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Numerical schemes using piecewise continuous polynomials are very popular for high
order approximation of conservation laws. While the most widely used numerical scheme
under this paradigm appears to be the Discontinuous Galerkin method, the Spectral Differ-
ence scheme has often been found attractive as well, because of its simplicity of formulation
and implementation. However, recently it has been shown that the scheme is not uncon-
ditionally linearly stable on triangles. In this paper we present an alternate formulation
of the scheme, featuring a new flux interpolation technique using Raviart-Thomas spaces,
which proves stable under a similar linear analysis in which the standard scheme failed. We
demonstrate viability of the concept by showing linear stability both in the semi-discrete
sense and for time stepping schemes of the SSP Runge-Kutta type. Furthermore, we
present a convergence study using the linear advection equation, as well as case studies in
compressible flow simulation using the Euler equations.

I. Introduction

For some time now a considerable amount of research activity has been devoted to high-order methods
for the simulation of compressible fluid flow. In particular schemes based on piecewise continuous polynomial
approximation, such as Discontinuous Galerkin (DG) methods5–9 became increasingly popular.

Even for moderate levels of accuracy, high-order methods are potentially more efficient than low-order
methods in terms of total degrees of freedom. However, for such problems, low order methods are still widely
used as they have proved to be reliable and stable. For high-order methods to be viable in this context,
they should be stable, robust and easy to implement. It is in this context that the SD scheme has been
proposed as a collocation method derived from the strong form of the governing equations.1–3 Recently,
the connection between the Spectral Difference (SD) scheme and the weak form of the governing equations
has been highlighted by several authors, and the scheme has been put into a more general framework using
unifying formulations such as Huynh’s flux reconstruction schemes,? or Wang’s lifting collocation penalty
schemes.? By using the ’quadrature-free’ paradigm,? equivalence with nodal Discontinuous Galerkin methods
can be established in particular for nonlinear conservation laws.4 The Spectral Difference scheme seems to
be particularly attractive as there are no surface or volume integrals to be computed.

The SD scheme has been found to be stable for one dimensional linear advection problems by Jameson10

for all orders of accuracy in an energy norm of Sobolev type. Accuracy and stability are found to be inde-
pendent of the position of the solution points in most cases, which makes the design simpler.11 But linear
stability analysis performed by Van den Abeele et al.11 shows that the scheme in its standard formulation
is unstable for order of accuracy greater than two on triangular meshes. The new variant of the Spectral
Difference scheme, which was proposed by May and Schöberl,12 is formulated by incorporating a new in-
terpolation technique into the standard Spectral Difference scheme. In this scheme, the flux function of
the conservation law is approximated by projecting it onto the Raviart-Thomas (RT ) space. For triangular
meshes, the scheme proved stable under linear stability analysis for periodic problems for which the standard
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Spectral Difference scheme was found unstable.12 Further, the RT space demands fewer degrees of freedom
for the same order of accuracy than the standard scheme, which means a reduction in computational cost.

In the present paper we build on the stability analysis in,12 and construct stable RT -based nodal elements
for flux interpolation having divergence in the space of linear, quadratic, and cubic polynomials. We consider
linear stability analysis of the RT -based SD scheme for the semi-discrete case as well as the fully discrete
case using time stepping schemes of the SSP Runge-Kutta type.15 Furthermore we demonstrate viability of
the new SD scheme with case studies using the scalar advection equation and the Euler equations.

II. The Spectral Difference Scheme for Triangles

We present here the derivation of the SD scheme from the strong form of the governing equations as
given in the original formulation of the scheme.1 Consider the scalar hyperbolic conservation equation

∂u(x, t)

∂t
+∇x · ~f (u) = 0 (1)

on some domain (x, t) ∈ Ω×R+, where Ω ⊂ R2 in the present case. Note that we reserve vector notation for
the flux function, as this will prove useful for highlighting the differences in the flux interpolation between the
standard SD scheme, derived in this section, and the new scheme. Consider a triangulation of the domain,
Th = {T (i), i = 1, ..., NT } which decomposes the domain Ω into NT cells, where each cell is denoted by
the index i as a bracketed superscript. However, the formulations given below hold for each cell and the
superscript is omitted to avoid confusion and is shown only in the final form of the equation. For convenience,
the SD scheme is formulated for a reference triangle. We consider the transformation from the reference
domain (ξ) to the physical domain (x) for each triangular cell which is defined by the invertible mapping
Φ : ξ 7→ x with a non-singular Jacobian, J = ∂x/∂ξ, such that each element in the triangulation can be
mapped to a reference domain T̂ = Φ−1 (T ). Two sets of points are defined in the reference domain. The

first set, ξ̂j , j = 1, ..., Nm, is for the solution collocation and the second one, ξ̆k, k = 1, ..., Nm+1, is for the
flux collocation. In the reference domain, the above hyperbolic equation is of the form

∂u(ξ, t)

∂t
+

1

|J |
∇ξ ·

(
|J |J−1 ~f (u)

)
= 0. (2)

Now the solution function u in the reference domain is approximated to uh by projecting it onto a finite
dimensional polynomial space as

uh (ξ) =

Nm∑
j=1

uj lj (ξ) , (3)

where lj (ξ), j = 1, .., Nm are the Lagrangian interpolation functions, defined by the solution collocation

nodes with the property lk(ξ̂j) = δjk and hence the coefficients are given as uj = uh

(
ξ̂j

)
. These Lagrangian

functions form a basis in the finite dimensional polynomial space of degree m, denoted as Pm. In 2D, the
number of degrees of freedom required to represent a function in the space Pm is given as

