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1 Introduction

High-order numerical schemes that are based on locally discontinuous polynomial approximations on stan-
dard unstructured meshes have become quite popular for convection-dominated problems. The Discontin-
uous Galerkin (DG) method [3, 4] is a well-known example. The Spectral Difference scheme [10, 11, 17]
has been proposed as a collocation-based method, using local interpolation of the strong form of the
equations, with the aim to achieve superior efficiency by avoiding volume and surface quadratures, while
maintaining conservation. The approach extends tensor-product-based collocation approaches that had
previously been formulated for quadrilateral meshes [9] to more general unstructured-grid elements.

The Spectral Difference scheme has been found attractive because of its simplicity of formulation and
implementation, despite the fact that stability proofs have been only succesful in one dimension [8], while
doubts have been raised regarding stability properties on triangles. In fact, it has been found that the
scheme is not unconditionally linearly stable in its standard form for triangular grids [16].

In this paper we present and analyze a new formulation of the scheme using an approximation of the
divergence operator on Raviart-Thomas (RT) elements. To preserve the purely nodal character of the
scheme we use non-standard nodal degrees of freedom in this approximation. By analyzing the eigenvalue
spectrum of the spatial operator for the linear periodic problem, we demonstrate the viability of the new
formulation, in a similar context where the standard formulation failed [16].

The paper is organized as follows: We recall the formulation of the standard Spectral Difference
Scheme, and introduce the alternative approximation of the divergence operator on RT elements in
sections 2 and 3, respectively. Section 4 is devoted to analyzing the new formulation. We establish linear
stability for a linear periodic model problem with Runge-Kutta time stepping, and provide numerical
validation.

2 The Spectral Difference Scheme on Triangles

Consider the scalar hyperbolic conservation law

Ou(z,t)
ot

+V-f(u)=0, (1)

on some domain (z,t) € Q x RT, subject to suitable initial and boundary conditions, where Q C R%, and
f(u) is a smooth flux function.

Consider a triangulation 7;, = {T®,i = 1,..., Nr}, such that Q, := Uzj\;Tl T(. Throughout this
paper we shall use bracketed superscripts to denote mesh element indices, except where otherwise noted.
Assume that there exist mappings ®) : ¢ — z, with nonsingular Jacobian J® = 0x/0¢, such that each
element in the triangulation can be mapped to a reference domain T = <I>(i)(T). Let a be a multi-

index, and let Pm(T) = span {{0‘ e, 0;>0), laf < m} be the space of polynomials of total degree

m. Traditionally the Spectral Difference scheme has been derived from the strong form of the governing
equations using global interpolants of the numerical solution and the flux function, such that

%-Fv'fh(uh)zo- (2)



The interpolant of the solution wuy, is discontinuous across mesh elements, and is defined such that ug) €

Pm(T), where ug) = up|pe 0 @ is the numerical solution in element 7 mapped to the reference
domain. The numerical solution may be represented using a standard Lagrange basis,

N
=Y L) (3)
j=1

where . )
2
The degrees of freedom are thus uj = uﬁf) (&), where §; € Sy, with Sy, a set of interpolation nodes
={{,j=1,..., Ny} defined on the reference element.

Since it is a necessary condition for optimal order convergence is that the divergence of the flux
interpolant f; be locally a polynomial of degree at least m, it has been standard practice to interpolate
each component of the flux function into a polynomial space of degree m + 1 for each element, such that
fhi) € [Pms1(T)]?, where the Piola transform fhi) o= [JO)(JD)=1 f | peoy s introduced. Using a new set
of interpolation nodes Q41 = {&,j = 1,..., Nppg1} with [D/]- the corresponding Lagrange basis, the

local flux reprensentation is written
m+1

Z AL (5)

where for §; € Q.41 the degrees of freedom are defined as

O] o
f(l f(J ) y fj GTA . (6)
fnum , fj c aT
The coefficients f"“m correspondlng to §; € dT are chosen such that for every element T that shares
the node, i.e. @ (¢;) = ®W)(¢&) for some k, one has

where 7 is the transformed outward pointing normal on 97", and h is a numerical flux function, which
is often chosen in the class of Lipschitz-continuous monotone flux functions [2] for easy incorporation of
standard TVD stability theory [6]. This implies that the global interpolant f; is continuous in normal
direction across element interfaces, provided enough degrees of freedom are used on the boundary, i.e.
m+ 2 in the present formulation. This is actually the case for popular interpolation nodes of order m + 1
defined for the triangle, such as Hesthaven’s nodes [7] or Fekete points [15]. In more formal nomenclature
we have that the global interpolation operator is a mapping into H(div; ), i.e. fn € {H(div;Qp) :
I € Puna (D).

