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Chapter 1

Introduction

Differential equations are equations for an unknown function involving differential opera-
tors. An ordinary differential equation (ODE) requires differentiation with respect to one
variable. A partial differential equation (PDE) involves partial differentiation with respect
to two or more variables.

1.1 Classification of PDEs

The general form of a linear PDE of second order is: find u : Ω ⊂ Rd → R such that

d∑
i,j=1

− ∂

∂xi

(
ai,j(x)

∂u(x)

∂xj

)
+

d∑
i=1

bi(x)
∂u(x)

∂xi
+ c(x)u(x) = f(x). (1.1)

The coefficients ai,j(x), bi(x), c(x) and the right hand side f(x) are given functions. In
addition, certain type of boundary conditions are required. The behavior of the PDE
depends on the type of the differential operator

L :=
d∑

i,j=1

∂

∂xi
ai,j

∂

∂xj
+

d∑
i=1

bi
∂

∂xi
+ c.

Replace ∂
∂xi

by si. Then
d∑

i,j=1

siai,jsj +
d∑
i=1

bisi + c = 0

describes a quartic shape in Rd. We treat the following cases:

1. In the case of a (positive or negative) definite matrix a = (ai,j) this is an ellipse,
and the corresponding PDE is called elliptic. A simple example is a = I, b = 0, and
c = 0, i..e.

−
∑
i

∂2u

∂x2
i

= f.

7
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Elliptic PDEs require boundary conditions.

2. If the matrix a is semi-definite, has the one-dimensional kernel span{v}, and b ·v 6= 0,
then the shape is a parabola. Thus, the PDE is called parabolic. A simple example
is

−
d−1∑
i=1

∂2u

∂x2
i

+
∂u

∂xd
= f.

Often, the distinguished direction corresponds to time. This type of equation requires
boundary conditiosn on the d−1-dimensional boundary, and initial conditions in the
different direction.

3. If the matrix a has d− 1 positive, and one negative (or vise versa) eigenvalues, then
the shape is a hyperbola. The PDE is called hyperbolic. The simplest one is

−
d−1∑
i=1

∂2u

∂x2
i

+
∂2u

∂x2
d

= f.

Again, the distinguished direction often corresponds to time. Now, two initial con-
ditions are needed.

4. If the matrix a is zero, then the PDE degenerates to the first order PDE

bi
∂u

∂xi
+ cu = f.

Boundary conditions are needed at a part of the boundary.

These cases behave very differently. We will establish theories for the individual cases.
A more general classicfication, for more positive or negative eigenvalues, and systems of
PDEs is possible. The type of the PDE may also change for different points x.

1.2 Weak formulation of the Poisson Equation

The most elementary and thus most popular PDE is the Poisson equation

−∆u = f in Ω, (1.2)

with the boundary conditions

u = uD on ΓD,
∂u
∂n

= g on ΓN ,
∂u
∂n

+ αu = g onΓR.
(1.3)

The domain Ω is an open and bounded subset of Rd, where the problem dimension d is
usually 1, 2 or 3. For d = 1, the equation is not a PDE, but an ODE. The boundary
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Γ := ∂Ω consists of the three non-overlapping parts ΓD, ΓN , and ΓR. The outer unit
normal vector is called n. The Laplace differential operator is ∆ :=

∑d
i=1

∂2

∂x2
i
, the normal

derivative at the boundary is ∂
∂n

:=
∑d

i=1 ni
∂
∂xi

. Given are the functions f , uD and g in
proper function spaces (e.g., f ∈ L2(Ω)). We search for the unknown function u, again, in
a proper function space defined later.

The boundary conditions are called

• Dirichlet boundary condition on ΓD. The function value is prescribed,

• Neumann boundary condition on ΓN . The normal derivative is prescribed,

• Robin boundary condition on ΓR. An affine linear relation between the function
value and the normal derivative is prescribed.

Exactly one boundary condition must be specified on each part of the boundary.

We transform equation (1.2) together with the boundary conditions (1.3) into its weak
form. For this, we multiply (1.2) by smooth functions (called test functions) and integrate
over the domain:

−
∫

Ω

∆uv dx =

∫
Ω

fv dx (1.4)

We do so for sufficiently many test functions v in a proper function space. Next, we apply
Gauss’ theorem

∫
Ω

div p dx =
∫

Γ
p · n ds to the function p := ∇u v to obtain∫

Ω

div(∇u v) dx =

∫
Γ

∇u · n v ds

From the product rule there follows div(∇uv) = ∆uv +∇u · ∇v. Together we obtain∫
Ω

∇u · ∇v dx−
∫

Γ

∂u

∂n
v ds =

∫
Ω

fv dx.

Up to now, we only used the differential equation in the domain. Next, we incorporate
the boundary conditions. The Neumann and Robin b.c. are very natural (and thus are
called natural boundary conditions). We simply replace ∂u

∂n
by g and −αu + g on ΓN and

ΓR, respectively. Putting unknown terms to the left, and known terms to the right hand
side, we obtain∫

Ω

∇u · ∇v dx+

∫
ΓR

αuv ds−
∫

ΓD

∂u

∂n
v ds =

∫
fv dx+

∫
ΓN+ΓR

gv ds.

Finally, we use the information of the Dirichlet boundary condition. We work brute force
and simple keep the Dirichlet condition in strong sense. At the same time, we only allow
test functions v fulfilling v = 0 on ΓD. We obtain the
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Weak form of the Poisson equation:
Find u such that u = uD on ΓD and∫

Ω

∇u · ∇v dx+

∫
ΓR

αuv ds =

∫
Ω

fv dx+

∫
ΓN+ΓR

gv ds (1.5)

∀ v such that v = 0 on ΓD.

We still did not define the function space in which we search for the solution u. A proper
choice is

V := {v ∈ L2(Ω) : ∇u ∈ [L2(Ω)]d and u|Γ ∈ L2(∂Ω)}.

It is a complete space, and, together with the inner product

(u, v)V := (u, v)L2(Ω) + (∇u,∇v)L2(Ω) + (u, v)L2(Γ)

it is a Hilbert space. Now, we see that f ∈ L2(Ω) and g ∈ L2(Γ) is useful. The Dirichlet
b.c. uD must be chosen such that there exists an u ∈ V with u = uD on ΓD. By definition
of the space, all terms are well defined. We will see later, that the problem indeed has a
unique solution in V .

1.3 The Finite Element Method

Now, we are developing a numerical method for approximating the weak form (1.5). For
this, we decompose the domain Ω into triangles T . We call the set T = {T} triangulation.
The set N = {xj} is the set of nodes. By means of this triangulation, we define the finite
element space, Vh:

Vh := {v ∈ C(Ω) : v|T is affine linear ∀T ∈ T }

This is a sub-space of V . The derivatives (in weak sense, see below) are piecewise constant,
and thus, belong to [L2(Ω)]2. The function vh ∈ Vh is uniquely defined by its values v(xj)
in the nodes xj ∈ N . We decompose the set of nodes as

N = ND ∪Nf ,

where ND are the nodes on the Dirichlet boundary, and Nf are all others (f as free). The
finite element approximation is defined as

Find uh such that uh(x) = uD(x) ∀x ∈ ND and∫
Ω

∇uh · ∇vh dx+

∫
ΓR

αuhvh ds =

∫
fvh dx+

∫
ΓN+ΓR

gvh ds (1.6)

∀ vh ∈ Vh such that vh(x) = 0 ∀x ∈ ND
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Now it is time to choose a basis for Vh. The most convenient one is the nodal basis
{ϕi} characterized as

ϕi(xj) = δi,j. (1.7)

The Kronecker-δ is defined to be 1 for i = j, and 0 else. These are the popular hat
functions. We represent the finite element solution with respect to this basis:

uh(x) =
∑

uiϕi(x) (1.8)

By the nodal-basis property (1.7) there holds uh(xj) =
∑

i uiϕi(xj) = uj. We have to
determine the coefficients ui ∈ RN , with N = |N |. The ND := |ND| values according to
nodes on ΓD are given explicitely:

uj = uh(xj) = uD(xj) ∀xj ∈ ΓD

The others have to be determined from the variational equation (1.6). It is equivalent to
fulfill (1.6) for the whole space {vh ∈ Vh : vh(x) = 0 ∀ xj ∈ ND}, or just for its basis
{ϕi : xi ∈ Nf} associated to the free nodes:

∑
i

{∫
Ω

∇ϕi ·∇ϕj dx+

∫
ΓR

αϕiϕj ds
}
ui =

∫
fϕj dx+

∫
ΓN+ΓR

gϕj ds (1.9)

∀ϕj such that xj ∈ Nf
We have inserted the basis expansion (1.8). We define the matrix A = (Aji) ∈ RN×N and
the vector f = (fj) ∈ RN as

Aji :=

∫
Ω

∇ϕi · ∇ϕj dx+

∫
ΓR

αϕiϕj ds,

fj :=

∫
fϕj dx+

∫
ΓN+ΓR

gϕj ds.

According to Dirichlet- and free nodes they are splitted as

A =

(
ADD ADD
AfD Aff

)
and f =

(
fD
ff

)
.

Now, we obtain the system of linear equations for u = (ui) ∈ RN , u = (uD, uf ):(
I 0

AfD Aff

)(
uD
uf

)
=

(
uD
ff

)
. (1.10)

At all, we have N coefficients ui. ND are given explicitely from the Dirichlet values. These
are Nf equations to determine the remaining ones. Using the known uD, we can reformulate
it as symmetric system of equations for uf ∈ RNf :

Affuf = ff − AfDuD
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Chapter 2

The abstract theory

In this chapter we develop the abstract framework for variational problems.

2.1 Basic properties

Definition 1. A vector space V is a set with the operations + : V × V → V and
· : R× V → V such that for all u, v ∈ V and λ, µ ∈ R there holds

• u+ v = v + u

• (u+ v) + w = u+ (v + w)

• λ · (u+ v) = λ · u+ λ · v, (λ+ µ) · u = λ · u+ µ · u

Examples are Rn, the continuous functions C0, or the Lebesgue space L2.

Definition 2. A normed vector space (V, ‖ · ‖) is a vector space with the operation ‖.‖ :
V → R being a norm, i.e., for u, v ∈ V and λ ∈ R there holds

• ‖u+ v‖ ≤ ‖u‖+ ‖v‖

• ‖λu‖ = |λ| ‖u‖

• ‖u‖ = 0⇔ u = 0

Examples are (C0, ‖ · ‖sup), or (C0, ‖ · ‖L2).

Definition 3. In a complete normed vector space, Cauchy sequences (un) ∈ V N converge
to an u ∈ V . A complete normed vector space is called Banach space.

Examples of Banach spaces are (L2, ‖ · ‖L2), (C0, ‖ · ‖sup), but not (C0, ‖ · ‖L2).

Definition 4. The closure of a normed vector-space (W, ‖ · ‖V ), denoted as W
‖·‖V

is the
smallest complete space containing W .

13
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Example: C
‖·‖L2 = L2.

Definition 5. A functional or a linear form l(·) on V is a linear mapping l(·) : V → R.
The canonical norm for linear forms is the dual norm

‖l‖V ∗ := sup
0 6=v∈V

l(v)

‖v‖
.

A linear form l is called bounded if the norm is finite. The vector space of all bounded
linear forms on V is called the dual space V ∗.

An example for a bounded linear form is l(·) : L2 → R : v →
∫
v dx.

Definition 6. A bilinear form A(·, ·) on V is a mapping A : V × V → R which is linear
in u and in v. It is called symmetric if A(u, v) = A(v, u) for all u, v ∈ V .

Examples are the bilinear form A(u, v) =
∫
uv dx on L2, or A(u, v) := uTAv on Rn, where

A is a (symmetric) matrix.

Definition 7. A symmetric bilinear form A(·, ·) is called an inner product if it satisfies

• (v, v) ≥ 0 ∀ v ∈ V

• (v, v) = 0⇔ v = 0

Often, is is denoted as (·, ·)A, (·, ·)V , or simply (·, ·).

An examples on R is uTAv, where A is a symmetric and positive definite matrix.

Definition 8. An inner product space is a vector space V together with an inner product
(·, ·)V .

Lemma 9. Cauchy Schwarz inequality. If A(·, ·) is a symmetric bilinear form such
that A(v, v) ≥ 0 for all v ∈ V , then there holds

A(u, v) ≤ A(u, u)1/2A(v, v)1/2

Proof: For t ∈ R there holds

0 ≤ A(u− tv, u− tv) = A(u, u)− 2tA(u, v) + t2A(v, v)

If A(v, v) = 0, then A(u, u)− 2tA(u, v) ≥ 0 for all t ∈ R, which forces A(u, v) = 0, and the
inequality holds trivially. Else, if A(v, v) 6= 0, set t = A(u, v)/A(v, v), and obtain

0 ≤ A(u, u)− A(u, v)2/A(v, v),

which is equivalent to the statement. 2

Lemma 10. ‖v‖V := (v, v)
1/2
V defines a norm on the inner product space (V, (·, ·)V ).
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Definition 11. An inner product space (V, (·, ·)V ) which is complete with respect to ‖ · ‖V
is called a Hilbert space.

Definition 12. A closed subspace S of an Hilbert space V is a subset which is a vector
space, and which is complete with respect to ‖ · ‖V .

A finite dimensional subspace is always a closed subspace.

Lemma 13. Let T be a continuous linear operator from the Hilbert space V to the Hilbert
space W . The kernel of T , kerT := {v ∈ V : Tv = 0} is a closed subspace of V .

Proof: First we observe that kerT is a vector space. Now, let (un) ∈ kerTN converge
to u ∈ V . Since T is continuous, Tun → Tu, and thus Tu = 0 and u ∈ kerT . 2

Lemma 14. Let S be a subspace (not necessarily closed) of V . Then

S⊥ := {v ∈ V : (v, w) = 0 ∀w ∈ S}

is a closed subspace.

The proof is similar to Lemma 13.

Definition 15. Let V and W be vector spaces. A linear operator T : V → W is a linear
mapping from V to W . The operator is called bounded if its operator-norm

‖T‖V→W := sup
0 6=v∈V

‖Tv‖W
‖v‖V

is finite.

An example is the differential operator on the according space d
dx

: (C1(0, 1), ‖ · ‖sup +
‖ d
dx
· ‖sup)→ (C(0, 1), ‖ · ‖sup).

Lemma 16. A bounded linear operator is continuous.

Proof. Let vn → v, i.e. ‖vn − v‖V → 0. Then ‖Tvn − Tv‖ ≤ ‖T‖V→W‖vn − v‖V converges
to 0, i.e. Tvn → Tv. Thus T is continuous.

Definition 17. A dense subspace S of V is such that every element of V can be ap-
proximated by elements of S, i.e.

∀ε > 0∀u ∈ V ∃v ∈ S such that ‖u− v‖V ≤ ε.

Lemma 18 (extension principle). Let S be a dense subspace of the normed space V , and
let W be a complete space. Let T : S → W be a bounded linear operator with respect to the
norm ‖T‖V→W . Then, the operator can be uniquely extended onto V .
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Proof. Let u ∈ V , and let vn be a sequence such that vn → u. Thus, vn is Cauchy. Tvn
is a well defined sequence in W . Since T is continuous, Tvn is also Cauchy. Since W
is complete, there exists a limit w such that Tvn → w. The limit is independent of the
sequence, and thus Tu can be defined as the limit w.

Definition 19. A bounded linear operator T : V → W is called compact if for every
bounded sequence (un) ∈ V N, the sequence (Tun) contains a convergent sub-sequence.

Lemma 20. Let V,W be Hilbert spaces. A operator is compact if and only if there exists
a complete orthogonal system (un) and values λn → 0 such that

(un, um)V = δn,m (Tun, Tum)W = λnδn,m

This is the eigensystem of the operator K : V → V ∗ : u 7→ (Tu, T ·)W .

Proof. (sketch) There exists an maximizing element of (Tv,Tv)W
(v,v)V

. Scale it to ‖v‖V = 1

and call it u1, and λ1 = (Tu1,Tu1)W
(u1,u1)V

. Repeat the procedure on the V -complement of u1 to
generate u2, and so on.

2.2 Projection onto subspaces

In the Euklidean space R2 one can project orthogonally onto a line through the origin, i.e.,
onto a sub-space. The same geometric operation can be defined for closed subspaces of
Hilbert spaces.

Theorem 21. Let S be a closed subspace of the Hilbert space V . Let u ∈ V . Then there
exists a unique closest point u0 ∈ S:

‖u− u0‖ ≤ ‖u− v‖ ∀ v ∈ V

There holds
u− u0⊥S

Proof: Let d := infv∈S ‖u−v‖, and let (vn) be a minimizing sequence such that ‖u−vn‖ → d.
We first check that there holds

‖vn − vm‖2 = 2 ‖vn − u‖2 + 2 ‖vm − u‖2 − 4 ‖1/2(vn + vm)− u‖2.

Since 1/2(vn+vm) ∈ S, there holds ‖1/2(vn+vm)−u‖ ≥ d. We proof that (vn) is a Cauchy
sequence: Fix ε > 0, choose N ∈ N such that for n > N there holds ‖u− vn‖2 ≤ d2 + ε2.
Thus for all n,m > N there holds

‖vn − vm‖2 ≤ 2(d2 + ε2) + 2(d2 + ε2)− 4d2 = 4ε2.

Thus, vn converge to some u0 ∈ V . Since S is closed, u0 ∈ S. By continuity of the norm,
‖u− u0‖ = d.
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Fix some arbitrary w ∈ S, and define ϕ(t) := ‖u−u0 − tw︸ ︷︷ ︸
∈S

‖2. ϕ(·) is a convex function,

it takes its unique minimum d at t = 0. Thus

0 =
dϕ(t)

dt
|t=0 = {2(u− u0, w)− 2t(w,w)}|t=0 = 2(u− u0, w)

We obtained u− u0⊥S. If there were two minimizers u0 6= u1, then u0 − u1 = (u0 − u)−
(u1 − u)⊥S and u0 − u1 ∈ S, which implies u0 − u1 = 0, a contradiction. 2

Theorem 21 says that given an u ∈ V , we can uniquely decompose it as

u = u0 + u1, u0 ∈ S u1 ∈ S⊥

This allows to define the operators PS : V → S and P⊥S : V → S⊥ as

PSu := u0 P⊥S u := (I − PS)u = u1

Theorem 22. PS and P⊥S are linear operators.

Definition 23. A linear operator P is called a projection if P 2 = P . A projector is
called orthogonal, if (Pu, v) = (u, Pv).

Lemma 24. The operators PS and P⊥S are both orthogonal projectors.

Proof: For u ∈ S there holds Pu = u. Since Pu ∈ S, there holds P 2u = Pu. It is
orthogonal since

(Pu, v) = (Pu, v − Pv + Pv) = ( Pu︸︷︷︸
∈S

, v − Pv︸ ︷︷ ︸
∈S⊥

) + (Pu, Pv) = (Pu, Pv).

With the same argument there holds (u, Pv) = (Pu, Pv). The co-projector P⊥S = I − PS
is a projector since

(I − PS)2 = I − 2PS + P 2
S = I − PS.

It is orthogonal since ((I −PS)u, v) = (u, v)− (Psu, v) = (u, v)− (u, PSv) = (u, (I −PS)v)
2

2.3 Riesz Representation Theorem

Let u ∈ V . Then, we can define the related continuous linear functional lu(·) ∈ V ∗ by

lu(v) := (u, v)V ∀ v ∈ V.

The opposite is also true:
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Theorem 25. Riesz Representation Theorem. Any continuous linear functional l on
a Hilbert space V can be represented uniquely as

l(v) = (ul, v) (2.1)

for some ul ∈ V . Furthermore, we have

‖l‖V ∗ = ‖ul‖V .

Proof: First, we show uniqueness. Assume that u1 6= u2 both fulfill (2.1). This leads to
the contradiction

0 = l(u1 − u2)− l(u1 − u2)

= (u1, u1 − u2)− (u2, u1 − u2) = ‖u1 − u2‖2.

Next, we construct the ul. For this, define S := ker l. This is a closed subspace.
Case 1: S⊥ = {0}. Then, S = V , i.e., l = 0. So take ul = 0.
Case 2: S⊥ 6= {0}. Pick some 0 6= z ∈ S⊥. There holds l(z) 6= 0 (otherwise, z ∈ S ∩ S⊥ =
{0}). Now define

ul :=
l(z)

‖z‖2
z ∈ S⊥

Then

(ul, v) = ( ul︸︷︷︸
S⊥

, v − l(v)/l(z)z︸ ︷︷ ︸
S

) + (ul, l(v)/l(z)z)

= l(z)/‖z‖2(z, l(v)/l(z)z)

= l(v)

Finally, we prove ‖l‖V ∗ = ‖ul‖V :

‖l‖V ∗ = sup
06=v∈V

l(v)

‖v‖
= sup

v

(ul, v)V
‖v‖V

≤ ‖ul‖V

and

‖u‖ =
l(z)

‖z‖2
‖z‖ =

l(z)

‖z‖
≤ ‖l‖V ∗ .

2.4 Symmetric variational problems

Take the function space C1(Ω), and define the bilinear form

A(u, v) :=

∫
Ω

∇u∇v +

∫
Γ

uv ds
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and the linear form

f(v) :=

∫
Ω

fv dx

The bilinear form is non-negative, and A(u, u) = 0 implies u = 0. Thus A(·, ·) is an inner
product, and provides the norm ‖v‖A := A(v, v)1/2. The normed vector space (C1, ‖.‖A) is
not complete. Define

V := C1(Ω)
‖.‖A

,

which is a Hilbert space per definition. If we can show that there exists a constant c such
that

f(v) =

∫
Ω

fv dx ≤ c‖v‖A ∀ v ∈ V

then f(.) is a continuous linear functional on V . We will prove this later. In this case, the
Riesz representation theorem tells that there exists an unique u ∈ V such that

A(u, v) = f(v).

This shows that the weak form has a unique solution in V .
Next, take the finite dimensional (⇒ closed) finite element subspace Vh ⊂ V . The finite

element solution uh ∈ Vh was defined by

A(uh, vh) = f(vh) ∀ vh ∈ Vh,

This means

A(u− uh, vh) = A(u, vh)− A(uh, vh) = f(vh)− f(vh) = 0

uh is the projection of u onto Vh, i.e.,

‖u− uh‖A ≤ ‖u− vh‖A ∀ vh ∈ Vh

The error u− uh is orthogonal to Vh.

2.5 Coercive variational problems

In this chapter we discuss variational problems posed in Hilbert spaces. Let V be a Hilbert
space, and let A(·, ·) : V × V → R be a bilinear form which is

• coercive (also known as elliptic)

A(u, u) ≥ α1‖u‖2
V ∀u ∈ V, (2.2)

• and continuous

A(u, v) ≤ α2‖u‖V ‖v‖V ∀u, v ∈ V, (2.3)
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with bounds α1 and α2 in R+. It is not necessarily symmetric. Let f(.) : V → R be a
continuous linear form on V , i.e.,

f(v) ≤ ‖f‖V ∗‖v‖V .

We are posing the variational problem: find u ∈ V such that

A(u, v) = f(v) ∀ v ∈ V.

Example 26. Diffusion-reaction equation:

Consider the PDE
− div(a(x)∇u) + c(x)u = f in Ω,

with Neumann boundary conditions. Let V be the Hilbert space generated by the inner
product (u, v)V := (u, v)L2 + (∇u,∇v)L2 . The variational formulation of the PDE involves
the bilinear form

A(u, v) =

∫
Ω

(a(x)∇u) · ∇v dx+

∫
Ω

c(x)uv dx.

Assume that the coefficients a(x) and c(x) fulfill a(x) ∈ Rd×d, a(x) symmetric and λ1 ≤
λmin(a(x)) ≤ λmax(a(x)) ≤ λ2, and c(x) such that γ1 ≤ c(x) ≤ γ2 almost everywhere. Then
A(·, ·) is coercive with constant α1 = min{λ1, γ1} and α2 = max{λ2, γ2}.

Example 27. Diffusion-convection-reaction equation:

The partial differential equation

−∆u+ b · ∇u+ u = f in Ω

with Dirichlet boundary conditions u = 0 on ∂Ω leads to the bilinear form

A(u, v) =

∫
∇u∇v dx+

∫
b · ∇u v dx+

∫
uv dx.

If div b ≤ 0, what is an important case arising from incompressible flow fields (div b = 0),
then A(·, ·) is coercive and continuous w.r.t. the same norm as above.

Instead of the linear form f(·), we will often write f ∈ V ∗. The evaluation is written
as the duality product

〈f, v〉V ∗×V = f(v).

Lemma 28. A continuous bilinear form A(·, ·) : V × V → R induces a continuous linear
operator A : V → V ∗ via

〈Au, v〉 = A(u, v) ∀u, v ∈ V.

The operator norm ‖A‖V→V ∗ is bounded by the continuity bound α2 of A(·, ·).
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Proof: For every u ∈ V , A(u, ·) is a bounded linear form on V with norm

‖A(u, ·)‖V ∗ = sup
v∈V

A(u, v)

‖v‖V
≤ sup

v∈V

α2‖u‖V ‖v‖V
‖v‖V

= α2‖u‖V

Thus, we can define the operator A : u ∈ V → A(u, ·) ∈ V ∗. It is linear, and its operator
norm is bounded by

‖A‖V→V ∗ = sup
u∈V

‖Au‖V ∗
‖u‖V

= sup
u∈V

sup
v∈V

〈Au, v〉V ∗×V
‖u‖V ‖v‖V

= sup
u∈V

sup
v∈V

A(u, v)

‖u‖V ‖v‖V
≤ sup

u∈V
sup
v∈V

α2‖u‖V ‖v‖V
‖u‖V ‖v‖V

= α2.

2

Using this notation, we can write the variational problem as operator equation: find
u ∈ V such that

Au = f (in V ∗).

Theorem 29 (Banach’s contraction mapping theorem). Given a Banach space V and a
mapping T : V → V , satisfying the Lipschitz condition

‖T (v1)− T (v2)‖ ≤ L ‖v1 − v2‖ ∀ v1, v2 ∈ V

for a fixed L ∈ [0, 1). Then there exists a unique u ∈ V such that

u = T (u),

i.e. the mapping T has a unique fixed point u. The iteration u1 ∈ V given, compute

uk+1 := T (uk)

converges to u with convergence rate L:

‖u− uk+1‖ ≤ L‖u− uk‖

Theorem 30 (Lax Milgram). Given a Hilbert space V , a coercive and continuous bilinear
form A(·, ·), and a continuous linear form f(.). Then there exists a unique u ∈ V solving

A(u, v) = f(v) ∀ v ∈ V.

There holds
‖u‖V ≤ α−1

1 ‖f‖V ∗ (2.4)

Proof: Start from the operator equation Au = f . Let JV : V ∗ → V be the Riesz
isomorphism defined by

(JV g, v)V = g(v) ∀ v ∈ V, ∀ g ∈ V ∗.
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Then the operator equation is equivalent to

JVAu = JV f (in V ),

and to the fixed point equation (with some 0 6= τ ∈ R chosen below)

u = u− τJV (Au− f). (2.5)

We will verify that
T (v) := v − τJV (Av − f)

is a contraction mapping, i.e., ‖T (v1)−T (v2)‖V ≤ L‖v1−v2‖V with some Lipschitz constant
L ∈ [0, 1). Let v1, v2 ∈ V , and set v = v1 − v2. Then

‖T (v1)− T (v2)‖2
V = ‖{v1 − τJV (Av1 − f)} − {v2 − τJV (Av2 − f)}‖2

V

= ‖v − τJVAv‖2
V

= ‖v‖2
V − 2τ(JVAv, v)V + τ 2‖JVAv‖2

V

= ‖v‖2
V − 2τ 〈Av, v〉+ τ 2‖Av‖2

V ∗

= ‖v‖2
V − 2τA(v, v) + τ 2‖Av‖2

V ∗

≤ ‖v‖2
V − 2τα1‖v‖2

V + τ 2α2
2‖v‖2

V

= (1− 2τα1 + τ 2α2
2)‖v1 − v2‖2

V

Now, we choose τ = α1/α
2
2, and obtain a Lipschitz constant

L2 = 1− α2
1/α

2
2 ∈ [0, 1).

Banach’s contraction mapping theorem state that (2.5) has a unique fixed point. Finally,
we obtain the bound (2.4) from

‖u‖2
V ≤ α−1

1 A(u, u) = α−1
1 f(u) ≤ α−1

1 ‖f‖V ∗‖u‖V ,

and dividing by one factor ‖u‖. 2

2.5.1 Approximation of coercive variational problems

Now, let Vh be a closed subspace of V . We compute the approximation uh ∈ Vh by the
Galerkin method

A(uh, vh) = f(vh) ∀ vh ∈ Vh. (2.6)

This variational problem is uniquely solvable by Lax-Milgram, since, (Vh, ‖.‖V ) is a Hilbert
space, and continuity and coercivity on Vh are inherited from the original problem on V .

The next theorem says, that the solution defined by the Galerkin method is, up to a
constant factor, as good as the best possible approximation in the finite dimensional space.

Theorem 31 (Cea). The approximation error of the Galerkin method is quasi optimal

‖u− uh‖V ≤ α2/α1 inf
v∈Vh
‖u− vh‖V
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Proof: A fundamental property is the Galerkin orthogonality

A(u− uh, wh) = A(u,wh)− A(uh, wh) = f(wh)− f(wh) = 0 ∀wh ∈ Vh.

Now, pick an arbitrary vh ∈ Vh, and bound

‖u− uh‖2
V ≤ α−1

1 A(u− uh, u− uh)
= α−1

1 A(u− uh, u− vh) + α−1
1 A(u− uh, vh − uh︸ ︷︷ ︸

∈Vh

)

≤ α2/α1 ‖u− uh‖V ‖u− vh‖V .

Divide one factor ‖u− uh‖. Since vh ∈ Vh was arbitrary, the estimation holds true also for
the infimum in Vh. 2

If A(·, ·) is additionally symmetric, then it is an inner product. In this case, the coer-
civity and continuity properties are equivalent to to

α1‖u‖2
V ≤ A(u, u) ≤ α2 ‖u‖2

V ∀u ∈ V.

The generated norm ‖.‖A is an equivalent norm to ‖.‖V . In the symmetric case, we can
use the orthogonal projection with respect to (., .)A to improve the bounds to

‖u− uh‖2
V ≤ α−1

1 ‖u− uh‖2
A ≤ α−1

1 inf
vh∈Vh

‖u− vh‖2
A ≤ α2/α1‖u− vh‖2

V .

The factor in the quasi-optimality estimate is now the square root of the general, non-
symmetric case.

2.6 Inf-sup stable variational problems

The coercivity condition is by no means a necessary condition for a stable solvable system.
A simple, stable problem with non-coercive bilinear form is to choose V = R2, and the
bilinear form B(u, v) = u1v1−u2v2. The solution of B(u, v) = fTv is u1 = f1 and u2 = −f2.
We will follow the convention to call coercive bilinear forms A(·, ·), and the more general
ones B(·, ·).

Let V and W be Hilbert spaces, and B(·, ·) : V ×W → R be a continuous bilinear form
with bound

B(u, v) ≤ β2‖u‖V ‖v‖W ∀u ∈ V, ∀ v ∈ W. (2.7)

The general condition is the inf-sup condition

inf
u∈V
u6=0

sup
v∈W
v 6=0

B(u, v)

‖u‖V ‖v‖W
≥ β1. (2.8)
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Define the linear operator B : V → W ∗ by 〈Bu, v〉W ∗×W = B(u, v). The inf-sup
condition can be reformulated as

sup
v∈W

〈Bu, v〉
‖v‖W

≥ β1‖u‖V , ∀u ∈ V

and, using the definition of the dual norm,

‖Bu‖W ∗ ≥ β1‖u‖V . (2.9)

We immediately obtain that B is one to one, since

Bu = 0⇒ u = 0

Lemma 32. Assume that the continuous bilinear form B(·, ·) fulfills the inf-sup condition
(2.8). Then the according operator B has closed range.

Proof: Let Bun be a Cauchy sequence in W ∗. From (2.9) we conclude that also un is
Cauchy in V . Since V is complete, un converges to some u ∈ V . By continuity of B, the
sequence Bun converges to Bu ∈ W ∗. 2

The inf-sup condition (2.8) does not imply that B is onto W ∗. To insure that, we can
pose an inf-sup condition the other way around:

inf
v∈W
v 6=0

sup
u∈V
u6=0

B(u, v)

‖u‖V ‖v‖W
≥ β1. (2.10)

It will be sufficient to state the weaker condition

sup
u∈V
u6=0

B(u, v)

‖u‖V ‖v‖W
> 0 ∀ v ∈ W. (2.11)

Theorem 33. Assume that the continuous bilinear form B(·, ·) fulfills the inf-sup condition
(2.8) and condition (2.11). Then, the variational problem: find u ∈ V such that

B(u, v) = f(v) ∀ v ∈ W (2.12)

has a unique solution. The solution depends continuously on the right hand side:

‖u‖V ≤ β−1
1 ‖f‖W ∗

Proof: We have to show that the range R(B) = W ∗. The Hilbert space W ∗ can be split
into the orthogonal, closed subspaces

W ∗ = R(B)⊕R(B)⊥.

Assume that there exists some 0 6= g ∈ R(B)⊥. This means that

(Bu, g)W ∗ = 0 ∀u ∈ V.
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Let vg ∈ W be the Riesz representation of g, i.e., (vg, w)W = g(w) for all w ∈ W . This vg
is in contradiction to the assumption (2.11)

sup
u∈V

B(u, vg)

‖u‖V
= sup

u∈V

(Bu, g)W ∗

‖u‖V
= 0.

Thus, R(B)⊥ = {0} and R(B) = W ∗. 2

Example 34. A coercive bilinear form is inf-sup stable.

Example 35. A complex symmetric variational problem:

Consider the complex valued PDE

−∆u+ iu = f,

with Dirichlet boundary conditions, f ∈ L2, and i =
√
−1. The weak form for the real

system u = (ur, ui) ∈ V 2 is

(∇ur,∇vr)L2 + (ui, vr)L2 = (f, vr) ∀ vr ∈ V
(ur, vi)L2 − (∇ui,∇vi)L2 = −(f, vi) ∀ vi ∈ V

(2.13)

We can add up both lines, and define the large bilinear form B(·, ·) : V 2 × V 2 → R by

B((ur, ui), (vr, vi)) = (∇ur,∇vr) + (ui, vr) + (ur, vi)− (∇ui,∇vi)

With respect to the norm ‖v‖V = (‖v‖2
L2

+‖∇v‖2
L2

)1/2, the bilinear form is continuous, and
fulfills the inf-sup conditions (exercises !) Thus, the variational formulation: find u ∈ V 2

such that
B(u, v) = (f, vr)− (f, vi) ∀ v ∈ V 2

is stable solvable.

2.6.1 Approximation of inf-sup stable variational problems

Again, to approximate (2.12), we pick finite dimensional subspaces Vh ⊂ V and Wh ⊂ W ,
and pose the finite dimensional variational problem: find uh ∈ Vh such that

B(uh, vh) = f(vh) ∀ vh ∈ Wh.

But now, in contrast to the coercive case, the solvability of the finite dimensional equation
does not follow from the solvability conditions of the original problem on V ×W . E.g.,
take the example in R2 above, and choose the subspaces Vh = Wh = span{(1, 1)}.