Nm =
(m+ 1) (m+ 2)

2
. (4)

The flux function in the reference domain, which is defined as |J |J−1 ~f , is approximated by ~fh, by projecting
it component-wise into a finite dimensional polynomial space of degree m+ 1 as

~fh (ξ) =

Nm+1∑
k=1

~fk l̂k (ξ) , (5)

where l̂k (ξ), k = 1, .., Nm+1 are the Lagrangian interpolation functions, defined by the flux collocation nodes

with the property l̂k(ξ̆j) = δjk. The coefficients of the interpolation are defined as

~fk =

|J |J−1 ~f
(
ξ̆k

)
, ξ̆k ∈ T̂ ,

~fnum ξ̆k,∈ ∂T̂ ,
(6)
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where
~fnum · n = h (7)

with n as the outward normal on ∂T̂ and h as a standard numerical flux function like the Roe flux or the
Lax-Friedrichs flux. Note that the flux function is approximated componentwise to one degree higher than
the solution function. This is to ensure that the divergence of the flux will be a polynomial of degree m.
The number of degrees of freedom is thus

2Nm+1 = (m+ 2) (m+ 3) . (8)

The divergence of the flux function in the finite dimensional polynomial space is given as(
∇ξ · ~fh

)
(ξ) =

Nm+1∑
k=1

(
∇ξ l̂k

)
(ξ) · ~fk. (9)

The Spectral Difference scheme can now be written for each degree of freedom of the solution function in
each cell i as

du
(i)
j

dt
+

1

|J (i)|

Nm+1∑
k=1

(
∇ξ l̂k

)(
ξ̂j

)
· ~f (i)
k = 0, j = 1, ..., Nm, i = 1, ..., NT . (10)

As mentioned in Section I, the above Spectral Difference scheme was found unconditionally linearly unstable
for triangles.11

III. The Spectral Difference Scheme for Triangles Using Raviart-Thomas
Elements

The same hyperbolic Eq. (2) is considered in the reference domain. The solution function is approximated
as in Eq. (3), which is the same as in the standard Spectral Difference scheme. For the flux interpolation,
vector valued interpolation is used where the interpolation functions are vectors in the Raviart-Thomas (RT )
space. For a degree m, the RT space is defined as

RTm = (Pm)
2

+ (x, y)
T
Pm. (11)

For m = 1, the monomials ~φn, n = 1, ..., 8 which form a basis in the RT space are given as {(1, 0)
T
, (x, 0)

T
,

(y, 0)
T
, (0, 1)

T
, (0, x)

T
, (0, y)

T
,
(
x2, yx

)T
,
(
xy, y2

)T }. Since RTm is the smallest space having divergence in
Pm,13 it reduces the number of degrees of freedom needed for flux interpolation and hence the computational
cost is reduced compared to that for the traditional Spectral Difference scheme. In 2D, the number of degrees
of freedom to represent a vector-valued function in the RT space is given by

NRT
m = (m+ 1) (m+ 3) . (12)

The flux function in the reference domain, which is defined as |J |J−1 ~f , is approximated to ~fh in the RT
space as

~fh (ξ) =

NRTm∑
k=1

fk ~ψk (ξ) , (13)

where ~ψk, k = 1, ...NRT
m are interpolation functions which form a basis in the Raviart-Thomas space. Note

that the basis functions are vectors and the coefficients are scalars unlike the standard Spectral Difference
where the basis is scalar and the coefficients are vectors. Further, these interpolation functions have the

property ~ψj

(
ξ̆k

)
· sk = δjk, where ξ̆k, k = 1, ...NRT

m are the flux collocation points and sk are the unit

vectors defined at those points. For a degree m, according to standard theory,13 there should be m + 1
points on each edge of the triangle and the remaining NRT

m − 3(m + 1) in the interior. The degrees of
freedom for the flux interpolation are given as

fk =

|J |J−1 ~f
(
ξ̆k

)
· sk , ξ̆k ∈ T̂

h , ξ̆k ∈ ∂T̂ ,
(14)
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where h is a standard numerical flux. Note that the numerical flux is directly used as the degree of freedom on
the boundary unlike the standard Spectral Difference where the numerical flux is used to replace the normal
component of the analytical flux and is then projected into orthogonal directions to obtain the degrees of
freedom.1 To calculate the flux values, ~f , at the flux collocation points, ξ̆k, we have to find the solution
values at those points. This is done by using a transfer matrix which is explained in Appendix A. The
divergence of the flux function at the solution nodes is given as

(
∇ξ · ~fh

)(
ξ̂j

)
=

NRTm∑
k=1

fk

(
∇ξ · ~ψk

)(
ξ̂j

)
, j = 1, ..., Nm. (15)

The values of
(
∇ξ · ~ψk

)(
ξ̂j

)
can be written in the form of a matrix called differentiation matrix. The

evaluation of the differentiation matrix is given in Appendix B. The new Spectral Difference scheme can now
be written for each degree of freedom of the solution function in each cell i as

du
(i)
j

dt
+

1

|J (i)|

NRTm∑
k=1

f
(i)
k

(
∇ξ · ~ψk

)(
ξ̂j

)
= 0, j = 1, ..., Nm, i = 1, ..., NT . (16)

The above equation is rewritten in terms of the residual, R, as

dU

dt
= R(U), (17)

where U = (u
(1)
1 , u

(1)
2 , ..., u

(NT )
Nm

)T comprises all solution degrees of freedom in all the cells.

