)

=
1

S

n∑
j=0

(n+ j + β + 2)(n− j + 1)(2j + β + 1)P
(0,β)
j (1− 2y) (13)

Thus there holds∫ 1

0
(1− y)βlβn(y)2dy =

=
n∑
j=0

∫ 1

0
(1− y)β(P

(0,β)
j (1− 2y))2dy

(n+ j + β + 1)2(n− j + 1)2(2j + β + 1)2

S2

'
n∑
j=0

1

2j + β + 1

(n+ j + β + 1)2(n− j + 1)2(2j + β + 1)2

(n+ 1)4(n+ β + 1)4

� 1

(n+ 1)(n+ β + 1)

12



From (13) and (6) we get

(lβn)′(y) =
1

S

n∑
j=1

j + β + 1

2
(n+ j + β + 2)(n− j + 1)(2j + β + 1)P

(1,β+1)
j−1 ,

and thus with similar arguments as above∫
y(1− y)β+1(lβn)′(y)2 dy � 1.

We construct a family of minimal extensions {epi : 0 ≤ i ≤ p} similar to Lemma 8, such
that the differences between two consecutive functions is small. We obtain this by weighted
averaging of the previously defined lβn.

Lemma 9. For i such that p/2 ≤ i ≤ p we define the weighted average

epi (y) =
1∑p

k=iwk

p∑
k=i

wk(1− y)k−il2k−1
p−k (y) with wk = (p− k + 1)

and for i < p/2 we set
epi (y) := (1− y)dp/2e−iepdp/2e(y).

There holds epi ∈ P p−i, it satisfies the boundary condition epi (0) = 1 and the estimates∫
y(1− y)2i−1epi (y)2 dy � 1

p2(p− i+ 1)2
(14)∫

(1− y)2i−1epi (y)2 dy � 1

p(p− i+ 1)
(15)∫

y(1− y)
( d
dy

(
(1− y)iepi (y)

))2
dy � 1 (16)

We define differences of consecutive functions as

dpi (y) := epi (y)− (1− y)epi+1(y),

they satisfy dpi ∈ P p−i, d
p
i = 0 for i < p/2, and∫

(1− y)2i−1dpi (y)2 dy � i2

p3(p− i+ 1)3
(17)∫

y(1− y)
( d
dy

(
(1− y)idpi (y)

))2
dy � i2

p2(p− i+ 1)2
(18)

Proof. We apply the triangle inequality, use (10), and
∑p

k=iwk ' (p− i+ 1)2 to prove (14):(∫
y(1− y)2i−1epi (y)2 dy

)1/2

≤ 1∑p
k=iwk

p∑
k=i

wk

(∫
y(1− y)2i−1

(
(1− y)k−il2k−1

p−k (y)
)2
dy
)1/2

� 1∑
wk

p∑
k=i

(p− k + 1)
1

(p− k + 1)(p− k + 1 + 2k − 1)

� 1

p(p− i+ 1)

13



The estimates (15) and (16) follow similarly.
The differences dpi vanish for i < p/2, and (17) is trivially fulfilled for i < p/2. Thus we

assume i ≥ p/2. We realize that

dpi (y) = epi (y)− (1− y)epi+1(y)

=
1∑p

k=iwk

p∑
k=i

wk(1− y)k−il2k−1
p−k (y)− 1∑p

k=i+1wk

p∑
k=i+1

wk(1− y)k−il2k−1
p−k (y)

=
wi∑p
k=iwk

(
l2i−1
p−i (y)− (1− y)epi+1(y)

)
.

Since
wi∑p
k=iwk

' 1

p− i+ 1
,

we get ∫
(1− y)2i−1dpi (y)2 dy

� 1

(p− i+ 1)2

(∫
(1− y)2i−1l2i−1

p−i (y)2 dy +

∫
(1− y)2i−1epi+1(y)2 dy

)
� 1

(p− i+ 1)3p

The additional factor i2

p2
follows trivially since p/2 ≤ i ≤ p. Estimate (18) follows similarly.

5 Extension from a vertex

In this section we define and analyze minimal extensions from a vertex of the reference
tetrahedron T .