We have to pose an extra inf-sup condition for the discrete problem:

inf
uh∈Vh
uh 6=0

sup
vh∈Wh
vh 6=0

B(uh, vh)

‖uh‖V ‖vh‖W
≥ β1h. (2.14)

On a finite dimensional space, one to one is equivalent to onto, and we can skip the second
condition.
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Theorem 36. Assume that B(·, ·) is continuous with bound β2, and B(·, ·) fulfills the
discrete inf-sup condition with bound β1. Then there holds the quasi-optimal error estimate

‖u− uh‖ ≤ (1 + β2/β1) inf
vh∈Vh

‖u− vh‖ (2.15)

Proof: Again, there holds the Galerkin orthogonality B(u,wh) = B(uh, wh) for all wh ∈ Vh.
Again, choose an arbitrary vh ∈ Vh:

‖u− uh‖V ≤ ‖u− vh‖V + ‖vh − uh‖V

≤ ‖u− vh‖V + β−1
1h sup

wh∈Wh

B(vh − uh, wh)
‖wh‖V

= ‖u− vh‖V + β−1
1h sup

wh∈Wh

B(vh − u,wh)
‖wh‖V

≤ ‖u− vh‖V + β−1
1h sup

wh∈Wh

β2‖vh − u‖V ‖wh‖W
‖wh‖W

= (1 + β2/β1h)‖u− vh‖V .



Chapter 3

Sobolev Spaces

In this section, we introduce the concept of generalized derivatives, we define families of
normed function spaces, and prove inequalities between them. Let Ω be an open subset of
Rd, either bounded or unbounded.

3.1 Generalized derivatives

Let α = (α1, . . . , αd) ∈ Nd
0 be a multi-index, |α| =

∑
αi, and define the classical differential

operator for functions in C∞(Ω)

Dα =

(
∂

∂x1

)α1

· · ·
(

∂

∂xn

)αd
.

For a function u ∈ C(Ω), the support is defined as

supp{u} := {x ∈ Ω : u(x) 6= 0}.

This is a compact set if and only if it is bounded. We say u has compact support in Ω, if
suppu ⊂ Ω. If Ω is a bounded domain, then u has compact support in Ω if and only if u
vanishes in a neighbourhood of ∂Ω.

The space of smooth functions with compact support is denoted as

D(Ω) := C∞0 (Ω) := {u ∈ C∞(Ω) : u has compact support in Ω}. (3.1)

For a smooth function u ∈ C |α|(Ω), there holds the formula of integration by parts∫
Ω

Dαuϕ dx = (−1)|α|
∫

Ω

uDαϕdx ∀ϕ ∈ D(Ω). (3.2)

The L2 inner product with a function u in C(Ω) defines the linear functional on D

u(ϕ) := 〈u, ϕ〉D′×D :=

∫
Ω

uϕ dx.

27
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We call these functionals in D′ distributions. When u is a function, we identify it with
the generated distribution. The formula (3.2) is valid for functions u ∈ Cα. The strong
regularity is needed only on the left hand side. Thus, we use the less demanding right hand
side to extend the definition of differentiation for distributions:

Definition 37. For u ∈ D′, we define g ∈ D′ to be the generalized derivative Dα
g u of u by

〈g, ϕ〉D′×D = (−1)|α| 〈u,Dαϕ〉D′×D ∀ϕ ∈ D

If u ∈ Cα, then Dα
g coincides with Dα.

The function space of locally integrable functions on Ω is called

Lloc1 (Ω) = {u : uK ∈ L1(K) ∀ compact K ⊂ Ω}.

It contains functions which can behave very badly near ∂Ω. E.g., ee
1/x

is in L1
loc(0, 1). If Ω

is unbounded, then the constant function 1 is in Lloc1 , but not in L1.

Definition 38. For u ∈ Lloc1 , we call g the weak derivative Dα
wu, if g ∈ Lloc1 satisfies∫

Ω

g(x)ϕ(x) dx = (−1)|α|
∫

Ω

u(x)Dαϕ(x) dx ∀ϕ ∈ D.

The weak derivative is more general than the classical derivative, but more restrictive
than the generalized derivative.

Example 39. Let Ω = (−1, 1) and

u(x) =

{
1 + x x ≤ 0
1− x x > 0

}
Then,

g(x) =

{
1 x ≤ 0
−1 x > 0

}
is the first generalized derivative D1

g of u, which is also a weak derivative. The second
generalized derivative h is

〈h, ϕ〉 = −2ϕ(0) ∀ϕ ∈ D

It is not a weak derivative.

In the following, we will focus on weak derivatives. Unless it is essential we will skip
the sub-scripts w and g.
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3.2 Sobolev spaces

For k ∈ N0 and 1 ≤ p <∞, we define the Sobolev norms

‖u‖Wk
p (Ω) :=

∑
|α|≤k

‖Dαu‖pLp

1/p

,

for k ∈ N0 we set
‖u‖Wk

∞(Ω) := max
|α|≤k
‖Dαu‖L∞ .

In both cases, we define the Sobolev spaces via

W k
p (Ω) = {u ∈ Lloc1 : ‖u‖Wk

p
<∞}

In the previous chapter we have seen the importance of complete spaces. This is the
case for Sobolev spaces:

Theorem 40. The Sobolev space W k
p (Ω) is a Banach space.

Proof: Let vj be a Cauchy sequence with respect to ‖ · ‖Wk
p
. This implies that Dαvj is a

Cauchy sequence in Lp, and thus converges to some vα in ‖.‖Lp .
We verify that Dαvj → vα implies

∫
Ω
Dαvjϕdx →

∫
Ω
vαϕdx for all ϕ ∈ D. Let K be

the compact support of ϕ. There holds∫
Ω

(Dαvj − vα)ϕdx =

∫
K

(Dαvj − vα)ϕdx

≤ ‖Dαvj − vα‖L1(K)‖ϕ‖L∞
≤ ‖Dαvj − vα‖Lp(K)‖ϕ‖L∞ → 0

Finally, we have to check that vα is the weak derivative of v:∫
vαϕdx = lim

j→∞

∫
Ω

Dαvjϕdx

= lim
j→∞

(−1)|α|
∫

Ω

vjD
αϕdx =

= (−1)α
∫

Ω

vDαϕdx.

2

An alternative definition of Sobolev spaces were to take the closure of smooth functions
in the domain, i.e.,

W̃ k
p := {C∞(Ω) : ‖.‖Wk

p
≤ ∞}

‖.‖
Wk
p .

A third one is to take continuously differentiable functions up to the boundary

Ŵ k
p := C∞(Ω)

‖.‖
Wk
p .

Under moderate restrictions, these definitions lead to the same spaces:
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Theorem 41. Let 1 ≤ p <∞. Then W̃ k
p = W k

p .

Definition 42. The domain Ω has a Lipschitz boundary, ∂Ω, if there exists a collection
of open sets Oi, a positive parameter ε, an integer N and a finite number L, such that for
all x ∈ ∂Ω the ball of radius ε centered at x is contained in some Oi, no more than N of
the sets Oi intersect non-trivially, and each part of the boundary Oi ∩ Ω is a graph of a
Lipschitz function ϕi : Rd−1 → R with Lipschitz norm bounded by L.

Theorem 43. Assume that Ω has a Lipschitz boundary, and let 1 ≤ p < ∞. Then
Ŵ k
p = W k

p .

The case W k
2 is special, it is a Hilbert space. We denote it by

Hk(Ω) := W k
2 (Ω).

The inner product is

(u, v)Hk :=
∑
|α|≤k

(Dαu,Dαv)L2

In the following, we will prove most theorems for the Hilbert spaces Hk, and state the
general results for W k

p .

3.3 Trace theorems and their applications

We consider boundary values of functions in Sobolev spaces. Clearly, this is not well defined
for H0 = L2. But, as we will see, in H1 and higher order Sobolev spaces, it makes sense
to talk about u|∂Ω. The definition of traces is essential to formulate boundary conditions
of PDEs in weak form.

We start in one dimension. Let u ∈ C1([0, h]) with some h > 0. Then, we can bound

u(0) =
(

1− x

h

)
u(x)|x=0 = −

∫ h

0

{(
1− x

h

)
u(x)

}′
dx

=

∫ h

0

−1

h
u(x) +

(
1− x

h

)
u′(x) dx

≤
∥∥∥∥1

h

∥∥∥∥
L2

‖u‖L2 +
∥∥∥1− x

h

∥∥∥
L2

‖u′‖L2

' h−1/2‖u‖L2(0,h) + h1/2‖u′‖L2(0,h).

This estimate includes the scaling with the interval length h. If we are not interested in the
scaling, we apply Cauchy-Schwarz in R2, and combine the L2 norm and the H1 semi-norm
‖u′‖L2 to the full H1 norm and obtain

|u(0)| ≤
√
h−1/2 + h1/2

√
‖u‖2

L2
+ ‖u′‖2

L2
= c ‖u‖H1 .

Next, we extend the trace operator to the whole Sobolev space H1:



3.3. TRACE THEOREMS AND THEIR APPLICATIONS 31

Theorem 44. There is a well defined and continuous trace operator

tr : H1((0, h))→ R

whose restriction to C1([0, h]) coincides with

u→ u(0).

Proof: Use that C1([0, h]) is dense in H1(0, h). Take a sequence uj in C1([0, h]) con-
verging to u in H1-norm. The values uj(0) are Cauchy, and thus converge to an u0. The
limit is independent of the choice of the sequence uj. This allows to define tru := u0. 2

Now, we extend this 1D result to domains in more dimensions. Let Ω be bounded, ∂Ω
be Lipschitz, and consists of M pieces Γi of smoothness C1.

We can construct the following covering of a neighbourhood of ∂Ω in Ω: Let Q = (0, 1)2.
For 1 ≤ i ≤ M , let si ∈ C1(Q,Ω) be invertible and such that ‖s′i‖L∞ ≤ c, ‖(s′i)−1‖L∞ ≤ c,
and det s′i > 0. The domains Si := si(Q) are such that si((0, 1) × {0}) = Γi, and the
parameterizations match on si({0, 1} × (0, 1)).

Theorem 45. There exists a well defined and continuous operator

tr : H1(Ω)→ L2(∂Ω)

which coincides with u|∂Ω for u ∈ C1(Ω).

Proof: Again, we prove that

tr : C1(Ω)→ L2(∂Ω) : u→ u|∂Ω

is a bounded operator w.r.t. the norms ‖.‖H1 and L2, and conclude by density. We use
the partitioning of ∂Ω into the pieces Γi, and transform to the simple square domain
Q = (0, 1)2. Define the functions ui on Q = (0, 1)2 as

ũi(x̃) = u(si(x̃))

We transfer the L2 norm to the simple domain:

‖ tru‖2
L2(∂Ω) =

M∑
i=1

∫
Γi

u(x)2 dx

=
M∑
i=1

∫ 1

0

u(si(ξ, 0))2

∣∣∣∣∂si∂ξ (ξ, 0)

∣∣∣∣ dξ
≤ c

M∑
i=1

∫ 1

0

ũi(ξ, 0)2 dξ
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To transform the H1-norm, we differentiate with respect to x̃ by applying the chain rule

dũi
dx̃

(x̃) =
du

dx
(si(x̃))

dsi
dx̃

(x̃).

Solving for du
dx

is

du

dx
(si(x̃)) =

dũi
dx̃

(x̃)

(
ds

dx̃

)−1

(x̃)

The bounds onto s′ and (s′)−1 imply that

c−1 |∇xu| ≤ |∇x̃ũ| ≤ c |∇xu|

We start from the right hand side of the stated estimate:

‖u‖2
H1(Ω) ≥

M∑
i=1

∫
Si

|∇xu|2 dx

=
M∑
i=1

∫
Q

|∇xu(si(x̃))|2 det(s′) dx̃

≥ c
M∑
i=1

∫
Q

|∇x̃ũ(x̃)|2 dx̃

We got a lower bound for det(s′) = (det(s′)−1)−1 from the upper bound for (s′)−1.
It remains to prove the trace estimate on Q. Here, we apply the previous one dimen-

sional result

|u(ξ, 0)|2 ≤ c

∫ 1

0

{
u(ξ, η)2 +

(
∂u(ξ, η)

∂η

)2
}
dη ∀ ξ ∈ (0, 1)

The result follows from integrating over ξ∫ 1

0

|u(ξ, 0)|2 dξ ≤ c

∫ 1

0

∫ 1

0

{
u(ξ, η)2 +

(
∂u(ξ, η)

∂η

)2
}
dη dξ

≤ c ‖u‖2
H1(Q).

2

Considering the trace operator from H1(Ω) to L2(∂Ω) is not sharp with respect to the
norms. We will improve the embedding later.

By means of the trace operator we can define the sub-space

H1
0 (Ω) = {u ∈ H1(Ω) : tr u = 0}
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It is a true sub-space, since u = 1 does belong to H1, but not to H1
0 . It is a closed sub-space,

since it is the kernel of a continuous operator.

By means of the trace inequality, one verifies that the linear functional

g(v) :=

∫
ΓN

g tr v dx

is bounded on H1.

Integration by parts

The definition of the trace allows us to perform integration by parts in H1:∫
Ω

∇uϕ dx = −
∫

Ω

u div ϕdx+

∫
∂Ω

truϕ · n dx ∀ϕ ∈ [C1(Ω)]2

The definition of the weak derivative (e.g. the weak gradient) looks similar. It allows only
test functions ϕ with compact support in Ω, i.e., having zero boundary values. Only by
choosing a normed space, for which the trace operator is well defined, we can state and
prove integration by parts. Again, the short proof is based on the density of C1(Ω) in H1.

Sobolev spaces over sub-domains

Let Ω consist of M Lipschitz-continuous sub-domains Ωi such that

• Ω = ∪Mi=1Ωi

• Ωi ∩ Ωj = ∅ if i 6= j

The interfaces are γij = Ωi ∩ Ωj. The outer normal vector of Ωi is ni.

Theorem 46. Let u ∈ L2(Ω) such that

• ui := u|Ωi is in H1(Ωi), and gi = ∇ui is its weak gradient

• the traces on common interfaces coincide:

trγij ui = trγij uj

Then u belongs to H1(Ω). Its weak gradient g = ∇u fulfills g|Ωi = gi.

Proof: We have to verify that g ∈ L2(Ω)d, defined by g|Ωi = gi, is the weak gradient of
u, i.e., ∫

Ω

g · ϕdx = −
∫

Ω

u divϕdx ∀ϕ ∈ [C∞0 (Ω)]d
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We are using Green’s formula on the sub-domains∫
Ω

g · ϕdx =
M∑
i=1

∫
Ωi

gi · ϕdx =
M∑
i=1

∫
Ωi

∇ui · ϕdx

=
M∑
i=1

−
∫

Ωi

ui divϕdx+

∫
∂Ωi

trui ϕ · ni ds

= −
∫

Ω

u divϕdx+
∑
γij

∫
γij

{
trγij ui ϕ · ni + trγij uj ϕ · nj

}
ds

= −
∫

Ω

u divϕdx

We have used that ϕ = 0 on ∂Ω, and ni = −nj on γij. 2

Applications of this theorem are (conforming nodal) finite element spaces. The parti-
tioning Ωi is the mesh. On each sub-domain, i.e., on each element T , the functions are
polynomials and thus in H1(T ). The finite element functions are constructed to be contin-
uous, i.e., the traces match on the interfaces. Thus, the finite element space is a sub-space
of H1.

Extension operators

Some estimates are elementary to verify on simple domains such as squares Q. One tech-
nique to transfer these results to general domains is to extend a function u ∈ H1(Ω) onto
a larger square Q, apply the result for the square, and restrict the result onto the general
domain Ω. This is now the motivation to study extension operators.

We construct a non-overlapping covering {Si} of a neighbourhood of ∂Ω on both sides.
Let ∂Ω = ∪Γi consist of smooth parts. Let s : (0, 1) × (−1, 1) → Si : (ξ, η) → x be an
invertible function such that

si((0, 1)× (0, 1)) = Si ∩ Ω

si((0, 1)× {0}) = Γi

si((0, 1)× (−1, 0)) = Si \ Ω

Assume that ‖dsi
dx
‖L∞ and ‖

(
dsi
dx

)−1 ‖L∞ are bounded.
This defines an invertible mapping x→ x̂(x) from the inside to the outside by

x̂(x) = si(ξ(x),−η(x)).

The mapping preserve the boundary Γi. The transformations si should be such that x→ x̂
is consistent at the interfaces between Si and Sj.

With the flipping operator f : (ξ, η) → (ξ,−η), the mapping is the composite x̂(x) =
si(f(s−1

i )). From that, we obtain the bound∥∥∥∥dx̂dx
∥∥∥∥ ≤ ∥∥∥∥dsdx

∥∥∥∥
∥∥∥∥∥
(
ds

dx

)−1
∥∥∥∥∥ .
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Define the domain Ω̃ = Ω ∪ S1 ∪ . . . ∪ SM .
We define the extension operator by

(Eu)(x̂) = u(x) ∀x ∈ ∪Si
(Eu)(x) = u(x) ∀x ∈ Ω

(3.3)

Theorem 47. The extension operator E : H1(Ω) → H1(Ω̃) is well defined and bounded
with respect to the norms

‖Eu‖L2(Ω̃) ≤ c ‖u‖L2(Ω)

and
‖∇Eu‖L2(Ω̃) ≤ c ‖∇u‖L2(Ω)

Proof: Let u ∈ C1(Ω). First, we prove the estimates for the individual pieces Si:∫
Si\Ω

Eu(x̂)2 dx̂ =

∫
Si∩Ω

u(x)2 det

(
dx̂

dx

)
dx ≤ c‖u‖2

L2(Si∩Ω)

For the derivatives we use

dEu(x̂)

dx̂
=
du(x(x̂))

dx̂
=
du

dx

dx

dx̂
.

Since dx
dx̂

and (dx
dx̂

)−1 = dx̂
dx

are bounded, one obtains

|∇x̂Eu(x̂)| ' |∇xu(x)|,

and ∫
Si\Ω
|∇x̂Eu|2 dx ≤ c

∫
Si∪Ω

|∇u|2 dx

These estimates prove that E is a bounded operator into H1 on the sub-domains Si \ Ω.
The construction was such that for u ∈ C1(Ω), the extension Eu is continuous across ∂Ω,

and also across the individual Si. By Theorem 46, Eu belongs to H1(Ω̃), and

‖∇Eu‖2
L2(Ω) = ‖∇u‖2

Ω +
M∑
i=1

‖∇u‖2
Si\Ω ≤ c‖∇u‖2

L2(Ω),

By density, we get the result for H1(Ω). Let uj ∈ C1(Ω) → u, than uj is Cauchy, Euj is

Cauchy in H1(Ω̃), and thus converges to u ∈ H1(Ω̃).

The extension of functions from H1
0 (Ω) onto larger domains is trivial: Extension by 0

is a bounded operator. One can extend functions from H1(Ω) into H1
0 (Ω̃), and further, to

an arbitrary domain by extension by 0.
For x̂ = si(ξ,−η), ξ, η ∈ (0, 1)2, define the extension

E0u(x̂) = (1− η)u(x)

This extension vanishes at ∂Ω̃
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Theorem 48. The extension E0 is an extension from H1(Ω) to H1
0 (Ω̃). It is bounded

w.r.t.
‖E0u‖H1(Ω̃) ≤ c‖u‖H1(Ω)

Proof: Exercises
In this case, it is not possible to bound the gradient term only by gradients. To see this,

take the constant function on Ω. The gradient vanishes, but the extension is not constant.

3.3.1 The trace space H1/2

The trace operator is continuous from H1(Ω) into L2(∂Ω). But, not every g ∈ L2(∂Ω) is
a trace of some u ∈ H1(Ω). We will motivate why the trace space is the fractional order
Sobolev space H1/2(∂Ω).

We introduce a stronger space, such that the trace operator is still continuous, and
onto. Let V = H1(Ω), and define the trace space as the range of the trace operator

W = {tr u : u ∈ H1(Ω)}

with the norm
‖ tru‖W = inf

v∈V
tr u=tr v

‖v‖V . (3.4)

This is indeed a norm on W . The trace operator is continuous from V → W with norm 1.

Lemma 49. The space (W, ‖.‖W ) is a Banach space. For all g ∈ W there exists an u ∈ V
such that tr u = g and ‖u‖V = ‖g‖W

Proof: The kernel space V0 := {v : tr v = 0} is a closed sub-space of V . If tr u = tr v,
then z := u− v ∈ V0. We can rewrite

‖ tr u‖W = inf
z∈V0

‖u− z‖V = ‖u− PV0u‖V ∀u ∈ V

Now, let gn = tr un ∈ W be a Cauchy sequence. This does not imply that un is Cauchy,
but PV ⊥0 un is Cauchy in V :

‖PV ⊥0 (un − um)‖V = ‖ tr (un − um)‖W .

The PV ⊥0 un converge to some u ∈ V ⊥0 , and gn converge to g := tr u. 2

The minimizer in (3.4) fulfills

tr u = g and (u, v)V = 0 ∀ v ∈ V0.

This means that u is the solution of the weak form of the Dirichlet problem

−∆u+ u = 0 in Ω
u = g on ∂Ω.
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To give an explicit characterization of the norm ‖.‖W , we introduce Hilbert space
interpolation:

Let V1 ⊂ V0 be two Hilbert spaces, such that V1 is dense in V0, and the embedding
operator id : V1 → V0 is compact. We can pose the eigen-value problem: Find z ∈ V1,
λ ∈ R such that

(z, v)V1 = λ(z, v)V0 ∀ v ∈ V.

There exists a sequence of eigen-pairs (zk, λk) such that λk → ∞. The zk form an or-
thonormal basis in V0, and an orthogonal basis in V1.

The converse is also true. If zk is a basis for V0, and the eigenvalues λk →∞, then the
embedding V1 ⊂ V0 is compact.

Given u ∈ V0, it can be expanded in the orthonormal eigen-vector basis:

u =
∞∑
k=0

ukzk with uk = (u, zk)V0

The ‖.‖V0 - norm of u is

‖u‖2
V0

= (
∑
k

ukzk,
∑
l

ulzl)V0 =
∑
k,l

ukul(zk, zl)V0 =
∑
k

u2
k.

If u ∈ V1, then

‖u‖2
V1

= (
∑
k

ukzk,
∑
l

ulzl)V0 =
∑
k,l

ukul(zk, zl)V1 =
∑
k,l

ukulλk(zk, zl)V0 =
∑
k

u2
kλk

The sub-space space V1 consists of all u =
∑
ukzk such that

∑
k λku

2
k is finite. This suggests

the definition of the interpolation norm

‖u‖2
Vs =

∑
k

(u, zk)
2
V0
λsk,

and the interpolation space Vs = [V0, V1]s as

Vs = {u ∈ V0 : ‖u‖Vs <∞}.

We have been fast with using infinite sums. To make everything precise, one first works
with finite dimensional sub-spaces {u : ∃n ∈ N and u =

∑n
k=1 ukzk}, and takes the closure.

In our case, we apply Hilbert space interpolation to H1(0, 1) ⊂ L2(0, 1). The eigen-value
problem is to find zk ∈ H1 and λk ∈ R such that

(zk, v)L2 + (z′k, v
′)L2 = λk (zk, v)L2 ∀ v ∈ H1
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By definition of the weak derivative, there holds (z′k)
′ = (1 − λk)zk, i.e., zk ∈ H2. Since

H2 ⊂ C0, there holds also z ∈ C2, and a weak solution is also a solution of the strong form

zk − z′′k = λkzk on (0, 1)
z′k(0) = z′k(1) = 0

(3.5)

All solutions, normalized to ‖zk‖L2 = 1, are

z0 = 1 λ0 = 1

and, for k ∈ N,
zk(x) =

√
2 cos(kπx) λk = 1 + k2π2.

Indeed, expanding u ∈ L2 in the cos-basis u = u0 +
∑∞

k=1 uk
√

2 cos(kπx), one has

‖u‖2
L2

=
∞∑
k=0

(u, zk)
2
L2

and

‖u‖2
H1 =

∞∑
k=0

(1 + k2π2)(u, zk)
2
L2

Differentiation adds a factor kπ. Hilbert space interpolation allows to define the fractional
order Sobolev norm (s ∈ (0, 1))

‖u‖2
Hs(0,1) =

∞∑
k=0

(1 + k2π2)s(u, zk)
2
L2

We consider the trace tr |E of H1((0, 1)2) onto one edge E = (0, 1) × {0}. For g ∈
WE := trH1((0, 1)2), the norm ‖g‖W is defined by

‖g‖W = ‖ug‖H1 .

Here, ug solves the Dirichlet problem ug|E = g, and (ug, v)H1 = 0 ∀ v ∈ H1 such that
trE v = 0.

Since W ⊂ L2(E), we can expand g in the L2-orthonormal cosine basis zk

g(x) =
∑

gnzk(x)

The Dirichlet problems for the zk,

−∆uk + uk = 0 in Ω
uk = zk on E
∂uk
∂n

= 0 on ∂Ω \ E,



3.4. EQUIVALENT NORMS ON H1 AND ON SUB-SPACES 39

have the explicit solution

u0(x, y) = 1

and

uk(x, y) =
√

2 cos(kπx)
ekπ(1−y) + e−kπ(1−y)

ekπ + e−kπ
.

The asymptotic is

‖uk‖2
L2
' (k + 1)−1

and

‖∇uk‖2
L2
' k

Furthermore, the uk are orthogonal in (., .)H1 . Thus ug =
∑

n gnuk has the norm

‖ug‖2
H1 =

∑
g2
n‖uk‖2

H1 '
∑

g2
n(1 + k).

This norm is equivalent to H1/2(E).
We have proven that the trace space onto one edge is the interpolation space H1/2(E).

This is also true for general domains (Lipschitz, with piecewise smooth boundary).

3.4 Equivalent norms on H1 and on sub-spaces

The intention is to formulate 2nd order variational problems in the Hilbert space H1. We
want to apply the Lax-Milgram theory for continuous and coercive bilinear forms A(., .).
We present techniques to prove coercivity.

The idea is the following. In the norm

‖v‖2
H1 = ‖v‖2

L2
+ ‖∇v‖2

L2
,

the ‖∇ · ‖L2-semi-norm is the dominating part up to the constant functions. The L2 norm
is necessary to obtain a norm. We want to replace the L2 norm by some different term
(e.g., the L2-norm on a part of Ω, or the L2-norm on ∂Ω), and want to obtain an equivalent
norm.

We formulate an abstract theorem relating a norm ‖.‖V to a semi-norm ‖.‖A. An
equivalent theorem was proven by Tartar.

Theorem 50 (Tartar). Let (V, (., .)V ) and (W, (., .)W ) be Hilbert spaces, such that the
embedding id : V → W is compact. Let A(., .) be a non-negative, symmetric and V -
continuous bilinear form with kernel V0 = {v : A(v, v) = 0}. Assume that

‖v‖2
V ' ‖v‖2

W + ‖v‖2
A ∀ v ∈ V (3.6)

Then there holds
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1. The kernel V0 is finite dimensional. On the factor space V/V0, A(., .) is an equivalent
norm to the quotient norm

‖u‖A ' inf
v∈V0

‖u− v‖V ∀u ∈ V (3.7)

2. Let B(., .) be a continuous, non-negative, symmetric bilinear form on V such that
A(., .) +B(., .) is an inner product. Then there holds

‖v‖2
V ' ‖v‖2

A + ‖v‖2
B ∀ v ∈ V

3. Let V1 ⊂ V be a closed sub-space such that V0 ∩ V1 = {0}. Then there holds

‖v‖V ' ‖v‖A ∀ v ∈ V1

Proof: 1. Assume that V0 is not finite dimensional. Then there exists an (., .)V -orthonormal
sequence uk ∈ V0. Since the embedding id : V → W is compact, it has a sub-sequence
converging in ‖.‖W . But, since

2 = ‖uk − ul‖2
V ' ‖uk − ul‖2

W + ‖uk − ul‖A = ‖uk − ul‖2
W

for k 6= l, uk is not Cauchy in W . This is a contradiction to an infinite dimensional kernel
space V0. We prove the equivalence (3.7). To bound the left hand side by the right hand
side, we use that V0 = kerA, and norm equivalence (3.6):

‖u‖A = inf
v∈V0

‖u− v‖A ≤ inf
v∈V0

‖u− v‖V

The quotient norm is equal to ‖PV ⊥0 u‖. We have to prove that ‖PV ⊥0 u‖V ≤ ‖PV ⊥0 u‖A for

all u ∈ V . This follows after proving ‖u‖V ≤ ‖u‖A for all u ∈ V ⊥0 . Assume that this is not
true. I.e., there exists a V -orthogonal sequence (uk) such that ‖uk‖A ≤ k−1‖uk‖V . Extract
a sub-sequence converging in ‖.‖W , and call it uk again. From the norm equivalence (3.6)
there follows

2 = ‖uk − ul‖2
V � ‖uk − ul‖W + ‖uk − ul‖A → 0

2. On V0, ‖.‖B is a norm. Since V0 is finite dimensional, it is equivalent to ‖.‖V , say with
bounds

c1 ‖v‖2
V ≤ ‖v‖2

B ≤ c2 ‖v‖2
V ∀ v ∈ V0

From 1. we know that

c3 ‖v‖2
V ≤ ‖v‖2

A ≤ c4 ‖v‖2
V ∀ v ∈ V ⊥0 .
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Now, we bound

‖u‖2
V = ‖PV0u‖2

V + ‖PV ⊥0 u‖
2
V

≤ 1

c1

‖ PV0u︸︷︷︸
u−P

V⊥0
u

‖2
B + ‖PV ⊥0 ‖

2
V

≤ 2

c1

(
‖u‖2

B + c2‖PV ⊥0 u‖
2
V

)
+ ‖PV ⊥0 u‖

2
V

=
2

c1

‖u‖2
B +

1

c2

(
1 +

2c2

c1

)
‖PV ⊥0 u‖

2
A

� ‖u‖2
B + ‖u‖2

A

3. Define B(u, v) = (P⊥V1
u, PV ⊥1 u)V . Then A(., .) +B(., .) is an inner product: A(u, u) +

B(u, u) = 0 implies that u ∈ V0 and u ∈ V1, thus u = {0}. From 2. there follows that
A(., .) +B(., .) is equivalent to (., .)V . The result follows from reducing the equivalence to
V1.

2

We want to apply Tartar’s theorem to the case V = H1, W = L2, and ‖v‖A = ‖∇v‖L2 .
The theorem requires that the embedding id : H1 → L2 is compact. This is indeed true
for bounded domains Ω:

Theorem 51. The embedding of Hk → H l for k > l is compact.

We sketch a proof for the embedding H1 ⊂ L2. First, prove the compact embedding
H1

0 (Q) → L2(Q) for a square Q, w.l.o.g. set Q = (0, 1)2. The eigen-value problem: Find
z ∈ H1

0 (Q) and λ such that

(z, v)L2 + (∇z,∇v)L2 = λ(u, v)L2 ∀ v ∈ H1
0 (Q)

has eigen-vectors zk,l = sin(kπx)sin(lπy), and eigen-values 1 + k2π2 + l2π2 → ∞. The
eigen-vectors are dense in L2. Thus, the embedding is compact.

On a general domain Ω ⊂ Q, we can extend H1(Ω) into H1
0 (Q), embed H1

0 (Q) into
L2(Q), and restrict L2(Q) onto L2(Ω). This is the composite of two continuous and a
compact mapping, and thus is compact. 2

The kernel V0 of the semi-norm ‖∇v‖ is the constant function.

Theorem 52 (Friedrichs inequality). Let ΓD ⊂ ∂Ω be of positive measure |ΓD|. Let
VD = {v ∈ H1(Ω) : trΓD v = 0}. Then

‖v‖L2 � ‖∇v‖L2 ∀ v ∈ VD

Proof: The intersection V0 ∩ VD is trivial {0}. Thus, Theorem 50, 3. implies the
equivalence

‖v‖2
V = ‖v‖2

L2
+ ‖∇v‖2

L2
' ‖∇v‖L2 .

2
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Theorem 53 (Poincaré inequality). There holds

‖v‖2
H1(Ω) ≤ ‖∇v‖2

L2
+ (

∫
Ω

v dx)2

Proof: B(u, v) := (
∫

Ω
u dx)(

∫
Ω
v dx) is a continuous bilinear form on H1, and (∇u,∇v)+

B(u, v) is an inner product. Thus, Theorem 50, 2. implies the stated equivalence. 2

• Let ω ⊂ Ω have positive measure |ω| in Rd. Then

‖u‖2
H1(Ω) ' ‖∇v‖2

L2(Ω) + ‖v‖L2(ω),

• Let γ ⊂ ∂Ω have positive measure |γ| in Rd−1. Then

‖u‖2
H1(Ω) ' ‖∇v‖2

L2(Ω) + ‖v‖L2(γ),

Theorem 54 (Bramble Hilbert lemma). Let U be some Hilbert space, and L : Hk → U be
a continuous linear operator such that Lq = 0 for polynomials q ∈ P k−1. Then there holds

‖Lv‖U ≤ |v|Hk .

Proof: The embedding Hk → Hk−1 is compact. The V -continuous, symmetric and
non-negative bilinear form A(u, v) =

∑
α:|α|=k(∂

αu, ∂αv) has the kernel P p−1. Decompose

‖u‖2
Hk = ‖u‖2

Hk−1 + A(u, u). By Theorem 50, 1, there holds

‖u‖A ' inf
v∈V0

‖u− v‖Hk

The same holds for the bilinear-form

A2(u, v) := (Lu, Lv)U + A(u, v)

Thus
‖u‖A2 ' inf

v∈V0

‖u− v‖Hk ∀u ∈ V

Equalizing both implies that

(Lu, Lu)U ≤ ‖u‖2
A2
' ‖u‖2

A ∀u ∈ V,

i.e., the claim.

We will need point evaluation of functions in Sobolev spaces Hs. This is possible, we
u ∈ Hs implies that u is continuous.

Theorem 55 (Sobolev’s embedding theorem). Let Ω ⊂ Rd with Lipschitz boundary. If
u ∈ Hs with s > d/2, then u ∈ L∞ with

‖u‖L∞ � ‖u‖Hs

There is a function in C0 within the L∞ equivalence class.
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3.5 Interpolation Spaces

3.5.1 Hilbert space interpolation

Let V1 ⊂ V0 be two Hilbert spaces with dense embedding. For simplicity we assume that
the embedding is compact. Then there exists a system of eigenvalues λk and eigenvectors zk
such that

(zk, v)1 = λ2
k (zk, v)0 ∀ v ∈ V1.

The eigenvectors are orthogonal and are normalized such that

(zk, zl)0 = δk,l and (zk, zl)1 = λ2
kδk,l.

Eigenvalues are ascening, by compactness there holds λk →∞.
The set of eigenvectos is a complete system. Thus u ∈ V0 can be expanded as

u =
∞∑
k=1

ukzk with uk = (u, zk)0.

There holds

‖u‖2
0 =

∑
u2
k

‖u‖2
1 =

∑
λ2
ku

2
k <∞ for u ∈ V1.

For s ∈ (0, 1) we define the interpolation norm

‖u‖s̃ :=
( ∞∑
k=1

λ2s
k u

2
k

)1/2

(3.8)

and the interpolation space

Vs := [V0, V1]s := {u ∈ V0 : ‖u‖s̃ <∞}.

There holds
V1 ⊂ Vs ⊂ V0.

Example: Let V0 = L2(0, 1) and V1 = H1
0 (0, 1). Then

zk =
√

2 sin(kπx) and λk = k

3.5.2 Banach space interpolation

We give an alternative definition of interpolation spaces, which is also applicable for Banach
spaces. It is known as Banach space interpolation, K-functional method, real method of
interpolation, or Peetre’s method.
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Let V1 ⊂ V0 be Banach spaces with dense and continuous embedding. We define the
K-functional K : R+ × V0 → R as

K(t, u) := inf
v1∈V1

√
‖u− v1‖2

0 + t2‖v1‖2
1.