IV. Time Integration

IV.A. TVD Runge-Kutta Time Discretization

For time-dependent problems, higher order explicit multistage Runge-Kutta schemes by Gottlieb and Shu14

which preserve the TVD property of the spatial operator are used to integrate the system of ODEs (17).
We use the Runge-Kutta schemes, where the solution at (n+ 1)-th iteration, Un+1, is obtained from Un as
follows.

w(0) = Un,

w(k) =

k−1∑
l=0

αklw
(l) + ∆tβklR

(l) k = 1, ..., p,

Un+1 = w(p), (18)

where p is the number of intermediate stages, ∆t is the time step and R(l) is the residual evaluated at w(l).
Note that the bracketed superscript here stands for different stages and not for different cells. For a 3 stage
(p = 3) 3rd order TVD Runge-Kutta scheme (Shu-RK3), the coefficients are given in matrix form as

α =

1
3
4

1
4

1
3 0 2

3

 , β =

1

0 1
4

0 0 2
3

 . (19)

Here (l, k) represents the index to the matrix elements with l = 0, ..., k − 1 and k = 1, ..., p. And for a 2
stage, 2nd order scheme (Shu-RK2), the coefficients are given as

α =

[
1
1
2

1
2

]
, β =

[
1

0 1
2

]
. (20)
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IV.B. Strong Stability Preserving Time Discretization

Following the successful application of TVD Runge-Kutta schemes for hyperbolic partial differential equa-
tions, a new general class of Strong Stability Preserving (SSP) schemes was developed by Gottlieb and
Shu.15 SSP schemes, in general, maintain stability in the same norm as that of the first-order forward Euler
discretization, at potentially higher orders of temporal accuracy, or larger permissible time steps. The TVD
Runge-Kutta scheme is one type of SSP scheme, where the stability is preserved with respect to the Total
Variation norm. More efficient SSP schemes have been developed by Spiteri and Ruuth.16 Such a 5 stage
4th order SSP scheme is also used in our linear stability analysis of the RT schemes. The coefficients are
given in the matrix form as

α =


1

0.444370494067 0.555629505933

0.620101851385 0 0.379898148615

0.178079954108 0 0.821920045892

0.006833258840 0 0.517231672090 0.127598311333 0.348336757737

 , (21)

β =


0.391752227004

0 0.368410592630

0 0 0.251891774247

0 0 0 0.544974750212

0 0 0 0.084604163382 0.226007483194

 . (22)

IV.C. Implicit Time Discretization

The time discretization can be written in a backward Euler form as

Un+1 − Un

∆t
= R(Un+1), (23)

where the residual R is defined in Eqns. (16), (17). The residual is now expanded in Taylor series as follows

R(Un+1) = R(Un) +
dR(Un)

dt
∆t+ .... (24)

We can also write the derivative term in the above equation as

dR(Un)

dt
∆t =

dR(Un)

dU

dU

dt
∆t ' dR(Un)

dU
(Un+1 − Un). (25)

If we denote (Un+1 − Un) as ∆Un, the implicit scheme now reduces to(
I −∆t

dR(Un)

dU

)
∆Un = ∆tR(Un), (26)

where dR(U)
dU is the Jacobian matrix of the residual vector. The above linear system of equations at each

time step has to be solved to get ∆Un and hence the solution Un+1. We use implicit methods in particular
for steady problems, where we require no time accuracy, but rather large times steps. Note that as ∆t→∞,
we obtain Newton iterations. The iterations of the above form with finite value for ∆t can be interpreted as
damped Newton iterations.

V. Linear Stability Analysis

The new variant of the Spectral Difference scheme which uses Raviart-Thomas elements has been subject
to a linear stability analysis by May,12 which is extended here. The analysis is carried out for a simplified
setup, using a Cartesian mesh with every cell subdivided into two triangles, and considering a limited range
of advection velocities. While a more general analysis is certainly possible, in particular considering skewed
meshes, the standard Spectral Difference Scheme of third (and presumably higher) order already fails in this
setting, while we demonstrate in this section that the new formulation proves stable.
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We consider the two-dimensional linear advection

∂u

∂t
+∇ · ~f (u) = 0, (27)

with ~f(u) = (c1u, c2u), where c1 = |c|cosθ, c2 = |c|sinθ for the advection angle θ ∈ [0, π/2] and |c| being the
magnitude of advection velocity, in a rectangular domain with periodic boundary conditions. A Cartesian
mesh is created and each mesh element, identified by (i, j), is subdivided into two triangular elements. The
Spectral Difference scheme based on RT elements is then formulated for these triangular elements. A similar,
but more general, analysis has been used in11 to demonstrate linear instability of the classical SD scheme.
The SD formulation in semi-discrete form, using upwind fluxes on the boundary of the elements, is given as

∆tU̇ (i,j) = −ν
(
AU (i,j) +BU (i−1,j) + CU (i,j−1)

)
, (28)

where U = (u1, u2, ..., u2Nm)T comprises all solution degrees of freedom in the Cartesian mesh element (i, j).