The scheme may be written in terms of the degrees of freedom as

du’

o |J(|(VE e =0,  j=1,..Nn, i=1...,Nr. (8)

3 Flux Interpolation Using Raviart-Thomas Elements

Recently, van den Abeele et al. [16] have shown that the scheme described in section 2 is not uncondi-
tionally linearly stable for the case m = 2. It has even been conjectured that this is true for all order
m > 2. However, using complete polynomial spaces to represent J?}(LZ) is not the only way to define in-
terpolation operators into H(div;(2y,). We present a formulation of the Spectral Difference scheme using



Raviart-Thomas elements that is shown to be stable for the linear periodic case, i.e. in the case where
the traditional formulation failed.
For the triangular element one defines the Raviart-Thomas space of order m as

RTm = [Pm]2 + (!E, y)TPm . (9)

It is known that RT,, is the smallest space having elements with divergence in P,,, see e.g. [1]. Thus,
besides the motivation of overcoming stability problems with the standard Spectral Difference scheme,
using Raviart-Thomas elements is attractive from the viewpoint of computational cost. Compared to
complete polynomial spaces one has [P,,]° € RT,, C [Pp11]”. The dimension of RT,, is

NET .— dim RT;,, = (m +1)(m +3) . (10)
Taking N,, as defined in eq. (4), we see that in comparison with [P,,11]?,
Apor =2Npyi1 — NET =m 43 (11)

It is evident that, while the relative difference is asymptotically negligible (both spaces have dimensionality
increasing with m?), for fixed intermediate orders it can be significant. A few examples for polynomial
orders of practical interst are given in Table 1.

m RTm [Pm+1]2 ADOF
1 8 12 4
2 15 20 d
3 24 30 6
4 35 42 7

Table 1: Total number of degrees of freedom for RT,, and [Py,11]? elements.

Here we define the degrees of freedom so as to preserve the nodal character of the Spectral Difference
Scheme. To this end we define a set of interpolation nodes and vectors as R, = {(fi, si)yi=1,..., NWIZET},
where &; € T, and s; € R? is a unit vector. Globally, we thus look for a projection onto W), = {an €
H(div; Q) : ¢\ € RT,,} such that

NRT
3 =" (12)
k=1
where 1, € RT,, are basis functions with property ¥y (&;) - s; = ;1 for all (§;,5;) € R, and ¢ =
7@ (&) - sg. In the context of conservation laws, the flux projection of eq. (5) is thus re-written

NET
=3 e (13)
k=1
where o )
A(i): f( kz)'sk 3 ngT 14
fSJf { h(ﬁkv ) ) ) fk € oT . ( )

Note that here the coeffcients are scalar, and the basis functions are vector-valued, in direct opposition of
eq. (5). Furthermore, in the standard approach numerical fluxes are not used directly, but are computed
to replace the normal projection of the analytical fluxes at boundaries (cf. eqns. (6) and (7)). In the new
approach numerical fluxes can be used directly for degrees of freedom on the boundary. With this new
definition of the flux interpolant the Spectral Difference Scheme, eq. (8), remains formally unchanged.



We denote this scheme RT,,-based Spectral Difference to highlight the novel flux representation. Note,
however, that the solution representation is still given by eq. (3), i.e. a standard Lagrange basis in Pp,.
The choice of interpolation nodes & and directions sj is not a priori clear. We have not attempted
to optimize node placement according to interpolation properties, but we show in section 4, that linear
stability may depend on this choice. From standard theory it is clear that the RT,, element has m + 1
degrees of freedom on each edge, and 2N,,,_1 degrees of freedom in the interior [1]. In the present paper
we use N,,_1 points in the interior, each with two orthogonal unit vectors. Figure 1 shows examples of
RT elements of orders 1 through 3, where points on the boundary have been placed at Gauss-Legendre
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Figure 1: RT,, elements: Examples of Raviart-Thomas elements of order m.

integration points, and interior points have been placed at high-order quadrature points for the triangle.
These points will be specified in section 4, where it is demonstrated that at least the selection of interior
points can be informed by linear stability considerations.