Note that

K(t, u) ≤ ‖u‖0,

K(t, u) ≤ t ‖u‖1 for u ∈ V1.

The decay in t measures the smoothness of u. For s ∈ (0, 1) we define the interpolation
norm as

‖u‖s :=
(∫ ∞

0

t−2sK(t, u)2dt/t
)1/2

(3.9)

and the interpolation spaces Vs := {u ∈ V0 : ‖u‖s <∞}.
The K-functional method is more general. If the spaces are Hilbert, then both inter-

polation methods coincide:

Theorem 56. Let V1 ⊂ V0 be Hilbert spaces with compact embedding. Then

‖u‖s = Cs ‖u‖s̃,

where C2
s =

∫∞
0

τ1−2s

1+τ2 dτ .

Proof. For u =
∑
ukzk we calculate the K-functional as

K(t, u)2 = inf
v∈V1

‖u− v‖2
0 + t2‖v‖2

1

= inf
(vk)∈`2

(λkvk)∈`2

∑
k

(uk − vk)2 + t2λ2
kv

2
k

=
∑
k

inf
vk∈R

(uk − vk)2 + t2λ2
kv

2
k.

The minimum of each summand is taken for

vk =
1

1 + t2λ2
k

uk

and its value is
t2λ2

k

1 + t2λ2
k

u2
k.

Thus

K(t, u)2 =
∞∑
k=1

t2λ2
k

1 + t2λ2
k

u2
k
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and

‖u‖2
s =

∫ ∞
0

t−2sK(t, u)2 dt/t =

∫ ∞
0

∑
k

t2λ2
k

1 + t2λ2
k

u2
k dt/t

=
∑
k

∫ ∞
0

t−2s t2λ2
k

1 + t2λ2
k

u2
k dt/t

Substitution τ = λkt gives

‖u‖2
s =

∑
k

∫ ∞
0

( τ
λk

)−2s τ 2

1 + τ 2
u2
k dτ/τ

=
∑
k

λ2s
k u

2
k

∫ ∞
0

τ 1−2s

1 + τ 2
dτ

= C2
s ‖u‖2

s̃

Theorem 57. For u ∈ V1 there holds

‖u‖s � ‖u‖1−s
0 ‖u‖s1

Proof: Excercise

3.5.3 Operator interpolation

Let V1 ⊂ V0 and W1 ⊂ W0 with dense embedding.

Theorem 58. Let T : V0 → W0 be a linear operator such that TV1 ⊂ W1 with norms

‖T‖V0→W0 ≤ c0 and ‖T‖V1→W1 ≤ c1.

Then

T : [V0, V1]s → [W0,W1]s

with norm

‖T‖[V0,V1]s→[W0,W1]s ≤ c1−s
0 cs1

Proof. We use the definition of the interpolation norm, TV1 ⊂ W1, operator norms and



46 CHAPTER 3. SOBOLEV SPACES

substitution τ = c1t/c0

‖Tu‖[W0,W1]s =

∫ ∞
0

t−2sKW (t, Tu)2 dt/t

=

∫ ∞
0

t−2s inf
w1∈W1

{‖Tu− w1‖W0 + t2‖w1‖2
W1
} dt/t

≤
∫ ∞

0

t−2s inf
v1∈V1

{‖Tu− Tv1‖W0 + t2‖Tv1‖2
W1
} dt/t

≤
∫ ∞

0

t−2s inf
v1∈V1

{c2
0 ‖u− v1‖V0 + t2c2

1 ‖v1‖2
V1
} dt/t

≤
∫ ∞

0

(c0τ

c1

)−2s

inf
v1∈V1

{c2
0 ‖u− v1‖2

V0
+ c2

0τ
2 ‖v1‖2

V1
} dτ/τ

= c2−2s
0 c2s

1

∫ ∞
0

τ−2sKV (t, u)2 dτ/τ

= c2−2s
0 c2s

1 ‖u‖2
[V0,V1]s

3.5.4 Interpolation of Sobolev Spaces

As an example of interpolation spaces we show the following:

Theorem 59. Let Ω be a Lipschitz domain. Then

[L2(Ω), H2(Ω)]1/2 = H1(Ω).

Proof. Let Q be a square containing Ω, w.l.o.g. Q = (0, 2π)2, and zk,l = eikxeily be the
trigonometric basis for (complex-valued) periodic Sobolev Spaces Hm

per(Q). Then

‖u‖2
Hm '

∑
k,l

(k2 + l2)m|uk,l|2,

and thus H1
per(Q) = [H0

per(Q), H2
per(Q)]1/2 by Hilbert space interpolation.

Now let E : L2(Ω)→ L2(Q) be an extension operator such that

E : Hm(Ω)→ Hm
per(Q)

is continuous for all m ∈ {0, 1, 2}. Furthermore, let

R : L2(Q)→ L2(Ω) : u 7→ u|Ω

be the restriction operator. Trivially, R : Hm
per(Q)→ Hm(Ω) is continuous for m ∈ N0.

We show that
‖u‖H1(Ω) ' ‖u‖[L2(Ω),H2(Ω)]1/2 .
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Using operator interpolation we get

‖u‖H1(Ω) = ‖REu‖H1(Ω) ≤ ‖R‖‖Eu‖H1(Q)

' ‖Eu‖[L2(Q),H2
per(Q)]1/2

≤ ‖E‖1/2
L2(Ω)→L2(Q)‖E‖

1/2

H2(Ω)→H2
per(Q)‖u‖[L2(Ω),H2(Ω)]1/2

' ‖u‖[L2(Ω),H2(Ω)]1/2 ,

and similarly the other way around.

Theorem 60. Let Ω be a Lipschitz domain. Then

[L2(Ω), H2
0 (Ω)]1/2 = H1

0 (Ω).

Proof. Exercise

Literature:

1. J. Bergh and J. Lofstrom. Interpolation spaces. Springer, 1976

2. J. H. Bramble. Multigrid Methods. Chapman and Hall, 1993

3.6 The weak formulation of the Poisson equation

We are now able to give a precise definition of the weak formulation of the Poisson problem
as introduced in Section 1.2, and analyze the existence and uniqueness of a weak solution.

Let Ω be a bounded domain. Its boundary ∂Ω is decomposed as ∂Ω = ΓD ∪ ΓN ∪ ΓR
according to Dirichlet, Neumann and Robin boundary conditions.

Let

• uD ∈ H1/2(ΓD),

• f ∈ L2(Ω),

• g ∈ L2(ΓN ∪ ΓR),

• α ∈ L∞(ΓD), α ≥ 0.

Assume that there holds

(a) The Dirichlet part has positive measure |ΓD| > 0,

(b) or the Robin term has positive contribution
∫

ΓR
α dx > 0.



48 CHAPTER 3. SOBOLEV SPACES

Define the Hilbert space

V := H1(Ω),

the closed sub-space

V0 = {v : trΓD v = 0},

and the linear manifold

VD = {u ∈ V : trΓD u = uD}.

Define the bilinear form A(., .) : V × V → R

A(u, v) =

∫
Ω

∇u∇v dx+

∫
ΓR

αuv ds

and the linear form

f(v) =

∫
Ω

fv dx+

∫
ΓN∪ΓR

gv dx.

Theorem 61. The weak formulation of the Poisson problem

Find u ∈ VD such that

A(u, v) = f(v) ∀ v ∈ V0 (3.10)

has a unique solution u.

Proof: The bilinear-form A(., .) and the linear-form f(.) are continuous on V . Tartar’s
theorem of equivalent norms proves that A(., .) is coercive on V0.

Since uD is in the closed range of trΓD , there exists an ũD ∈ VD such that

tr ũD = uD and ‖ũD‖V � ‖uD‖H1/2(ΓD)

Now, pose the problem: Find z ∈ V0 such that

A(z, v) = f(v)− A(ũD, v) ∀ v ∈ V0.

The right hand side is the evaluation of the continuous linear form f(.) − A(ũD, .) on
V0. Due to Lax-Milgram, there exists a unique solution z. Then, u := ũD + z solves (3.10).
The choice of ũD is not unique, but, the constructed u is unique. 2

3.6.1 Shift theorems

Let us restrict to Dirichlet boundary conditions uD = 0 on the whole boundary. The
variational problem: Find u ∈ V0 such that

A(u, v) = f(v) ∀ v ∈ V0
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is well defined for all f ∈ V ∗0 , and, due to Lax-Milgram there holds

‖u‖V0 ≤ c‖f‖V ∗0 .

Vice versa, the bilinear-form defines the linear functional A(u, .) with norm

‖A(u, .)‖V ∗0 ≤ c‖u‖V0

This dual space is called H−1:

H−1 := [H1
0 (Ω)]∗

Since H1
0 ⊂ L2, there is L2 ⊂ H−1(Ω). All negative spaces are defined as H−s(Ω) :=

[Hs
0 ]∗(Ω), for s ∈ R+. There holds

. . . H2
0 ⊂ H1

0 ⊂ L2 ⊂ H−1 ⊂ H−2 . . .

The solution operator of the weak formulation is smoothing twice. The statements of
shift theorem are that for s > 0, the solution operator maps also

f ∈ H−1+s → u ∈ H1+s

with norm bounds

‖u‖H1+s � ‖f‖H−1+s .

In this case, we call the problem H1+s - regular.

Theorem 62 (Shift theorem).

(a) Assume that Ω is convex. Then, the Dirichlet problem is H2 regular.

(b) Let s ≥ 2. Assume that ∂Ω ∈ Cs. Then, the Dirichlet problem is Hs-regular.

We give a proof of (a) for the square (0, π)2 by Fourier series. Let

VN = span{sin(kx) sin(ly) : 1 ≤ k, l ≤ N}

For an u =
∑N

k,l=1 ukl sin(kx) sin(ly) ∈ VN , there holds

‖u‖2
H2 = ‖u‖2

L2
+ ‖∂xu‖2

L2
+ ‖∂yu‖2

L2
+ ‖∂2

xu‖2
L2

+ ‖∂x∂yu‖2
L2

+ ‖∂2
yu‖2

'
N∑

k,l=1

(1 + k2 + l2 + k4 + k2l2 + l4)u2
kl

'
N∑

k,l=1

(k4 + l4)u2
kl,
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and, for f = −∆u,

‖ −∆u‖2
L2

=
N∑

k,l=1

(k2 + l2)2u2
kl '

N∑
k,l=1

(k4 + l4)u2
kl.

Thus we have ‖u‖H2 ' ‖∆u‖L2 = ‖f‖L2 for u ∈ VN . The rest requires a closure argument:
There is {−∆v : v ∈ VN} = VN , and VN is dense in L2. 2

Indeed, on non-smooth non-convex domains, the H2-regularity is not true. Take the
sector of the unit-disc

Ω = {(r cosφ, r sinφ) : 0 < r < 1, 0 < φ < ω}

with ω ∈ (π, 2π). Set β = π/ω < 1. The function

u = (1− r2)rβsin(φβ)

is in H1
0 , and fulfills ∆u = −(4β + 4)rβsin(φβ) ∈ L2. Thus u is the solution of a Dirichlet

problem. But u 6∈ H2.
On non-convex domains one can specify the regularity in terms of weighted Sobolev

spaces. Let Ω be a polygonal domain containing M vertices Vi. Let ωi be the interior angle
at Vi. If the vertex belongs to a non-convex corner (ωi > π), then choose some

βi ∈ (1− π

ω
, 1)

Define
w(x) =

∏
non-convex
Vertices Vi

|x− Vi|βi

Theorem 63. If f is such that wf ∈ L2. Then f ∈ H−1, and the solution u of the
Dirichlet problem fulfills

‖wD2u‖L2 � ‖wf‖L2 .



Chapter 4

Finite Element Method

Ciarlet’s definition of a finite element is:

Definition 64 (Finite element). A finite element is a triple (T, VT ,ΨT ), where

1. T is a bounded set

2. VT is function space on T of finite dimension NT

3. ΨT = {ψ1
T , . . . , ψ

NT
T } is a set of linearly independent functionals on VT .

The nodal basis {ϕ1
T . . . ϕ

NT
T } for VT is the basis dual to ΨT , i.e.,

ψiT (ϕjT ) = δij

Barycentric coordinates are useful to express the nodal basis functions.
Finite elements with point evaluation functionals are called Lagrange finite elements,

elements using also derivatives are called Hermite finite elements.
Usual function spaces on T ⊂ R2 are

P p := span{xiyj : 0 ≤ i, 0 ≤ j, i+ j ≤ p}
Qp := span{xiyj : 0 ≤ i ≤ p, 0 ≤ j ≤ p}

Examples for finite elements are

• A linear line segment

• A quadratic line segment

• A Hermite line segment

• A constant triangle

• A linear triangle

• A non-conforming triangle

51
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• A Morley triangle

• A Raviart-Thomas triangle

The local nodal interpolation operator defined for functions v ∈ Cm(T ) is

ITv :=

NT∑
α=1

ψαT (v)ϕαT

It is a projection.
Two finite elements (T, VT ,ΨT ) and (T̂ , VT̂ ,ΨT̂ ) are called equivalent if there exists an

invertible function F such that

• T = F (T̂ )

• VT = {v̂ ◦ F−1 : v̂ ∈ VT̂}

• ΨT = {ψTi : VT → R : v → ψT̂i (v ◦ F )}

Two elements are called affine equivalent, if F is an affine-linear function.
Lagrangian finite elements defined above are equivalent. The Hermite elements are not

equivalent.
Two finite elements are called interpolation equivalent if there holds

IT (v) ◦ F = IT̂ (v ◦ F )

Lemma 65. Equivalent elements are interpolation equivalent

The Hermite elements define above are also interpolation equivalent.
A regular triangulation T = {T1, . . . , TM} of a domain Ω is the subdivision of a domain

Ω into closed triangles Ti such that Ω = ∪Ti and Ti ∩ Tj is

• either empty

• or an common edge of Ti and Tj

• or Ti = Tj in the case i = j.

In a wider sense, a triangulation may consist of different element shapes such as segments,
triangles, quadrilaterals, tetrahedra, hexhedra, prisms, pyramids.

A finite element complex {(T, VT ,ΨT )} is a set of finite elements defined on the geo-
metric elements of the triangulation T .

It is convenient to construct finite element complexes such that all its finite elements
are affine equivalent to one reference finite element (T̂ , V̂T , Ψ̂T ). The transformation FT is

such that T = FT (T̂ ).
Examples: linear reference line segment on (0, 1).
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The finite element complex allows the definition of the global interpolation operator for
Cm-smooth functions by

IT v|T = ITvT ∀T ∈ T

The finite element space is

VT := {v = IT w : w ∈ Cm(Ω)}

We say that VT has regularity r if VT ⊂ Cr. If VT 6= C0, the regularity is defined as −1.
Examples:

• The P 1 - triangle with vertex nodes leads to regularity 0.

• The P 1 - triangle with edge midpoint nodes leads to regularity −1.

• The P 0 - triangle leads to regularity −1.

For smooth functions, functionals ψT,α and ψT̃ ,α̃ sitting in the same location are equiv-
alent. The set of global functionals Ψ = {ψ1, . . . , ψN} is the linearly independent set of
functionals containing all (equivalence classes of) local functionals.

The connectivity matrix CT ∈ RN×NT is defined such that the local functionals are
derived from the global ones by

ΨT (u) = Ct
TΨ(u)

Examples in 1D and 2D
The nodal basis for the global finite element space is the basis in VT dual to the global

functionals ψj, i.e.,
ψj(ϕi) = δij

There holds

ϕi|T = ITϕi =

NT∑
α=1

ψαT (ϕi)ϕ
α
T

=

NT∑
α=1

(Ct
Tψ(ϕi))αϕ

α
T

=

NT∑
α=1

(Ct
T ei)αϕ

α
T =

NT∑
α=1

CT,iαϕ
α
T

4.1 Finite element system assembling

As a first step, we assume there are no Dirichlet boundary conditions. The finite element
problem is

Find uh ∈ VT such that : A(uh, vh) = f(vh) ∀ vh ∈ VT (4.1)
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The nodal basis and the dual functionals provides the one to one relation between RN and
VT :

RN 3 u↔ uh ∈ VT with uh =
N∑
i=1

ϕiui and ui = ψi(uh).

Using the nodal basis expansion of uh in (4.1), and testing only with the set of basis
functions, one has

A(
N∑
i=1

uiϕi, ϕj) = f(ϕj) ∀ j = 1 . . . N

With
Aji = A(ϕi, ϕj) and f

j
= f(ϕj),

one obtains the linear system of equations

Au = f

The preferred way to compute the matrix A and vector f is a sum over element contribu-
tions. The restrictions of the bilinear and linear form to the elements are

AT (u, v) =

∫
T

∇u · ∇v dx+

∫
∂Ω∩T

αuv ds

and

fT (v) =

∫
T

fv dx+

∫
∂Ω∩T

gv ds

Then
A(u, v) =

∑
T∈T

AT (u, v) f(v) =
∑
T∈T

fT (v)

On each element, one defines the NT ×NT element matrix and element vector in terms
of the local basis on T :

AT,αβ = AT (ϕTα , ϕ
T
β ) f

T,α
= f

T
(ϕTα)

Then, the global matrix and the global vector are

A =
∑
T∈T

CTATC
t
T

and
f =

∑
T∈T

CTfT

Namely,

f
i

= f(ϕi) =
∑
T∈T

fT (ϕi|T ) =
∑
T∈T

fT (
∑
α

CT,iαϕ
α
T )

=
∑
T∈T

∑
α

CT,iαfT (ϕαT ) =
∑
T∈T

∑
α

CT,iαfα
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and

Aij =
∑
T∈T

A(ϕi|T , ϕj|T ) =
∑
T∈T

A(
∑
α

CT,iαϕ
α
T ,
∑
β

CT,jβϕ
β
T )

=
∑
T∈T

∑
α

∑
β

CT,iαAT,αβCT,jβ

On the elements T , the integrands are smooth functions. Thus, numerical integration
rules can be applied.

In the case of Dirichlet boundary conditions, let γD ⊂ {1, . . . , N} correspond to the
vertices xi at the Dirichlet boundary, and γf = {1, . . . N} \ γD.

We have the equations∑
i∈γD

Ajiui +
∑
i∈γf

Ajiui = fj ∀ j ∈ γf

Inserting ui = uD(xi) for i ∈ γi results in the reduced system∑
i∈γf

Ajiui = fj −
∑
i∈γD

AjiuD(xi)

An alternative approach is to approximate Dirichlet boundary conditions by Robin b.c.,
∂u
∂n

+ αu = αuD, with large parameter α.

4.2 Finite element error analysis

Let u be the solution of the variational problem, and uh its Galerkin approximation in the
finite element sub-space Vh. Cea’s Lemma bounds the finite element error u − uh by the
best approximation error

‖u− uh‖V ≤ C inf
v∈Vh
‖u− vh‖V .

The constant factor C is the ratio of the continuity bound and the coercivity bound of the
bilinear form A(., .).

Provided that the solution u is sufficiently smooth, we can take the finite element
interpolant to bound the best approximation error:

inf
v∈Vh
‖u− vh‖V ≤ ‖u− IT u‖V

In the following, we will bound the interpolation error.

Lemma 66. Let T̂ and T be d-dimensional domains related by the invertible affine linear
transformation FT : T̂ → T

FT (x) = a+Bx,
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where a ∈ Rd and B is a regular matrix in Rd×d. Then there holds:

‖u ◦ FT‖L2(T̂ ) = (detB)−1/2 ‖u‖L2(T ) (4.2)

∂

∂xim
. . .

∂

∂xi1
(u ◦ FT ) =

d∑
jm=1

. . .

d∑
j1=1

(
∂

∂xjm
. . .

∂

∂xj1
u

)
◦ FT Bjm,im . . . Bj1,i1 (4.3)

|u ◦ F |Hm(T̂ ) � (detB)−1/2‖B‖m |u|Hm(T ) (4.4)

Proof: Transformation of integrals, chain rule. 2

We define the diameter of the element T

hT = diamT

A triangulation is called shape regular, if all its elements fulfill

|T | � h2
T

with a “good” constant ∼ 1. If one studies convergence, one considers families of triangu-
lations with decreasing element sizes hT . In that case, the family of triangulations is called
shape regular, if there is a common constant C such that all elements of all triangulations
fulfill |T | ≥ Ch2

T .

Lemma 67. Let FT = a + Bx be the mapping from the reference triangle to the triangle
T . Let |T | � h2

T . Then there holds

‖BT‖ ' hT

‖B−1
T ‖ ' h−1

T

The following lemma is the basis for the error estimate. This lemma is the main
application for the Bramble Hilbert lemma. Sometimes, it is called the Bramble Hilbert
lemma itself:

Lemma 68. Let (T, VT ,ΨT ) be a finite element such that the element space VT contains
polynomials up to order P k. Then there holds

‖v − ITv‖H1 ≤ C|v|Hm ∀ v ∈ Hm(T )

for all m > d/2, m ≥ 1, and m ≤ k + 1.

Proof: First, we prove that id− IT is a bounded operator from Hm to H1:

‖v − ITv‖H1 ≤ ‖v‖H1 + ‖ITv‖H1 = ‖v‖H1 + ‖
∑
α

ψα(v)ϕα‖H1

≤ ‖v‖H1 +
∑
α

‖ϕα‖H1|ψα(v)|

≤ ‖v‖Hm
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The last step used that for Hm, with m > d/2, point evaluation is continuous. Now, let
v ∈ P k(T ). Since P k ⊂ VT , and IT is a projection on VT , there holds v − ITv = 0. The
Bramble Hilbert Lemma applied for U = H1 and L = id− IT proves the result. 2

To bound the finite element interpolation error, we will transform functions from the
elements T to the reference element T̂ .

Theorem 69. Let T be a shape regular triangulation of Ω. Let VT be a C0-regular finite
element space such that all local spaces contain P 1. Then there holds

‖v − IT v‖L2(Ω) �

{∑
T∈T

h4
T |v|H2(T )2

}1/2

∀ v ∈ H2(Ω)

|v − IT v|2H1(Ω) ≤ C

{∑
T∈T

h2
T |v|H2(T )2

}
∀ v ∈ H2(Ω)

Proof: We prove the H1 estimate, the L2 one follows the same lines. The interpolation
error on each element is transformed to the interpolation error on one reference element:

|v − IT v|2H1(Ω) =
∑
T∈T

|(id− IT )vT |2H1(T )

�
∑
T∈T

(detBT ) ‖B−1
T ‖

2 |(id− IT )vT ◦ FT |2H1(T̂ )

=
∑
T∈T

(detBT )‖B−1
T ‖

2‖(id− IT̂ )(vT ◦ FT )‖2
H1(T̂ )

On the reference element T̂ we apply the Bramble-Hilbert lemma. Then, we transform
back to the individual elements:

|v − IT v|2H1(Ω) �
∑
T∈T

(detBT )‖B−1
T ‖

2|vT ◦ FT |2Hm(T̂ )

�
∑
T∈T

(detBT ) ‖B−1
T ‖

2 (detB−1
T ) ‖BT‖4 |vT |2H2(T )

'
∑
T∈T

h2
T‖vT‖2

H2(T ).

2

A triangulation is called quasi− uniform, is all elements are essentially of the same
size, i.e., there exists one global h such that

h ' hT ∀T ∈ T .

On a quasi-uniform mesh, there hold the interpolation error estimates

‖u− IT u‖L2(Ω) � h2 |u|H2

|u− IT u|H1(Ω) � h |u|H2

We are interested in the rate of the error in terms of the mesh-size h.



58 CHAPTER 4. FINITE ELEMENT METHOD

Theorem 70 (Finite element error estimate). Assume that

• the solution u of the weak bvp is in H2,

• the triangulation T is quasi-uniform of mesh-size h,

• the element spaces contain P 1.

Then, the finite element error is bounded by

‖u− uh‖H1 � h |u|H2

Error estimates in L2-norm

The above theorem bounds the error in the L2-norm of the function, and the L2-norm of
the derivatives with the same rate in terms of h. This is obtained by the natural norm of
the variational formulation.

The interpolation error suggests a faster convergence in the weaker norm L2. Under
certain circumstances, the finite element error measured in L2 also decays faster. The
considered variational problem is

Find u ∈ V : A(u, v) = f(v) ∀ v ∈ V.

We define the dual problem as

Find w ∈ V : A(v, w) = f(v) ∀ v ∈ V.

In the case of a symmetric bilinear form, the primal and the dual problem coincide.

Theorem 71 (Aubin-Nitsche). Assume that

• the dual weak bvp is H2 regular

• the triangulation T is quasi-uniform of mesh-size h,

• the element spaces contain P 1.

Then, there holds the L2-error estimate

‖u− uh‖L2 � h2 |u|H2

Proof: Solve the dual problem with the error u− uh as right hand side:

Find w ∈ V : A(v, w) = (u− uh, v)L2 ∀ v ∈ V.

Since the dual problem is H2 regular, there holds w ∈ H2, and ‖w‖H2 � ‖u − uh‖L2 .
Choose the test function v := u− uh to obtain the squared norm

A(u− uh, w) = (u− uh, u− uh)L2 .
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Using the Galerkin orthogonality A(u− uh, vh) = 0 for all vh ∈ Vh, we can insert IT w:

‖u− uh‖2
L2

= A(u− uh, w − IT w).

Next we use continuity of A(., .) and the interpolation error estimates:

‖u− uh‖2
L2
� ‖u− uh‖H1 ‖w − IT w‖H1 � ‖u− uh‖H1 h |w|H2 .

From H2 regularity:
‖u− uh‖2

L2
� h‖u− uh‖H1 ‖u− uh‖L2 ,

and, after dividing one factor

‖u− uh‖L2 � h‖u− uh‖H1 � h2‖u‖H2 .

2

Approximation of Dirichlet boundary conditions

Till now, we have neglected Dirichlet boundary conditions. In this case, the continuous
problem is

Find u ∈ VD : A(u, v) = f(v) ∀ v ∈ V0,

where

VD = {v ∈ H1 : trΓD v = uD} and V0 = {v ∈ H1 : trΓD v = 0}.

The finite element problem is

Find uh ∈ VhD : A(uh, vh) = f(vh) ∀ vh ∈ Vh0,

where
VhD = {IT v : v ∈ VD} and Vh0 = {IT v : v ∈ V0}.

The definition of VhD coincides with {vh ∈ Vh : vh(xi) = uD(xi) ∀ vertices xi on ΓD}.
There holds Vh0 ⊂ V0, but, in general, there does not hold VhD ⊂ VD.

Theorem 72 (Error estimate for Dirichlet boundary conditions). Assume that

• A(., .) is coercive on Vh0:

A(vh, vh) ≥ α1 ‖vh‖2
V ∀ vh ∈ Vh0

• A(., .) is continuous on V :

A(u, v) ≤ α2 ‖u‖V ‖v‖V ∀u, v ∈ V
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Then there holds the finite element error estimate

‖u− uh‖H1 � h|u|H2

Proof: To make use of the coercivity of A(., .), we need an element in Vh0. There holds
Galerkin orthogonality A(u− uh, vh) = 0 ∀ vh ∈ Vh0:

‖u− uh‖2
V = ‖u− Ihu+ Ihu− uh‖2

V ≤ 2 ‖u− Ihu‖2
V + 2 ‖Ihu− uh‖2

V

≤ 2 ‖u− Ihu‖2
V +

2

α1

A(Ihu− uh, Ihu− uh)

≤ 2‖u− Ihu‖2
V +

2

α1

A(Ihu− u, Ihu− uh) +
2

α1

A(u− uh, Ihu− uh)

≤ 2 ‖u− Ihu‖2
V +

2α2

α1

‖Ihu− u‖‖Ihu− uh‖+ 0

≤ 2 ‖u− Ihu‖2
V +

2α2

α1

‖Ihu− u‖(‖Ihu− u‖+ ‖u− uh‖)

= (2 +
2α2

α1

) ‖u− Ihu‖2
V +

2α2

α1

‖u− Ihu‖V ‖u− uh‖V

Next, we apply ab ≤ 1
2
a2 + 1

2
b2 for a = 2α2

α1
‖u− Ihu‖V and b = ‖u− uh‖V :

‖u− uh‖2
V ≤ (2 +

2α2

α1

)‖u− Ihu‖2
V + 2

α2
2

α2
1

‖u− Ihu‖2
V +

1

2
‖u− uh‖2

V

Moving the term 1
2
‖u− uh‖ to the left, we obtain

‖u− uh‖2
V � ‖u− Ihu‖2

V � h ‖u‖H2

2

High order elements

One can obtain faster convergence, if the solution is smooth, and elements of higher order
are used:

Theorem 73. Assume that

• the solution is smooth: u ∈ Hm for m ≥ 2

• all element spaces VT contain polynomials P p for p ≥ 1

• the mesh is quasi-uniform

Then there holds

h−1‖u− Ihu‖L2 + ‖u− Ihu‖H1 � hmin{m−1,k}‖u‖Hm

The proof is analogous to the case m = 2 and k = 1. The constants in the estimates
depend on the Sobolev index m and on the polynomial order p. Nodal interpolation is
instable (i.e., the constant grow with p) for increasing order p. There exist better choices
to bound the best approximation error.
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Graded meshes around vertex singularities

On non-convex meshes domains, the solution is in general not in H2, but in some weighted
Sobolev space. The information of the weight can be used to construct proper locally
refined meshes.

On a sector domain with a non-convex corner of angle ω > π, the solution is bounded
in the weighted Sobolev norm

‖rβD2u‖L2 ≤ C,

with β = π
ω

. One may choose a mesh such that

hT ' hrβT , ∀T ∈ T

where rT is the distance of the center of the element to the singular corner, and h ∈ R+ is
a global mesh size parameter.

We bound the interpolation error:

‖u− IT u‖2
H1 �

∑
T∈T

h2
T |u|H2(T ) '

∑
T∈T

h2 |rβD2u|L2(T )

' h2 ‖rβD2u‖2
L2(Ω) � C h2

The number of elements in the domain can be roughly estimated by the integral over
the density of elements. The density is number of elements per unit volume, i.e., the inverse
of the area of the element:

Nel '
∫

Ω

|T |−1 dx =

∫
Ω

h−2r−2β dx = h−2

∫
r−2β dx ' Ch−2

In two dimensions, and β ∈ (0, 1), the integral is finite.
Combining the two estimates, one obtains a relation between the error and the number

of elements:
‖u− IT u‖2

V � N−1
el

This is the same order of convergence as in the H2 regular case !

4.3 A posteriori error estimates

We will derive methods to estimate the error of the computed finite element approximation.
Such a posteriori error estimates may use the finite element solution uh, and input data
such as the source term f .

η(uh, f)

An error estimator is called reliable, if it is an upper bound for the error, i.e., there
exists a constant C1 such that

‖u− uh‖V ≤ C1 η(uh, f) (4.5)
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An error estimator is efficient, if it is a lower bound for the error, i.e., there exists a
constant C2 such that

‖u− uh‖V ≥ C2 η(uh, f). (4.6)

The constants may depend on the domain, and the shape of the triangles, but may not
depend on the source term f , or the (unknown) solution u.

One use of the a posteriori error estimator is to know the accuracy of the finite element
approximation. A second one is to guide the construction of a new mesh to improve the
accuracy of a new finite element approximation.

The usual error estimators are defined as sum over element contributions:

η2(uh, f) =
∑
T∈T

η2
T (uh, f)

The local contributions should correspond to the local error. For the common error
estimators there hold the local efficiency estimates

‖u− uh‖H1(ωT ) ≥ C2 ηT (uh, f).

The patch ωT contains T and all its neighbor elements.

In the following, we consider the Poisson equation −∆u = f with homogenous Dirichlet
boundary conditions u = 0 on ∂Ω. We choose piecewise linear finite elements on triangles.

The Zienkiewicz Zhu error estimator

The simplest a posteriori error estimator is the one by Zienkiewicz and Zhu, the so called
ZZ error estimator.

The error is measured in the H1-semi norm:

‖∇u−∇uh‖L2

Define the gradient p = ∇u and the discrete gradient ph = ∇uh. The discrete gradient
ph is a constant on each element. Let p̃h be the p.w. linear and continuous finite element
function obtained by averaging the element values of ph in the vertices:

p̃h(xi) =
1

|{T : xi ∈ T}|
∑
T :xi∈T

ph|T for all vertices xi

The hope is that the averaged gradient is a much better approximation to the true gradient,
i.e.,

‖p− p̃h‖L2 ≤ α ‖p− ph‖L2 (4.7)

holds with a small constant α � 1. This property is known as super-convergence.It is
indeed true on (locally) uniform meshes, and smoothness assumptions onto the source
term f .
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The ZZ error estimator replaces the true gradient in the error p − ph by the good
approximation p̃h:

η(uh) = ‖p̃h − ph‖L2(Ω)

If the super-convergence property (4.7) is fulfilled, than the ZZ error estimator is reli-
able:

‖∇u−∇uh‖L2 = ‖p− ph‖L2 ≤ ‖ph − p̃h‖L2 + ‖p− p̃h‖L2

≤ ‖ph − p̃h‖L2 + α‖p− ph‖L2 ,

and

‖∇u−∇uh‖L2 ≤
1

1− α
‖ph − p̃h‖L2 .

It is also efficient, a similar short application of the triangle inequality.
There is a rigorous analysis of the ZZ error estimator, e.g., by showing equivalence to

the following residual error estimator.

The residual error estimator

The idea is to compute the residual of the Poisson equation

f + ∆uh,

in the natural norm H−1. The classical ∆-operator cannot be applied to uh, since the first
derivatives, ∇uh, are non-continuous across element boundaries. One can compute the
residuals on the elements

f|T + ∆uh|T ∀T ∈ T ,

and one can also compute the violation of the continuity of the gradients on the edge
E = T1 ∩ T2. We define the normal-jump term[

∂uh
∂n

]
:=

∂uh
∂n1

|T1 +
∂uh
∂n2

|T2 .

The residual error estimator is

ηres(uh, f)2 :=
∑
T

ηresT (uh, f)2

with the element contributions

ηresT (uh, f)2 := h2
T‖f + ∆uh‖2

L2(T ) +
∑
E:E⊂T
E⊂Ω

hE

∥∥∥∥[∂uh∂n

]∥∥∥∥2

L2(E)

.

The scaling with hT corresponds to the natural H−1 norm of the residual.
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To show the reliability of the residual error estimator, we need a new quasi-interpolation
operator, the Clément- operator Πh. In contrast to the interpolation operator, this operator
is well defined for functions in L2.

We define the vertex patch of all elements connected with the vertex x

ωx =
⋃

T :x∈T

T,

the edge patch consisting of all elemenets connected with the edge E

ωE =
⋃

T :E∩T 6=∅

T,

and the element patch consisting of the element T and all its neighbors

ωT =
⋃

T ′:T∩T ′ 6=∅

T ′.

The nodal interpolation operator Ih was defined as

Ihv =
∑
xi∈V

v(xi)ϕi,

where ϕi are the nodal basis functions. Now, we replace the nodal value v(xi) be a local
mean value.

Definition 74 (Clément quasi-interpolation operator). For each vertex x,let vωx be the
mean value of v on the patch ωx, i.e.,

vωx =
1

|ωx|

∫
ωx

v dx.

The Clément operator is

Πhv :=
∑
xi∈V

vωxiϕi.

In the case of homogeneous Dirichlet boundary values, the sum contains only inner vertices.