The CFL number is given as ν = |c|∆t
h , where h is the Cartesian mesh edge length. A,B and C are matrices

resulting from the concatenated application of the transfer matrix (see Appendix A), used to evaluate the
solution at flux collocation nodes, the application of upwind fluxes, and the differentiation matrix (see
Appendix B), to evaluate the divergence of flux at solution collocation nodes. The analysis considered here
is based on linear stability analysis for periodic problems.17 The solution variable is initialized with a periodic
function. The variable is then decomposed into different frequency modes by Fourier transformation and
the behavior of these individual modes is analyzed. If Ûei(kxx+kyy) is one particular mode with kx, ky being
the wave numbers in x and y directions, respectively, then the SD discretization for this mode will take the
form

∆t
dÛ

dt
= νZÛ, (29)

where Z = −
(
A+Be−iσ + Ceiκ

)
is the Fourier symbol of the spatial discretization, and (σ, κ) = (kxh, kyh)

defines the grid frequency. The numerical stability of Eq. (29) depends on the eigensystem of matrix Z. The
above linear system of equations (Eq. (29)) can be decoupled by diagonalizing Z. If H denotes the matrix
whose elements are the eigenvectors of Z and λj , j = 1, ..., jmax are the corresponding eigenvalues, then the
similarity transformation can be written as

Z = HΛH−1, (30)

where Λ = diag(λ1, ..., λjmax). This transformation gives a set of independent scalar equations of the form

dwj
dt

= λjwj , (31)

where Hw = Û and w is the vector whose elements are the new scalar variables wj . The solution to Eq. (31)
takes the form:

wj(t) = wj(0)exp(λjt). (32)

From the above equation, it is clear that, for the solution wj to be bounded, the real part of λj should be
non-positive.

V.A. Linear Stability Analysis for the Spatial Discretization

Linear stability analysis is done to find the position of flux nodes for which the scheme is linearly stable.
The eigenvalues λ of Z are evaluated numerically at discrete grid frequencies (σ, κ) ∈ [0, 2π]2. For spatially
stable discretization, all the eigenvalues of Z should have non-positive real part. For RTk elements we have
k + 1 nodes on each edge of the triangle,13 while remaining degrees of freedom are located in the interior.
We place edge nodes at Legendre-Gauss quadrature points.18 It has been found that the placement of flux
nodes on the edges does not affect the linear stability properties for RT1, RT2 and RT3 schemes, whereas
the flux node placement in the interior of the triangle has considerable effects. As mentioned in section III,
degrees of freedom for the flux function are determined by using both flux nodes and a unit vector at those
flux nodes. Here the interior flux points are chosen such that one point with two mutually orthogonal unit
vectors form two flux nodes, which means two degrees of freedom at each point. For RT1, the two interior
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degrees of freedom are put at the centroid and this was found to be stable. In the case of RT2, there are
six interior degrees of freedom (three points). The position of these three points can be varied linearly by a
scaling parameter α, such that when α = 1 the three points coincide with the corner points and when α = 0
the three points collapse onto the centroid of the triangle. Both α = 1 and α = 0 are excluded since those
configurations lead to singular stencils. If ξei , i = 1, 2, 3 are the 3 vertices of the reference triangle and ξc is
the centroid, then the linear variation of the interior flux points ξi can be written in the form

ξi = ξc + α(ξei − ξc), i = 1, 2, 3. (33)

The maximum eigenvalue of Z is found numerically, considering sufficiently many grid frequencies (σ, κ) and
advection angles θ, for different values of α. Even though Eq. (28) is valid for all θ ∈ [0, π2 ], we consider only
θ ∈ [0, π4 ] due to symmetry. Fig. 1 shows the maximum value of the real part of the eigenvalues (λ) of Z for
different values of the scaling parameter. For α < 0.5, the discretization is unstable for all advection angles
as the real part of the eigenvalues is positive for all angles. This unstable region, where there is positive real
part for the eigenvalues can be observed in the plot as well. Though a stable region can be inferred from
the plot for α ≥ 0.5, there is a region of instability for advection angles close to zero for a range of values of
the scaling parameter α, which is not so obvious from the plot due to low resolution. This unstable region,
where the eigenvalues have very low magnitude positive real part, is shown in Fig. 2 which has a higher
resolution. From the numerical analysis it is found that, if we consider all possible advection angles, the
discretization is stable for all advection angles only for 0.5 ≤ α < 0.521.

The maximum spectral radius of Z, taken over all grid frequencies, is also calculated and is plotted for
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Figure 1. Influence of the scaling parameter α on the spectrum of the Fourier symbol Z for the RT2-based Spectral Difference scheme

different advection angles and scaling parameters (Fig. 3). As shown in the plot, the spectral radius increases
with the scaling parameter for all advection angles. Considering the fact that the smallest spectral radius is
desirable to get the maximum stable CFL number for time integration, and the above observations on the
region of stability, α = 0.5 seems to be the optimal choice for flux node placement for RT2 discretization.
Interestingly, this optimal choice corresponds to using a high-order integration rule in the interior of triangles,
which is exact for polynomials of total degree 2. Similar linear stability analysis11 showed that the 3rd order
traditional Spectral Difference scheme failed in having a stable flux-point distribution, unlike the 3rd order
(RT2) RT -based Spectral Difference scheme.