The degrees of freedom on the boundary determine how many numerical fluxes need to be computed
for interior elements. The cost of numerical flux computations is much higher than analytical flux
evaluation, even taking into account that one numerical flux can be used for two elements that share the
edge node. There are m + 1 nodes on the boundary for RT;, elements, while for the standard Spectral
Difference scheme most popular interpolation nodes for P,,+1, such as Hesthaven’s nodes [7] or Fekete
points [15], have m + 2 points on the boundary, which are actually the Chebyshev-Lobatto nodes of
corresponding order. In any case, the difference between RT,, elements and [P,,11]? elements is a fixed
number, independent of m.

4 Eigenvalue Analysis for a Linear Periodic Problem

We consider the linear advection problem

Ou

—+V-Vu=0 15

5 TV Vu=0, (15)
where V' = ||V||(cosf,sinf) is the (constant) advection velocity, with periodic initial and boundary

condition on some square domain, say Q = [0, 1]2.

4.1 The Spectrum of the Discrete Advection Operator

We treat the problem by considering a Cartesian mesh with each mesh element decomposed into two
triangles. We formulate the Spectral Difference Scheme for the triangles by considering the joint operator
for every two triangles that form a quadrilateral mesh element, to which we assign a standard structured-
mesh index tuple (i, j). For 6 € [0,7/2], if upwind fluxes are used on element boundaries, the semi-discrete



Spectral Difference Scheme may be written

Atul™) = —p (Au(i’j) + Bul =) 4 C’u("’jfl)) , (16)
where the CFL number is given by
[V]|At
= 17
v h ? ( )
and u(®y) = (ugw ), . ,u%’i), u%ﬂ_l, e ,uéi]’ngl )T collects all the degrees of freedom for the two triangular

cells that make up the quadrilateral mesh element (i, 7). The matrices in eq. (16) follow in a straight-
forward calculation from the concatenated application of a reconstruction operation, used to evaluate
us) at the flux collocation nodes, and a differentiation operation, evaluating the divergence of f}f), using
upwind fluxes, at the solution nodes. The factor i contained in the cfl number (17) is the (constant) edge
length of the fused quad meshes. Formulation (16) is independent of the choice of reference element for
linear mappings.

Applying Fourier analysis and considering a particular mode te’* the scheme becomes

i
At dit‘ —vZi, (18)
where v is the CFL number, and Z € CV»*Nm is the Fourier Symbol of the spatial discretization,

Z=—(A+Be "+ Ce™™) (19)

where the grid frequency (&,7m) := (kzh,kyh) has been defined. The eigenvalues A are evaluated nu-
merically at discrete grid frequencies (£,mx) € [0,27)%, i.e. A = A&, mx). We have made sure to use
sufficiently many grid frequencies so that the results are ’grid converged’. We denote the spectrum of the
Fourier Symbol by ¢(Z), and the spectral radius by p(Z).

4.1.1 Placement of Boundary Nodes

Let ¢ be a parametrization of the edge, such that ¢ € [~1,1]. Furthermore, let (*¢ denote Legendre-Gauss
quadrature points. We scale the point placement on edges by a parameter a € (0, 1], such that

(0%
G = (ke . di=1,...,m+1. 20
N maxicicmp ¢ ’ (20)

This scales the node placement such that for & = 1 the edge endpoints are included, and for a = 0 the
points collapse on the edge mid-points. Obviously the latter case leads to a singular stencil.

Both the spectral radius p(Z), and the maximum real part of the spectum maxe ,,(Re(A(&,7))) do not
depend on « for all schemes tested here, i.e. m = 1,2,3. Of course not all interesting node placements are
obtained in this manner (e.g. Chebyshev-Lobatto nodes are not obtained from the Gaussian integration
points by this simple scaling). However, the a-independence of the spectrum strongly suggests that
placement of edge nodes does not affect linear stability, so that other considerations, such as interpolation
properties or efficiency, should determine this choice. We have not attempted to optimize interpolation
properties, as we are only concerned with linear stability here, but it is clear that including the endpoints
of the edge may save reconstruction cost and function evaluations for nonlinear schemes, as cell vertices
are always shared by two edges.