Theorem 75. The Clément operator satisfies the following continuity and approximation
estimates:

‖∇Πhv‖L2(T ) � ‖∇v‖L2(ωT )

‖v − Πhv‖L2(T ) � hT‖∇v‖L2(ωT )

‖v − Πhv‖L2(E) � h
1/2
E ‖∇v‖L2(ωE)
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Proof: First, choose a reference patch ω̂T of dimension ' 1. The quasi-interpolation
operator is bounded on H1(ωT ):

‖v − Πhv‖L2(T̂ ) + ‖∇(v − Πhv)‖L2(T̂ ) � ‖v‖H1(ω̂T ) (4.8)

If v is constant on ωT , then the mean values in the vertices take the same values, and
also (Πhv)|T is the same constant. The constant function (on ωT ) is in the kernel of
‖v−Πhv‖H1(T ). Due to the Bramble-Hilbert lemma, we can replace the norm on the right
hand side of (4.8) by the semi-norm:

‖v − Πhv‖L2(T̂ ) + ‖∇(v − Πhv)‖L2(T̂ ) � ‖∇v‖L2(ω̂T ) (4.9)

The rest follows from scaling. Let F : x→ hx scale the reference patch ω̂T to the actual
patch ωT . Then

‖v − Πhv‖L2(T ) + h ‖∇(v − Πhv)‖L2(T ) � h ‖∇v‖L2(ωT )

The estimate for the edge term is similar. One needs the scaling of integrals form the
reference edge Ê to E:

‖v‖L2(E) = h
1/2
E ‖v ◦ F‖L2(Ê)

Theorem 76. The residual error estimator is reliable:

‖u− uh‖ � ηres(uh, f)

Proof: From the coercivity of A(., .) we get

‖u− uh‖H1 � A(u− uh, u− uh)
‖u− uh‖H1

≤ sup
0 6=v∈H1

A(u− uh, v)

‖v‖H1

.

The Galerkin orthogonality A(u− uh, vh) = 0 for all vh ∈ Vh allows to insert the Clément
interpolant in the numerator. It is well defined for v ∈ H1:

‖u− uh‖H1 ≤ sup
0 6=v∈H1

A(u− uh, v − Πhv)

‖v‖H1

.

We use that the true solution u fulfills A(u, v) = f(v), and insert the definitions of A(., .)
and f(.):

A(u− uh, v − Πhv) = f(v − Πhv)− A(uh, v − Πhv)

=

∫
Ω

fv dx−
∫

Ω

∇uh∇(v − Πhv) dx

=
∑
T∈T

∫
T

fv dx−
∑
T∈T

∫
T

∇uh∇(v − Πhv) dx
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On each T , the finite element function uh is a polynomial. This allows integration by parts
on each element:

A(u− uh, v − Πhv) =
∑
T∈T

∫
T

fv dx−
∑
T∈T

{
−
∫
T

∆uh(v − Πhv) dx+

∫
∂T

∂uh
∂n

(v − Πhv) ds

}

All inner edges E have contributions from normal derivatives from their two adjacent
triangles TE,1 and TE,2. On boundary edges, v − Πhv vanishes.

A(u− uh, v − Πhv)

=
∑
T

∫
T

(f + ∆uh)(v − Πhv) dx+
∑
E

∫
E

{
∂uh
∂n
|TE,1 +

∂uh
∂n
|TE,2

}
(v − Πhv) ds

=
∑
T

∫
T

(f + ∆uh)(v − Πhv) dx+
∑
E

∫
E

[
∂uh
∂n

]
(v − Πhv) ds

Applying Cauchy-Schwarz first on L2(T ) and L2(E), and then in Rn:

A(u− uh, v − Πhv)

≤
∑
T

‖f + ∆uh‖L2(T )‖v − Πhv‖L2(T ) +
∑
E

∥∥∥∥[∂uh∂n

]∥∥∥∥
L2(E)

‖v − Πhv‖L2(E)

=
∑
T

hT‖f + ∆uh‖L2(T )h
−1
T ‖v − Πhv‖L2(T ) +

∑
E

h
1/2
E

∥∥∥∥[∂uh∂n

]∥∥∥∥
L2(E)

h
−1/2
E ‖v − Πhv‖L2(E)

≤

{∑
T

h2
T‖f + ∆uh‖2

L2(T )

}1/2{∑
T

h−2
T ‖v − Πhv‖2

L2(T )

}1/2

+

+

{∑
E

hE

∥∥∥∥[∂uh∂n

]∥∥∥∥2

L2(E)

}1/2{∑
E

h−1
E ‖v − Πhv‖2

L2(E)

}1/2

We apply the approximation estimates of the Clément operator, and use that only a
bounded number of patches are overlapping:

∑
T

h−2
T ‖v − Πhv‖2

L2(T ) �
∑
T

‖∇v‖2
L2(ωT ) � ‖∇v‖2

L2(Ω),

and similar for the edges

∑
E

h−1
E ‖v − Πhv‖2

L2(E) ≤ ‖∇v‖2
L2(Ω).
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Combining the steps above we observe

‖u− uh‖V � sup
v∈H1

A(u− uh, v − Πhv)

‖v‖1
H

� sup
V ∈H1

{∑
T h

2
T‖f + ∆uh‖2

L2(T ) +
∑

E hE
∥∥[∂uh

∂n

]∥∥2

L2(E)

}1/2

‖∇v‖L2(Ω)

‖v‖H1

≤

{∑
T

h2
T‖f + ∆uh‖2

L2(T ) +
∑
E

hE

∥∥∥∥[∂uh∂n

]∥∥∥∥2

L2(E)

}1/2

,

what is the reliability of the error estimator ηres(uh, f)

Theorem 77. If the source term f is piecewise polynomial on the mesh, then the error
estimator ηres is efficient:

‖u− uh‖V � ηres(uh, f)

Goal driven error estimates

The above error estimators estimate the error in the energy norm V . Some applications
require to compute certain values (such as point values, average values, line integrals, fluxes
through surfaces, ...). These values are descibed by linear functionals b : V → R. We want
to design a method such that the error in this goal, i.e.,

b(u)− b(uh)

is small. The technique is to solve additionally the dual problem, where the right hand
side is the goal functional:

Find w ∈ V : A(v, w) = b(v) ∀ v ∈ V.

Usually, one cannot solve the dual problem either, and one applies a Galerkin method also
for the dual problem:

Find wh ∈ Vh : A(vh, wh) = b(vh) ∀ vh ∈ Vh.

In the case of point values, the solution of the dual problem is the Green function (which
is not in H1). The error in the goal is

b(u− uh) = A(u− uh, w) = A(u− uh, w − wh).

A rigorous upper bound for the error in the goal is obtained by using continuity of the
bilinear-form, and energy error estimates η1 and η2 for the primal and dual problem,
respectively:

|b(u− uh)| � ‖u− uh‖V ‖w − wh‖V � η1(uh, f) η2(wh, b).
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A good heuristic is the following (unfortunately, not correct) estimate

b(u−uh) = A(u−uh, w−wh) �
∑
T∈T

‖u−uh‖H1(T ) ‖w−wh‖H1(T ) �
∑
T

η1
T (uh, f) η2

T (wh, b)

(4.10)
The last step would require a local reliability estimate. But, this is not true.

We can interpret (4.10) that way: The local estimators η2
T (wh) provide a way for

weighting the primal local estimators according to the desired goal.

Mesh refinement algorithms

A posteriori error estimates are used to control recursive mesh refinement:

Start with initial mesh T
Loop

compute fe solution uh on T
compute error estimator ηT (uh, f)
if η ≤ tolerance then stop
refine elements with large ηT to obtain a new mesh

The mesh refinement algorithm has to take care of

• generating a sequence of regular meshes

• generating a sequence of shape regular meshes

Red-Green Refinement:
A marked element is split into four equivalent elements (called red refinement):

But, the obtained mesh is not regular. To avoid such irregular nodes, also neighboring
elements must be split (called green closure):

If one continues to refine that way, the shape of the elements may get worse and worse:
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A solution is that elements of the green closure will not be further refined. Instead, remove
the green closure, and replace it by red refinement.

Marked edge bisection:
Each triangle has one marked edge. The triangle is only refined by cutting from the middle
of the marked edge to the opposite vertex. The marked edges of the new triangles are the
edges of the old triangle.

If there occurs an irregular node, then also the neighbor triangle must be refined.

To ensure finite termination, one has to avoid cycles in the initial mesh. This can be
obtained by first sorting the edges (e.g., by length), end then, always choose the largest
edges as marked edge.

Both of these refinement algorithms are also possible in 3D.

4.4 Equilibrated Residual Error Estimates

4.4.1 General framework

Equilibrated residual error estimators provide upper bounds for the discretization error
in energy norm without any generic constant. We consider the standard problem: find
u ∈ V := H1

0 (Ω) such that ∫
Ω

λ∇u · ∇v =

∫
Ω

fv ∀ v ∈ V

The left hand side defines the bilinear-form A(·, ·), the right hand side the linear-form f(·).
We define a finite element sub-space Vh ⊂ V of order k, and the finite element solution

find uh ∈ Vh : A(uh, vh) = f(vh) ∀ vh ∈ Vh.

We assume that f is element-wise polynomial of order k−1, and λ is element-wise constant
and positive.
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The residual r(·) ∈ V ∗ is

r(v) = f(v)− A(uh, v) v ∈ V

Since

‖u− uh‖A = sup
v∈V

A(u− uh, v)

‖v‖A
= sup

v∈V

r(v)

‖v‖A
,

we aim in estimating ‖r‖ in the norm dual to ‖ · ‖A, which is essentially the H−1-norm.
In general, the direct evaluation of this norm is not feasible. Using the structure of the
problem, we can represent the residual as

r(v) =
∑
T∈T

∫
T

rTv +
∑
E∈E

∫
E

rEv,

where rT and rE are given asgiven as

rT = fT + div λT∇uh|T and rE =

[
λ
∂uh
∂n

]
E

The element-residual rT is a polynomial of order k − 1 on the element T , and the edge
residual (the normal jump) is a polynomial of order k − 1 on the edge E.

The residual error estimator estimates the residual in terms of weighted L2-norms:

‖r‖2 ' ηres(uh, f)2 :=
∑
T

h2
T

λT
‖rT‖2

L2(T ) +
∑
E

hE
λE
‖rE‖2

L2(E)

Here, λE is some averaging of the coefficients on the two elements containing the edge E.
The equivalence holds with constants depending on the shape of elements, the relative
jump of the coefficient, and the polynomial order k.

The equilibrated residual error estimator ηer is defined in terms of the same data rT
and rE. It satisfies

‖u− uh‖A ≤ ηer reliable with constant 1

‖u− uh‖A ≥ c ηer efficient with a generic constant c

The lower bound depends on the shape of elements and the coefficient λ, but is robust
with respect to the polynomial order k.

The main idea is the following: Instead of calculating the H−1-norm of r, we compute
a lifting σ∆ such that div σ∆ = r, and calculate the L2-norm of σ∆. Since r is not a regular
function, the equation must be posed in distributional form:∫

Ω

σ∆ · ∇ϕ = −r(ϕ) ∀ϕ ∈ V
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Then, the residual can be estimated without envolving any generic constant:

‖r‖A∗ = sup
v∈V

r(v)

‖v‖A
= sup

v

∫
σ∆ · ∇v
‖v‖A

= sup
v

∫
λ−1/2σ∆ · λ1/2∇v

‖v‖A
≤ sup

v

√∫
λ−1|σ∆|2

√∫
λ|∇v|2

‖v‖A
= ‖σ∆‖L2,1/λ

The norm ‖σ∆‖ :=
∫
λ−1|σ∆|2 can be evaluated easily.

Remark: The flux-postprocessing σ := λ∇uh + σ∆ provides a flux σ ∈ H(div) such
that div σ = f , i.e. the flux is in exact equilibrium with the source f . Thus the name.

4.4.2 Computation of the lifting ‖σ∆‖
The residual is a functional of the form

r(v) =
∑
T

(rT , v)L2(T ) +
∑
E

(rE, v)L2(E),

where rT and rE are polynomials of order k − 1. We search for σ∆ which is element-wise
a vector-valued polynomial of order k, and not continuous across edges. Element-wise
integration by parts gives∫

Ω

σ · ∇ϕ = −
∑
T

∫
T

div σ|Tϕ+
∑
E

∫
E

[σ · n]Eϕ.

Thus div σ = r in distributional sense reads as

div σ|T = rT and [σ · n]E = −rE

for all elements T and edges E. We could now pose the problem

min
σ∈Pk(T )2

div σ=r

‖σ‖L2,1/λ

We minimize the weighted-L2 norm since we want to find the smallest possible upper bound
for the error. This is already a computable approach. But, the problem is global, and its
solution is of comparable cost as the solution of the original finite element system. The
existence of a σ such that div σ = r also needs a proof.

We want to localize the construction of the flux. Local problems are associated with
vertex-patches ωV = ∪T :V ∈TT . We proceed in two steps:

1. localization of the residual: r =
∑

V r
V

2. local liftings: find σV such that div σV = rV on the vertex patch
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Then, for σ :=
∑
σV there holds div σ = r

The localization is given by multiplication of the P 1 vertex basis functions (hat-
functions) φV :

rV (v) := r(φV v)

Since
∑

V φV = 1, there holds
∑
rV (·) = r(·). The localized residual has the same structure

of element and edge terms:

rV (v) =
∑
T⊂ωV

(rVT , v)L2(T ) +
∑
E⊂ωV

(rVE , v)L2(E),

with
rVT = φV rT and rVE = φV rE

The local residual vanishes on constants on the patch:

rV (1) = r(φV 1) = A(u− uh, φV ) = 0

The last equality follows from the Galerkin-orthogonality.
We give an explicit construction of the lifting σV in terms of the Brezzi-Douglas-Marini

(BDM) element. The kth order BDM element on a triangle is given by VT = [P k]2 and the
degrees of freedom:

(i)
∫
E
σ · n qi with qi a basis for P k(E)

(ii)
∫
T

div σ qi with qi a basis for P k−1(T ) ∩ L0
2(T )

(iii)
∫
T
σ · curl qi with qi a basis for P k+1

0 (T )

Exercise: Show that these dofs are unisolvent. Count dimensions, and prove that [∀i :
ψi(σ) = 0]⇒ σ = 0.

Now, we give an explicit construction of equilibrated fluxes on a vertex patch. Label
elements T1, T2, . . . Tn in a counter-clock-wise order. Edge Ei is the common edge between
triangle Ti−1 and Ti (with identifying T0 = Tn). We define σ by specifying the dofs of the
BDM element:

1. Start on T1. We set σn = −rVE1
on edge E1. On the edge on the patch-boundary we

set σn = 0, and on E2 we set σn = const such that
∫
∂T1

σn =
∫
T1
rVT . We use the

dofs of type (ii) to specify
∫
T

div σ q =
∫
T
rVT q ∀q ∈ P k−1 ∩ L0

2(T ). Together with get
div σ = rT . Dofs of type (iii) are not needed, and set 0. There holds∫

E2

σn =

∫
T1

rVT −
∫
E1

σn =

∫
T1

rVT1
+

∫
E1

rVE1

2. Continue with element T2. On edge E2 common with T1 set σn such that [σ · n]E2 =
rE2 . Otherwise, proceed as on T1. Thus∫

E3

σn =

∫
T1

rVT1
+

∫
E1

rVE1
+

∫
T2

rVT2
+

∫
E2

rVE2
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3. Continue to element Tn. Observe that on Tn:∫
E1

σn =
n∑
i=1

∫
Ti

rVTi +
n∑
i=1

∫
Ei

rVEi = 0,

which follows from rV (1) = 0. Thus, also [σ · n]E1 = rVE1
is satisfied.

This explicit construction proves the existence of an equilibrated flux. Instead of this
explicit construction, one may solve a local constrained optimization problem

min
σV :div σV =rV

‖σ‖L2,λ−1

This applies also for 3D. Furthoer notes

• mixed boundary conditions are possible

• the efficiency for the h-FEM is shown by scaling arguments, and equivalence to the
residual error estimator

• efficiency is also proven to be robust with respect to polynomial order k, examples
show overestimation less than 1.5

Literature:

1. D. Braess and J. Schöberl. Equilibrated Residual Error Estimator for Maxwell’s
Equations. Mathematics of Computation, Vol 77(262), 651-672, 2008

2. D. Braess, V. Pillwein and J. Schöberl: Equilibrated Residual Error Estimates are
p-Robust. Computer Methods in Applied Mechanics and Engineering. Vol 198,
1189-1197, 2009

4.5 Non-conforming Finite Element Methods

In a conforming finite element method, one chooses a sub-space Vh ⊂ V , and defines the
finite element approximation as

Find uh ∈ Vh : A(uh, vh) = f(vh) ∀ vh ∈ Vh
For reasons of simpler implementation, or even of higher accuracy, the conforming frame-
work is often violated. Examples are:

• The finite element space Vh is not a sub-space of V = Hm. Examples are the non-
conforming P 1 triangle, and the Morley element for approximation of H2.

• The Dirichlet boundary conditions are interpolated in the boundary vertices.

• The curved domain is approximated by straight sided elements

• The bilinear-form and the linear-form are approximated by inexact numerical inte-
gration

The lemmas by Strang are the extension of Cea’s lemma to the non-conforming setting.
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The First Lemma of Strang

In the first step, let Vh ⊂ V , but the bilinear-form and the linear-form are replaced by
mesh-dependent forms

Ah(., .) : Vh × Vh → R

and
fh(.) : Vh → R.

We do not assume that Ah and fh are defined on V . We assume that the bilinear-forms
Ah are uniformly coercive, i.e., there exists an α1 independent of the mesh-size such that

Ah(vh, vh) ≥ α1 ‖vh‖2
V ∀ vh ∈ Vh

The finite element problem is defined as

Find uh ∈ Vh : Ah(uh, vh) = fh(vh) ∀ vh ∈ Vh

Lemma 78 (First Lemma of Strang). Assume that

• A(., .) is continuous on V

• Ah(., .) is uniformly coercive

Then there holds

‖u− uh‖ � inf
vh∈Vh

{
‖u− vh‖+ sup

wh∈Vh

|A(vh, wh)− Ah(vh, wh)|
‖wh‖

}
+ sup

wh∈Vh

f(wh)− fh(wh)
‖wh‖

Proof: Choose an arbitrary vh ∈ Vh, and set wh := uh − vh. We use the uniform
coercivity, and the definitions of u and uh:

α1‖uh − vh‖2
V ≤ Ah(uh − vh, uh − vh) = Ah(uh − vh, wh)

= A(u− vh, wh) + [A(vh, wh)− Ah(vh, wh)] + [Ah(uh, wh)− A(u,wh)]

= A(u− vh, wh) + [A(vh, wh)− Ah(vh, wh)] + [fh(wh)− f(wh)]

Divide by ‖uh − vh‖ = ‖wh‖, and use the continuity of A(., .):

‖uh − vh‖ � ‖u− vh‖+
|A(vh, wh)− Ah(vh, wh)|

‖wh‖
+
|f(wh)− fh(wh)|

‖wh‖
(4.11)

Using the triangle inequality, the error ‖u− uh‖ is bounded by

‖u− uh‖ ≤ inf
vh∈Vh

‖u− vh‖+ ‖vh − uh‖

The combination with (4.11) proves the result. 2
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Example: Lumping of the L2 bilinear-form:
Define the H1 - bilinear-form

A(u, v) =

∫
Ω

∇u · ∇v +

∫
Ω

uv dx,

and perform Galerkin discretization with P 1 triangles. The second term leads to a non-
diagonal matrix. The vertex integration rule∫

T

v dx ≈ |T |
3

3∑
α=1

v(xT,α)

is exact for v ∈ P 1. We apply this integration rule for the term
∫
uv dx:

Ah(u, v) =

∫
∇u · ∇v +

∑
T∈T

|T |
3

3∑
α=1

u(xT,α)v(xT,α)

The bilinear form is now defined only for u, v ∈ Vh. The integration is not exact, since
uv ∈ P 2 on each triangle.

Inserting the nodal basis ϕi, we obtain a diagonal matrix for the second term:

ϕi(xT,α)ϕj(xT,α) =

{
1 for xi = xj = xT,α
0 else

To apply the first lemma of Strang, we have to verify the uniform coercivity∑
T

|T |
3

3∑
α=1

|vh(xT,α)|2 ≥ α1

∑
T

∫
T

|vh|2 dx ∀ vh ∈ Vh, (4.12)

which is done by transformation to the reference element. The consistency error can be
estimated by

|
∫
T

uhvh dx−
|T |
3

3∑
α=1

uh(xα)vh(xα)| � h2
T ‖∇uh‖L2(T ) ‖∇vh‖L2(T ) (4.13)

Summation over the elements give

A(uh, vh)− Ah(uh, vh) � h2‖uh‖H1(Ω) ‖vh‖H1(Ω)

The first lemma of Strang proves that this modification of the bilinear-form preserves the
order of the discretization error:

‖u− uh‖H1 � inf
vh∈Vh

{
‖u− vh‖H1 + sup

wh∈Vh

|A(vh, wh)− Ah(vh, wh)|
‖wh‖H1

}
� ‖u− Ihu‖H1 + sup

wh∈Vh

|A(Ihu,wh)− Ah(Ihu,wh)|
‖wh‖H1

� h ‖u‖H2 + sup
wh∈Vh

h2 ‖Ihu‖H1‖wh‖H1

‖wh‖H1

� h ‖u‖H2

A diagonal L2 matrix has some advantages:
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• It avoids oscillations in boundary layers (exercises!)

• In explicit time integration methods for parabolic or hyperbolic problems, one has to
solve linear equations with the L2-matrix. This becomes cheap for diagonal matrices.

The Second Lemma of Strang

In the following, we will also skip the requirement Vh ⊂ V . Thus, the norm ‖.‖V cannot
be used on Vh, and it will be replaced by mesh-dependent norms ‖.‖h. These norms must
be defined for V + Vh. As well, the mesh-dependent forms Ah(., .) and fh(.) are defined on
V + Vh. We assume

• uniform coercivity:

Ah(vh, vh) ≥ α1‖vh‖2
h ∀ vh ∈ Vh

• continuity:

Ah(u, vh) ≤ α2‖u‖h‖vh‖h ∀u ∈ V + Vh, ∀ vh ∈ Vh

The error can now be measured only in the discrete norm ‖u− uh‖Vh .

Lemma 79. Under the above assumptions there holds

‖u− uh‖h � inf
vh∈Vh

‖u− vh‖h + sup
wh∈Vh

|Ah(u,wh)− fh(wh)|
‖wh‖h

(4.14)

Remark: The first term in (4.14) is the approximation error, the second one is called
consistency error.
Proof: Let vh ∈ Vh. Again, set wh = uh − vh, and use the Vh-coercivity:

α1 ‖uh − vh‖2
h ≤ Ah(uh − vh, uh − vh) = Ah(uh − vh, wh)

= Ah(u− vh, wh) + [fh(wh)− Ah(u,wh)]

Again, divide by ‖uh − vh‖, and use continuity of Ah(., .):

‖uh − vh‖h � ‖u− vh‖h +
Ah(u,wh)− fh(wh)

‖wh‖h

The rest follows from the triangle inequality. 2

The non-conforming P 1 triangle

The non-conforming P 1 triangle is also called the Crouzeix-Raviart element.
The finite element space generated by the non-conforming P 1 element is

V nc
h := {v ∈ L2 : v|T ∈ P 1(T ), and v is continuous in edge mid-points}
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The functions in V nc
h are not continuous across edges, and thus, V nc

h is not a sub-space
of H1. We have to extend the bilinear-form and the norm in the following way:

Ah(u, v) =
∑
T∈T

∫
T

∇u∇v dx ∀u, v ∈ V + V nc
h

and
‖v‖2

h :=
∑
T∈T

‖∇v‖2
L2(T ) ∀ v ∈ V + V nc

h

We consider the Dirichlet-problem with u = 0 on ΓD.
We will apply the second lemma of Strang.
The continuous P 1 finite element space V c

h is a sub-space of V nc
h . Let Ih : H2 → V c

h be
the nodal interpolation operator.

To bound the approximation term in (4.14), we use the inclusion V c
h ⊂ V nc

h :

inf
vh∈V nch

‖u− vh‖h ≤ ‖u− Ihu‖H1 � h ‖u‖H2

We have to bound the consistency term

r(wh) = Ah(u,wh)− f(wh)

=
∑
T

∫
T

∇u∇wh −
∑
T

∫
T

fwh dx

=
∑
T

∫
∂T

∂u

∂n
wh ds−

∑
T

∫
T

(∆u+ f)wh ds

=
∑
T

∫
∂T

∂u

∂n
wh ds

Let E be an edge of the triangle T . Define the mean value wh
E. If E is an inner edge,

then the mean value on the corresponding edge of the neighbor element is the same. The
normal derivative ∂u

∂n
on the neighbor element is (up to the sign) the same. If E is an edge

on the Dirichlet boundary, then the mean value is 0. This allows to subtract edge mean
values:

r(wh) =
∑
T

∑
E⊂T

∫
E

∂u

∂n
(wh − whE) ds

Since
∫
E
wh − whE ds = 0, we may insert the constant function ∂Ihu

∂n
on each edge:

r(wh) =
∑
T

∑
E⊂T

∫
E

(
∂u

∂n
− ∂Ihu

∂n

)
(wh − whE) ds

Apply Cauchy-Schwarz on L2(E):

r(wh) =
∑
T

∑
E⊂T

‖∇(u− Ihu)‖L2(E)‖wh − whE‖L2(E)
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To estimate these terms, we transform to the reference element T̂ , where we apply the
Bramble Hilbert lemma. Let T = FT (T̂ ), and set

û = u ◦ FT ŵh = wh ◦ FT

There hold the scaling estimates

|wh|H1(T ) ' |ŵh|H1(T̂ )

‖wh − whE‖L2(E) ' h
1/2
E ‖ŵh − ŵh

Ê‖L2(Ê)

|u|H2(T ) ' h−1
T |û|H2(T̂ )

‖∇(u− Ihu)‖L2(E) ' h
−1/2
E ‖∇(û− Îhû)‖L2(E)

On the reference element, we apply the Bramble Hilbert lemma, once for wh, and once for
u. The linear operator

L : H1(T̂ )→ L2(Ê) : ŵh → ŵh − ŵh
Ê

is bounded on H1(T̂ ) (trace theorem), and Lw = 0 for w ∈ P0, thus

‖ŵh − ŵh
Ê‖L2(Ê) � |ŵh|H1(T̂ )

Similar for the term in u: There is ‖∇(u− Ihu)‖L2(E) � ‖u‖H2(T ), and u− Ihu vanishes for
u ∈ P 1.

Rescaling to the element T leads to

‖wh − whE‖L2(E) � h1/2 |wh|H1(T )

‖∇(u− Ihu)‖L2(E) � h1/2 |u|H2(T )

This bounds the consistency term

r(wh) �
∑
T

h |u|H2(T )|wh|H1(T ) � h ‖u‖H2(Ω) ‖wh‖h.

The second lemma of Strang gives the error estimate

‖u− uh‖ � h ‖u‖H2

There are several applications where the non-conforming P 1 triangle is of advantage:

• The L2 matrix is diagonal (exercises)

• It can be used for the approximation of problems in fluid dynamics described by the
Navier Stokes equations (see later).

• The finite element matrix has exactly 5 non-zero entries in each row associated with
inner edges. That allows simplifications in the matrix generation code.
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4.6 hp - Finite Elements

Let Vhp be a p-th order finite element sub-space of H1. By scaling and Bramble-Hilbert
technique one obtains the best-approxiamtion error estimate

inf
vhp∈Vhp

‖u− vhp‖H1 ≤ chm−1‖u‖Hm

for m ≤ p+1. The constant c depends on the order p. If m is fixed, we do obtain reduction
of the approximation error as we increase p. Next we develop methods to obtain so called
p-version error estimates

inf
vhp∈Vhp

‖u− vhp‖H1 ≤ c
(
h
p

)m−1

‖u‖Hm ,

where c is independent of h and p. This estimate proves also convergence of the p-version
finite element method: One may fix the mesh, and increase the order p.

A detailed analyis of local Hm norms allows an optimal balance of mesh-size h and
polynomial order p. This hp-version leads to exponential convergence

inf
vhp∈Vhp

‖u− vhp‖H1 ≤ ce−N
α

,

where N is the number of unknowns.
We will prove the p-version estimate, but not the hp-result.

4.6.1 Legendre Polynomials

Orthogonal polynomials are important to construct stable basis functions for the p-FEM,
as well as for error estimates.

Let Πn denote the space of polynomials up to order n. We write πn for a generic
polynomial in Πn, with a different value any time it appears.

Definition of Legendre polynomials via Rodrigues’ formula:

Pn(x) :=
1

2nn!

dn

dxn
(x2 − 1)n.

It is a polynomial of degree n. The first view Legendre polynomials are

P0(x) = 1

P1(x) = x

P2(x) = 3
2
x2 − 1

2

Pn is even if n is even, and Pn is odd if n is odd. Since (x2 − 1)n = x2n − nx2n−2 + π2n−4

(with proper modification for small n) we have

Pn(x) =
1

2nn!

(2n)!

n!
xn − n

2nn!

(2n− 2)!

(n− 2)!
xn−2 + πn−4 (4.15)
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Lemma 80. There holds ∫ 1

−1

Pn(x)Pm(x) dx =
2

2n+ 1
δn,m. (4.16)

Proof. W.l.o.g. let n ≤ m. Multiple integration by parts gives

2n+mn!m!

∫ 1

−1

Pn(x)Pm(x) dx =

∫ 1

−1

dn

dxn
(x2 − 1)n

dm

dxm
(x2 − 1)n dx

=

∫ 1

−1

dn+1

dxn+1
(x2 − 1)n

dm−1

dxm−1
(x2 − 1)m +

 dn

dxn
(x2 − 1)n

dm−1

dxm−1
(x2 − 1)m︸ ︷︷ ︸

=0 for x∈{−1,1}


1

−1

= · · ·

=

∫ 1

−1

dn+m

dxn+m
(x2 − 1)n(x2 − 1)m dx

For n < m, the first factor of the integrand vanishes, and we have orthogonality. For
n = m this equals

22n(n!)2‖Pn‖2
L2

=

∫ 1

−1

(2n)!(x2 − 1)n dx = (2n)!

∫ 1

−1

(x− 1)n(x+ 1)n

= −(2n)!

∫ 1

−1

n

n+ 1
(x− 1)n+1(x+ 1)n−1

= (2n)!

∫ 1

−1

n(n− 1)

(n+ 1)(n+ 2)
(x− 1)n+2(x+ 1)n−2 = ...

= (2n)!
n!

2n(2n− 1) · · · (n+ 1)

∫ 1

−1

(x− 1)2n dx = (n!)2 1

2n+ 1
22n+1,

which proves the scaling.

Next we prove the 3-term recurrency, which can be used for efficient evaluation.

Lemma 81. There holds

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x). (4.17)

Proof. Set r(x) = (n+ 1)Pn+1(x)− (2n+ 1)xPn(x) + nPn−1(x). Using (4.15), we see that
the leading coefficients cancel, and thus r ∈ Πn−2. From Lemma 80 we get for any q ∈ Πn−2∫ 1

−1

r(x)q(x) dx = (n+ 1)

∫ 1

−1

Pn+1 q − (2n+ 1)

∫ 1

−1

Pn xq︸︷︷︸
∈Πn−1

+n

∫ 1

−1

Pn−1 q = 0,

and thus r = 0.
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Lemma 82. Legendre polynomials satisfy the Sturm-Liouville differential equation

d

dx

[
(x2 − 1)

d

dx
Pn(x)

]
= n(n+ 1)Pn(x)

Proof. Both sides are in Πn. We compare leading coefficients, for this set Pn = anx
n+πn−2

(with an = 1
2nn!

(2n)!
n!

).

lhs =
d

dx

[
(x2 − 1)

d

dx
(anx

n + πn−2)

]
=

d

dx

[
(x2 − 1)(annx

n−1 + πn−3)
]

=
d

dx

[
annx

n+1 + πn−1

]
= n(n+ 1)anx

n + πn−2,

and we get the same leading coefficient for rhs. Furthermore, for q ∈ Πn−1 there holds∫ 1

−1

lhs q = −
∫ 1

−1

(x2 − 1)P ′nq
′ dx+

[
(x2 − 1)P ′nq

]1
−1︸ ︷︷ ︸

=0

=

∫ 1

−1

Pn
(
(x2 − 1)q′

)′︸ ︷︷ ︸
∈Πn−1

dx−
[
Pn(x2 − 1)q′

]1
−1

= 0,

and the same for the rhs. Thus the identity is proven.

Lemma 82 implies that the Legendre polynomials are also orthogonal w.r.t.
(u′, v′)L2,1−x2 , i.e. ∫ 1

−1

(1− x2)P ′nP
′
m = n(n+ 1)‖Pn‖2

L2
δn,m

4.6.2 Error estimate of the L2 projection

Since polynomials are dense in L2(−1, 1), we get

u =
∞∑
n=0

anPn

with the generalized Fourier coefficients

an =
(u, Pn)L2

‖Pn‖2
L2

,

and

‖u‖2
L2

=
∞∑
n=0

a2
n‖Pn‖2.
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Let P
Πp
L2

denote the L2-projection onto Πp. There holds

P
Πp
L2
u =

p∑
n=0

anPn

The projection error is

‖u− PΠp
L2
u‖2

L2
=

∞∑
n=p+1

a2
n‖Pn‖2

Lemma 83. The L2-projection error satisfies

‖u− PΠp
L2
u‖L2(−1,1) ≤

1√
(p+ 1)(p+ 2)

|u|H1(−1,1) (4.18)

Proof. Since Pn are orthogonal also w.r.t. (u′, v′)L2,1−x2 , there holds

‖u′‖2
L2,1−x2 =

∑
n∈N

a2
n ‖P ′n‖2

1−x2 ,

provided that u is in H1. The projection error satisfies

‖u− PΠp
L2
u‖2

L2
=

∑
n>p

a2
n‖Pn‖2

L2
=
∑
n>p

a2
n

1

n(n+ 1)
‖P ′n‖2

1−x2

≤ 1

(p+ 1)(p+ 2)

∑
n>p

a2
n‖P ′n‖2

1−x2 ≤
1

(p+ 1)(p+ 2)

∑
n∈N

a2
n‖P ′n‖2

1−x2

=
1

(p+ 1)(p+ 2)
‖u′‖2

1−x2

Finally, the result follows from∫ 1

−1

(1− x2)(u′)2 dx ≤
∫ 1

−1

(u′)2 dx.
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Similar as in Lemma 82 on shows also

dm

dxm
[
(x2 − 1)m

dm

dxm
Pn(x)

]
= (n+m)(n+m− 1) . . . (n−m+ 1)Pn(x)

for m ≤ n, and, as in Lemma 83

‖u− PΠp
L2
u‖L2 ≤

√
(p−m+ 1)!

(p+m+ 1)!
|u|Hm .

4.6.3 Orthogonal polynomials on triangles

Orthogonal polynomials on tensor product elements are simply constructed by tensoriza-
tion. Orthogonal polynomials on simplicial elements are more advanced. They are based
on Jacobi polynomials:

For α, β > −1, Jacobi polynomials are defined by

P (α,β)
n (x) :=

(−1)n

2nn!

1

w(x)

dn

dxn
(
w(x)(1− x2)n

)
with the weight function

w(x) = (1− x)α(1 + x)β.