For RT3, different sets of interior points obtained by varying α did not give any stable discretization.
However, it was found that using the points of a six-point quadrature rule12 results in eigenvalues with
non-positive real parts. Motivated by the finding of such a stable configuration, a stability analysis has
been done to choose the flux points using two scaling parameters α and β. Out of the 6 interior degrees
of freedom, 3 are varied using α and the other 3 are varied using β as follows. If ξei , i = 1, 2, 3 are the 3
vertices of the reference triangle, ξei , i = 4, 5, 6 are the points on the middle of each edge of the reference
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Figure 2. Influence of the scaling parameter α on the spectrum of the Fourier symbol Z for the RT2-based Spectral Difference scheme
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Figure 3. Influence of the scaling parameter α and the advection angle θ (in degrees) on the maximum spectral radius of the Fourier
symbol Z for the RT2-based Spectral Difference scheme

triangle, and ξc is the centroid, then the position of the six interior flux points ξi is varied as

ξi = ξc + α(ξei − ξc), i = 1, 2, 3,

ξi = ξc + β(ξei − ξc), i = 4, 5, 6. (34)

A stable region was found numerically using the above two-parameter scaling, for θ ∈ [0, π4 ], and is shown
in Fig. 4. The shaded region corresponds to the stable region where the eigenvalues are non-positive for all
considered advection angles. The parameter values corresponding to the six-point quadrature rule are high-
lighted in Fig. 4 by a circle. Numerically it was found that the maximum spectral radius of Z monotonically
increases with both α and β. Fig. 5 shows an example for θ = π

8 . Numerical evaluation of the spectral
radius supports the conjecture that the optimal configuration in the stable region, where the spectral radius
is minimum, is actually that obtained by the six-point quadrature rule, although due to finite resolution of
the parameter values and advection angles in this study this cannot be explicitly proven.

Fig. 6 shows the flux node distribution used for RT1, RT2 and RT3 schemes we have used in the present
paper. On the edges, the nodes are placed at the Gauss-Legendre quadrature points.18 Interior points in
the RT2 element correspond to α = 0.5 and those in the RT3 element correspond to the points obtained
using the six-point quadrature rule. Fig. 7 shows the spectrum of the Fourier symbol (Z) for the optimal
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Figure 4. Influence of the scaling parameters α and β on stability of the RT3-based Spectral Difference scheme. Blue circle, which
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Figure 5. Influence of the scaling parameters α and β on the maximum spectral radius of the Fourier symbol Z for the RT3-based
Spectral Difference scheme for θ = π

8

and stable choice of flux nodes for RTm, m = 1, 2, 3 elements for the advection angle θ = 45 degree.

V.B. Linear Stability Analysis for the Full Discretization

Different explicit multistage time discretization methods are used for the time derivative term in Eq. (29).
The stable flux points shown in Fig. 6 are used here for the linear stability analysis for the full discretization.
The amplification factor G, such that Ûn+1 = GÛn, depends on parameters such as the advection angle θ,
the grid frequencies (σ, κ) and the CFL number ν. Using Eq. (18), Ûn+1 is obtained as

w(0) = Ûn,

w(k) =

k−1∑
l=0

αklw
(l) + νβklZw

(l) k = 1, ..., p, (35)

Ûn+1 = w(p).

If G(k) is the amplification matrix in the k-th intermediate step, then one obtains

G(0) = I, G(k) =

k−1∑
l=0

(αklI + νβklZ)G(l) k = 1, ..., p.
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Figure 6. RT1 (top left), RT2 (top right) and RT3 (bottom) Elements
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Figure 7. Spectrum of the Fourier symbol (Z) for the optimal and stable choice of flux nodes for RT1 (top left), RT2 (top right)
and RT3 (bottom) elements for the advection angle θ = 45◦
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G = G(p) is the amplification matrix for the update from Un to Un+1. For a stable discretization, it is
sufficient to have ‖ G ‖≤ 1, where ‖ G ‖ is any p-norm. In that case the Û vector will remain bounded over
iterations, for a bounded initial vector. It is sufficient to have ρ ≤ 1, where ρ is the spectral radius of G.
In other words, for a stable time and space discretization, all the eigenvalues of G must lie inside the unit
circle in the complex plane. We get the maximum allowable CFL numbers by requiring that ρ ≤ 1. Here
ρ is taken as the maximum eigenvalue found from sufficiently many grid frequencies (σ, κ). The maximum
allowable CFL numbers for different time discretization methods are found numerically for different values
of advection angles θ.

It was observed that, for both RT2 and RT3 schemes, Shu-RK2 time discretization (Eqns. (18) and (20)) is
unstable for certain advection angles. Both the Shu-RK3 scheme, (Eqns. (18) and (19)), and the 5-stage 4th
order SSP scheme (Eqns. (18), (21) and (22)), are stable under a CFL condition for all advection angles.
Tables 1 and 2 show the maximum stable CFL numbers for a few advection angles. The spectrum of G for
a (stable) CFL number of 0.170 for θ = 45◦ using Shu-RK3 time stepping on RT2 discretization is shown in
Fig. 8(a). Figure 8(b) shows the spectrum for the same at unstable CFL number of 0.175. The spectrum of
G for a CFL number of 0.125 for θ = 45◦ using Shu-RK2 time stepping on RT2 discretization is shown in
Fig. 9(a). A close view near the right edge of the unit circle as shown in Fig.9(b) shows that there are certain
unstable modes which lie outside the unit circle. This situation, in fact, occurs for all CFL numbers and it
makes the Shu-RK2 time stepping unstable. The CFL numbers for Shu-RK3 and SSP 4th order for RT2

Table 1. CFL number when Shu-RK3 scheme is used for RTm (m = 1, 2 and 3) elements

RTm θ = 0 θ = π/8 θ = π/4

RT1 0.352 0.289 0.281

RT2 0.215 0.182 0.172

RT3 0.140 0.118 0.108

Table 2. CFL number when 4th order SSP scheme is used for RTm (m = 1, 2 and 3) elements

RTm θ = 0 θ = π/8 θ = π/4

RT1 0.564 0.462 0.440

RT2 0.337 0.289 0.281

RT3 0.223 0.194 0.185

(a) Spectrum of G for CFL = 0.170 (b) Spectrum of G for CFL = 0.175

Figure 8. Spectrum of G for different CFL numbers for θ = 45◦ using Shu-RK3 time stepping on RT2 discretization
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(a) Spectrum of G for CFL = 0.125 (b) Close view of the spectrum of G for CFL
= 0.125