4.1.2 Placement of Interior Nodes

For RT; flux interpolation, there are two interior degrees of freedom, which we both put in the centroid
of the triangle, and use x- and y-directional unit vectors for the interpolation, see Figure 1(a). Due to
symmetry considerations we do not vary this point placement.



For the RT5 element there are six interior degrees of freedom, i.e. three points, each with x and y
unit vectors. Again due to symmetry there is one degree of freedom in the placement of these nodes. Let
the vertices of the reference element be denoted by &7, &5, €5, and introduce a parameter « € (0, 1), such
that the interior points £ € T are scaled as

gi:£;’_|_a(£c_§l?)7 i:152737 (21)

where £° is the centroid of the reference element. For oo = 0 the points remain at the corners, while
for & = 1 they collapse at the centroid. Both these extreme choices lead to a singular stencil *. Here
one can give a clear indication on what is the best point placement regarding linear stability. Figure 2
summarizes the eigenvalue analysis. More specifically, for o < 0.5 the eigenvalues have positive real parts,
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Figure 2: Influence of the scaling parameter « for interior collocation nodes on the spectrum of the
Fourier Symbol Z for the Spectral Difference scheme using RT5 elements for flux representation.

see figure 2(a), which we reject from linear stability considerations 2. Furthermore we see in Figure 2(b)
that the spectral radius is monotonically increasing with «, which implies that the smallest value of
a having eigenvalues with non-positive real parts is optimal from a linear stability viewpoint. Thus
one ought to choose @ = 0.5. Interestingly enough this optimal choice corresponds to using high-order
integration nodes in the interior of triangles: The points obtained have area coordinates l; =l = 1/6,
which leads to an integration rule with weights w; = 1/3, exact for polynomials of total degree 2. (There
are no higher order three-point rules).

For the case of RT3 there are six interior points each with two unit vectors. Consider six points at the
element boundaries, three at corner points, and three at edge midpoints, and again use eq. (21). Figure 3
reveals that none of the nodes obtained in this way are stable. The maximum real part of the eigenvalues
as a function of « is always positive. However, vaying « is not the only parameter choice. Motivated by
the results from the RT5, case, we use the six-point high-order quadrature rule shown in Table 2. This
rule is accurate for polynomials of total degree 4, the maximum known for six-point quadrature rules.
Indeed the eigenvalues based on these nodes have non-positive real parts.

IThis may not be obvious for the case o = 0. Recall that there are already m + 1 degrees of freedom on each edge. If the
interior points are placed at the element vertices, all the degrees of freedom are on the boundary, and the stencil becomes
singular.

2While some time stepping schemes have stability regions that include small parts of the right-half plane, we do not
consider this generally viable.
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Table 2: Six-point quadrature rule of order 4 in area coordinates, cf. [5, 12]

b ly w
0.816847572980459 | 0.091576213509771 | 0.109951743655322
0.108103018168070 | 0.445948490915965 | 0.223381589678011




Figure 4 shows results for RT,, elements identified as optimal for linear stability. With these choices
no positive real parts are present in the spectrum of the operators, unlike the [Pm}g—based Spectral
Difference discretization for triangles [16]. We demonstrate below that permissible CFL numbers based
on numerical evaluation of the spectrum can be verified in numerical experiments, and thus lend some
credibility to the assertion that this formulation of the Spectral Difference scheme is indeed linearly
Lo-stable.

4.1.3 Linear Stability with Multistage Schemes

Once the Fourier symbol of the advection operator is known one may extend the analysis to a time
stepping scheme to establish full discrete stability and permissible CFL numbers. Ultimately one aims
to find the amplification factor G(v;&,n), such that a(t" ') = Gu(t"), the exact form of which depends
on the Fourier symbol Z and the time discretization of (18). In this section we consider, following [13],
multistage schemes of the type

al” = a@),
k—1
a® = Zaklﬁ(l) +upuza . k=1,...,M, (22)
1=0
a@t) = a®.
For the intermediate amplification factor a*) = G*)a() one obtains by induction
k—1
GO=1, GO =N (anl+pBurZ)G" . (23)
1=0