Jacobi polynomials are orthogonal w.r.t. the weighted inner product∫ 1

−1

w(x)P (α,β)
n (x)P (α,β)

m (x)dx = δn,m
2α+β+1

2n+ α + β + 1

Γ(n+ α + 1) Γ(n+ β + 1)

n!Γ(n+ α + β + 1)
.

Note that P
(0,0)
n = Pn.

Define the unit-triangle T with vertices (−1, 0), (1, 0) and (0, 1).

Lemma 84 (Dubiner basis). The functions

ϕi,j(x, y) := Pi
(

x
1−y

)
(1− y)iP

(2i+1,0)
j (2y − 1) i+ j ≤ p

form an L2(T )-orthogonal basis for Πp(T ).

Proof. Note that ϕi,j ∈ Πi+j. Substitution ξ = x
1−y leads to∫

T

ϕij(x, y)ϕkl(x, y) d(x, y) =

=

∫ 1

0

∫ 1−y

−1+y

Pi
(

x
1−y

)
(1− y)iP

(2i+1,0)
j (2y − 1)Pk

(
x

1−y

)
(1− y)kP

(2k+1,0)
l (2y − 1) dxdy

=

∫ 1

0

∫ 1

−1

Pi(ξ)Pk(ξ)(1− y)i+k+1P
(2i+1,0)
j (2y − 1)P

(2k+1,0)
l (2y − 1) dξdy

= δi,k‖Pi‖2
L2

∫ 1

0

(1− y)2i+1P
(2i+1,0)
j (2y − 1)P

(2i+1,0)
l (2y − 1) dy

= Cijδi,kδj,l
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4.6.4 Projection based interpolation

By means of the orthogonal polynomials one shows approximation error estimates of the
form

inf
q∈Πp(T )

‖u− q‖Hk(T ) ≤ cpk−m|u|Hm(T ) m ≥ k,

with c 6= c(p), easily in 1D and tensor product elements, and also on n-dimensional sim-
plices [Braess+Schwab: Approximation on simplices with respect to weighted Sobolev
norms, J. Approximation Theory 103, 329-337 (2000)].

But, an interpolation operator to an H1-conforming finite element space has to satisfy
continuity constraints across element boundaries. We show that we get the same rate of
convergence under these constraints.

The 1D case

Let I = (−1, 1). We define the operator Ip : H1(I)→ Πp such that

Ipu(x) = u(x) x ∈ {−1, 1} (4.19)∫
I

(Ipu)′q′ =

∫
I

u′q′ ∀ q ∈ Πp,0(I), (4.20)

where Πp,0(D) := {q ∈ Πp(D) : q = 0 on ∂D}. This procedure is exactly a p-version
Galerkin-method for the Dirichlet problem. Since boundary values are preserved, the
interpolation operator produces a globally continuous function. The operator Ip is a kind
of mixture of interpolation and projection, thus the term projection based interpolation
introduced by Demkowicz has been established.

Lemma 85 (Commuting diagram). There holds

Π
Πp−1

L2
u′ = (Ipu)′

Proof. The range of both sides is Πp−1. We have to show that (Ipu)′ is indeed the L2-
projection of u′, i.e. ∫

I

(Ipu)′q =

∫
I

u′q ∀ q ∈ Πp−1.

This holds since {q′ : q ∈ Πp,0} = {q ∈ Πp−1 :
∫
q = 0} and (4.20), and∫ 1

−1

(Ipu)′ 1 = (Ipu)(1)− (Ipu)(−1) = u(1)− u(−1) =

∫ 1

−1

u′ 1.

The H1-error estimate follows directly from the commuting diagram property:

|u− Ipu|H1(I) = ‖u′ − (Ipu)′‖L2 = ‖u′ − PΠp−1

L2
u′‖L2 ≤

c

pm−1
|u′|Hm−1 .
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By the Aubin-Nitsche technique one obtains an extra p for the L2-error:

‖u− Ipu‖L2(I) �
1

p
|u− Ipu|H1(I) ≤

1

pm
|u|Hm(I)

One also gets for q ∈ Πp

|u− Ipu|H1 = |u− q − Ip(u− q)|1 ≤ ||Id− Ip||H1→H1 |u− q|H1

Projection based interpolation on triangles

We define the operator Ip : H2(T )→ Πp(T ) as follows:

Ipu(x) = u(x) ∀ vertices x (4.21)∫
E

∂τ (Ipu)∂τq =

∫
E

∂τu∂τq ∀ edges E, ∀ q ∈ Πp,0(E) (4.22)∫
T

∇(Ipu)∇q =

∫
T

∇u∇q ∀ q ∈ Πp,0(T ) (4.23)

Note that Ipu on the edge E depends only on u|E, and thus the interpolant is continuous
across neighbouring elements.

Lemma 86. Let v ∈ C(∂T ) such that v|E ∈ Πp(E). Then there exists an extension
ṽ ∈ Πp(T ) such that ṽ|∂T = v and

|ṽ|H1 ≤ c |v|H1/2(∂T ),

where c is independent of p.

Major steps have been shown in exercises 5.2 and 6.6. Note that the minimal-norm
extension ṽ is the solution of the Dirichlet problem, i.e.∫

T

∇ṽ∇w = 0 ∀w ∈ Πp,0

Theorem 87 (error estimate). There holds

|u− Ipu|H1 � inf
q∈Πp
|u− q|H1(T ) +

∑
E⊂∂T

1
√
p

inf
q∈Πp(E)

|u− q|H1(E) �
1

pm−1
|u|Hm

for u ∈ Hm,m ≥ 2.

Proof. Let up be the | · |H1 best approximation to u, i.e.∫
T

∇up∇v =

∫
T

∇u∇v ∀ v ∈ Πp,
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and, for uniqueness, mean values are preserved:
∫
T
up =

∫
T
u. There holds

|u− up|H1 ≤ c

pm−1
|u|Hm .

We apply the triangle inequality:

|u− Ipu|H1 ≤ |u− up|H1 + |up − Ipu|H1

Since ∫
T

∇up∇v =

∫
T

∇u∇v =

∫
T

∇Ipu∇v ∀ v ∈ Πp,0(T ),

we have that
up − Ipu ⊥H1 Πp,0,

i.e. up − Ipu is solution of the Dirichlet problem with boundary values (up − Ipu)|∂T .
Lemma 86 implies that

|up − Ipu|H1(T ) � |up − Ipu|H1/2(∂T )

We insert an u on the boundary to obtain

|u− Ipu|H1 � |u− up|H1(T ) + |up − Ipu|H1/2(∂T )

≤ |u− up|H1(T ) + |up − u|H1/2(∂T ) + |u− Ipu|H1/2(∂T )

≤ |u− up|H1(T ) + ‖u− Ipu‖1/2
L2(∂T )|u− Ipu|

1/2

H1(∂T ).

In the last step we used that H1/2(∂T ) = [L2, H
1]1/2 (i.e. the interpolation space). Next,

we observe that Ip restricted to one edge E is exactly the 1D operator. Using Aubin-Nitsche
we get

|u− Ipu|H1 � |u− up|H1(T ) + p−1/2‖u− Ipu‖H1(∂T )

� |u− up|H1(T ) +
∑
E

p1−m |u|Hm−1/2(E)

� p1−m|u|Hm(T )

In the last step we used the trace theorem.



Chapter 5

Linear Equation Solvers

The finite element method, or other discretization schemes, lead to linear systems of equa-
tions

Au = f.

The matrices are typically

• of large dimension N (104 − 108 unknowns)

• and sparse, i.e., there are only a few non-zero elements per row.

A matrix entry Aij is non-zero, if there exists a finite element connected with both
degrees of freedom i and j.

A 1D model problem: Dirichlet problem on the interval. A uniform grid with n ele-
ments. The matrix is

A =


2 −1
−1 2 −1

. . . . . . . . .

−1 2 −1
−1 2


(n−1)×(n−1)

,

A 2D model problem: Dirichlet problem on a unit-square. A uniform grid with 2n2

triangles. The unknowns are enumerated lexicographically:

h

1

n

2 n−1

(n−1)2

87
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The FEM - matrix of dimension N = (n− 1)2 is

A =


D −I
−I D −I

. . . . . . . . .

−I D −I
−I D

 with D =


4 −1
−1 4 −1

. . . . . . . . .

−1 4 −1
−1 4


(n−1)×(n−1)

,

and the (n− 1)× (n− 1) identity matrix I.

5.1 Direct linear equation solvers

Direct solvers are factorization methods such as LU -decomposition, or Cholesky factoriza-
tion. They require in general O(N3) = O(n6) operations, and O(N2) = O(n4) memory. A
fast machine can perform about 109 operations per second. This corresponds to

n ∼N time memory
10 102 1 ms 80 kB
100 104 16 min 800 MB
1000 106 30 years 8 TB

A band-matrix of (one-sided) band-width b is a matrix with

Aij = 0 for |i− j| > b

The LU -factorization maintains the band-width. L and U are triangular factors of band-
width b. A banded factorization method costs O(Nb2) operations, and O(Nb) memory.
For the 1D example, the band-with is 1. Time and memory are O(n). For the 2D example,
the band width is O(n). The time complexity is O(n4), the memory complexity is O(n3).

This corresponds to

n time memory
10 10 µs 8 kB
100 0.1 s 8 MB
1000 16 min 8 GB

Block-elimination methods

By splitting the unknowns into two groups, we rewrite the equation Au = f as a block
system (

A11 A12

A21 A22

)(
u1

u2

)
=

(
f1

f2

)
.
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First, expressing u1 from the first row gives

u1 = A−1
11 (f1 − A12u2),

and the Schur-complement equation to determine u2

(A22 − A21A
−1
11 A12︸ ︷︷ ︸

=:S

)u2 = f2 − A21A
−1
11 f1.

This block-factorization is used in sub-structuring algorithms: Decompose the domain into
m×m sub-domains, each one containing 2 n

m
× n

m
triangles. Split the unknowns into interior

(I), and coupling (C) unknowns.

m = 2

The interior ones corresponding to different sub-domains have no connection in the matrix.
The block matrix is

(
AI AIC
ACI AC

)
=


AI,1 AIC,1

. . .
...

AI,m2 AIC,m2

ACI,1 · · · ACI,m2 AC


Factorizing the block-diagonal interior block AI splits into m2 independent factorization
problems. If one uses a banded factorization, the costs are

m2
( n
m

)4

=
n4

m2

Computing the Schur complement

S = AC − ACIA−1
I AIC = AC −

m2∑
i=1

ACI,iA
−1
I,iAIC,i

is of the same cost. The Schur complement is of size mn, and has band-width n. Thus,
the factorization costs O(mn3). The total costs are of order

n4

m2
+mn3
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Equilibrating both terms lead to the optimal number of sub-domains m = n1/3, and to the
asymptotic costs

n3.33

If a parallel computer is used, the factorization of AI and the computation of Schur com-
plements can be performed in parallel.

The hierarchical sub-structuring algorithm, known as nested dissection, eliminates in-
terior unknowns hierarchically:

Let n = 2L. On level l, with 1 ≤ l ≤ L, one has 4l sub-domains. Each sub-domain has
O(2L−l) unknowns. The factorization of the inner blocks on level l costs

4l (2L−l)3 = 23L−l

Forming the Schur-complement is of the same cost. The sum over all levels is

L∑
l=1

23L−l = 23L

(
1

2
+

1

4
+ . . .

)
≈ 23L

The factorization costs are O(n3). Storing the matrices on each level costs

4l (2L−l)2 = 22L.

The total memory is O(L× 22L) = O(n2 log n).
This corresponds to

n time memory
10 1 µs 3 kB
100 1 ms 500 kB
1000 1 s 150 MB

A corresponding sparse factorization algorithm for matrices arising from unstructured
meshes is based on minimum degree ordering. Successively, the unknowns with the least
connections in the matrix graph are eliminated.

In 2D, a direct method with optimal ordering is very efficient. In 3D, the situation is
worse for the direct solver. There holds N = n3, time complexity = O(N2), and memory
= O(N1.33).
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5.2 Iterative equation solvers

Iterative equation solvers improve the accuracy of approximative solution by an successive
process. This requires in general much less memory, and, depending on the problem and
on the method, may be (much) faster.

The Richardson iteration

A simple iterative method is the preconditioned Richardson iteration (also known as simple
iteration, or Picard iteration):

start with arbitrary u0

for k = 0, 1, . . . convergence
dk = f − Auk
wk = C−1dk

uk+1 = uk + τwk

Here, τ is a damping parameter which may be necessary to ensure convergence. The
matrix C is called a preconditioner. It should fulfill

1. C is a good approximation to A

2. the matrix-vector multiplication w = C−1d should be cheap

A simple choice is C = diag A, the Jacobi preconditioner. The application of C−1 is cheap.
The quality of the approximation C ≈ A will be estimated below. The optimal choice for
the first criterion would be C = A. But, of course, w = C−1d is in general not cheap.

Combining the steps, the iteration can be written as

uk+1 = uk + τC−1(f − Auk)

Let u be the solution of the equation Au = f . We are interested in the behavior of the
error uk − u:

uk+1 − u = uk − u+ τC−1(f − Auk)
= uk − u+ τC−1(Au− Auk)
= (I − τC−1A)(uk − u)

We call the matrix

M = I − τC−1A

the iteration matrix. The error transition can be estimated by

‖uk+1 − u‖ ≤ ‖M‖ ‖uk − u‖.
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The matrix norm is the associated matrix norm to some vector norm. If ρ := ‖M‖ < 1,
then the error is reduced. The error after k steps is

‖uk − u‖ ≤ ρk‖u0 − u‖

To reduce the error by a factor ε (e.g., ε = 10−8), one needs

Nits =
log ε

log ρ

iterations.
We will focus on the symmetric (A = AT ) and positive definite (uTAu > 0 for u 6=

0) case (short: SPD). Then it makes sense to choose symmetric and positive definite
preconditioners C = CT . Eigenvalue decomposition allows a sharp analysis. Pose the
generalized eigenvalue problem

Az = λCz.

Let (λi, zi) be the set of eigen-pairs. The spectrum is σ{C−1A} = {λi}. The eigen-vectors
zi are normalized to

‖zi‖C = 1

The eigenvalues can are bounded from below and from above by the Rayleigh quotient:

min
v

vTAv

vTCv
≤ λi ≤ max

v

vTAv

vTCv

The ratio of largest to smallest eigen-value is the relative spectral condition number

κ =
λN
λ1

We will establish the spectral bounds

γ1 v
TCv ≤ vTAv ≤ γ2 v

TCv ∀ v ∈ RN ,

which allow to bound the eigenvalues

λi ∈ [γ1, γ2],

and the condition number κ ≤ γ2

γ1
.

A vector v can be expressed in terms of the eigen-vector basis zi as v =
∑
viei. There

holds

‖v‖2
C =

∑
v2
i

‖v‖2
A =

∑
λiv

2
i
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Lemma 88. The iteration matrix M can be bounded in A-norm and in C-norm:

‖M‖A ≤ sup
λ∈[γ1,γ2]

|1− τλ|

‖M‖C ≤ sup
λ∈[γ1,γ2]

|1− τλ|

Proof: Express v =
∑
vizi. Then

Mv = (I − τC−1A)v =
∑

vi(I − τC−1A)zi =
∑

vi(1− τλi)zi

The norm is

‖Mv‖2
A =

∑
λiv

2
i (1− τλi)2

≤ sup
i

(1− τλi)2
∑

λiv
2
i

≤ sup
λ∈[γ1,γ2]

(1− τλ)2 ‖v‖2
A

and thus

‖M‖A = sup
v∈Rn

‖Mv‖A
‖v‖A

≤ sup
λ∈[γ1,γ2]

|1− τλ|.

The proof is equivalent for ‖M‖C . 2

1−τγ

γ

1−τγ

1−τγ

γ

γ
2

1

2
1

1

The optimal choice of the relaxation parameter τ is such that

1− τγ1 = −(1− τγ2),

i.e.,

τ =
2

γ1 + γ2

The convergence factor is

1− τγ1 =
γ2 − γ1

γ2 + γ1

.

Assume we knew sharp spectral bounds γ1 = λ1 and γ2 = λN . Then the convergence factor
is

‖M‖ =
κ− 1

κ+ 1
≈ 1− 2

κ
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The number of iterations to reduce the error by a factor ε is

Nits =
log ε

log ρ
≈ log ε

−2/κ
= log ε−1 κ

2

Take the 1D stiffness matrix of dimension N ×N :

A =


2 −1
−1 2 −1

. . . . . . . . .

−1 2 −1
−1 2

 ,

and the trivial preconditioner C = I. The eigen-vectors zi and eigen-values λi are

zi =

(
sin

ijπ

N + 1

)
j=1,...N

λi = 2− 2 cos(
iπ

N + 1
)

The extremal eigenvalues are

λ1 = 2− 2 cos(
π

N + 1
) ≈ π2

N2

λN = 2− 2 cos(
Nπ

N + 1
≈ 4− π2

N2
.

The optimal damping is

τ =
2

λ1 + λN
=

1

2
,

and the convergence factor is

‖M‖ ≈ 1− 2λ1

λN
≈ 1− 2π2

N2

The number of iterations is
Nits ' log ε−1N2

For the 2D model problem with N = (n− 1)2, the condition number behaves like

κ ' n2.

The costs to achieve a relative accuracy ε are

Nits × Costs-per-iteration ' log ε−1n2N ' log ε−1n4

The costs per digit are comparable to the band-factorization. The memory requirement is
optimal O(N).
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The gradient method

It is not always feasible to find the optimal relaxation parameter τ a priori. The gradient
method is a modification to the Richardson method to find automatically the optimal
relaxation parameter τ :

The first steps are identic:

dk = f − Auk wk = C−1dk

Now, perform the update
uk+1 = uk + τwk

such that the error is minimal in energy norm:

Find τ such that ‖u− uk+1‖A = min!

Although the error cannot be computed, this minimization is possible:

‖u− uk+1‖2
A = ‖u− uk − τwk‖2

A

= (u− uk)TA(u− uk)− 2τ(u− uk)TAwk + τ 2(wk)TAwk

This is a convex function in τ . It takes its minimum at

0 = 2(u− uk)TAwk + 2τopt(w
k)TAwk,

i.e.,

τopt =
wkA(u− uk)
(wk)TAwk

=
wkdk

(wk)TAwk

Since the gradient method gives optimal error reduction in energy norm, its convergence
rate can be estimated by the Richardson iteration with optimal choice of the relaxation
parameter:

‖u− uk+1‖A ≤
κ− 1

κ+ 1
‖u− uk‖A

The Chebyshev method

We have found the optimal choice of the relaxation parameter for one step of the iteration.
If we perform m iterations, the overall rate of convergence can be improved by choosing
variable relaxation parameters τ1, . . . τm.

The m-step iteration matrix is

M = Mm . . .M2M1 = (I − τmC−1A) . . . (I − τ1C
−1A).

By diagonalization, the A-norm and C-norm are bounded by

‖M‖ ≤ max
λ∈[γ1,γN ]

|(1− τ1λ) . . . (1− τmλ)|
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The goal is to optimize τ1, . . . τm:

min
τ1,...τm

max
λ∈[γ1,γN ]

|(1− τ1λ) . . . (1− τmλ)|

This is a polynomial in λ, of order m, and p(0) = 1:

min
p∈Pm
p(0)=1

max
λ∈[γ1,γN ]

|p(λ)|. (5.1)

This optimization problem can be solved explicitely by means of Chebyshev polynomials.
These are the polynomials defined by

Tm(x) =

{
cos(m arccos(x)) |x| ≤ 1

cosh(m arccosh(x)) |x| > 1

The Tm fulfill the recurrence relation

T0(x) = 1

T1(x) = x

Tm+1(x) = 2xTm(x)− Tm−1(x)

The Tm fulfill also

Tm(x) =
1

2

[
(x+

√
x2 − 1)m + (x+

√
x2 − 1)−m

]
The optimum of (5.1) is

p(x) =
Tm

(
2x−γ1−γ2

γ2−γ1

)
Tm

(
−γ1−γ2

γ2−γ1

) = Cm Tm

(
2x− γ1 − γ2

γ2 − γ1

)
The numerator is bounded by 1 for the range γ1 ≤ x ≤ γ2. The factor Cm can be

computed as

Cm =
2cm

1 + c2m
with c =

√
γ2 −

√
γ1√

γ2 +
√
γ1

Using the condition number we have

c ≈ 1− 2√
κ
,

and

Cm ≈ (1− 2√
κ

)m

Now, an error reduction by a factor of ε can be achieved in

Nits ≈ log ε−1
√
κ

steps. The original method by choosing m different relaxation parameters τk is not a good
choice, since
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• it is not numerically stable

• one has to know a priori the number of iterations

The recurrence relation for the Chebyshev polynomials leads to a practicable iterative
method called Chebyshev iteration.

The conjugate gradient method

The conjugate gradient algorithm automatically finds the optimal relaxation parameters
for the best k-step approximation.

Let p0, p1, . . . be a finite sequence of A-orthogonal vectos, and set

Vk = span{p0, . . . pk−1}

We want to approximate the solution u in the linear manifold u0 + Vk:

min
v∈u0+Vk

‖u− v‖A

We represent uk as

uk = u0 +
k−1∑
l=0

αlpl

The optimality criteria are

0 = (u− uk, pj)A = (u− u0 −
k−1∑
l=0

αlpl, pj)A 0 ≤ j < k.

The coefficients αl follow from the A-orthogonality:

αl =
(u− u0)TApl

pTl Apl
=

(f − Au0)Tpl
pTl Apl

The αl are computable, since the A-inner product was chosen. The best approximations
can be computed recursively:

uk+1 = uk + αkpk

Since uk − u0 ∈ Vk, and pk⊥AVk, there holds

αk =
(f − Auk)Tpk

pTkApk
.

Any k-step simple iteration approximates the solution uk in the manifold

u0 +Kk(d0)

with the Krylov space

Kk(d0) = {C−1d0, C
−1AC−1d0, . . . , C

−1(AC−1)k−1d0}.

Here, d0 = f −Au0 is the initial residual. The conjugate gradient method computes an
A-orthogonal basis of the Krylov-space. The term conjugate is equivalent to A-orthogonal.
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Conjugate Gradient Algorithm:
Choose u0, compute d0 = f − Au0, set p0 = C−1d0.
for k = 0, 1, 2, . . . compute

αk =
dTk pk
pTkApk

uk+1 = uk + αk pk

dk+1 = dk − αk Apk

βk = −
dTk+1C

−1Apk

pTkApk

pk+1 = C−1dk+1 + βkpk

Remark 89. In exact arithmetic, the conjugate gradient algorithm terminates at a finite
number of steps k ≤ N .

Theorem 90. The conjugate gradient algorithm fulfills for k ≤ k

1. The sequence pk is A-orthogonal. It spans the Krylov-space Kk(d0)

2. The uk minimizes
min

v∈u0+Kk(d0)
‖u− v‖A

3. There holds the orthogonality

dTk pl = 0 ∀ l < k

Proof: Per induction in k. We assume

pTkApl = 0 ∀ l < k

dTk pl = 0 ∀ l < k

This is obvious for k = 0. We prove the property for k + 1: For l < k there holds

dTk+1pl = (dk − αkApk)Tpl = dTk pl − αkpTkApl = 0

per induction. For l = k there is

dTk+1pk = (dk − αkApk)Tpk = dTk pk −
dTk pk
pTkApk

pTkApk = 0.

Next, prove the A-orthogonality of the pk. For l < k we have

(pk+1, pl)A = (C−1dk+1 + βkpk, pl)A

= dTk+1C
−1Apl
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There is

C−1Apl ∈ span{p0, . . . pk},

and dTk+1pj = 0 for j ≤ k. For l = k there is

(pk+1, pk)A = (C−1dk+1 + βkpk, pk)A

= (C−1dk+1, pk)A −
dTk+1C

−1Apk

pTkApk
pTkApk = 0

2

The coefficients αk and βk should be computed by the equivalent, and numerically more
stable expressions

αk =
dTkC

−1dk
pTkApk

βk =
dTk+1C

−1dk+1

dTkC
−1dk

.

Theorem 91. The conjugate gradient iteration converges with the rate

‖u− uk‖A ≤
(√

κ− 1√
κ+ 1

)k
Proof: The conjugate gradient gives the best approximation in the Krylov space. Thus,

it can be bounded by the Chebyshev method leading to that rate.

The conjugate gradient iteration is stopped as soon as a convergence criterion is fulfilled.
Ideally, on wants to reduce the error in the energy norm by a factor ε:

‖u− uk‖A ≤ ε ‖u− u0‖A

But, the energy error cannot be computed. We rewrite

‖u− uk‖2
A = ‖A−1(f − Auk)‖2

A = ‖A−1dk‖2
A = dTkA

−1dk

If C is a good approxiamtion to A, then also C−1 is one to A−1. The error can be
approximated by

dTkC
−1dk.

This scalar is needed in the conjugate gradient iteration, nevertheless.

For solving the 2D model problem with C = I, the time complexity is

log ε−1N
√
κ = log ε−1 n3

The costs for one digit are comparable to the recursive sub-structuring algorithm. In 3D,
the conjugate gradient method has better time complexity.
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5.3 Preconditioning

In the following, let the symmetric and positive definite matrix A arise from the finite
element discretization of the H1-elliptic and continuous bilinear-form A(., .). We construct
preconditioners C such that the preconditioning action

w = C−1 × d

is efficiently computable, and estimate the spectral bounds

γ1 u
TCu ≤ uTAu ≤ γ2 u

TCu ∀u ∈ RN

The analysis of the preconditioner is performed in the finite element framework. For
this, define the Galerkin isomorphism

G : RN → Vh : u→ u =
∑

uiϕi,

where ϕi are the fe besis functions. Its dual is

G∗ : V ∗h → RN : d(·)→ (d(ϕi))i=1,...,N .

To distinguish vectors and the corresponding finite element functions, we write vectors
u ∈ RN with underlines (when necessary).

The evaluation of the quadratic form is

uTAu = A(Gu,Gu) ' ‖Gu‖2
H1

The Jacobi Preconditioner

The Jacobi preconditioner C is
C = diagA.

The preconditioning action is written as

C−1 × d =
N∑
i=1

ei(e
T
i Aei)

−1eTi d

Here, ei is the ith unit-vector. Thus, eTi Aei gives the ith diagonal element Aii of the matrix,
which is

Aii = A(ϕi, ϕi) ' ‖ϕi‖2
H1 .

The quadratic form generated by the preconditioner is

uTCu =
N∑
i=1

u2
i ‖ϕi‖2

A '
N∑
i=1

u2
i ‖ϕi‖2

H1
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Theorem 92. Let h be the minimal mesh-size of a shape-regular triangulation. Then there
holds

h2 uTCu � uTAu � uTCu (5.2)

Proof: We start to prove the right inequality

uTAu = ‖
∑
i

uiϕi‖2
A � uTCu =

∑
i

u2
i ‖ϕi‖2

A.

We define the interaction matrix O with entries

Oij =

{
1 A(ϕi, ϕj) 6= 0
0 else

On a shape regular mesh, only a (small) finite number of basis functions have overlapping
support. Thus, O has a small number of entries 1 per row. There holds

‖
∑
i

uiϕi‖2
A =

∑
i

∑
j

uiujA(ϕi, ϕj)

=
∑
i

∑
j

uiujOijA(ϕi, ϕj)

≤
∑
i

∑
j

(ui‖ϕi‖A)Oij(uj‖ϕj‖A)

≤ ρ(O)
∑
i

(ui‖ϕi‖A)2

= ρ(O)uTCu.

The spectral radius ρ(O) = maxx∈RN
xTOx
‖x‖2 is bounded by the (small) finite row-sum norm

of O.
The other estimate is proven element by element. Note that

uTAu ' ‖u‖2
H1(Ω) =

∑
T

‖
∑
i

uiϕi‖2
H1(T )

and
uTCu '

∑
i

‖uiϕi‖2
H1(Ω) =

∑
T

∑
i

‖uiϕi‖2
H1(T ).

We prove the inequality for each individual element. The triangle T has diameter hT . On
T , we expand u in terms of the element shape functions ϕα, namely u|T =

∑3
α=1 uαϕα.

We transform to the reference element T̂ :

‖
∑
α

uαϕα‖2
H1(T ) = ‖

∑
α

uαϕα‖2
L2(T ) + ‖∇

∑
α

uαϕα‖2
L2(T )

' h2
T ‖
∑
α

uαϕ̂α‖2
L2(T̂ )

+ ‖∇
∑
α

uαϕ̂α‖2
L2(T̂ )

≥ h2
T ‖
∑
α

uαϕ̂α‖2
L2(T̂ )
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and ∑
α

‖uαϕα‖2
H1(T ) =

∑
α

‖uαϕα‖2
L2(T ) +

∑
α

‖∇uαϕα‖2
L2(T )

' h2
T

∑
α

‖uαϕ̂α‖2
L2(T̂ )

+
∑
α

‖∇uαϕ̂α‖2
L2(T̂ )

�
∑
α

‖uαϕ̂α‖2
L2(T̂ )

Both, (u)α → ‖
∑

α uαϕ̂α‖L2(T̂ ) and u→
{∑

α ‖uαϕ̂α‖2
L2(T̂ )

}1/2

are norms on R3. Since all

norms in R3 are equivalent, we have∑
α

‖uαϕα‖2
H1(T ) � h−2

T ‖
∑
α

uαϕα‖2
H1(T ). (5.3)

By summing over all elements and choosing h = minhT , we have proven the left inequality
of (5.2). 2

Remark: Inequality (5.3) is sharp. To prove this, choose uα = 1.

Block-Jacobi preconditioners

Instead of choosing the diagonal, one can choose a block-diagonal of A, e.g.,

• In the case of systems of PDEs, choose blocks consisting of all degrees of freedom
sitting in one vertex. E.g., mechanical deformations (ux, uy, uz).

• For high order elements, choose blocks consisting of all degrees of freedom associated
to the edges (faces, inner) of the elements.

• On anisotropic tensor product meshes, choose blocks consisting of unknowns in the
short direction

• Domain decomposition methods: Choose blocks consisting of the unknowns in a
sub-domain

Decompose the unknowns into M blocks, the block i has dimension Ni. Define the
rectangular embedding matrices

Ei ∈ RN×Ni i = 1, . . . ,M.

Ei consists of Ni unit vectors corresponding to the unknowns in the block i. Each u ∈ RN

can be uniquely written as

u =
M∑
i=1

Eiui with ui ∈ RNi
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The diagonal blocks are
Ai = ET

i AEi i = 1, . . . ,M.

The block Jacobi preconditioner is

C−1 × d =
M∑
i=1

EiA
−1
i ET

i d

The quadratic form induced by C can be written as

uTCu =
∑
i

uTi Aiui =
∑
i

‖GEiui‖2
A

where u =
∑
Eiui.

Example: Discretize the unit interval I = (0, 1) into n elements of approximate size
h ' 1/n. Split the unknowns into two blocks, the left half and the right half, and define
the corresponding block-Jacobi preconditioner.

Set
I = I1 ∪ Tn/2 ∪ I2,

with I1 = (0, xn/2), Tn/2 = [xn/2, xn/2+1], and I2 = (xn/2+1, 1). Decompose

u = E1u1 + E2u2.

The corresponding finite element functions are ui = GEiui. There holds

u1(x) =


Gu(x) x ∈ I1

linear x ∈ T
0 x ∈ I2

,

and u2 vice versa. The quadratic form is

uTCu =
∑
i

uiAiui =
∑
i

‖GEiui‖2
A

Evaluation gives

‖u1‖2
A = ‖u1‖2

H1(I1) + ‖u1‖2
H1(T )

' ‖u1‖2
H1(I1) + h−1|u(xn/2)|2

� ‖u‖2
H1(I) + h−1‖u‖2

H1(I) (trace theorem)

' h−1 ‖u‖2
A,

and thus
uTCu =

∑
i

‖ui‖2
A � h−1‖u‖2

A ' h−1uTAu.

The situation is the same in Rd.
Exercise: Sub-divide the interval I intoM sub-domains of approximative sizeH ≈ 1/M .

What are the sprectral bounds of the block-Jacobi preconditioner ?
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Additive Schwarz preconditioners

The next generalization is an overlapping block Jacobi preconditioner. For i = 1, . . . ,M
let Ei ∈ RN×Ni be rectangular matrices such that each u ∈ RN can be (not necessarily
uniquely) written as

u =
M∑
i=1

Eiui with ui ∈ RNi

Again, the overlapping block-Jacobi preconditioning action is

C−1 × d =
M∑
i=1

EiA
−1
i ET

i d

Example: Choose the unit-interval problem from above. The block 1 contains all nodes in
(0, 3/4), and the block 2 contains nodes in (1/4, 1). The blocks overlap, the decomposition
is not unique.

The columns of the matrices Ei are not necessarily unit-vectors, but are linearly in-
dependent. In this general setting, the preconditioner is called Additive Schwarz precon-
ditioner. The following lemma gives a useful representation of the quadratic form. It
was proven in similar forms by many authors (Nepomnyaschikh, Lions, Dryja+Widlund,
Zhang, Xu, Oswald, Griebel, ...) and is called also Lemma of many fathers, or Lions’
Lemma:

Lemma 93 (Additive Schwarz lemma). There holds

uTCu = inf
ui∈R

Ni

u=
∑
Eiui

M∑
i=1

uTi Aiui

Proof: The right hand side is a constrained minimization problem of a convex function.
The feasible set is non-empty, the CMP has a unique solution. It is solved by means of
Lagrange multipliers. Define the Lagrange-function (with Lagrange multipliers λ ∈ RN):

L((ui), λ) =
∑

uTi Aui + λT (u−
∑

Eiui).

Its stationary point (a saddle point) is the solution of the CMP:

0 = ∇uiL((ui), λ) = 2Aiui + ET
i λ

0 = ∇λL((ui), λ) = u−
∑

Eiui

The first line gives

ui =
1

2
A−1
i ET

i λ.

Use it in the second line to obtain

0 = u− 1

2

∑
EiA

−1
i Eiλ = u− 1

2
C−1λ,
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i.e., λ = 2Cu, and
ui = A−1

i ET
i Cu.

The minimal value is ∑
uTi Aiui =

∑
uTCEiA

−1
i AiA

−1
i ET

i Cu

=
∑

uTCEiA
−1
i ET

i Cu

= uTCC−1Cu = uTCu

2

Next, we rewrite the additive Schwarz iteration matrix

I − τC−1A = I − τ
M∑
i=1

EiA
−1
i ET

i A

in the fe framework. Let
Vi = GEiRNi ⊂ Vh

be the sub-space corresponding to the range of Ei, and define the A-orthogonal projection

Pi : Vh → Vi : A(Piu, vi) = A(u, vi) ∀ vi ∈ Vi
Lemma 94. Set u = Gu, the application of the iteration matrix is û = (I− τC−1A)u, and
set û = Gû. Then there holds

û =

(
I − τ

M∑
i=1

Pi

)
u.

Proof: Let wi = A−1
i ET

i Au. Then

û = u− τGEiwi.

There holds wi := GEiwi ∈ Vi, and

A(GEiwi, GEivi) = vTi E
T
i AEiwi

= vTi Aiwi = vTi E
T
i Au

= A(Gu,GEivi) ∀ vi ∈ RNi ,

i.e., wi = Piu. 2

The additive Schwarz preconditioner is defined by the space splitting

V =
M∑
i=1

Vi

If the spaces Vi are A-orthogonal, then
∑

i Pi = I, and (with τ = 1), and the iteration
matrix is M = 0.