Figure 9. Spectrum of G for different CFL numbers for θ = 45◦ using Shu-RK2 time stepping on RT2 discretization

discretization are also plotted in Fig. 10(a). The CFL numbers for the SSP 4th order scheme are roughly
1.6 times those of the Shu-RK3. Fig. 10(b) shows the CFL number normalized with the number of stages
which are 3 for Shu-RK3 and 5 for SSP 4th order. From the figure, it is clear that the computational effort
for both of these time discretization is same as the two curves lie close. However, SSP 4th order scheme has
got one order of accuracy higher than the Shu-RK3. So the SSP 4th order scheme can be considered to have
superior performance compared to Shu-RK3.
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Figure 10. Influence of CFL number on different advection angles for Shu-RK3 and the 4th order SSP time stepping schemes

VI. Convergence Study: 2D Linear Advection Problem

Numerical simulations using the new Spectral Difference scheme have been performed to solve the linear
advection Eq. (27) with ~f(u) = (cxu, cyu), where cx and cy are the advection velocities in the x and y
directions, respectively. The equation is solved for a rectangular domain, [−1, 1] × [−1, 1], with periodic
boundary conditions. The solution field has been initialized at t = 0 as u(x, y) = sin(2π(x + y)). A
convergence study has been conducted using different mesh sizes for the RTm-based Spectral Difference
discretization, where m = 1, 2 and 3. The flux nodes in the reference element are distributed as shown in
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Fig. 6. The advection velocities considered were cx = cos(π8 ) and cy = sin(π8 ). The upwind flux was used as
the numerical flux at the cell interfaces. Time integration was done using Shu-RK3 scheme. The numerical
results were compared with the exact analytic solution which at any time t is given as

u(x, y, t) = u(x− cxt, y − cyt, 0). (36)

Fig. 11 shows the l∞ error at t = 0.1 for different mesh (N) and RT elements in logarithmic scale, where
N = 2

h with h as the characteristic length of the mesh. Tables 3, 4 and 5 show l∞ errors and orders of
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Figure 11. Convergence plot: The variation of l∞ error with different mesh (N) and RT elements in logarithmic scale.

accuracy for different meshes and RT elements. The order of accuracy achieved here for the RTm scheme is
approximately m+ 1, the optimal attainable order for smooth solutions.

Table 3. Order of accuracy and the l∞ error for different meshes for RT1 discretization

N l∞ error Order of accuracy

10 8.64E-2

30 1.05E-2 1.9184

50 3.78E-3 1.9999

80 1.48E-3 1.9950

100 9.47E-4 2.0009

Table 4. Order of accuracy and the l∞ error for different meshes for RT2 discretization

N l∞ error Order of accuracy

10 1.00E-2

30 3.79E-4 2.9790

50 8.23E-5 2.9896

80 2.02E-5 2.9887

100 1.03E-5 3.0184

VII. Numerical Experiments: 2D Euler Equations

We consider the 2D steady Euler equations in the conservative form as

∂f(u)

∂x
+
∂g(u)

∂y
= 0, (37)
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Table 5. Order of accuracy and the l∞ error for different meshes for RT3 discretization

N l∞ error Order of accuracy

10 5.88E-4

30 7.86E-6 3.9276

50 1.07E-6 3.9037

80 1.59E-7 4.0564

100 6.61E-8 3.9335

where u, f and g are given by

u =


ρ

ρu

ρv

E

 f =


ρu

ρu2 + p

ρuv

u (E + p)

 g =


ρv

ρuv

ρv2 + p

v (E + p)

 , (38)

where ρ is the density of the fluid, u is the x velocity, v is the y velocity, p is the pressure, and E is the total
energy. To close the system of equations, we assume the ideal gas for which the relation between pressure
and energy is given as

p = (γ − 1)

(
E − 1

2
ρ
(
u2 + v2

))
, (39)

where γ is the specific heat capacity ratio and is 1.4 for air.
The Euler Eqns. (37) and (38) have been solved numerically on an unstructured grid for the subsonic

steady-state flow over the airfoil NACA0012 using the newly formulated RT -based Spectral Difference
scheme. The surface of the airfoil is approximated by cubic splines. The simulations were done using
2nd order (RT1), 3rd order (RT2) and 4th order (RT3) schemes. The flux nodes in the reference element are
distributed as shown in Fig. 6. The computational mesh (1440 elements) used for the simulation is shown
in Fig. 12. The solution field has been initialized in such a way that both non-dimensional pressure p and
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Figure 12. Computational mesh (1440 elements )

density ρ have value one in the entire domain. The initial values of other solution variables are found from
the free stream Mach number M∞ and the angle of attack α. Slip boundary condition has been used on the
surface of the airfoil and free stream values on the outer boundary. Jameson’s H-CUSP flux19 was used as
the numerical flux at the cell interfaces and it provides appropriate numerical dissipation for the test cases
considered here. So far no limiters or otherwise addition of artificial diffusion has been implemented. Two
test cases are presented below, each with a particular Mach number and angle of attack. In both cases, time
stepping was done using the implicit scheme mentioned in section IV.C. To solve the linear system which
was obtained as a result of implicit discretization, we have used the PETSc library.20 The basic parameters

to solve the linear system using an implicit scheme are the Jacobian matrix dR(U)
dU , the solution methodology