Lemma 10. We define

ẽV = argmin
v∈P p−1,v(0)=1

∫ 1

0
y2v(y)2 dy

and
eV (y) = (1− y)ẽV (y).

Then eV ∈ P p with eV (0) = 1 and eV (1) = 0, and there holds∫ 1

0
y2eV (y)2 dy � p−6

∫ 1

0
yeV (y)2 dy � p−4

∫ 1

0
y2e′V (y)2 dy � p−2

14



Proof. With Lemma 6 there follows∫ 1

0
y2eV (y)2 dy ≤

∫ 1

0
y2ẽV (y)2 dy � p−6.

With
∫ 1

0 v(y)2 � p2
∫ 1

0 y(1− y)v(y)2 dy, see [41, Thm. 3.96], we get∫ 1

0
yeV (y)2 dy =

∫ 1

0
y(1− y)2ẽV (y)2 dy � p2

∫ 1

0
y2(1− y)3ẽV (y)2 dy � p−4,

and with
∫ 1

0 y(1− y)v′(y)2 dy � p2
∫ 1

0 v
2(y) dy, which is [41, Thm. 3.95], we get∫ 1

0
y2e′V (y)2 dy =

∫ 1

0
y2((1− y)ẽ′V (y)− ẽV (y))2dy

�
∫ 1

0
y2(1− y)2ẽ′V (y)2 +

∫ 1

0
y2ẽV (y)2 dy

� p2

∫ 1

0
y(1− y)ẽV (y)2 dy + p−6 � p−2

Theorem 11 (Extension from a vertex). Let V be a vertex of the reference tetrahedron T , and
λV the corresponding barycentric coordinate. Define the vertex-to-element extension EV→T :
R→ P p(T ) as

EV→T v := eV (1− λV ) v.

Then u := EV→T v(V ) vanishes on the face opposite to V and satisfies

‖∇u‖2L2(T ) +
∑
F∈FT

‖u‖2j,F � ‖v‖2H1(T )

Proof. We recall the inverse estimate |v(V )| � p2‖v‖2H1(T ). There holds

‖∇eV (1− λV )‖2L2(T ) '
∫ 1

0
(1− λV )2e′V (1− λV )2 dλV � p−2,

and for a face F containing V we have

‖eV ‖2j,F � p2‖eV ‖2L2(F ) ' p
2

∫ 1

0
(1− λV )eV (1− λV )2 dλV � p−2,

and thus the powers of p cancel out.

6 Extension from an edge

In this section we analyze trace operator on edges, and define edge-to-element extension
operators. We consider the edge E = {(x, 0, 0) : |x| ≤ 1} of the reference tetrahedron T
defined by (2). We split the construction into two pieces, one is face-to-element extension,
the other one is edge-to-face extension.

15



Lemma 12. Define the face-to-element extension EF→T and the element-to-face restriction
operator RT→F between the reference tetrahedron T and the reference face F from (2), (3) as

(EF→Tu) (x, y, z) = u(x, y + z), (19)

(RT→Fw) (x, y) =

∫ 1

0
w(x, sy, (1− s)z) ds. (20)

These operators are mappings between P p(T ) and P p(F ), preserve the function on the edge
y = z = 0, and are continuous with respect to the norms

‖RT→Fw‖L2(F ),y � ‖w‖L2(T ) ‖RT→Fw‖H1(F ),y � ‖w‖H1(T )

and
‖EF→Tu‖L2(T ) � ‖u‖L2(F ),y ‖EF→Tu‖H1(T ) � ‖u‖H1(F ),y

with the norms

‖u‖2L2(F ),y :=

∫
F
yu(x, y)2 d(x, y) ‖u‖2H1(F ),y := ‖u‖2L2(F ),y + ‖∇u‖2L2(F ),y.

Proof. The proof follows from change of variables via

g : [0, 1]× F → T : (s, x, y) 7→ (x, sy, (1− s)y)

with | det g′| = y, and thus∫
T
u(ξ, η, ζ)2 d(ξ, η, ζ) =

∫ 1

0

∫
F
y u(x, sy, (1− s)y)2 d(x, y) ds

Next we study trace and extension operators between the face F and the edge E. Con-
tinuity is proven with respect to the weighted norm ‖ · ‖H1(F ),y, and a proper norm on the
edge ‖ · ‖E .