The reformulation of the additive Schwarz lemma 93 in the finite element framework is
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Lemma 95 (Additive Schwarz lemma). Let u = Gu. There holds

uTCu = inf
ui∈Vi
u=

∑
ui

M∑
i=1

‖ui‖2
A

Example: Let

A(u, v) =

∫ 1

0

u′v′ + ε

∫
uv dx

with 0 ≤ ε � 1. The bilinear-form is H1-elliptic and continuous, but the bounds depend
on the parameter ε. Let CJ be the Jacobi preconditioner. The proof of Theorem 92 shows
that

εh2uTCJu � uTAu � uTCJu.

The non-robust lower bound is sharp: Take u = (1, . . . , 1)T .
The solution is to add the additional sub-space

V0 = span{1} = GE0R1

to the AS preconditioner (with E0 ∈ RN×1 consisting of 1-entries). The preconditioning
action is

C−1 × d = diag{A}−1d+ E0(ET
0 AE0)−1ET

0 d.

The spectral bounds are robust in ε:

h2uTCu � uTAu � uTCu,

namely

uTCu = inf
ui∈Vi

u=
∑M

0 ui

M∑
i=0

‖ui‖2
A

= inf
u0∈V0

‖u0‖2
A + inf

ui∈Vi
u−u0=

∑M
1 ui

M∑
i=1

‖ui‖2
A


� inf

u0∈V0

‖u0‖2
A + h−2‖u− u0‖2

H1

The last step was the result of the Jacobi preconditioner applied to (u, v)H1 . Finally, we

choose u0 =
∫ 1

0
u dx to obtain

uTCu � ‖u0‖2
A + h−2‖u− u0‖2

H1

� ε ‖u0‖2
L2

+ h−2‖∇(u− u0)‖2
L2

� ε ‖u‖2
L2

+ h−2‖∇u‖2
L2

= h−2 ‖u‖2
A
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Overlapping domain decomposition preconditioning

Let Ω = ∪Mi=1Ωi be a decomposition of Ω into M sub-domains of diameter H. Let Ω̃i be
such that

Ωi ⊂ Ω̃i dist{∂Ω̃i \ ∂Ω, ∂Ωi} � H,

and only a small number of Ω̃i are overlapping. Choose a finite element mesh of mesh
size h ≤ H, and the finite element space is Vh. The overlapping domain decomposition
preconditioner is the additive Schwarz preconditioner defined by the sub-space splitting

Vh =
∑

Vi with Vi = Vh ∩H1
0 (Ω̃i).

The bilinear-form A(., .) is H1-elliptic and continuous. The implementation takes the sub-

matrices of A with nodes inside the enlarged sub-domains Ω̃i.

Lemma 96. The overlapping domain decomposition preconditioner fulfills the spectral es-
timates

H2uTCu � uAu � uTCu.

Proof: The upper bound is generic. For the lower bound, we construct an explicit
decomposition u =

∑
ui.

There exists a partition of unity {ψi} such that

0 ≤ ψi ≤ 1, supp{ψi} ⊂ Ω̃i,
M∑
i=1

ψi = 1

and

‖∇ψi‖L∞ � H−1.

Let Πh : L2 → Vh be a Clément-type quasi-interpolation operator such that Πh is a
projection on Vh, and

‖Πhv‖L2 � ‖v‖L2 , and ‖∇Πhv‖L2 � ‖∇v‖L2 .

For given u ∈ Vh, we choose the decomposition

ui = Πh(ψiu).

Indeed ui ∈ Vi is a decomposition of u ∈ Vh:∑
ui =

∑
Πh(ψiu) = Πh

(
(
∑

ψi)u
)

= Πhu = u
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The lower bound follows from

uTCu = inf
u=

∑
vi

∑
i

‖vi‖2
A

≤
∑
i

‖ui‖2
A �

∑
i

‖ui‖2
H1

=
∑
i

‖Πh(ψiu)‖2
H1

�
∑
i

‖ψiu‖2
H1

=
∑
i

{
‖ψiu‖2

L2(Ω̃i)
+ ‖∇(ψiu)‖2

L2(Ω̃i)

}
�

∑
i

{
‖ψiu‖2

L2(Ω̃i)
+ ‖(∇ψi)u‖2

L2(Ω̃i)
+ ‖ψi∇u‖2

L2(Ω̃i)

}
�

∑
i

{
‖u‖2

L2(Ω̃i)
+H−2‖u‖2

L2(Ω̃i)
+ ‖∇u‖2

L2(Ω̃i)

}
� ‖u‖2

L2(Ω) +H−2 ‖u‖2
L2(Ω) + ‖∇u‖2

L2(Ω)

� H−2 ‖u‖2
A.

2

Overlapping DD preconditioning with coarse grid correction

The local DD preconditioner above gets worse, if the number of sub-domains increases. In
the limit, if H ' h, the DD preconditioner is comparable to the Jacobi preconditioner.

To overcome this degeneration, we add one more subspace. Let TH be a coarse mesh of
mesh-size H, and Th is the fine mesh generated by sub-division of TH . Let VH be the finite
element space on TH . The sub-domains of the domain decomposition are of the same size
as the coarse grid.

The sub-space decomposition is

Vh = VH +
M∑
i=1

Vi.

Let GH : RNH → VH be the Galerkin isomorphism on the coarse grid, i.e.,

GHuH =

NH∑
i=1

uH,iϕ
H
i

The coarse space fulfills VH ⊂ Vh. Thus, every coarse grid basis ϕHi can be written as
linear combination of fine grid basis functions ϕhj :

ϕHi =
N∑
j=1

EH,jiϕ
h
j .
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Example:

H hV V

The first basis function ϕH1 is

ϕH1 = ϕh1 +
1

2
ϕh2

The whole matrix is

EH =


1

1/2 1/2
1

1/2 1/2
1

 .

There holds

GHuH = GhEHuH .

Proof:

GHuH =

NH∑
i=1

uH,iϕ
H
i =

NH∑
i=1

Nh∑
j=1

uH,iEH,jiϕ
h
j

=

Nh∑
j=1

ϕhj (EHuH)j = GEuH

The matrix EH transforms the coefficients uH w.r.t. the coarse grid basis to the coefficients
uh = EHuH w.r.t. the fine grid basis. It is called prolongation matrix.

The DD preconditioner with coarse grid correction is

C−1 × d =
∑
i

EiA
−1
i ET

i d+ EH(ET
HAEH)−1ET

Hd

The first part is the local DD preconditioner from above. The second part is the coarse
grid correction step. The matrix ET

H (called restriction matrix) transfers the defect d from
the fine grid to a defect vector on the coarse grid. Then, the coarse grid problem with
matrix ET

HAEH is solved. Finally, the result is prolongated to the fine grid.

The matrix AH := ET
HAEH is the Galerkin matrix w.r.t. the coarse grid basis:

AH,ij = eTj E
T
HAEHei = A(GhEHei, GhEHej)

= A(GHei, GHej) = A(ϕHi , ϕ
H
j ).
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Theorem 97. The overlapping domain decomposition preconditioner with coarse grid sys-
tem fulfills the optimal spectral estimates

uTCu � uTAu � uTCu.

Proof: The quadratic form generated by the preconditioner is

uTCu = inf
uH∈VH,ui∈Vi
u=uH+

∑
ui

‖uH‖2
A +

M∑
i=1

‖ui‖2
A.

Again, the upper bound uTAu � uTCu follows from the finite overlap of the spaces
VH , V1, . . . VM . To prove the lower bound, we come up with an explicit decomposition.
We split the minimization into two parts:

uTCu = inf
uH∈VH

inf
ui∈Vi

u−uH=
∑
ui

‖uH‖2
A +

M∑
i=1

‖ui‖2
A (5.4)

In the analysis of the DD precondition without coarse grid system we have observed that

inf
ui∈Vi

u−uH=
∑
ui

M∑
i=1

‖ui‖2
A � H−2‖u− uH‖2

L2
+ ‖∇(u− uH)‖2

L2

Using this in (5.4) gives

uTCu � inf
uH∈VH

{
‖uH‖2

A +H−2 ‖u− uH‖2
L2

+ ‖∇(u− uH)‖2
L2

}
� inf

uH∈VH

{
‖∇uH‖2

L2
+H−2 ‖u− uH‖2

L2
+ ‖∇u‖2

L2

}
To continue, we introduce a Clément operator ΠH : H1 → VH being continuous in the

H1-semi-norm, and approximating in L2-norm:

‖∇ΠHu‖2
L2

+H−2‖u− ΠHu‖2
L2
� ‖∇u‖2

L2

Choosing now uH := ΠHu in the minimization problem we obtain the result:

uTCu � ‖∇ΠHu‖2
A +H−2 ‖u− ΠHu‖2

L2
+ ‖∇u‖2

L2

� ‖∇u‖2 ' ‖u‖2
A

2

The inverse factorH−2 we have to pay for the local decomposition could be compensated
by the approximation on the coarse grid.

The costs for the setup depend on the underlying direct solver for the coarse grid
problem and the local problems. Let the factorization step have time complexity Nα. Let
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N be the number of unknowns at the fine grid, and M the number of sub-domains. Then
the costs to factor the coarse grid problem and the M local problems are of order

Mα +M

(
N

M

)α
Equilibrating both terms gives the optimal choice of number of sub-domains

M = N
α

2α−1 ,

and the asymptotic costs

N
α2

2α−1 .

Example: A Cholesky factorization using bandwidth optimization for 2D problems has
time complexity N2. The optimal choice is M = N2/3, leading to the costs of

N4/3.

Multi-level preconditioners

The preconditioner above uses two grids, the fine one where the equations are solved,
and an artificial coarse grid. Instead of two grids, one can use a whole hierarchy of grids
T0, T1, . . . , TL = T . The according finite element spaces are

V0 ⊂ V1 ⊂ . . . ⊂ VL = Vh.

Let El be the prolongation matrix from level l to the finest level L. Define

Al = ET
l AEl and Dl = diag{Al}.

Then, the multi-level preconditioner is

C−1 = E0A
−1
0 ET

0 +
L∑
l=1

ElD
−1
l ET

l

The setup, and the application of the preconditioner takes O(N) operations. One can
show that the multi-level preconditioner fulfills optimal spectral bounds

uTCu � uTAu � uTCu.

An iterative method with multi-level preconditioning solves the matrix equation Au = f
of size N with O(N) operations !
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5.4 Analysis of the multi-level preconditioner

We want to solve a finite element system on VL := Vh ⊂ H1. To define the multi-level
preconditioner C = CL, we use also finite element spaces on coarser meshes T0, T1, . . . TL:

V0 ⊂ V1 ⊂ . . . ⊂ VL

Assume hl ' 2−l. Let {ϕl,i : 1 ≤ i ≤ Nl} be the hat-basis for Vl, with Nl = dimVl. Let Al
be the finite element matrix on Vl.

El ∈ RNl×Nl−1 is the prolongation matrix from level l − 1 to level l.
The multi-level preconditioner is defined recursively:

C−1
0 := A−1

0

C−1
l := (diagAl)

−1 + ElC
−1
l−1E

T
l 1 ≤ l ≤ L.

The computational complexity of one application of C−1
L is O(N) operations.

(An extended version of) the Additive Schwarz Lemma allows to rewrite

‖ul‖2
Cl

= inf
ul=ul−1+

∑Nl
i=1

ul,i
ul−1∈Vl−1,ul,i∈span{ϕl,i

}‖ul−1‖2
Cl−1

+

Nl∑
i=1

‖ul,i‖2
A

= inf
u=u0+

∑L
l=1

∑Nl
i=1 ul,i

∑
l

∑
i

‖ul,i‖2
A + ‖u0‖2

A

Reordering the minimization we obtain

‖u‖2
CL

= inf
u=

∑L
l=0

ul
ul∈Vl

‖u0‖2
A +

L∑
l=1

inf
ul=

∑
ul,i

Nl∑
i=1

‖ul,i‖2
A

' inf
u=

∑L
l=0

ul
ul∈Vl

‖u0‖2
A +

L∑
l=1

h−2
l ‖ul‖

2
L2

Lemma 98 (simple analysis).
1

L
C � A � LC

Proof. A � LC follows from maximal overlap of spaces and the inverse estimate ‖∇ul‖L2 �
h−1
l ‖ul‖L2 . Let u =

∑L
l=0 ul be an arbitrary decomposition:

‖
L∑
l=0

ul‖2
A ≤ (L+ 1)

L∑
l=0

‖ul‖2
A � L

(
‖u0‖2

A +
L∑
l=1

h−2
l ‖ul‖

2
L2

)
.

Since the estimate holds for any decompositon, it also holds for the infimum.
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To show C � LA we come up with an explicit decomposition of u ∈ VL. Let Πl : L2 →
Vl be a Clément-type operator which is a projection and satisfies

‖Πlu‖H1 + h−1
l ‖u− Πlu‖L2 � ‖u‖H1 ∀u ∈ H1.

Define

u0 := Π0u

ul := Πlu− Πl−1u 1 ≤ l ≤ L.

Then u =
∑L

l=0 ul and

‖u‖2
C � ‖Π0u‖2

A +
L∑
l=1

h−2
l ‖Πlu− Πl−1u‖2

L2
� L ‖u‖2

H1 ≈ ‖u‖2
A

We have bound each of the L+ 1 terms by the H1-norm of u, thus the factor L.

Next we show an improved estimate leading to the optimal condition number
κ(C−1A) � 1, independent of the number of refinement levels:

Lemma 99. There holds
C � A � C

Proof. We show A � C. Let u =
∑L

l=0 ul an arbitrary decomposition. First, we split up
the coarsest level:

‖u‖2
A ≤ ‖u0‖2

A + ‖
L∑
l=1

ul‖2
A

Next we show the estimate

A(ul, vk) ≤ 2−
|l−k|

2 h−1
l ‖ul‖h

−1
k ‖vk‖ ∀ul ∈ Vl, vk ∈ Vk

We assume l ≤ k. We perform integration by parts on the level-l triangles, and apply
Cauchy-Schwarz and scaling techniques:

A(ul, vk) =
∑
T∈Tl

∫
T

∇ul∇vk

≤
∑
T

∫
T

−∆ul︸ ︷︷ ︸
=0

vk +

∫
∂T

∂ul
∂n

vk

≤
∑
T

∥∥∥∥∂ul∂n

∥∥∥∥
∂Tl

‖vk‖∂Tl

≤ h
−3/2
l ‖ul‖L2 h

−1/2
k ‖vk‖L2

=
√
hk/hl︸ ︷︷ ︸

'2−|k−l|/2

h−1
l ‖ul‖L2 h

−1
k ‖vk‖L2
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We define the overlap - matrix O ∈ RL×L as

Okl = 2−|k−l|/2.

Then

‖
L∑
l=1

ul‖2
A =

N∑
l,k=1

A(ul, uk) �
∑
l,k

Oklh−1
k ‖uk‖L2 h

−1
l ‖ul‖L2

≤ ρ(O)
L∑
l=1

h−2
l ‖ul‖

2
L2

The spectral radius ρ(O) can be estimated by the row-sum-norm, which is bounded by a
convergent geometric sequence

L∑
k=1

2−|k−l|/2 ≤ 2
∞∑
k=0

√
2
−k
≤ 2

1−
√

2
.

Since the decomposition was arbitrary, the estimate holds for the minimal decomposition.

Now we show C � A. We procede similar as above. Let Πl : L2 → Vl be an Clément-
type operator such that

‖Πlu‖L2 ≤ ‖u‖L2 ∀u ∈ L2

‖u− Πlu‖L2 � h2
l ‖u‖H2 ∀u ∈ H2.

We define u0 = Π0u and ul = Πlu− Πl−1u. We obtain the 2 estimates

h−2
l ‖ul‖

2
L2
� h−2

l ‖u‖
2
L2
,

h−2
l ‖ul‖

2
L2
� h2

l ‖u‖H2 .

The idea of the proof is that H1 is the interpolation space [L2, H
2]1/2. We define the

K-functional

K(t, u)2 = inf
u=u0+u2

u0∈L2,u2∈H2

{
‖u0‖2

L2
+ t2‖u2‖2

H2

}
.

Combining the 2 estimates above we get

h−2
l ‖ul‖

2
L2
� h−2

l K2(h2
l , u)

Thus, the sum over L levels is

L∑
l=1

h−2
l ‖ul‖

2
L2
≤

L∑
l=1

h−2
l K2(h2

l , u) '
L∑
l=1

2lK2(2−l, u)
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Next we use that K(s, .) ' K(t, .) for t ≤ s ≤ 2t and replace the sum by an integral, and
substitute t := 2−l, dt ' −2−ldl = tdl:

L∑
l=1

h−2
l ‖ul‖

2
L2
≤

∫ L+1

l=1

2lK2(2−l, u)dl

'
∫ 1

2−L−1

t−1K2(t, u)
dt

t

�
∫ ∞

0

t−1K2(t, u)
dt

t

= ‖u‖[L2,H2]1/2 ' ‖u‖H1

An intuitive explanation of the proof is that different terms of the sum
∑L

l=1 h
−2
l ‖Πlu−

Πl−1u‖L2 are dominated by different frequency components of u. The squared H1-norm is
the sum over H1-norms of the individual frequency components.
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Chapter 6

Mixed Methods

A mixed method is a variational formulation involving two function spaces, and a bilinear-
form of a special saddle point structure. Usually, it is obtained from variational problems
with constraints.

6.1 Weak formulation of Dirichlet boundary condi-

tions

We start with the Poisson problem

−∆u = f in Ω, (6.1)

and boundary conditions
u = uD on ΓD,
∂u
∂n

= 0 on ΓN .

In contrast to the earlier method, we multiply equation (6.1) with test functions v ∈ H1

(without imposing Dirichlet constraints), and integrate by parts. Using the Neumann
boundary conditions, we obtain∫

Ω

∇u∇v dx−
∫

ΓD

∂u

∂n
v ds =

∫
Ω

fv dx

The normal derivative ∂u
∂n

is not known on ΓD. We simply call it −λ:

λ := −∂u
∂n

To pose the Dirichlet boundary condition, we multiply u = uD by sufficiently many test
functions, and integrate over ΓD:∫

ΓD

uµ ds =

∫
ΓD

uDµ ds ∀µ ∈ ?

117
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Combining both equations, we get the system of equations: Find u ∈ V = H1(Ω) and
λ ∈ Q =? such that∫

Ω
∇u · ∇v dx +

∫
ΓD
vλ ds =

∫
fv dx ∀ v ∈ V,∫

ΓD
uµ ds =

∫
ΓD
uDµ ds ∀µ ∈ Q.

(6.2)

A similar formulation can be obtained for interface conditions.

6.2 A Mixed method for the flux

We start from the second order pde

div(a∇u) = f in Ω,

and boundary conditions

u = uD on ΓD

a
∂u

∂n
= g on ΓN

Next, we introduce the flux variable σ := a∇u to rewrite the equations as: Find u and σ
such that

a−1σ −∇u = 0, (6.3)

div σ = −f, (6.4)

and boundary conditions

u = uD on ΓD

σ · n = g on ΓN .

We want to derive a variational formulation for the system of equations. For that, we
multiply the first equations by vector-valued test functions τ , the second equation by test
functions v, and integrate:∫

Ω
(a−1σ) · τ dx −

∫
Ω
τ · ∇u dx = 0 ∀ τ∫

Ω
div σ v dx = −

∫
fv dx ∀ v

We would like to have the second term of the first equation of the same structure as the
first term in the second equation. This can be obtained by integration by parts applied to
either one of them. The interesting case is to integrate by parts in the first line to obtain:∫

Ω

aστ dx+

∫
Ω

div τ u dx−
∫

ΓD

τn u ds−
∫

ΓN

τn u ds = 0.
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Here, we make use of the boundary conditions. On the Dirichlet boundary, we know
u = uD, and use that in the equation. The Neumann boundary condition σ · n = g must
be put into the approximation space, it becomes an essential boundary condition. Thus,
it is enough to choose test functions of the sub-space fulfilling τ · n = 0. The problem is
now the following. The space V will be fixed later. Find σ ∈ V, σn = g on ΓN , and u ∈ Q
such that∫

Ω
(a−1σ) · τ dx +

∫
Ω

div τ u dx =
∫

ΓD
uDτn ds ∀ τ, τn = 0 on ΓN∫

Ω
div σ v dx = −

∫
fv dx ∀ v

The derivatives are put onto the flux unknown σ (and its test function τ). We don’t have
to derive the primal unknown u. This will give us better approximation for the fluxes than
for the scalar. That is one of the reasons to use this mixed method.

6.3 Abstract theory

A mixed variational formulation involves two Hilbert spaces V and Q, bilinear-forms

a(u, v) : V × V → R,
b(u, q) : V ×Q→ R,

and continuous linear-forms

f(v) : V → R,
g(q) : Q→ R.

The problem is to find u ∈ V and p ∈ Q such that

a(u, v) + b(v, p) = f(v) ∀ v ∈ V,
b(u, q) = g(q) ∀ q ∈ Q.

(6.5)

The two examples from above are of this form.

Instead of considering this as a system of equations, one can look at the mixed method
as one variational problem on the product spaces V ×Q. For this, simply add both lines,
and search for (u, p) ∈ V ×Q such that

a(u, v) + b(u, q) + b(v, p) = f(v) + g(q) ∀ (v, q) ∈ V ×Q.

Define the big bilinear-form B(., .) : (V ×Q)× (V ×Q)→ R as

B((u, p), (v, q)) = a(u, v) + b(u, q) + b(v, p),

to write the whole system as single variational problem

Find (u, p) ∈ V ×Q : B((u, p), (v, q)) = f(v) + g(q) ∀ (v, q) ∈ V ×Q
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By the Riesz-representation theorem, we can define operators:

A : V → V : u→ Au : (Au, v)V = a(u, v) ∀ v ∈ V
B : V → Q : u→ Bu : (Bu, q)Q = b(u, q) ∀ q ∈ Q
B∗ : Q→ V : p→ B∗p : (B∗p, v)V = b(v, p) ∀ v ∈ V.

By means of these operators, we can write the mixed variational problem as operator
equation

Au + B∗p = JV f,
Bu = JQg.

(6.6)

Here, we used the Riesz-isomorphisms JV : V ∗ → V and JQ : Q∗ → Q.

In the interesting examples, the operator B has a large kernel:

V0 := {v : Bv = 0}

Lemma 100. Assume that B∗Q is closed in V . Then there holds the V -orthogonal decom-
position

V = V0 +B∗Q

Proof: There holds

V0 = {v : Bv = 0}
= {v : (Bv, q)Q = 0 ∀ q ∈ Q}
= {v : (v,B∗q)V = 0 ∀ q ∈ Q}.

This means, V0 is the V -orthogonal complement to B∗Q. 2

Now, we will give conditions to ensure a unique solution of a mixed problem:

Theorem 101 (Brezzi’s theorem). Assume that a(., .) and b(., .) are continuous bilinear-
forms

a(u, v) ≤ α2 ‖u‖V ‖v‖V ∀u, v ∈ V, (6.7)

b(u, q) ≤ β2 ‖u‖V ‖q‖Q ∀u ∈ V, ∀ q ∈ Q. (6.8)

Assume there holds coercivity of a(., .) on the kernel,i.e.,

a(u, u) ≥ α1 ‖u‖2
V ∀u ∈ V0, (6.9)

and there holds the LBB (Ladyshenskaja-Babuška-Brezzi) condition

sup
u∈V

b(u, q)

‖u‖V
≥ β1 ‖q‖Q ∀ q ∈ Q. (6.10)

Then, the mixed problem is uniquely solvable. The solution fulfills the stability estimate

‖u‖V + ‖p‖Q ≤ c{‖f‖V ∗ + ‖g‖Q∗},

with the constant c depending on α1, α2, β1, β2.



6.3. ABSTRACT THEORY 121

Proof: The big bilinear-form B(., .) is continuous

B((u, p), (v, q)) � (‖u‖+ ‖p‖) (‖v‖+ ‖q‖).

We prove that it fulfills the inf − sup condition

inf
v,q

sup
u,p

B((u, p), (v, q))

(‖v‖V + ‖q‖Q)(‖u‖V + ‖p‖Q)
≥ β.

Then, we use Theorem 33 (by Babuška-Aziz) to conclude continuous solvability.
To prove the inf − sup-condition, we choose arbitrary v ∈ V and q ∈ Q. We will

construct u ∈ V and p ∈ Q such that

‖u‖V + ‖p‖Q � ‖v‖V + ‖q‖Q

and
B((u, p), (v, q)) = ‖v‖2

V + ‖q‖2
Q.

First, we use (6.10) to choose u1 ∈ V such that

b(u1, q) = ‖q‖2
Q and ‖u1‖V ≤ 2β−1

1 ‖q‖Q.

Next, we solve a problem on the kernel:

Find u0 ∈ V0 : a(u0, w0) = (v, w0)V − a(u1, w0) ∀w0 ∈ V0

Due to assumption (6.9), the left hand side is a coercive bilinear-form on V0. The right
hand side is a continuous linear-form. By Lax-Milgram, the problem has a unique solution
fulfilling

‖u0‖V � ‖v‖V + ‖u1‖V
We set

u = u0 + u1.

By the Riesz-isomorphism, we define a z ∈ V such that

(z, w)V = (v, w)V − a(u,w) ∀w ∈ V

By construction, it fulfills z⊥V V0. The LBB condition implies

‖p‖Q ≤ β−1
1 sup

v

b(v, p)

‖v‖V
= β−1

1 sup
v

(v,B∗p)V
‖v‖V

= β−1
1 ‖B∗p‖V ,

and thus B∗Q is closed, and z ∈ B∗Q. Take the p ∈ Q such that

z = B∗p.

It fulfills
‖p‖Q ≤ β−1

1 ‖z‖V � ‖v‖V + ‖q‖Q



122 CHAPTER 6. MIXED METHODS

Concluding, we have constructed u and p such that

‖u‖V + ‖p‖Q � ‖v‖V + ‖q‖Q,

and

B((u, p), (v, q)) = a(u, v) + b(v, p) + b(u, q)

= a(u, v) + (z, v)V + b(u, q)

= a(u, v) + (v, v)V − a(u, v) + b(u, q)

= ‖v‖2
V + b(u1, q)

= ‖v‖2
V + ‖q‖2

Q.

2

6.4 Analysis of the model problems

Now, we apply the abstract framework to the two model problems.

Weak formulation of Dirichlet boundary conditions

The problem is well posed for the spaces

V = H1(Ω) and Q = H−1/2(ΓD)

Remember, H−1/2(ΓD) is the dual to H1/2(ΓD). The later one is the trace space of H1(Ω),
the norm fulfills

‖uD‖H1/2(ΓD) ' inf
w∈H1

tr w=uD

‖w‖H1(Ω).

The bilinear-forms are

a(u, v) =

∫
Ω

∇u∇v dx

b(u, λ) = 〈λ, tr u〉H−1/2×H1/2

To be precise, the integral
∫

ΓD
λu dx is extended to the duality product 〈λ, u〉. For regular

functions (λ ∈ L2(ΓD)), we can write the L2-inner product.

Theorem 102. The mixed problem (6.2) has a unique solution u ∈ H1(Ω) and λ ∈
H−1/2(ΓD).

Proof: The spaces V and Q, and the bilinear-forms a(., .) and b(., .) fulfill the assump-
tions of Theorem 101. The kernel space V0 is

V0 = {u :

∫
ΓD

uµ dx = 0 ∀µ ∈ L2(ΓD)} = {u : trΓD u = 0}
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The continuity of a(., .) on V is clear. It is not coercive on V , but, due to Friedrichs
inequality, it is coercive on V0.

The bilinear-form b(., .) is continuous on V ×Q:

b(u, µ) = 〈µ, tr u〉H−1/2×H1/2 ≤ ‖µ‖H−1/2‖ tr u‖H1/2(ΓD) � ‖µ‖Q‖u‖H1 = ‖µ‖Q‖u‖V

The LBB - condition of b(., .) follows more or less from the definition of norms:

‖q‖Q = sup
u∈H1/2

〈q, u〉
‖u‖H1/2

' sup
u∈H1/2

〈q, u〉
inf w∈H1(Ω)

tr w=u

‖w‖H1(Ω)

= sup
u∈H1/2

sup
w∈H1(Ω)
tr w=u

〈q, u〉
‖w‖H1

= sup
w∈H1

〈q, tr w〉
‖w‖H1

= sup
w∈V

b(w, q)

‖w‖V

Mixed method for the fluxes

This mixed method requires the function space H(div,Ω):

Definition 103. A measurable function g is called the weak divergence of σ on Ω ⊂ Rd if
there holds ∫

Ω

g ϕ dx = −
∫

Ω

σ · ∇ϕdx ∀ϕ ∈ C∞0 (Ω)

The function space H(div) is defined as

H(div,Ω) := {σ ∈ [L2(Ω)]d : div σ ∈ L2},

its norms is
‖σ‖H(div) =

{
‖σ‖2

L2
+ ‖ div σ‖2

L2

}1/2

The mixed method is formulated on the spaces

V = H(div) Q = L2

The bilinear-forms are

a(σ, τ) =

∫
a−1στ dx ∀σ, τ ∈ V

b(σ, v) =

∫
div σ v dx ∀σ ∈ V, ∀ v ∈ Q

We assume that the symmetric matrix a ∈ Rd×d and its inverse a−1 are bounded.
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Theorem 104. The mixed problem for the fluxes is well posed.

Proof: We check the conditions of the theorem of Brezzi: The bilinear-forms are
bounded, namely

a(σ, τ) =

∫
a−1στ dx ≤ ‖a−1‖L∞‖σ‖L2 ‖τ‖L2 � ‖σ‖V ‖τ‖V

and

b(σ, v) =

∫
div σv dx ≤ ‖ div σ‖L2 ‖v‖L2 ≤ ‖σ‖V ‖v‖Q.

The kernel space V0 = {τ : b(τ, v) = 0 ∀ v ∈ Q} is

V0 = {τ ∈ H(div) : div τ = 0}

There holds the kernel-ellipticity of a(., .). Let τ ∈ V0. Then

a(τ, τ) =

∫
τTa−1τ dx ≥ inf

x∈Ω
λmin(a−1)

∫
|τ |2 dx � ‖τ‖2

L2
= ‖τ‖2

H(div)

We are left to verify the LBB condition

sup
σ∈H(div)

∫
div σ v dx

‖σ‖H(div)

� ‖v‖L2 ∀ v ∈ L2. (6.11)

For given v ∈ L2, we will construct a flux σ satisfying the inequality. For this, we solve
the artificial Poisson problem −∆ϕ = v with Dirichlet boundary conditions ϕ = 0 on ∂Ω.
The solution satisfies ‖∇ϕ‖L2 � ‖v‖L2 . Set σ = −∇ϕ. There holds div σ = v. Its norm is

‖σ‖2
H(div) = ‖σ‖2

L2
+ ‖ div σ‖2

L2
= ‖∇ϕ‖2

L2
+ ‖v‖2

L2
� ‖v‖2

L2
.

Using it in (6.11), we get the result∫
div σ v dx

‖σ‖H(div)

=

∫
v2 dx

‖σ‖H(div)

� ‖v‖L2 .

The function space H(div)

The mixed formulation has motivated the definition of the function space H(div). Now,
we will study some properties of this space. We will also construct finite elements for
the approximation of functions in H(div). In Section 3.3.1, we have investigated traces of
functions in H1. Now, we apply similar techniques to the space H(div). Again, the proofs
are based on the density of smooth functions.

For a function in H1, the boundary values are well defined by the trace operator. For
a vector-valued function in H(div), only the normal-component is well defined on the
boundary:
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Theorem 105. There exists a normal-trace operator

trn : H(div)→ H−1/2(∂Ω)

such that for σ ∈ H(div) ∩ [C(Ω)]d it coincides with its normal component

trn σ = σ · n on ∂Ω.

Proof: For smooth functions, the trace operator gives the normal component on the
boundary. We have to verify that this operator is bounded as operator from H(div) to
H−1/2(∂Ω). Then, by density, we can extend the trace operator to H(div). Let σ ∈
H(div) ∩ [C1(Ω)]d:

‖ trn σ‖H−1/2 = sup
ϕ∈H1/2(∂Ω)

∫
∂Ω
σ · nϕds
‖ϕ‖H1/2

' sup
ϕ∈H1(Ω)

∫
∂Ω
σ · n tr ϕds

‖ϕ‖H1

= sup
ϕ∈H1(Ω)

∫
∂Ω

(σ tr ϕ) · n ds
‖ϕ‖H1

= sup
ϕ∈H1(Ω)

∫
Ω

div(σϕ) dx

‖ϕ‖H1

= sup
ϕ∈H1(Ω)

∫
Ω

(div σ)ϕdx+
∫

Ω
σ · ∇ϕdx

‖ϕ‖H1

≤ sup
ϕ∈H1(Ω)

‖ div σ‖L2 ‖ϕ‖L2 + ‖σ‖L2 ‖∇ϕ‖L2

‖ϕ‖H1

≤
{
‖σ‖2

L2
+ ‖ div σ‖2

L2

}1/2
= ‖σ‖H(div)

2

Lemma 106. There holds integration by parts∫
Ω

σ · ∇ϕdx+

∫
Ω

(div σ)ϕdx = 〈trn σ, trϕ〉H−1/2×H1/2

for all σ ∈ H(div) and ϕ ∈ H1(Ω).

Proof: By density of smooth functions, and continuity of the trace operators.

Now, let Ω1, . . .ΩM be a non-overlapping partitioning of Ω. In Section 3.3.1, we have
proven that functions which are in H1(Ωi), and which are continuous across the boundaries
γij = Ωi ∩ Ωj, are in H1(Ω). A similar property holds for functions in H(div).

Theorem 107. Let σ ∈ [L2(Ω)]d such that

•
σ|Ωi ∈ H(div,Ωi)

•
trn,i σ|Ωi = − trn,j σ|Ωj on γij.

Then σ ∈ H(div,Ω), and
(div σ)|Ωi = div (σ|Ωi).



126 CHAPTER 6. MIXED METHODS

The proof follows the lines of Theorem 46.

We want to compute with functions in H(div). For this, we need finite elements for
this space. The characterization by sub-domains allows the definition of finite element
sub-spaces of H(div). Let T = {T} be a triangulation of Ω. One family of elements are
the BDM (Brezzi-Douglas-Marini) elements. The space is

Vh = {σ ∈ [L2]2 : σ|T ∈ [P k]d, σ · n continuous across edges}.

This finite element space is larger than the piece-wise polynomial H1-finite element space
of the same order. The finite element functions can have non-continuous tangential com-
ponents across edges.

The cheapest element for H(div) is the lowest order Raviart-Thomas element RT0.
The finite element (T, VT , {ψi}) is defined by the space of shape functions VT , and linear
functionals ψi. The element space is

VT =

{(a
b

)
+ c

(
x

y

)
: a, b, c ∈ R

}
,

the linear functionals are the integrals of the normal components on the three edges of the
triangle

ψi(σ) =

∫
ei

σ · n ds i = 1, 2, 3

The three functionals are linearly independent on VT . This means, for each choice of
σ1, σ2, σ3, there exists three unique numbers a, b, c ∈ R such that

σ =
(a
b

)
+ c

(
x

y

)
.

satisfies ψi(σ) = σi.
Exercise: Compute the shape functions for the RT0 - reference triangle.

The global finite element functions are defined as follows. Given one value σi for each
edge ei of the triangulation. The corresponding RT0 finite element function σ is defined
by

σ|T ∈ VT and

∫
ei

σ|T · nei ds = σi

for all edges ei ⊂ T and all triangles T ∈ T .