Setting k = M gives the amplification factor for the update from time level " to t"*1. One needs to
compute the eigenvalues of the amplification factor, noting that for diagonalizable G, it is sufficient for
Lo-Stability that

pGi&m) <1, Y (&n) €0,2n]” (24)

which is thus formulated as a condition on v. The analytical evaluation of Eq. (24) as a function of v
and (£,7n) becomes extremely complicated for higher orders of accuracy, but can be easily accomplished
numerically. We have used Shu’s three-stage scheme [14] in eq. (22). The coefficients of the scheme may
be written, arranged in matrix form, as

1 1
a= % 3 R =0 1 ) (25)
3 0 3 00 3

Again we have made sure to include sufficiently many discrete frequencies to obtain grid-converged
results. Table 3 shows numerically computed CFL numbers for the two-dimensional linear advection
problem (15) for several advection angles 0 < 0 < 7 /2.

4.2 Convergence Study

In order to verify the accuracy of the scheme for the linear problem (15), a convergence study has been
conducted. We used periodic boundary conditions for (z,y) € [0,1]%, and initial conditions u(z,y) =
sin(27(z +1y)). Results for the RT,,-based Spectral Difference schemes for m = 1,2,3 are summarized in
Tables 4 thorugh 6. It may be seen that the optimal order of accuracy, i.e. m + 1 has been reached for
all schemes. Figure 5 shows a graphical view of the convergence properties.
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angle # = /8. Right: max¢ , p(Z(&,7n)) as a function of advection angle 6.



Table 3: Permisible CFL numbers for the linear advection equation with periodic boundary conditions
for several advection angles 0 < 6 < 7 /2. Note for § > 7/4 one has CFLy = CFL,/5_g, due to symmetry,

so that only values for 6 < 7/4 are tabulated.

CFL
k|§=0|0=n/8|0=m/4
110352 | 0.289 0.281
210215 | 0.182 0.172
31 0.140 | 0.118 0.108

Table 4: Convergence of RTj-based Spectral Difference scheme

# Elements Loo(Error) Order Lo (Error) Order

10 8.641900e-02 7.610900e-0

20 2.312800e-02 | 1.901708e+4-00 | 2.011200e-02 | 1.920011e+-00

50 3.777500e-03 | 1.977518e+00 | 3.239600e-03 | 1.992672e4-00
100 9.465000e-04 | 1.996757e+00 | 8.093300e-04 | 2.001016e4-00
200 2.366000e-04 | 2.000152e4-00 | 2.021900e-04 | 2.001016e+00
500 3.784900e-05 | 2.000202e+00 | 3.233400e-05 | 2.000553e+-00
1000 9.461300e-06 | 2.000145e+00 | 8.081900e-06 | 2.000286e+-00

Table 5: Convergence of RT5-based Spectral Difference scheme

# Elements

Lo (Error)

Order

Lo (Error)

Order

10

20

50
100
200
500
1000

1.110400e-02
1.406800e-03
9.017500e-05
1.130600e-05
1.414600e-06
9.057400e-08
1.132300e-08

2.980590e+-00
2.998307e+4-00
2.995639e+-00
2.998623e4-00
2.999523e4-00
2.999841e4-00

1.040400e-02
1.262800e-03
8.122900e-05
1.017700e-05
1.273100e-06
8.151200e-08
1.019100e-08

3.042440e4-00
2.994480e4-00
2.996683e+00
2.998895e+-00
2.999550e+-00
2.999717e4-00

Table 6: Convergence of RT5-based Spectral Difference scheme

# Elements Loo(Error) Order Lo (Error) Order
10 5.871900e-04 5.230400e-04
20 4.784800e-05 | 3.617297e+00 | 4.068600e-05 | 3.684317e+00
50 1.069100e-06 | 4.148478e+00 | 8.931700e-07 | 4.167741e4-00
100 6.609000e-08 | 4.015821e+00 | 5.498300e-08 | 4.021877e4-00
200 4.108400e-09 | 4.007783e+00 | 3.417000e-09 | 4.008183e+-00
500 1.056700e-10 | 3.994876e+00 | 8.803200e-11 | 3.993075e4-00
1000 7.683900e-12 | 3.781583e4-00 | 7.493600e-12 | 3.554297e+00
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