Expand u ∈ P p(F ) as

u(x, y) =

p∑
i=2

Li

( x

1− y

)
(1− y)iui(y) + xu1(y)− u0(y), (21)

where ui ∈ P p−i. Utilize Li = 1
2i−1(Pi − Pi−2), define ui = 0 for i > p, and shift indices

u(x, y) =

p∑
i=2

1

2i− 1
Pi(·)(1− y)iui(y)−

p∑
i=2

1

2i− 1
Pi−2(·)(1− y)iui(y) + xu1(y)− u0(y)

=

p∑
i=2

Pi(·)(1− y)i
( ui

2i− 1
− ui+2(1− y)2

2i+ 3

)
− 1

3
(1− y)2u2 −

1

5
x(1− y)2u3 + xu1(y)− u0(y)

=

p∑
i=0

Pi

( x

1− y

)
(1− y)i

( ui(y)

2i− 1
− (1− y)2ui+2(y)

2i+ 3

)
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Thus, u can be re-expanded as

u(x, y) =

p∑
i=0

Pi

( x

1− y

)
(1− y)ivi(y), (22)

where the vi ∈ P p−i are given as

vi(y) =
ui(y)

2i− 1
− (1− y)2ui+2(y)

2i+ 3
. (23)

Lemma 13. Let u ∈ P p(F ), and ui, vi ∈ P p−i be the expansion coefficients in (21) and (22).
Then there holds

‖u‖2L2(F ),y '
p∑
i=0

1

i+ 1

∫ 1

0
y(1− y)2i+1vi(y)2 dy

and

‖∇u‖2L2(F ),y '
p∑
i=1

1

i

∫ 1

0
y(1− y)2i−1u2

i (y) dy

+

p∑
i=0

1

i+ 1

∫ 1

0
y(1− y)

( d
dy

(
(1− y)ivi(y)

))2
dy

Proof. Use the Duffy transform g : [−1, 1] × [0, 1] → F : (ξ, y) 7→ (x, y) = (ξ(1 − y), y) with
det g′ = (1− y) to transform the norm

‖u‖2L2(F ),y =

∫
F
yu(x, y)2 d(x, y) =

∫ 1

0

∫ 1

−1
y det g′ u(ξ, y)2 dξ dy

=

∫ 1

0

∫ 1

−1
y(1− y)

( p∑
i=0

Pi(ξ)(1− y)ivi(y)
)2
dξdy

=

p∑
i=0

∫ 1

−1
Pi(ξ)

2 dξ

∫ 1

0
y(1− y)2i+1vi(y)2 dy

To transform the gradient-norm we calculate

(g′)−T =

(
1

1−y 0
ξ

1−y 1

)
and note that

|(g′)−T v|2 ' (1− y)−2v2
1 + v2

2 ∀ v ∈ R2

Then we get

‖∇u‖2L2(F ),y =

∫ 1

0

∫ 1−y

−1+y
y |∇(x,y)u|2 dxdy

=

∫ 1

0

∫ 1

−1
y det g′ |(g′)−T∇(ξ,y)u|2 dξdy

'
∫ 1

0

∫ 1

−1
y(1− y)−1

∣∣∣∣∂u∂ξ (ξ, y)

∣∣∣∣2 dξdy +

∫ 1

0

∫ 1

−1
y(1− y)

∣∣∣∣∂u∂y (ξ, y)

∣∣∣∣2 dξdy.
17



For the first term we use representation (21):∫ 1

0

∫ 1

−1
y(1− y)−1

( p∑
i=2

L′i(ξ)(1− y)iui(y) + u1(y)
)2
dξ dy

=

∫ 1

0

∫ 1

−1
y(1− y)−1

( p∑
i=1

Pi−1(ξ)(1− y)iui(y)
)2
dξ dy

=

p∑
i=1

∫ 1

−1
Pi−1(ξ)2 dξ

∫ 1

0
y(1− y)2i−1ui(y)2 dy

For the second term we use representation (22):∫ 1

0

∫ 1

−1
y(1− y)