We have to verify that this construction gives a function in H(div). For each ele-
ment, σ|T is a linear polynomial, and thus in H(div, T ). The normal components must be
continuous. By construction, there holds∫

e

σ|T,i · n ds =

∫
e

σ|T,j · n ds
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for the edge e = Ti ∩ Tj. The normal component is continuous since σ · ne is constant on
an edge: Points (x, y) on the edge e fulfill xnx + yny is constant. There holds

σ · ne =

[(a
b

)
+ c

(
x

y

)]
·
(
nx
ny

)
= anx + bny + c(xnx + yny) = constant

The global RT0-basis functions ϕRTi are associated to the edges, and satisfy∫
ei

ϕRTj · ne ds = δij ∀ i, j = 1, . . . Nedges

By this basis, we can define the RT - interpolation operator

IRTh σ =
∑

edges ei

(∫
ei

σ · ne ds
)
ϕRTi

It is a projection on Vh. The interpolation operator preserves the divergence in mean:

Lemma 108. The RT0 - interpolation operator satisfies∫
T

div Ihσ dx =

∫
T

div σdx

for all triangles T ∈ T .

Let Ph be the L2 projection onto piece-wise constant finite element functions. This
is: Let Qh = {q ∈ L2 : q|T = const ∀T ∈ T }. Then Php is defined by Php ∈ Qh and∫

Ω
Php qh dx =

∫
Ω
Pp qh dx ∀ qh ∈ Qh. This is equivalent to Php satisfies Php ∈ Qh and∫

T

Php dx =

∫
T

p dx ∀T ∈ T .

The Raviart-Thomas finite elements are piecewise linear. Thus, the divergence is piece-
wise constant. From div Ihσ ∈ Qh and Lemma 108 there follows

div Ihσ = Ph div σ.

This relation is known as commuting diagram property:

H(div)
div−→ L2yIh yPh

V RT
h

div−→ Qh

(6.12)

The analysis of the approximation error is based on the transformation to the reference
element. For H1 finite elements, interpolation on the element T is equivalent to interpo-
lation on the reference element T̂ , i.e., (Ihv) ◦ FT = Îh(v ◦ FT ). This is not true for the
H(div) elements: The transformation F changes the direction of the normal vector. Thus∫
e
σ · n ds 6=

∫
ê
σ̂ · n̂ ds.

The Piola transformation is the remedy:



128 CHAPTER 6. MIXED METHODS

Definition 109 (Piola Transformation). Let F : T̂ → T be the mapping from the reference

element T̂ to the element T . Let σ̂ ∈ L2(T̂ ). Then, the Piola transformation

σ = P{σ̂}

is defined by
σ(F (x̂)) = (detF ′)−1F ′σ(x).

The Piola transformation satisfies:

Lemma 110. Let σ̂ ∈ H(div, T̂ ), and σ = P{σ̂}. Then there holds

(div σ)(F (x̂)) = (detF ′)−1 div σ̂

Let ê be an edge of the reference element, and e = F (ê). Then∫
e

σ · n ds =

∫
ê

σ̂ · n̂ ds

Proof: Let ϕ̂ ∈ C∞0 (T̂ ), and ϕ(F (x̂)) = ϕ̂(x). Then there holds∫
T

div σ ϕdx =

∫
T

σ · ∇ϕdx

=

∫
T̂

[
(detF ′)−1F ′σ

]
·
[
(F ′)−T∇ϕ̂

]
(detF ′) dx̂

=

∫
T̂

σ̂∇ϕ̂ dx̂ =

∫
T̂

div σ̂ ϕ̂ dx̂

=

∫
T

(detF ′)−1 (div σ̂)ϕdx.

Since C∞0 is dense in L2(T ), there follows the first claim. To prove the second one, we show
that ∫

e

(σ · n)ϕds =

∫
ê

(σ̂ · n)ϕ̂ dx

holds for all ϕ ∈ C∞(T ), ϕ = 0 on ∂T \ e. Then, let ϕ→ 1 on the edge e:∫
e

(σ · n)ϕds =

∫
T

div(σϕ) dx =

∫
T̂

div(σ̂ϕ̂) dx̂ =

∫
ê

(σ̂ · n̂)ϕ̂ dŝ.

2

Lemma 111. The Raviart-Thomas triangle T and the Raviart-Thomas reference triangle
are interpolation equivalent:

IRTh P{σ̂} = P{ÎRTh σ̂}

Proof: The element spaces are equivalent, i.e., VT = P{VT̂}, and the functionals ψi(σ) =∫
e
σ · n ds are preserved by the Piola transformation.
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Theorem 112. The Raviart-Thomas interpolation operator satisfies the approximation
properties

‖σ − IRTh σ‖L2(Ω) � h ‖∇σ‖L2(Ω)

‖ div σ − div IRTh σ‖L2(Ω) � h ‖∇ div σ‖L2(Ω)

Proof: Transformation to the reference element, using that the interpolation preserves
constant polynomials, and the Bramble Hilbert lemma. The estimate for the divergence
uses the commuting diagram property

‖ div(I − IRTh )σ‖L2 = ‖(I − Ph) div σ‖L2 � h ‖∇ div σ‖L2

2

6.5 Approximation of mixed systems

We apply a Galerkin-approximation for the mixed system. For this, we choose (finite
element) sub-spaces Vh ⊂ V and Qh ⊂ Q, and define the Galerkin approximation (uh, ph) ∈
Vh ×Qh by

B((uh, ph), (vh, qh)) = f(vh) + g(qh) ∀ vh ∈ Vh ∀ qh ∈ Qh.

Theorem 113. Assume that the finite element spaces fulfill the discrete stability condition

inf
v∈Vh,q∈Qh

sup
u∈Vh,p∈Qh

B((u, p), (v, q))

(‖v‖V + ‖q‖)(‖u‖V + ‖p‖Q)
≥ β. (6.13)

Then the discretization error is bounded by the best-approximation error

‖u− uh‖V + ‖p− ph‖Q � inf
vh∈Vh,qh∈Qh

{‖u− vh‖V + ‖p− qh‖Q}

Proof: Theorem 36 applied to the big system B((u, p), (v, q)). 2

The stability on the continuous level V × Q does not imply the discrete stability !
Usually, one checks the conditions of Brezzi on the discrete level to prove stability of
B(., .) on the discrete levels. The continuity of a(., .) and b(., .) are inherited from the
continuous levels. The stability conditions have to be checked separately. The discretet
kernel ellipticity

a(vh, vh) � ‖vh‖2
V ∀ vh ∈ V0h = {vh ∈ Vh : b(vh, qh) = 0 ∀ qh ∈ Qh}, (6.14)

and the discrete LBB condition

sup
uh∈Vh

b(uh, qh)

‖uh‖V
� ‖qh‖Q ∀ qh ∈ Qh. (6.15)
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The discrete LBB condition is posed for less dual variables qh in Qh ⊂ Q, but the space in
the supremum is also smaller. It does not follow from the LBB condition on the continuous
levels.

There is a canonical technique to derive the discrete LBB condition from the continuous
one:

Lemma 114. Assume there exists a quasi-interpolation operator

Πh : V → Vh

which is continuous
‖Πhv‖V � ‖v‖V ∀ v ∈ V,

and which satisfies
b(Πhv, qh) = b(v, qh) ∀ qh ∈ Qh.

Then, the continuous LBB condition implies the discrete one.

Proof: For all ph ∈ Qh there holds

sup
vh∈Vh

b(vh, ph)

‖vh‖V
≥ sup

v∈V

b(Πhv, ph)

‖Πhv‖V
� sup

v∈V

b(v, ph)

‖v‖V
� ‖ph‖Q

2

Approximation of the mixed method for the flux

Choose the pair of finite element spaces, the Raviart Thomas spaces

Vh = {v ∈ H(div) : v|T ∈ V RT
T } ⊂ V = H(div)

and the space of piece-wise constants

Qh = {q ∈ L2 : q|T ∈ P 0} ⊂ Q = L2.

Pose the discrete mixed problem: Find (σh, uh) ∈ Vh ×Qh such that∫
Ω

(a−1σh) · τh dx +
∫

Ω
div τh uh dx =

∫
ΓD
uDτn ds ∀ τh ∈ Vh∫

Ω
div σh vh dx = −

∫
fvh dx ∀ vh ∈ Qh.

(6.16)

Lemma 115 (Discrete Stability). The discrete mixed variational problem (6.16) is well
posed.

Proof: By Brezzi’s theorem. Continuity of the bilinear-form and the linear-form follow
from the continuous level. We prove the kernel ellipticity: Since

div Vh ⊂ Qh,
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there holds ∫
div σh qh dx = 0 ∀ qh ∈ Qh ⇒ div σh = 0,

and thus V0h ⊂ V0. In this special case, the discrete kernel ellipticity is simple the restriction
of the continuous one to V0h. We are left with the discrete LBB condition. We would like
to apply Lemma 114. The quasi-interpolation operator is the Raviar-Thomas interpolation
operator IRTh . The abstract condition

b(IRTh σ, vh) = b(σ, vh) vh ∈ Qh

reads as ∫
T

div IRTh σ dx =

∫
T

div σdx,

which was proven in Lemma 108. But, the interpolation operator is not continuous on
H(div). The edge-integrals are not well defined on H(div). We have to include the sub-
space [H1]d ⊂ H(div). There holds

‖IRTh σ‖H(div) � ‖σ‖H1 ∀σ ∈ [H1]d,

and the stronger LBB condition (see Section on Stokes below)

sup
σ∈[H1]d

(div σ, v)L2

‖σ‖H1

≥ β‖v‖L2 ∀ v ∈ L2.

We follow the proof of Lemma 114: For all vh ∈ Qh there holds

sup
σh∈Vh

b(σh, vh)

‖σh‖V
≥ sup

σ∈[H1]d

(div IRTh σ, vh)

‖IRTh σ‖V
� sup

σ∈[H1]d

(div σ, vh)

‖σ‖H1

� ‖vh‖L2 .

Brezzi’s theorem now proves that the discrete problem is well posed, i.e., it fulfills the
discrete inf-sup condition.

2

Theorem 116 (A priori estimate). The mixed finite element methods for the fluxes satisfies
the error estimates

‖σ − σh‖L2 + ‖ div(σ − σh)‖L2 + ‖u− uh‖L2 � h (‖σ‖H1 + ‖u‖H1 + ‖f‖H1) (6.17)

Proof: By discrete stability, one can bound the discretization error by the best approx-
imation error

‖σ − σh‖H(div) + ‖u− uh‖L2 � inf
τh∈Vh
vh∈Qh

{
‖σ − τh‖H(div) + ‖u− vh‖L2

}
.

The best approximation error is bounded by the interpolation error. The first term is
(using the commuting diagram property and div σ = f)

inf
τh∈Vh

{‖σ − τh‖L2 + ‖ div(σ − τh)‖L2} ≤ ‖σ−IRTh σ‖L2+‖(I−P 0) div σ‖L2 � h (‖σ‖H1 + ‖f‖H1) .
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The second term is

inf
vh∈Qh

‖u− vh‖L2 ≤ ‖u− P 0u‖L2 � h ‖u‖H1 .

2

The smoothness requirements onto the solution of (6.17) are fulfilled for problems on
convex domains, and smooth (constant) coefficients a. There holds ‖u‖H2 � ‖f‖L2 . Since
σ = a∇u, there follows ‖σ‖H1 � ‖f‖L2 . The mixed method requires more smoothness
onto the right hand side data, f ∈ H1. It can be reduced to H1 on sub-domains, what is
a realistic assumption. On non-convex domains, u is in general not in H2 (and σ not in
H1). Again, weighted Sobolev spaces can be used to prove similar estimates on properly
refined meshes.

Approximation of the mixed method for Dirichlet boundary conditions

A possibility is to choose continuous and piece-wise linear finite element spaces on the
domain and on the boundary

Vh = {v ∈ C(Ω) : v|T ∈ P 1 ∀T},

Qh = {µ ∈ C(∂Ω) : µ|E ∈ P 1 ∀E ⊂ ∂Ω}.

Theorem 117. The discrete mixed method is well posed.

Proof: Exercises.

6.6 Supplement on mixed methods for the flux : dis-

crete norms, super-convergence and implementa-

tion techniques

6.6.1 Primal and dual mixed formulations

A mixed method for the flux can be posed either in the so called primal form: find σ ∈
V = [L2]2, u ∈ H1 with u = uD on ΓD such that∫

Ω
(a−1σ) · τ dx −

∫
Ω
τ · ∇u dx = 0 ∀ τ,

−
∫

Ω
σ · ∇v dx = −

∫
fv dx−

∫
ΓN
gv ds ∀ v, v = 0 on ΓD,

or in the so called dual mixed form: find σ ∈ V = H(div), u ∈ L2 with σ · n = g on ΓN∫
Ω

(a−1σ) · τ dx +
∫

Ω
div τ u dx =

∫
ΓD
uDτn ds ∀ τ, τn = 0 on ΓN∫

Ω
div σ v dx = −

∫
fv dx ∀ v.
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Both are formally equivalent: If the solutions are smooth enough for integration by parts,
both solutions are the same. In both cases, the big-B bilinear-form is inf−sup stable with
respect to the corresponding norms.

The natural discretization for the primal-mixed formulation uses standard H1-finite
elements of order k for u, and discontinuous L2 elements of order k − 1 for σ. Here,
the discrete Brezzi conditions are trivial. The dual one requires Raviart-Thomas (RT)
or Brezzi-Douglas-Marini (BDM) elements for σ, and L2 elements for u. This pairing
delivers locally exact conservation (

∫
∂T
σn = −

∫
T
f). In particular this property makes

the method interesting by itself, but often this scheme is a part of a more complex problem
(e.g. Navier-Stokes equations).

Our plan is as follows: We want to use the dual finite element method, but analyze
it in a primal - like setting. Since Qh is no sub-space of H1, we have to use a discrete
counterpart of the H1-norm:

‖τ‖2
Vh

:= ‖τ‖2
L2

‖v‖2
Qh

:= ‖v‖2
H1,h :=

∑
T

‖∇v‖2
L2(T ) +

∑
E⊂Ω

1
h
‖[v]‖2

L2(E) +
∑
E⊂ΓD

1
h
‖v‖2

L2(E)

The factor 1
h

provides correct scaling: If we transform an element patch to the reference
patch, the jump term scales like the H1-semi-norm. This norm is called discrete H1-norm,
or DG-norm (as it is essential for Discontinuous Galerkin methods discussed later).

There holds a discrete Friedrichs inequality

‖v‖L2 � ‖v‖H1,h.

Theorem 118. The dual-mixed discrete problem satisfies Brezzi’s conditons with respect
to L2 and discrete H1-norms.

Proof. The a(., .) bilinear-form is continuous and coercive on (Vh, ‖ · ‖L2). Now we show
continuity of b(., .) on the finite element spaces. We integrate by parts on the elements,
and rearrange boundary terms:

b(σh, vh) =

∫
Ω

div σh vh =
∑
T

∫
T

div σh vh

=
∑
T

−
∫
T

σh · ∇vh +

∫
∂T

σh · n vh

=
∑
T

−
∫
T

σh · ∇vh +
∑
E⊂Ω

∫
E

σhnE[v] +
∑
E⊂ΓD

∫
E

σhnEv +
∑
E⊂ΓN

∫
E

σhnE︸ ︷︷ ︸
=0

v

The jump term is defined as [v](x) = limt→0+ v(x + tnE) − v(x − tnE). Thus, σhnE[v] is
independent of the direction of the normal vector. Next we apply Cauchy-Schwarz, and
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use that h‖σh · n‖2
L2(E) � ‖σh‖L2(T ) for some E ⊂ T (scaling and equivalence of norms on

finite dimensional spaces):

b(σh, vh) ≤
∑
T

‖σh‖L2(T ) ‖∇vh‖L2(T ) +
∑
E⊂Ω

h1/2‖σ‖L2(E) h
−1/2‖[vh]‖L2(E) +

∑
E⊂ΓD

...

� ‖σh‖L2(Ω)‖vh‖H1,h

The linear-forms are continous with norms h−1/2‖uD‖L2(ΓD) and ‖f‖L2(Ω), respectively.
Finally, we show the LBB - condition: Given an vh ∈ Qh, we define σh as follows:

σh · nE = 1
h
[vh] on E ⊂ Ω

σh · nE = 1
h
vh on E ⊂ ΓD

σh · nE = 0 on E ⊂ ΓN∫
T

σh · q = −
∫
T

∇vh · q ∀ q ∈ [P k−1]2.

This definition mimics σ = −∇v. This construction is allowed by the definition of Raviart-
Thomas finite elements. Thus we get

b(σh, vh) =
∑
T

−
∫
σh ∇vh︸︷︷︸
∈[Pk−1]2

+
∑
E⊂Ω

1
h
‖[vh]‖2

L2(E) +
∑
E⊂ΓD

1
h
‖vh‖2

L2(E)

=
∑
T

∫
∇vh · ∇vh +

∑
E⊂Ω

1
h
‖[vh]‖2

L2(E) +
∑
E⊂ΓD

1
h
‖vh‖L2(E)

= ‖vh‖2
H1,h

By scaling arguments we see that ‖σh‖L2 � ‖vh‖H1,h. Thus we got σh such that

b(σh, vh)

‖σh‖L2

� ‖vh‖H1,h,

and we have constructed the candidate for the LBB condition.

6.6.2 Super-convergence of the scalar

Typically, the discretization error of mixed methods depend on best-approximation errors
in all variables:

‖σ − σh‖L2 + ‖u− uh‖H1,h � inf
τh,vh
‖σ − τh‖L2 + ‖u− vh‖H1,h

By the usual Bramble-Hilbert and scaling arguments we see that (using the element-wise
L2-projection Ph):

‖u− Phu‖H1,h � hk‖u‖H1+k k ≥ 0.

In the lowest order case (k = 0) we don’t get any convergence !!
But, we can show error estimates for σ in terms of approximability for σ only. Further-

more, we can perform a local postprocessing to improve also the scalar variable.
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Theorem 119. There holds

‖σ − σh‖L2 + ‖Phu− uh‖ � ‖σ − Ihσ‖L2 ,

where Ih is the canonical RT interpolation operator satisfying the commuting diagram prop-
erty div Ih = Ph div.

Proof. As usual for a priori estimates, we apply stability of the discrete problem, and use
the Galerkin orthogonality:

‖Ihσ − σh‖L2 + ‖Phu− uh‖H1,h � sup
τh,vh

B((Ihσ − σh, Phu− uh), (τh, vh))
‖τh‖L2 + ‖vh‖H1,h

(6.18)

= sup
τh,vh

B((Ihσ − σ, Phu− u), (τh, vh))

‖τh‖L2 + ‖vh‖H1,h

(6.19)

Now we elaborate on the terms of B((Ihσ − σ, Phu − u), (τh, vh)) =
∫
a−1(Ihσ − σ) · τh +∫

div(Ihσ−σ)vh+
∫

div τh(Phu−u): For the first one we use Cauchy-Schwarz, and bounds
for the coefficient a: ∫

a−1(Ihσ − σ) · τh � ‖σ − Ihσ‖L2 ‖τh‖L2

For the second one we use the commuting diagram, and orthogonality:∫
div(Ihσ − σ)vh =

∫
(Ph − Id) div σ︸ ︷︷ ︸

∈Q⊥h

vh︸︷︷︸
∈Qh

= 0

For the third one we use that div Vh ⊂ Qh:∫
div τh︸ ︷︷ ︸
∈Vh

(Phu− u)︸ ︷︷ ︸
V ⊥h

Thus, the right hand side of equation (6.19) can be estimated by ‖σ − Ihσ‖L2 . Finally, an
application of the triangle inequality proves the result.

Remark 120. This technique applies for BDM elements as well as for RT. Both satisfy
div Vh = Qh, and the commuting diagram. For RTk elements, i.e. [P k]2 ⊂ RTk ⊂ [P k+1]2

as well as BDMk elements, i.e. BDMk = [P k]d we get the error estimate

‖σ − Ihσ‖L2 � hk+1‖σ‖Hk

with k ≥ 0 for RT and k ≥ 1 for BDM.

Remark 121. The scalar variable shows super-convergence: A filtered error, i.e. Phu−uh
is of higer order than the error u− uh itself: One order for RT and two orders for BDM

We can apply a local post-processing to compute the scalar part with higher accuracy:
We use the equation σ = a∇u, and the good error estimates for σ and Phu. We set
Q̃h := P k+1, and solve a local problem on every element:

min
ṽh∈Q̃h∫

T vh=
∫
T ṽh

‖a∇ṽh − σh‖2
L2(T ),a−1
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6.6.3 Solution methods for the linear system

The finite element discretization leads to the linear system for the coefficient vectors (called
σ and u again): (

A Bt

B 0

)(
σ
u

)
=

(
0
−f

)
This matrix is indefinite, it has dimVh positive and dimQh negative eigenvalues. This
causes difficulties for the linear equation solver.

The first possibility is a direct solver, which must (in contrast to positive definite
systems) apply Pivot strategies.

A second possibility is block-elimination: eliminate σ from the first equation. The
regularity of A follows from L2-coercivity of a(., .):

σ = −A−1Btu

and insert it into the second equation:

−BA−1Btu = −f

Thanks to the LBB-condition, B has full rank, and thus the Schur complement matrix is
regular. Since B is the discretization of the div-operator, Bt of the negative gradient, and
A of a(x)−1I, the equation can be interpreted as a discretization of

div a∇u = −f

This approach is not feasible, since A−1 is not a sparse matrix anymore.
One can use extensions of the conjugate gradient (CG) method for symmetric but

indefinit matrices (e.g. MINRES). Here, preconditioners are important. Typically, for
block-systems one uses block-diagonal preconditioners to rewrite the system as(

G̃−1
V 0

0 G̃−1
Q

)(
A BT

B 0

)(
σ
u

)
=

(
G̃−1
V 0

0 G̃−1
Q

)(
0
−f

)
where G̃V and G̃Q are approximations to the Gramien matrices in Vh and Qh:

GV,ij = (ϕσi , ϕ
σ
j )V and GQ,ij = (ϕui , ϕ

u
j )Q

One can either choose the H(div)-L2, or the [L2]2-H1 setting, which leads to different kind
of preconditioners. Here, the later one is much simpler. This is a good motivation for
considering the alternative framework.

6.6.4 Hybridization

Hybridization is a technique to derive a new variational formulation which obtains the same
solution, but its system matrix is positive definit. For this, we break the normal-continuity
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of the flux functions, and re-inforce it via extra equations. We obtain new variables living
on the element-edges (or faces in 3D).

We start from the first equation a−1σ−∇u = 0, multiply with element-wise discontin-
uous test-functions τ , and integrate by parts on the individual elements:∫

Ω

a−1στ +
∑
T

{∫
T

u div τ −
∫
∂T

u τn
}

= 0

We now introduce the new unknown variable û which is indeed the restriction of u onto
the mesh skeleton u|∪E.

We set V :=
∏

T H(div, T ) and Q := L2(Ω) ×
∏

E H
1/2(E), and pose the so called

hybrid problem: find σ ∈ V and (u, û) ∈ Q such that∫
Ω

(a−1σ) · τ dx +
∑

T

∫
T

div τ u dx +
∑

T

∫
∂T
û τn = 0 ∀ τ ∈ V∑

T

∫
T

div σ v dx = −
∫
fv dx ∀ v ∈ L2(Ω)∑

T

∫
∂T
v̂ σn = 0 ∀ v̂ ∈

∏
E H

1/2(E).

The last equation can be rearranged edge by edge:∑
E⊂Ω

∫
E

[σn] v̂ +
∑
E⊂∂Ω

∫
E

σn v̂ = 0 ∀ v̂ ∈
∏
E

H1/2(E),

which implies normal-continuity of σ. Dirichlet/Neumann boundary conditions are posed
now for the skeleton variable û.

This system is discretized by discontinuous RT/BDM elements for σ, piecewise poly-
nomials on elements T for u, and piecewise polynomials on edges for û such that the order
matches with σ · n.

1. This discrete system is well-posed with respect to the norms ‖σ‖V := ‖σ‖L2 and
‖u, û‖2 =

∑
T ‖∇u‖2

L2(T ) + 1
h
‖u− û‖2

∂T . Similar proof as for Theorem 118.

2. The components σh and uh of the solution of the hybrid problem correspond to the
solution of the mixed method.

3. Since the σh is discontinuous across elements, the arising matrix A is block-diagonal.
Now it is cheap to form the Schur complement

−BA−1BT
(u
û

)
=

(
f

0

)
This is now a system with a positive definite matrix for unknowns in the elements and
on the edges. Since the matrix block for the element-variables is still block-diagonal,
they can be locally eliminated, and only the skeleton variables are remaining. In the
lowest order case, the matrix is the same as for the non-conforming P 1 element.
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Chapter 7

Discontinuous Galerkin Methods

Discontinuous Galerkin (DG) methods approximate the solution with piecewise functions
(polynomials), which are discontinuous across element interfaces. Advantages are

• block-diagonal mass matrices which allow cheap explicit time-stepping

• upwind techniques for dominant convection

• coupling of non-matching meshes

• more flexibility for stable mixed methods

DG methods require more unknowns, and also have a denser stiffness matrix. The last
disadvantage can be overcome by hybrid DG methods (HDG).

7.1 Transport equation

We consider the first order equation

div(bu) = f on Ω,

where b is the given wind, and f is the given source. Boundary conditions are specified

u = uD on Γin,

where the inflow boundary is

Γin = {x ∈ ∂Ω : b · n < 0},

and the outflow boundary Γout = ∂Ω \ Γin.
The instationary transport equation

∂u

∂t
+ div(bu) = f on Ω× (0, T )

139
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with initial conditions u = u0 for t = 0 can be considered as stationary transport equation
in space-time:

divx,t(b̃u) = f,

where b̃ = (b, 1). The inflow boundary consists now of the lateral boundary Γin×(0, T ) and
the bottom boundary Ω×{0}, which is an inflow boundary according to (b, 1) ·(0,−1) < 0.

The equation in conservative form leads to a conservation principle. Let V be an
arbitrary control volume. From the Gauß theorem we get∫

∂V

b · nu =

∫
V

f

The total outflow is in balance with the production inside V .
For stability, we assume div b = 0. This is a realistic assumption, since the wind is

often the solution of the incompressible Navier Stokes equation.
A variational formulation is ∫

div(bu)v =

∫
fv ∀v

If we set v = u, and use
div(bu)u = 1

2
div(bu2)

We obtain ∫
div(bu)v = 1

2

∫
∂Ω

bnu
2 =

∫
fu

For f = 0 we obtain ∫
Γout

|bn|u2 =

∫
Γin

|bn|u2.

This inflow-outflow isometrie is a stability argument. For time dependent problems (with
bn = 0 on ∂Ω), it ensures the conservation of L2-norm in time.

7.1.1 Solvability

We assume b ∈ L∞ with div b = 0. We consider the problem: find u ∈ V , u = uD on Γin
and

B(u, v) = f(v) ∀ v ∈ W
with

B(u, v) =

∫
div(bu)v and f(v) =

∫
fv

The space V shall be defined by the (semi)-norm

‖u‖V = ‖b∇u‖L2

Depending on b, it is a norm for {u = 0 onΓin}. Roughly speaking, if every point in Ω
can be reached by a finite trajectory along b, then ‖u‖L2 � ‖u‖V , by Friedrichs inequality.
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It does not hold if b has vortices. Then ‖ · ‖V is only a semi-norm. Note, for space-time
problems b̃ cannot have vortices. For theory, we will assume that

‖u‖L2 � ‖u‖V ∀u = 0 on Γin

The test space is
W = L2

The forms B(., .) and f(.) are continuous. The inf − sup conditions is trivial:

sup
v

B(u, v)

‖v‖L2

≥︸︷︷︸
v:=b∇u

∫
(b∇u)2

‖b∇u‖
= ‖b∇u‖L2

7.2 Discontinuous Galerkin Discretization

A DG method is a combination of finite volume methods and finite element methods. We
start with a triangulation {T}. On every element we multiply the equation by a test-
function: ∫

T

b∇uv =

∫
T

fv ∀ v

We integrate by parts:

−
∫
T

bu∇v +

∫
∂T

bnuv =

∫
T

fv

On the element-boundary we replace bnu by its up-wind limit bnu
up. On the element inflow

boundary ∂Tin = {x ∈ ∂T : bnT < 0}, the upwind value is the value from the neighbour
element, while on the element outflow boundary it is the value from the current element T .
For elements on the domain inflow boundary, the upwind value is taken as the boundary
value uD. For the continuous solution there holds

−
∫
T

bu∇v +

∫
∂T

bnu
upv =

∫
T

fv

Now we integrate back: ∫
T

b∇uv +

∫
∂T

bn(uup − u)v =

∫
T

fv

On the outflow boundary, the boundary integral cancels out, on the inflow boundary we
can write it as a jump term [u] = uup − u:∫

T

b∇uv +

∫
∂Tin

bn[u]v =

∫
T

fv

We define the DG bilinear-form

BDG(u, v) =
∑
T

{∫
T

b∇uv +

∫
∂Tin

bn[u]v

}
.
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The true solution is consistent with

BDG(u, v) = f(v) ∀ v piece-wise continuous.

We define DG finite element spaces:

Vh := Wh := {v ∈ L2 : v|T ∈ P k}

The DG formulation is: find uh ∈ Vh such that

BDG(uh, vh) = f(vh) ∀ vh ∈ Wh

For the discontinuous space, the jump-term is important. If we use continous spaces, the
jump-term disappears. The discrete norms are defined as

‖uh‖2
Vh

:=
∑
T

‖b∇u‖2
L2(T ) +

∑
E

1
h
‖bn[u]‖2

L2(E)

‖vh‖Wh
= ‖vh‖L2

The part with the jump-term mimics the derivative as kind of finite difference term across
edges.

We prove solvability of the discrete problem by showing a discrete inf − sup condition.
But, in general, one order in h is lost due to a mesh-dependent inf − sup constant. This
factor shows up in the general error estimate by consistency and stability. It can be avoided
in 1D, and on special meshes.

Theorem 122. There holds the discrete inf − sup condition

sup
vh

B(uh, vh)

‖vh‖Wh

� h ‖uh‖Vh

Proof. We take two different test-functions: v1 = uh and v2 := b · ∇Tu, and combine them
properly. The second test-function would not be possible in the standard C0 finite element
space.

There holds (dropping sub-scripts h):

B(uh, v1) = B(uh, uh) =
∑
T

∫
T

b∇uu+

∫
∂Tin

bn[u]u

=
∑
T

1

2

∫
∂T

bnu
2 +

∫
∂Tin

bn[u]u

We reorder the terms edge-by-edge. On the edge E we get contributions from two
elements: On the inflow-boundary of the down-wind element we get

1
2

∫
E

bn(ud)2 +

∫
E

bn(uu − ud)ud =

∫
E

|bn|
(

1
2
(ud)2 − uuud

)
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We used that b · n is negative on the inflow boundary. From the up-wind element we get
on its outflow-boundary: ∫

E

1
2
|bn| (uu)2

Summing up, we have the square ∫
E

1
2
|bn|(uu − ud)2,

and summing over elements we get the non-negative term

B(uh, uh) = 1
2

∑
E

∫
E

|bn|[u]2.

An extra treatment of edges on the whole domain boundary gives that the jump must be
replaced by the function values on ∂u.

We plug in the second test function v2:

B(uh, v2) =
∑
T

∫
T

(b∇u)2 +

∫
∂Tin

bn[u] b∇u

We use Young’s inequality to bound the second term from below:

B(uh, v2) ≥
∑
T

∫
T

(b∇u)2 − 1

2γ
‖bn[u]‖2

∂L2(Tin) −
γ

2
‖b∇u‖2

L2(∂Tin)

By the choice γ ' h and a inverse trace inequality (which needs smoothness assumptions
onto b) we can bound the last term by the first one on the right hand. Thus

B(uh, v2) �
∑
T

∫
T

(b∇u)2 −
∑
E

1

h
‖[u]‖2

L2(E),bn

Finally, we set

vh =
1

h
v1 + v2

to obtain

B(uh, vh) �
∑
T

∫
T

(b∇u)2 +
∑
E

1

h
‖[u]‖2

L2(E),bn ' ‖uh‖
2
Vh
.

But, for this choice we get
‖vh‖Wh

� h−1‖uh‖Vh ,

and thus the h-dependent inf − sup-constant.
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7.3 Nitsche’s method for Dirichlet boundary condi-

tions

We build in Dirichlet b.c. in a weak sense. In constrast to a mixed method, we obtain a
positive definit matrix.

We consider the equation

−∆u = f and u = uD on ∂Ω.

A diffusion coefficient, or mixed boundary conditions are possible as well. We multiply
with testfunctions, integrate and integrate by parts:∫

Ω

∇u∇v −
∫
∂nuv =

∫
fv ∀ v

We do not restrict test functions to v = 0. To obtain a symmetric bilinear-form, we add a
consistent term∫

Ω

∇u∇v −
∫
∂Ω

∂nuv −
∫
∂Ω

∂nvu =

∫
fv −

∫
∂Ω

∂nvuD ∀ v

Finally, to obtain stability (as proven below), we add the so called stabilization term∫
Ω

∇u∇v −
∫
∂Ω

∂nuv −
∫
∂Ω

∂nvu+
α

h

∫
uv =

∫
fv −

∫
∂Ω

∂nvuD +
α

h

∫
uDv ∀ v

These are the forms of Nitsche’s method:

A(u, v) =

∫
Ω

∇u∇v −
∫
∂Ω

∂nuv −
∫
∂Ω

∂nvu+
α

h

∫
∂Ω

uv

f(v) =

∫
Ω

fv −
∫
∂Ω

∂nvuD +
α

h

∫
∂Ω

uDv

A(., .) is not defined for u, v ∈ H1, but it requires also well defined normal derivatives.
This is satisfied for the flux ∇u ∈ H(div) of the solution, and finite element test functions
v.

We define the Nitsche norm:

‖u‖2
1,h := ‖∇u‖2

L2
+ 1

h
‖u‖2

L2(∂Ω)

Lemma 123. If α = O(p2) is chosen sufficiently large, then A(., .) is elliptic on the finite
element space:

A(uh, uh) � ‖uh‖2
1,h ∀uh ∈ Vh

Proof. On one element there holds the inverse trace inequality

‖uh‖2
L2(∂T ) ≤ c

p2

h
‖uh‖2

L2
∀uh ∈ P p(T )
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The h-factor is shown by transformation to the reference element, the p-factor (polynomial
order) is proven by expansion in terms of orthogonal polynomials. Using the element-wise
estimate for all edges on the domain boundary, we obtain

‖uh‖2
L2(∂Ω) ≤ c

p2

h
‖u‖2

L2(Ω) (7.1)

Evaluating the bilinear-form, and applying Young’s inequality for the mixed term we get

A(uh, uh) = ‖∇uh‖2
L2
− 2

∫
∂Ω

∂nuu+
α

h
‖u‖2

L2(∂Ω)

≥ ‖∇uh‖2
L2
− 1

γ
‖n · ∇uh‖2

L2(∂Ω) − γ‖u‖2
L2(∂Ω) +

α

h
‖u‖2

L2(∂Ω)

The inverse trace inequality applied to ∇uh gives

‖n · ∇uh‖∂Ω ≤ ‖∇uh‖∂Ω ≤ c
p2

h
‖∇uh‖Ω

By choosing

γ > c
p2

h
and γ ≤ α

h

we can absorb the negative terms into the positive ones. Therefore it is necessary to choose

α > cp2

For the error analysis we apply the discrete stability and consistency:

‖uh − Ihu‖1,h � sup
vh

A(uh − Ihu, vh)
‖vh‖1,h

= sup
vh

A(u− Ihu, vh)
‖vh‖1,h

We cannot argue with continuity of A(., .) on H1 (which is not true), but we can estimate
the interpolation error u− Ihu for all four terms of A(uh − Ihu, vh).