and the preconditioning of the system. The assembly of the Jacobian matrix is straightforward with the
transfer matrix and differentiation matrix available for residual computation. In our implementation we use
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an exact differentiation of the residual in order to allow asymptotic quadratic convergence, once a sufficiently
good solution approximation has been reached. We use a heuristic time step control in the damped Newton
/ backward Euler approach outlined in section IV.C, such that after a small number of start-up iterations
the CFL number of the implicit scheme increases to infinity, as the residual is reduced, and at the same time
the relative accuracy for solution of the linear systems is increased. Furthermore, for small CFL numbers
(typically CFL < 1000), the Jacobian matrix is frozen for a number of iterations (typically 3), while for
larger CFL numbers it is recomputed at each iteration. The preconditioning of the system is done using
Incomplete LU (ILU) factorization,21 typically ILU(2), and the linear system is solved using the restarted
GMRES algorithm,22 where we typically restart after 30 Krylov vectors.

VII.A. Test Case 1: Subsonic Non-Lifting Flow

Here, we consider free stream Mach number M∞ = 0.3 and angle of attack α = 0◦. Fig. 13 shows the decay
of the residual against number of Jacobian (Eqn. (26)) evaluations for RT1, RT2 and RT3 schemes. Note
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Figure 13. Convergence of the residual for RT1,RT2 and RT3 schemes for M∞ = 0.3 and α = 0◦ (Residual vs. Number of Jacobian
evaluations)

that we have not attempted to optimize for run-time, but have rather used the same settings (time step
control, start-up iterations, etc.) for all schemes. It is likely that convergence can be improved by adjusting
parameters, although this is not our aim here. Fig. 14 shows the contours of Mach number around the
airfoil generated using the RT3 scheme. Even with a coarse mesh, the Mach contours are well captured.
Note that our postprocessing renders the solution in each triangle individually, and thus the contour lines
are discontinuous across mesh elements. Smooth contours are thus indicative of adequate resolution. For
validation purposes, Mach number contours generated using a 4th order Discontinuous Galerkin scheme is
shown along with 4th order new Spectral Difference (RT3) in Fig. 15. As one can observe from the figure,
the Mach number contours generated using the new Spectral Difference scheme are very similar to those
generated using the DG method. Fig. 16 shows the Mach number contours around the leading edge of

Figure 14. Mach number contours generated using the RT3 scheme for M∞ = 0.3 and α = 0◦

the airfoil generated using RT1, RT2 and RT3 schemes. It can be observed that the Mach number contours
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Figure 15. Mach number contours generated using 4th order Discontinuous Galerkin (left) and RT3 (right) schemes for M∞ = 0.3
and α = 0◦

are better captured using the RT3 scheme as it has got the solution with the highest polynomial degree
compared to that of RT1 and RT2 schemes.

Figure 16. Mach number contours generated using RT1 (top left), RT2 (top right) and RT3 (bottom) schemes for M∞ = 0.3 and
α = 0◦

VII.B. Test Case 2: Subsonic Lifting Flow

In the second test case, we consider free stream Mach number M∞ = 0.4 and angle of attack α = 5◦. The
computational grid used was the same as in the first test case. Fig. 17 shows the decay of the residual against
number of Jacobian (Eqn. (26)) evaluations for RT1, RT2 and RT3 schemes. Fig. 18 shows the contours
of Mach number around the airfoil generated using the RT3 scheme. The Mach number contours around
the leading edge of the airfoil, generated using RT1, RT2 and RT3 schemes are shown in Fig. 19. Like in
the previous test case, the Mach number contours are smoother for RT3 scheme compared to RT1 and RT2

schemes because of the higher polynomial degree for the interpolation. Mach number contours generated
using 4th order DG scheme are shown along with 4th order new Spectral Difference (RT3) in Fig. 20.
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Figure 17. Convergence of the residual for RT1,RT2 and RT3 schemes for M∞ = 0.4 and α = 5◦ (Residual vs. Number of Jacobian
evaluations)

Figure 18. Mach number contours generated using the RT3 scheme for M∞ = 0.4 and α = 5◦

Figure 19. Mach number contours generated using RT1 (top left), RT2 (top right) and RT3 (bottom) schemes for M∞ = 0.4 and
α = 5◦
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Figure 20. Mach number contours generated using 4th order Discontinuous Galerkin (left) and RT3 (right) schemes for M∞ = 0.4
and α = 5◦

VIII. Conclusions and Future Work

A new variant of the Spectral Difference method which uses Raviart-Thomas elements has been imple-
mented and validated. An existing linear stability analysis study has been extended with an optimal 5 stage
4th order Strong Stability Preserving (SSP) time discretization scheme. The SSP scheme is found to have
better performance when compared with 3rd order Shu-RK3 scheme. Stable flux node configurations for the
4th order new SD scheme have been found based on the linear stability analysis. A convergence study has
been conducted with the new Spectral Difference scheme for a linear advection problem in the 2-dimensional
case. Simulations were done using the 2nd, 3rd and 4th order new Spectral Difference scheme. The results
show that full order of convergence is achieved. This motivated us to perform simulations using the new
scheme for the more complex case of 2D flow over an airfoil. The Euler equations have been solved around the
NACA0012 airfoil for subsonic flow cases. Promising results were obtained using the new Spectral Difference
scheme.

Future work should aim at finding a general set of stable flux nodes for 5th and higher order new
SD schemes. For solving real life compressible fluid flow problems, the scheme should be equipped with
methodologies to deal with discontinuities, like shock waves, in the flow. Furthermore, the scheme needs
to be extended to solve the compressible Navier-Stokes equations. These challenges are left for future
investigations.