( ∂
∂y

p∑
i=0

Pi(ξ)(1− y)ivi(y)
)2
dξ dy

=

p∑
i=0

∫ 1

−1
Pi(ξ)

2 dξ

∫ 1

0
y(1− y)

( d
dy

(
(1− y)ivi(y)

))2
dy

For u(x) =
∑p

i=2 uiLi(x) + u1x− u0 =
∑p

i=0 viPi(x) ∈ P p(E) we define the norm

‖u‖2E :=

p∑
i=1

u2
i

ip2(p− i+ 1)2
+

p∑
i=0

v2
i

i+ 1
(24)

We note that
p∑
i=0

v2
i

i+ 1
' ‖u‖2L2(E).

Numerical tests indicate that the first sum in (24) is bounded by log p ‖u‖2L2(E), and we

decided to keep it in the definition of the norm ‖ · ‖E instead of loosing another log-factor.

Lemma 14 (Trace theorem on edges). Let u ∈ P p(F ). Then there holds

‖u|E‖2E � log p ‖u‖2H1(F ),y

Proof. Follows immediately from the definition of ‖ · ‖E , trace inequalities Lemma 6 and
Lemma 7, and the representation Lemma 13:

‖u‖2E =

p∑
i=1

u2
i (0)

ip2(p− i+ 1)2
+

p∑
i=0

v2
i (0)

i+ 1

�
p∑
i=1

1

ip2(p− i+ 1)2
p2(p− i+ 1)2

∫ 1

0
y(1− y)2i−1ui(y)2 dy

+

p∑
i=0

1

1 + i
log p

∫ 1

0
y(1− y)

[( d
dy

(
(1− y)ivi(y)

))2
+
(
(1− y)ivi(y)

)2]
dy

� log p ‖u‖2H1(F ),y

18



Lemma 15 (Extension from edges). For u(x) =
∑p

i=2 uiLi(x) + u1x − u0 ∈ P p(E) and the
functions epi from Lemma 9 we define the extension operator as

(EE→Fu)(x, y) :=

p∑
i=2

uiLi

( x

1− y

)
(1− y)iepi (y) + u1xe

p
1(y)− u0e

p
0(y).

Then here holds
‖EE→Fu‖H1(F ),y � ‖u‖E .

Proof. We convert the extended function into the Legendre basis as

EE→Fu =

p∑
i=0

Pi

( x

1− y

)
(1− y)ivi(y),

where vi ∈ P p−i are

vi(y) =
uie

p
i (y)

2i− 1
−
ui+2(1− y)2epi+2(y)

2i+ 3
.

We rewrite

vi(y) =
( ui

2i− 1
− ui+2

2i+ 3

)
epi (y) +

(
epi (y)− (1− y)2epi+2(y)

) ui+2

2i+ 3

= vi(0)epi (y) +
ui+2

2i+ 3

(
dpi (y) + (1− y)dpi+1(y)

)
. (25)

Note that there holds u(x) =
∑p

i=0 vi(0)Pi(x).
From Lemma 9 and Lemma 13 there follows

‖EE→Fu‖2L2(F ),y '
p∑
i=0

1

i+ 1

∫ 1

0
y(1− y)2i+1

(
epi (y)vi(0) +

(
dpi (y) + (1− y)dpi+1(y)

) ui+2

2i+ 3

)2
dy

�
p∑
i=0

vi(0)2

i+ 1

1

p2(p− i+ 1)2
+

p∑
i=0

u2
i+2

(i+ 1)3

i2

p3(p− i+ 1)3

� ‖u‖2E

and

‖∇EE→Fu‖2L2(F ),y =

p∑
i=1

u2
i

i

∫
y(1− y)2i−1epi (y)2 dy

+

p∑
i=0

1

i+ 1

∫ 1

0
y(1− y)

( d
dy

(
(1− y)i

(
epi (y)v0 +

(
dpi (y) + (1− y)dpi+1(y)

) ui+2

2i+ 3

)))2
dy

�
p∑
i=1

u2
i

i

∫
y(1− y)2i−1epi (y)2 dy

+

p∑
i=0

v2
i

i+ 1

∫
y(1− y)

( d
dy

(
(1− y)iepi (y)

))2
dy

+

p∑
i=0

u2
i+2

(i+ 1)3

∫
y(1− y)

( d
dy

(
(1− y)i(dpi (y) + (1− y)dpi+1(y)

))2
dy.
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Now we apply Lemma 9 to estimate

‖∇u‖2L2(F ),y �
p∑
i=1

u2
i

i

1

p2(p− i+ 1)2
+

p∑
i=0

v2
i (y)

i+ 1
' ‖u‖2E .

Next we estimate the contributions from the jump - norms. For this, we prove a face-to-
edge trace lemma in weighted L2-norms:

Lemma 16. Let D = {(y, z) : y ≥ 0, z ≥ 0, y + z ≤ 1}. For v ∈ Pn(D) there holds∫ 1

0
yα(1− y)βv(y, 0)2 dy � (n+ 1)(n+ α+ β + 1)

∫
D
yα(1− y − z)βv(y, z)2 d(y, z)

Proof. We expand

v(y, z) =
n∑
j=0

P
(α,β)
j

(
2

y

1− z
− 1
)

(1− z)jvj(z)

with vj ∈ Pn−j , and calculate∫ 1

0
yα(1− y)βv(y, 0)2 dy =

n∑
j=0

∫ 1

0
yα(1− y)βP

(α,β)
j (2y − 1)2 dy vj(0)2,

and with the change of variables (y, z) = (η(1− z), z)∫
D
yα(1− y − z)βv(y, z)2 d(y, z)

=

∫ 1

0

∫ 1

0
ηα(1− η)β(1− z)α+β+1v(η(1− z), z)2 dηdz

=

p∑
j=0

∫ 1

0
ηα(1− η)αP

(α,β)
j (2η − 1)2 dη

∫ 1

0
(1− z)α+β+1+2jvj(z)

2 dz

The estimate follows with Lemma 6, i.e.

vj(0)2 � (n− j + 1)(n− j + α+ β + 1 + 2j)

∫ 1

0
(1− z)α+β+1+2jvj(z)

2 dz,

for 0 ≤ j ≤ n.

Lemma 17. For u ∈ P p(E) there holds

‖EE→Fu‖j,F � ‖u‖E

Proof. By characterization (1) we have to prove the estimate

(EE→Fu, σ)L2(F ) � ‖u‖E ‖σ‖L2(T ) ∀u ∈ P p(E), ∀σ ∈ P p(T )

We recall

EE→Fu =

p∑
i=0

vi(y)Pi

( x

1− y

)
(1− y)i
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with (25)

vi(y) = vi(0)epi (y) +
ui+2

2i+ 3
(dpi (y) + (1− y)dpi+1)

We expand σ as

σ =

p∑
i=0

Pi

( x

1− y − z

)
(1− y − z)iσi(y, z)

with σi ∈ P p−i(D). By the change of variables (x, y, z) = (ξ(1− y − z), y, z) we have

‖σ‖2L2(T ) =

∫
D

∫ 1−y−z

−1+y+z
σ(x, y, z)2 dx d(y, z)

=

∫
D

∫ 1

−1
(1− y − z)σ(ξ(1− y − z), y, z)2 dξ d(y, z)

=
∑
i

‖Pi‖20
∫
D

(1− y − z)2i+1σi(y, z)
2 d(y, z).