IX. Acknowledgments

Financial support from the Deutsche Forschungsgemeinschaft (German Research Association) through
grant GSC 111, and by the Air Force Office of Scientific Research, Air Force Materiel Command, USAF,
under grant number FA8655-08-1-3060, is gratefully acknowledged. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purpose notwithstanding any copyright notation thereon.

References

1Liu, Y., Vinokur, M., and Wang, Z. J., “Spectral Difference method for unstructured grids I: Basic formulation,” J.
Comp. Phys., Vol. 216, No. 2, 2006, pp. 780–801.

2May, G. and Jameson, A., “A Spectral Difference Method for the Euler and Navier-Stokes Equations on Unstructured
Meshes,” AIAA Paper 06-0304, 2006.

3Wang, Z. J., Liu, Y., May, G., and Jameson, A., “Spectral Difference Method for Unstructured Grids II: Extension to
the Euler Equations,” J. Sci. Comput., Vol. 32, No. 1, 2007, pp. 54–71.

4May, G., “On the connection between the Spectral Difference method and the Discontinuous Galerkin method,” Commun.
Comput. Phys., 2010.

5Cockburn, B. and Shu, C. W., “The Runge-Kutta Local Projection P1–Discontinuous–Galerkin Finite Element Method
for Conservation Laws,” M2AN , Vol. 25, No. 3, 1991, pp. 337–361.

6Cockburn, B. and Shu, C. W., “TVB Runge-Kutta Local Projection Discontinuous Galerkin Finite Element Method for
Conservation Laws II: General Framework,” Math. Comp., Vol. 52, No. 186, 1988, pp. 411–435.

7Cockburn, B. and Shu, C. W., “The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion
Systems,” SIAM. J. Numer. Anal., Vol. 35, No. 6, 1998, pp. 2440–2463.

18 of 20

American Institute of Aeronautics and Astronautics



8Cockburn, B. and Shu, S. W., “The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V: Multidi-
mensional Systems,” J. Comp. Phys., Vol. 141, 1998, pp. 199–224.

9Cockburn, B. and Shu, C. W., “Runge-Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems,”
J. Sci. Comp., Vol. 16, No. 3, 2001, pp. 173–261.

10Jameson, A., “A Proof of the Stability of the Spectral Difference Method for All Orders of Accuracy,” J. Sci. Comput.,
DOI 10.1007/s10915-009-9339-4 2009.

11den Abeele, K. V., Lacor, C., and Wang, Z. J., “On the Stability and Accuracy of the Spectral Difference Method,” J.
Sci. Comput., Vol. 37, No. 2, 2008, pp. 162–188.
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Appendix

A. Finding The Transfer Matrix

As given in section II, the solution function is approximated as

uh (ξ) =

Nm∑
j=1

uj lj (ξ) . (40)

If ξ̂j are the solution nodes, then the coefficients are given as uh

(
ξ̂j

)
= uj . If the flux nodes are denoted as

ξ̆k, then the solution variable at flux nodes is given as

uh

(
ξ̆k

)
=

Nm∑
j=1

uj lj

(
ξ̆k

)
. (41)

Here lj

(
ξ̆k

)
, the Lagrangian polynomials evaluated at the flux nodes, are unknowns and are found as given

below using the Dubiner basis functions, χ (ξ), which is a well-known orthogonal basis for triangles.23 The

values of lj

(
ξ̆k

)
can be written in the form of a matrix which is called the transfer matrix. The Dubiner

basis is obtained from the tensor product of Jacobi polynomials which are defined in the 1D interval [-1,1].
These functions can also be expressed in terms of Lagrangian functions as

χ (ξ) =

Nm∑
j=1

χj lj (ξ) , (42)

where χj = χ
(
ξ̂j

)
is evaluated at the solution points. Note that the above equation is an exact relation

as both set of functions form a basis in the same polynomial space. The Dubiner basis functions can be
evaluated at the flux nodes :

χ
(
ξ̆k

)
=

Nm∑
j=1

χj lj

(
ξ̆k

)
. (43)

Since the Dubiner basis functions at the flux nodes χ
(
ξ̆k

)
and those at the solution nodes χ

(
ξ̂j

)
are known,

the transfer matrix lj

(
ξ̆k

)
is obtained by solving the linear system (43) for each distinct flux node ξ̆k. This

transfer matrix is used to find the solution at the flux nodes. Since the mesh elements, including the curved
ones on the boundary, are mapped to the reference element with the same solution and flux node distribution,
the transfer matrix is universal, independent of the cell and so it needs to be stored only once, which is, for
the reference element.

B. Finding The Differentiation Matrix

The vector-valued interpolation basis functions, ~ψk, and their derivatives can be found by using the fact
that any monomial in the Raviart-Thomas (RT ) space can be expressed as a linear combination of those
basis functions.

~φn

(
ξ̂j

)
=

NRTm∑
k=1

an,k ~ψk

(
ξ̂j

)
, (44)

∇ξ · ~φn
(
ξ̂j

)
=

NRTm∑
k=1

an,k

(
∇ξ · ~ψk

)(
ξ̂j

)
, (45)

where an,k = ~φn

(
ξ̆k

)
· sk and ~φn, n = 1, 2, ..., NRT

m are the known monomial basis in the RT space. In

Eq. (45), since the left hand side and an,k are known, the divergence of the basis functions
(
∇ξ · ~ψk

)(
ξ̂j

)
can be obtained by solving the linear system in the same way as for the transfer matrix.
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