We expand the inner product, use Lemma 9 and Lemma 16 to estimate

(EE→Fu, σ)L2(F ) =

∫ 1

0

∫ 1−y

−1+y

( p∑
i=0

Pi

( x

1− y

)
(1− y)ivi(y)

)( p∑
j=0

Pi

( x

1− y

)
(1− y)iσi(y, 0)

)
dxdy

=

p∑
i=0

‖Pi‖2
∫ 1

0
(1− y)2i+1vi(y)σi(y, 0) dy

≤
p∑
i=0

‖Pi‖2
(∫ 1

0
(1− y)2i+1vi(y)2 dy

)1/2 (∫ 1

0
(1− y)2i+1σi(y, 0)2 dy

)1/2

�
p∑
i=0

‖Pi‖2
( vi(0)2

p(p− i+ 1)
+

u2
i

p3(p− i+ 1)3

)1/2(
(p− i+ 1)p

∫
D

(1− y − z)2i+1σi(y, z)
2 d(y, z)

)1/2

≤
( p∑
i=0

‖Pi‖2
(
vi(0)2 +

u2
i

p2(p− i+ 1)2

))1/2 ( p∑
i=0

‖Pi‖2
∫
D

(1− y − z)2i+1σi(y, z)
2 d(y, z)

)2

' ‖u‖E ‖σ‖L2(T )

Finally we define the edge to element extension EE→T : P p(E)→ P p(T ) as

EE→T := EF→TEE→F
Theorem 18. For v ∈ P p(T ) define

u := EE→T v|E .

Then u|E = v|E and there holds

‖u‖2H1(T ) +
∑

F :E⊂F
‖u‖2j,F � log p ‖v‖2H1(T ).

If in addition v vanishes at the end-points of the edge E, then u vanishes on faces not con-
taining E, and there holds

‖u‖2H1(T ) + ‖u‖2j,∂T � log p ‖v‖2H1(T ).

Proof. Follows from the construction of EF→T and EE→F , and Lemmas 12, 14, 15, and 17.
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pol deg BR - facet BR - element L2-stab L2-stab L2-stab L2-stab
α = 5 α = 1.5 α = 5 α = 10 α = 20 α = 40

2 24.91 10.62 12.91 23.74 45.50 88.96
4 41.41 18.64 23.62 41.19 75.63 144.65
8 59.44 33.16 42.27 67.20 116.47 214.49
16 80.70 54.78 65.97 94.73 152.47 268.62

Table 1: Condition numbers of the BDDC-preconditioned system depending on p and the
stabilization method

7 Numerical results

In this section we give some computational results for different versions of stabilization terms.
The first one is the facet-wise Bassi-Rebay stabilization as we have analyzed. The second one
is an element-wise Bassi-Rebay stabilization where

‖u− λ‖j,∂T := sup
σ∈[P p(T )]3

∫
∂T (u− λ)σn ds

‖σ‖L2(T )
.

Here it is enough to choose the stabilization factor α > 1. The norm is equivalent to the
analyzed one (the proof is at some point tricky, and not given here). The developed theory
carrys over. The third one is weighted L2-stabilization with

‖u− λ‖2j := α
p2

h
‖u− λ‖2L2(∂T )

Here, the choice of a sufficiently large α is not trivial.
We have chosen Ω = (0, 1)3, and used Netgen to generated an unstructured mesh consisting

of 184 tetrahedal elements. The condition numbers using a BDDC - preconditioner are given
in Table 7. Choosing α < 3 for the method with L2-stabilization does not lead to a coercive
discrete problem.

It is clearly seen that the condition number depends on the stabilization term, and it is
an advantage of having a method for which small stabilization factors are guaranteed to be
stable. As we have proven, the condition numbers show a poly-logarithmic growth for the
BR-facet method. It is left the reader to interpret the numbers for L2-stabilization, from our
analysis there follows only κ � p(log p)γ due to norm equivalence (4).
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[8] I. Bică. Iterative substructuring algorithms for the p-version finite element method for
elliptic problems. PhD-thesis, Couran Institute of Mathematical Sciences, New York
University

[9] M. Casarin. Quasi-optimal Schwarz methods for the conforming spectral element dis-
cretization. SIAM J. Numer. Anal., 34:2482–2502, 1997.

[10] B. Cockburn, J. Gopalakrishnan, and R. Lazarov. Unified hybridization of discontinuous
Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems.
SIAM J. Numer. Anal., 47:1319-1365, 2009.

[11] B. Cockburn, G. Kanschat, and D. Schötzau. A note on discontinuous Galerkin
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