7.3.1 Nitsche’s method for interface conditions

We give now a variational formulation for interface conditions u1 = u2, ∂n1u1 + ∂n2)u2 = 0
on the interface γ separating Ω1 and Ω2. Boundary conditions on the outer boundary are
treated as usual. Integration by parts on the sub-domains leads to∫

Ω1

∇u∇v −
∫
γ

∂n1u1v1 +

∫
Ω2

∇u∇v −
∫
γ

∂n2u2v2 =

∫
fv
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We define the mean value
{∂n1u} = 1

2
(∂n1u1 + ∂n2u2)

and jump
[v] = v1 − v2.

Using continuity of the normal flux (taking the orientation into account) we get∑
i

∫
Ωi

∇u∇v −
∫
γ

{∂n1u}[v] =

∫
fv.

Note that both terms, mean of normal derivative and jump, change sign if we exchange
the enumeration of sub-domains.

We procede as before and add consistent symmetry and stabilization terms:∑
i

∫
Ωi

∇u∇v −
∫
γ

{∂n1u}[v]−
∫
γ

{∂n1v}[u] +
α

h

∫
γ

[u][v] =

∫
fv.

The variational formulation is consistent on the solution, and elliptic on Vh, which is proven
as before. This approach is an alternative to the mixed method (mortar method), since it
leads to positive definite matrices (called also gluing method).

7.4 DG for second order equations

Nitsche’s method for interface conditions can be applied element-by-element. This is the
(independently developed) Discontinuous Galerkin (DG) method. Precisely, it’s called
SIP-DG (symmetric interior penalty) DG:

A(u, v) =
∑
T

{∫
T

∇u∇v − 1
2

∫
∂T

∂nu[v]− 1
2

∫
∂T

∂nv[u] + α
h

∫
∂T

[u][v]

}
(and proper treatment of integrals on the domain boundary). The factor 1

2
is coming from

splitting the consistent terms to the two elements on the edge.
Convergence analysis similar to Nitsche’s method.
Beside the SIP-DG, also different version are in use: The NIP-DG (non-symmetric

interior penalty) DG:

A(u, v) =
∑
T

{∫
T

∇u∇v − 1
2

∫
∂T

∂nu[v] + 1
2

∫
∂T

∂nv[u] + α
h

∫
∂T

[u][v]

}
The term formerly responsible for symmetry is added with a different sign. The variational
problem is still consistent on the true solution. The advantage of the NIP-DG is that

A(u, u) =
∑
T

‖∇u‖2
L2(T ) + α

h
‖[u]‖2

L2(∂T ,
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i.e. A(., .) is elliptic in any case α > 0. The disadvantage is that A(., .) is not consistent
for the dual problem, i.e. the Aubin-Nitsche trick cannot be applied. It is popular for
convection-diffusion problems, where the bi-form is non-symmetric anyway. The IIP-DG
(incomplete) skips the third term completely. Advantages are not known to the author.

7.4.1 Hybrid DG

One disadvantage of DG - methods is that the number of degrees of freedom is much
higher than a continuous Galerkin method on the same mesh. Even worse, the number of
non-zero entries per row in the system matrix is higher. The second disadvantage can be
overcome by hybrid DG methods: One adds additional variables û, v̂ on the inter-element
facets (edges in 2D, faces in 3D). The derivation is very similar:

∑
T

∫
T

∇u∇v −
∫
∂T

∂nuv =
∑
T

fv ∀ v ∈ P k(T ),∀T

Using continuity of the normal flux, we may add
∑

T

∫
∂T
∂nuv̂ with a single-valued test-

function on the facets:∑
T

∫
T

∇u∇v −
∫
∂T

∂nu(v − v̂) =
∑
T

fv ∀ v ∈ P k(T ),∀T

Again, we smuggle in consistent terms for symmetry and coercivity:∑
T

∫
T

∇u∇v−
∫
∂T

∂nu(v−v̂)−
∫
∂T

∂nv(u−û)+
α

h

∫
∂T

(u−û)(v−v̂) =
∑
T

fv ∀ v ∈ P k(T ),∀T

The jump between neighbouring elements is now replaced by the difference of element-
values and facet values. The natural norm is

‖u, û‖2 =
∑
T

‖∇u‖2 + 1
h
‖u− û‖∂T

The HDG methods allows for static condensation of internal variables which results in a
global system for the edge-unknowns, only.

The lowest order method uses P 1(T ) and P 1(E), and we get O(h) convergence. When
comparing with the non-conforming P 1-method, HDG has more unknowns on the edges,
but the same order of convergence. The Lehrenfeld-trick is to smuggle in a projector:∑
T

∫
T

∇u∇v−
∫
∂T

∂nu(v−v̂)−
∫
∂T

∂nv(u−û)+
α

h

∫
∂T

P k−1(u−û)(v−v̂) =
∑
T

fv ∀ v ∈ P k(T ), ∀T

This allows to reduce the order on edges by one, while maintaining the order of convergence.
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7.4.2 Bassi-Rebay DG

One disadvantage of IP-DG is the necessary penalty term with α sufficiently large. For well-
shaped meshes α = 5p2 is usually enough. But, for real problems the element deformation
may become large, and then a fixed α is not feasible. Setting α too large has a negative
effect for iterative solvers.

An alternative is to replace the penalty term by

‖[u]‖2
BR := sup

σh∈[Pk−1]d

([u], n · σh)2
L2(∂T )

‖σh‖2
L2(T )

It can be implemented by solving a local problem with L2-bilinear-form.
In the coercivity proof, the bad term is now estimated as∫

∂T

n · ∇uh [uh] ≤ sup
σh

∫
∂T
n · σh [uh]

‖σh‖
‖∇uh‖ ≤ ‖∇uh‖ ‖[u]‖BR

The BR-norm scales like the IP - norm (in h and p), but the (typically unknown) constant
in the inverse trace inequality can be avoided.

7.4.3 Matching integration rules

Another method to avoid guessing the sufficiently large α is to use integration rules, such
the the integration points for the boundary integral are a sub-set of the integration points
of the volume term. Now, Young’s inegality can be applied for the numerical integrals.
The α

h
factor is now replace by the largest relative scaling of weights for the boundary

integrals and volume integrals. The pro is the simplicity, the con is the need of numerical
integration rules which need more points.

7.4.4 (Hybrid) DG for Stokes and Navier-Stokes

DG or HDG methods allow the construction of numercal methods for incompressible flows,
which obtain exactly divergence free discrete velocities. We discretize Stokes’s equation as
follows:

Vh = BDMk Qh = P k−1,dc,

and the bilinear-forms
a(uh, vh) = aDG(uh, vh)

and

b(uh, qh) =

∫
div uh qh.

Since the space Vh is not conforming for H1, the DG - technique is applied. The b(., .)
bilinear-form is well defined for the H(div)-conforming finite element space Vh. There holds

div Vh = Qh,
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and thus the discrete divergence free condition∫
div uhqh = 0 ∀qh

implies

‖ div uh‖2
L2

=

∫
div uh div uh︸ ︷︷ ︸

∈Qh

= 0.

Hybridizing the method leads to facet variables for the tangential components, only. This
method can be applied to the Navier Stokes equations. Here, the exact divergence-free
discrete solution leads to a stable method for the nonlinear transport term (References:
Master thesis Christoph Lehrenfeld: HDG for Navier Stokes, h-version LBB, Master thesis
Philip Lederer: p-robust LBB for triangular elements).
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Chapter 8

Applications

We investigate numerical methods for equations describing real life problems.

8.1 The Navier Stokes equation

The Navier Stokes equation describe the flow of a fluid (such as water or air). The in-
compressible Navier Stokes equation models incompressible fluids (such as water). The
stationary N.-St. equation models a solution in steady state (no change in time).

The field variables are the fluid velocity u = (ux, uy, uz), and the pressure p. Conserva-
tion of momentum is

−ν∆u+ ρ(u · ∇)u−∇p = f

The first term describes friction of the fluid (ν is called viscosity). The second one arises
from conservation of momentum of moving particles. It is called the convective term (ρ is
the density). The source term f models forces, mainly gravity. The incompressibility of
the fluid is described by

div u = 0.

Different types of boundary conditions onto u and p are possible.

The Navier Stokes equation is nonlinear. In general, no unique solution is guaranteed.
The common approach to find a solution is the so called Oseen iteration: Given uk, find
the next iterate (uk+1, pk+1) by solving

−ν∆uk+1 + ρ(uk · ∇)uk+1 −∇pk+1 = f

div uk+1 = 0.

Under reasonable conditions, this Oseen equation is uniquely solvable. Since uk is the
solution of the old step, it satisfies div uk = 0. Furthermore, we assume that the velocity
uk is bounded in L∞-norm.

151
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From now on, we continue to investigate the Oseen equation. Given a vector-field
w = (wx, wy, wz) ∈ [L∞]3 such that div w = 0. Find u and p such that

−∆u+ (w · ∇)u−∇p = f

div u = 0.

We have removed the viscosity by rescaling the equation. The factor ρ/ν is incorporated
into the vector-field w.

As usual, we go over to the weak formulation: Find u ∈ V = [H1]3 and p ∈ Q = L2

such that ∫
{∇u∇v + (w · ∇)u v} dx +

∫
div v p dx =

∫
fv dx ∀ v ∈ V∫

div u q dx = 0 ∀ q ∈ Q. (8.1)

This variational problem is a mixed formulation. It satisfies the conditions of Brezzi:
The bilinear forms are

a(u, v) =

∫
{∇u∇v + (w · ∇)uv} dx,

b(u, q) =

∫
div u q dx.

Both forms are continuous. The form a(., .) is non-symmetric. In a(., .), the x, y, and
z components of u and v are independent. To investigate a(., .), it is enough to consider
scalar bilinear-forms. We define the inflow and outflow boundaries

Γi = {x ∈ ∂Ω : w · n < 0},
Γo = {x ∈ ∂Ω : w · n ≥ 0}.

If we pose Dirichlet boundary conditions on Γi, then a(., .) is coercive (see example 27, and
exercises). The ratio of the continuity bound and the coercivity bound depends on the
norm of the convection w. With increasing w, the problem is getting worse.

The form b(., .) satisfies the LBB condition:

sup
u∈[H1

0,D]3

∫
div u q dx

‖u‖H1

� ‖q‖L2 ∀ q ∈ L2.

In the case of (partial) Dirichlet boundary conditions (H1
0,D = {u : u = 0 on ΓD}),

this condition is very nontrivial to prove. If there are only Dirichlet b.c., one has to use
Q = L0

2 = {q :
∫

Ω
q dx = 0}.

Under these conditions, Brezzi’s theorem proves a unique solution of the Oseen equa-
tion.
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Finite elements for Navier-Stokes equation

We want to approximate the Oseen equation by a Galerkin method: Find uh ∈ Vh and
ph ∈ Qh such that∫

{∇uh∇vh + (w · ∇)uh vh} dx +
∫

div vh ph dx =
∫
fvh dx ∀ vh ∈ Vh∫

div uh qh dx = 0 ∀ qh ∈ Q.
(8.2)

To obtain convergence uh → u and ph → p, it is important to choose proper approxi-
mation spaces Vh and Qh. Using the simplest elements, namely continuous and piece-wise
linear elements for Vh ⊂ [H1]3, and piece-wise constants for Qh ⊂ L2 does not work. The
discrete LBB condition is not fulfilled: In 2D, there are asymptotically twice as many
triangles than vertices, i.e., dim Vh ≈ dim Qh, and

∫
div uh qh dx = 0 ∀ qh ∈ Qh implies

uh ≈ 0.

The simplest spaces which lead to convergence are the non-conforming P1 element for
the velocities, and piece-wise constant elements for the pressure. The arguments are

• There are unknowns on the edges to construct a Fortin operator satisfying∫
e

u · n ds =

∫
e

(Ihu) · n ds,

and thus proving the discrete LBB condition.

• The error due to the non-conforming space Vh 6⊂ V is of the same order as the
approximation error (see Section 4.5).

8.1.1 Proving LBB for the Stokes Equation

Stability of the continuous equation

We consider Stokes equation: find u ∈ [H1
0 ]d and p ∈ L0

2 such that∫
∇u · ∇v +

∫
div v p =

∫
fv ∀ v ∈ [H1

0 ]d∫
div u q = 0 ∀ q ∈ L0

2.
(8.3)

Solvability follows from Brezzi’s theorem. The only non-trivial part is the LBB condition:

sup
v∈[H1

0 ]d

∫
div v p

‖v‖H1

≥ β‖p‖L2 ∀ p ∈ L0
2

We sketch two different proofs:
Proof 1: The LBB condition becomes simple if we skip the Dirichlet conditions:

sup
v∈[H1]d

∫
div v p

‖v‖H1

≥ β‖p‖L2∀ p ∈ L2
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Take p ∈ L2(Ω), extend it by 0 to L2(Rd). Now compute a right-inverse of div via Fourier
transform:

p̂(ξ) = F(p)

û(ξ) =
−iξ
|ξ|2

p̂(ξ)

u(x) = F−1(û)

Since div u = p translates to iξ · û = p̂, we found a right-inverse to the divergence. Fur-
thermore, |u|H1(Ω) = ‖iξû‖L2 � ‖p̂‖L2 = ‖p‖L2 . We restrict this u to Ω. The L2-part of
‖u‖H1 follows from the Poincare inequality after subtracting the mean value.

The technical part is to ensure Dirichlet - boundary conditions. One can build an
extension operator E from L2(Rd \ Ω) onto Rd, which commutes with the div-operator:
div Eu = Ep div u, and sets

ufinal := u− Eu
This u satisfies u = 0 on ∂Ω. Since div u = p = 0 outside of Ω, the correction did not
change the divergence inside Ω.

Proof 2: Directly construct a right-inverse for the div-operator via integration. We
assume that Ω is star-shaped w.r.t. ω, and a ∈ ω. Extend p by 0 to L2(Rd):

ua(x) := −(x− a)

∫ ∞
1

td−1p(a+ t(x− a)) dt x 6= a

and ua(a) = 0. If
∫

Ω
p = 0, then div ua = p. Furthermore, u = 0 outside Ω. Next, we

average over star-points in ω:

u :=
1

|ω|

∫
ω

ua da

There is still div u = p. Now, one can show that ‖u‖H1 � ‖p‖L2

8.1.2 Discrete LBB

Now, we turn to the discrete system posed on Vh ⊂ V and Qh ⊂ Q. The discrete LBB
condition follows from the continuous one by construction of a Fortin operator (Lemma 99).

Elements with discontinuous pressure

The simplest pair is the non-conforming P 1 element, and constant pressure:

Vh = P 1,nc, Qh = P 0,dc

We have to extend the V -norm and forms by the sum over element-wise norms and forms.
The Fortin-operator IF : V → Vh is defined via∫

E

IFu =

∫
E

u ∀ edges E
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It is continuous from H1 to broken H1 (via mapping), and satisfies∫
T

div(IFu) =

∫
∂T

(IFu) · n =

∫
∂T

u · n =

∫
T

div u,

and thus
bh(IFu, qh) = b(u, qh) ∀ qh ∈ Qh

The error estimate follows similar as in the second Lemma by Strang:

‖u− uh‖H1,nc + ‖p− ph‖L−2

� inf
vh,qh
‖u− vh‖H1,nc + ‖p− qh‖L2 + sup

wh

∑
T

∫
∇u∇wh + p divwh − fwh

‖wh‖H1,nc

� ch (‖u‖H2 + ‖p‖H1)

This convergence rate O(h) is considered to be optimal for these elements.
Next we consider

Vh = P 2 Qh = P 0,dc

We would like to define the Fortin operator similar as before:

IFu(V ) = u(V ) ∀ vertices V∫
E
IFu =

∫
E
u ∀ edges E

But, the vertex evaluation is not allowed in H1. We proceed now in two steps: First
approximate u in the finite element space via a Clément operator Πh:

u1
h := Πhu,

and modify this u1
h via a correction term:

uh := IFu := u1
h + I2

F (u− u1
h)

The correction operator I2
F is defined as

I2
Fu(V ) = 0 ∀ vertices V,∫
E
I2
Fu =

∫
E
u ∀ edges E.

It preserves edge-integrals and thus satisfies b(u− I2
Fu, qh) = 0 ∀u ∀ qh. Furthermore, it is

continuous with respect to

‖I2
Fu‖H1 � ‖u‖H1 + h−1‖u‖L2

Thus, the combined operator IF is continuous:

‖IFu‖H1 � ‖Πhu‖H1 + ‖I2
F (u− Πhu)‖H1

� ‖u‖H1 + ‖u− Πhu‖H1 + h−1‖u− Πhu‖L2

� ‖u‖H1
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It also satisfies the constraints:

b(u− IFu, qh) = b(u− Πhu− I2
F (u− Πhu), qh) = b((Id− I2

F )(u− Πhu), qh) = 0

Error estimates are

‖u− uh‖H1 + ‖p− ph‖L2 � inf
vh,qh
‖u− vh‖H1 + ‖p− qh‖L2 = O(h)

Although we approximate uh with P 2-elements, the bad approximation of p leads to first
order convergence, only. This element is considered to be sub-optimal.

A solution is the the pairing

Vh = P 2+ Qh = P 1,nc,

where P 2+ is the second order space enriched with cubic bubbles:

P 2+(T ) = {vh ∈ H1 : vh|T ∈ P 3(T ), vh|E ∈ P 2(E)}

It leads to second order convergence. Since the costs of a method depend mainly on the
coupling dofs, the price for the additional bubble is low.

Elements with continuous pressure

Although the pressure p is only in L2, we may approximate it with continous elements.
The so called mini-elemnet is

Vh = P 1+ Qh = P 1,cont,

where P 1+ is P 1 enriched by the cubic bubble. The continuous pressure allows integration
by parts: ∫

div u qh = −
∫
u∇qh

The gradient of qh is element-wise constant. We thus construct a Fortin-operator preserving
element-wise mean values. Again, we use the Clément operator and a correction operator:

uh := IFu = Πhu+ I2
F (u− Πhu)

The correction is now defined as

I2
Fu = 0 on ∪ E∫

T
I2
Fu =

∫
T
u ∀ elements T.

It satisfies b(u− I2
Fu, qh) = 0 ∀u∀ qh, and, as above:

‖I2
Fu‖H1 � ‖u‖H1 + h−1‖u‖L2

Thus, the combined operator is a Fortin operator. This method is O(h) convergent.

Another (essentially) stable pair is P 2×P 1,cont (the popular Taylor Hood element). Its
analysis is more involved. It requires the additional assumption that no two edge of one
element are on the domain boundary. Its convergence rate is O(h2).
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8.2 Elasticity

We start with a one-dimensional model. Take a beam which is loaded by a force density f
in longitudinal (x) direction. We are interested in the displacement u(x) in x direction.

The variables are

• The strain ε: It describes the elongation. Take two points x and y on the beam.
After deformation, their distance is y+ u(y)− (x+ u(x)). The relative elongation of
the beam is

{y + u(y)− (x+ u(x))} − (y − x)

y − x
=
u(y)− u(x)

y − x
.

In the limit y → x, this is u′. We define the strain ε as

ε = u′.

• The stress σ: It describes internal forces. If we cut the piece (x, y) out of the beam,
we have to apply forces at x and y to keep that piece in equilibrium. This force is
called stress σ. Equilibrium is

σ(y)− σ(x) +

∫ y

x

f(s) ds = 0,

or

σ′ = −f

Hook’s law postulates a linear relation between the strain and the stress:

σ = Eε.

Combining the three equations

ε = u′ σ = Eε σ′ = −f

leads to the second order equation for the displacement u:

−(Eu′)′ = f.

Boundary conditions are

• Dirichlet b.c.: Prescribe the displacement at the boundary

• Neumann b.c: Prescibe the stress at the boundary
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Elasticity in more dimensions

We want to compute the deformation of the body Ω ⊂ Rd.

• The body is loaded with a volume force density f : Ω→ Rd.

• The displacement is described by a the vector-valued function

u : Ω→ Rd.

• The strain ε becomes a symmetric tensor in Rd×d. The elongation in the direction of
the unit-vector n is

nT εn.

The (linearized!) relation between the displacement u and the strain is now

εij =
1

2

{
∂ui
∂xj

+
∂uj
∂xi

}
,

or, in compact form

ε = ε(u) =
1

2

{
∇u+ (∇u)T

}
.

If the displacement is a pure translation (u = const), then the strain vanishes. Also,
if the displacement is a linearized (!) rotation, (in two dimensions u = (ux, uy) =
(y,−x), the strain vanishes. We call these deformations the rigid body motions:

R2D =

{(
a1

a2

)
+ b

(
y

−x

)
: a1, a2, b ∈ R

}
R3D =

{
a+ b× x : a, b ∈ R3

}
• The stress becomes a tensor σ ∈ Rd×d. Consider the part V ⊂ Ω. To keep V in

equilibrium, on has to apply the surface force density σn at ∂V :∫
∂V

σn ds+

∫
V

f dx = 0.

Apply Gauss theorem to obtain the differential form

div σ = −f.

The div-operator is applied for each row of σ. A further hypothesis, equilibrium of
angular momentum, implies that σ is symmetric.

• Hook’s law is now a relation between two second order tensors:

σij =
∑
kl

Dijklεkl,
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in short
σ = Dε,

where D is a fourth order tensor. For an isotropic material (same properties in all
directions), the matrial law has the special structure

σ = 2µ ε+ λ tr{ε} I.

The two parameters µ and λ are called Lamé’s parameters. The trace tr is defined
as tr{ε} =

∑d
i=1 εii.

Collecting the equations

ε = ε(u) σ = Dε div σ = −f

leads to
− div D ε(u) = f.

Multiplication with test-functions v : Ω→ Rd, and integrating by parts leads to∫
Ω

D ε(u) : ∇v dx =

∫
f · v dx ∀ v

The operator ’:’ is the inner product for matrices, A : B =
∑

ij AijBij. Next, we use that

σ = Dε(u) is symmetric. Thus, σ : ∇v = σ : (∇v)T = σ : 1
2
{∇v + (∇v)T}.

The equations of elasticity in weak form read as: Find u ∈ V = [H1
0,D(Ω)]d such that∫

Ω

Dε(u) : ε(v) dx =

∫
Ω

f · v dx ∀ v ∈ V.

Displacement (Dirichlet) boundary conditions (u = uD at ΓD) are essential b.c., and
are put into the space V . Neumann boundary conditions (natural b.c.) model surface
forces sigman = g, and lead to the additional term

∫
ΓN
g · v ds on the right hand side.

The bilinear-form in the case of an isotropic material reads as∫
2µ ε(u) : ε(v) + λ div u div v dx.

We assume a positive definite material law

Dε : ε � ε : ε ∀ symmetric ε ∈ Rd×d

Theorem 124. Assume that the Dirichlet boundary ΓD has positive measure. Then the
equations of elasticity are well posed in [H1]d.
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Proof: Continuity of the bilinear-form and the linear-form are clear. Ellipticity of the
bilinear-form follows from the positive definite matrial law, and the (non-trivial) Korn
inequality ∫

Ω

ε(u) : ε(v) dx � ‖u‖2
H1(Ω) ∀u ∈ [H1

0,D]d

The Lax-Milgram theorem proves a unique solution u. 2

The discretization of the elasticity problem is straight forward. Take a finite dimensional
sub-space Vh ⊂ V , and perform Galerkin projection. One may use the ’standard’ nodal
finite elements for each component.

Structural mechanics

Many engineering applications involve thin structures (walls of a building, body of a car,
...). On thin structures, the standard approach has a problem: One observed that the
simulation results get worse as the thickness decreases. The explanation is that the constant
in Korn’s inequality gets small for thin structures. To understand and overcome this
problem, we go over to beam, plate and shell models.

We consider a thin (t� 1) two-dimensional body

Ω = I × (−t/2, t/2) with I = (0, 1)

The goal is to derive a system of one-dimensional equations to describe the two-dimensional
deformation. This we obtain by a semi-discretization. Define

ṼM =

{(
ux(x, y)

uy(x, y)

)
∈ V : ux(x, y) =

Mx∑
i=0

uix(x)yi, uy(x, y) =

My∑
i=0

uiy(x)yi

}
.

This function space on Ω ⊂ R2 is isomorph to a one-dimensional function space with values
in RMx+My+2. We perform semi-discretization by searching for ũ ∈ ṼM such that

A(ũ, ṽ) = f(ṽ) ∀ ṽ ∈ ṼM .

As Mx,My →∞, ṼM → V , and we obtain convergence ũ→ u.

The lowest order (qualitative) good approximating semi-discrete space is to set Mx = 1
and My = 0. This is

Ṽ =

{(
U(x)− β(x)y

w(x)

)}
Evaluating the bilinear-form (of an isotropic material) leads to

A

((
U − yβ
w

)
,

(
Ũ − yβ̃
w̃

))
= (2µ+ λ)t

∫ 1

0

U ′Ũ ′ dx+

(2µ+ λ)
t3

12

∫ 1

0

β′β̃′ + 2µ
t

2

∫ 1

0

(w′ − β)(w̃′ − β̃) dx
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The meaning of the three functions is as follows. The function U(x) is the average
(over the cross section) longitudinal displacement, w(x) is the vertical displacement. The
function β is the linearized rotation of the normal vector.

We assume that the load f(x, y) does not depend on y. Then, the linear form is

f

(
Ũ − yβ̃
w̃

)
= t

∫ 1

0

fxŨ dx+ t

∫ 1

0

fyw̃ dx

The semi-discretization in this space leads to two decoupled problems. The first one
describes the longitudinal displacement: Find U ∈ H1(I) such that

(2µ+ λ)t

∫ 1

0

U ′Ũ ′ dx = t

∫ 1

0

fxŨ
′ dx ∀U ′ ∈ H1(I).

The small thickness parameter t cancels out. It is a simple second order problem for the
longitudinal displacement.

The second problems involves the 1D functions w and β: Find (w, β) ∈ V =? such that

(2µ+ λ)
t3

12

∫ 1

0

β′β̃′ dx+ µt

∫ 1

0

(w′ − β)(w̃′ − β̃) dx = t

∫ 1

0

fyw̃ dx ∀ (w̃, β̃) ∈ V

The first term models bending. The derivative of the rotation β is (approximative) the
curvature of the deformed beam. The second one is called the shear term: For thin beams,
the angle β ≈ tan β is approximatively w′. This term measures the difference w′−β. This
second problem is called the Timoshenko beam model.

For simplification, we skip the parameters µ and λ, and the constants. We rescale the
equation by dividing by t3: Find (w, β) such that∫

β′β̃′ dx+
1

t2

∫
(w′ − β)(w̃′ − β̃) dx =

∫
t−2fw̃ dx. (8.4)

This scaling in t is natural. With t → 0, and a force density f ∼ t2, the deformation
converges to a limit. We define the scaled force density

f̃ = t−2f

In principle, this is a well posed problem in [H1]2:

Lemma 125. Assume boundary conditions w(0) = β(0) = 0. The bilinear-form
A((w, β), (w̃, β̃)) of (8.4) is continuous

A((w, β), (w̃, β̃)) � t−2(‖w‖H1 + ‖β‖H1)(‖w̃‖H1 + ‖β̃‖H1)

and coercive
A((w, β), (w, β)) ≥ ‖w‖2

H1 + ‖β‖2
H1
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Proof: ...
As the thickness t becomes small, the ratio of the continuity and coercivity bounds

becomes large ! This ratio occurs in the error estimates, and indicates problems. Really,
numerical computations show bad convergence for small thickness t.

The large coefficient in front of the term
∫

(w′− β)(w̃′− β̃) forces the difference w′− β
to be small. If we use piece-wise linear finite elements for w and β, then w′h is a piece-wise
constant function, and βh is continuous. If w′h − βh ≈ 0, then βh must be a constant
function !

The idea is to weaken the term with the large coefficient. We plug in the projection P 0

into piece-wise constant functions: Find (wh, βh) such that∫
β′hβ̃

′
h dx+

1

t2

∫
P 0(w′h − βh)P 0(w̃′h − β̃h) dx =

∫
f̃ w̃h dx. (8.5)

Now, there are finite element functions wh and βh fulfilling P 0(w′h − βh) ≈ 0.
In the engineering community there are many such tricks to modify the bilinear-form.

Our goal is to understand and analyze the obtained method.

Again, the key is a mixed method. Start from equation (8.4) and introduce a new
variable

p = t−2(w′ − β). (8.6)

Using the new variable in (8.4), and formulating the definition (8.6) of p in weak form leads
to the bigger system: Find (w, β) ∈ V and p ∈ Q such that∫

β′β̃′ dx +
∫

(w̃′ − β)p dx =
∫
f̃ w̃ dx ∀ (w, β) ∈ V∫

(w′ − β)p̃ dx − t2
∫
p p̃ dx = 0 ∀ p̃ ∈ Q.

(8.7)

This is a mixed formulation of the abstract structure: Find u ∈ V and p ∈ Q such that

a(u, v) + b(v, p) = f(v) ∀ v ∈ V,
b(u, q) − t2c(p, q) = 0 ∀ q ∈ Q.

(8.8)

The big advantage now is that the parameter t does not occur in the denominator, and
the limit t→ 0 can be performed.

This is a family of well posed problems.

Theorem 126 (extended Brezzi). Assume that the assumptions of Theorem 101 are true.
Furthermore, assume that

a(u, u) ≥ 0,

and c(p, q) is a symmetric, continuous and non-negative bilinear-form. Then, the big form

B((u, p), (v, q)) = a(u, v) + b(u, q) + b(v, p)− t2 c(p, q)

is continuous and stable uniformly in t ∈ [0, 1].
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We check Brezzi’s condition for the beam model. The spaces are V = [H1]2 and Q = L2.
Continuity of the bilinear-forms a(., .), b(., .), and c(., .) is clear. The LBB condition is

sup
w,β

∫
(w′ − β)q dx

‖w‖H1 + ‖β‖H1

� ‖q‖L2

We construct a candidate for the supremum:

w(x) =

∫ x

0

q(s) ds and β = 0

Then ∫
(w′ − β)q dx

‖w‖H1 + ‖β‖H1

�
∫
q2 dx

‖w′‖
= ‖q‖L2

Finally, we have to check kernel ellipticity. The kernel is

V0 = {(w, β) : β = w′}.

On V0 there holds

‖w‖1
H1 + ‖β‖2

H1 � ‖w′‖2 + ‖β‖2
H1 = ‖β‖2

L2
+ ‖β‖2

H1

� ‖β′‖L2 = a((w, β), (w, β))

The lowest order finite element discretization of the mixed system is to choose contin-
uous and piece-wise linear elements for wh and βh, and piecewise constants for ph. The
discrete problem reads as: Find (wh, βh) ∈ Vh and ph ∈ Qh such that∫

β′hβ̃
′
h dx +

∫
(w̃′h − βh)ph dx =

∫
f̃ w̃h dx ∀ (wh, βh) ∈ Vh∫

(w′h − βh)p̃h dx − t2
∫
ph p̃h dx = 0 ∀ p̃h ∈ Qh.

(8.9)

This is a inf-sup stable system on the discrete spaces Vh and Qh. This means, we obtain
the uniform a priori error estimate

‖(w − wh, β − βh)‖H1 + ‖p− ph‖L2 � inf
w̃h,β̃h,p̃h

‖(w − w̃h, β − β̃h)‖H1 + ‖p− p̃h‖L2

� h {‖w‖H2 + ‖β‖H2 + ‖p‖H1}

The required regularity is realistic.
The second equation of the discrete mixed system (8.9) states that

ph = t−2P 0(w′h − βh)

If we insert this observation into the first row, we obtain exactly the discretization method
(8.5) ! Here, the mixed formulation is a tool for analyzing a non-standard (primal) dis-
cretization method. Both formulations are equivalent. They produce exactly the same
finite element functions. The mixed formulation is the key for the error estimates.
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The two pictures below show simulations of a Timoshenko beam. It is fixed at the left
end, the load density is constant one. We compute the vertical deformation w(1) at the
right boundary. We vary the thickness t between 10−1 and 10−3. The left pictures shows
the result of a standard conforming method, the right picture shows the results of the
method using the projection. As the thickness decreases, the standard method becomes
worse. Unless h is less than t, the results are completely wrong ! The improved method
converges uniformly well with respect to t:
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8.3 Maxwell equations

Maxwell equations describe electro-magnetic fields. We consider the special case of sta-
tionary magnetic fields. Maxwell equations are three-dimensional.

A magnetic field is caused by an electric current. We suppose that a current density

j ∈ [L2(Ω)]3

is given. (Stationary) currents do not have sources, i.e., div j = 0.
The involved (unknown) fields are

• The magnetic flux B (in German: Induktion). The flux is free of sources, i.e.,

div B = 0.

• The magnetic field intensity H (in German: magnetische Feldstärke). The field is
related to the current density by Henry’s law:∫

S

j · n ds =

∫
∂S

H · τ ds ∀ Surfaces S

By Stokes´ Theorem, one can derive Henry’s law in differential form:

curl H = j

The differential operator is curl = rot = ∇×. Both fields are related by a material law.
The coefficient µ is called permeability:

B = µH
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The coefficient µ is 103 to 104 times larger in iron (and other ferro-magnetic metals) as
in most other media (air). In a larger range, the function B(H) is also highly non-linear.

Collecting the equations we have

div B = 0 B = µH curl H = j (8.10)

In principle, Maxwell equations are valid in the whole R3. For simulation, we have to
truncate the domain and have to introduce artificial boundary conditions.

The picture below shows the magnetic field caused by a tangential current density in a
coil:

Compare these equations to the diffusion equation − div a∇u = f . Here, we could
introduce new unknowns g = ∇u and σ = ag. On simply connected domains, g is a
gradient field if and only if curl g = 0. We could reformulate the equations as: Find vector
fields g and σ such that

curl g = 0 σ = ag div σ = −f.

The system of magnetostatic equations looks similar. Only, the right hand side data is
applied to the curl-equation, instead of the div-equation. In a similar way as curl g = 0
allows to introduce a scalar field u such that g = ∇u, div B = 0 allows to introduce a
vector potential A such that

B = curl A.

Inserting the vector-potential into the equations (8.10), one obtains the second order equa-
tion

curl µ−1 curlA = j. (8.11)

The two original fields B and H can be obtained from the vector potential A.
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The vector-potential A is not uniquely defined by (8.11). One may add a gradient field
to A, and the equation is still true. To obtain a unique solution, the so called Coloumb-
Gauging can be applied:

div A = 0. (8.12)

As usual, we go over to the weak form. Equations (8.11) and (8.12) together become:
Find A such that ∫

Ω

µ−1 curlA curl v dx =

∫
Ω

j · v dx ∀ v ∈?

and ∫
Ω

A · ∇ψ dx = 0.

We want to choose the same space for A and the according test functions v. But, then
we have more equations than unknowns. The system is still solvable, since we have made
the assumption div j = 0, and thus j is in the range of the curl- operator. To obtain a
symmetric system, we add a new scalar variable ϕ. The problem is now: Find A ∈ V =?
and ϕ ∈ Q = H1/R such that∫

µ−1 curlA · curl v dx +
∫
∇ϕ · v dx =

∫
j · v dx ∀ v ∈ V∫

A · ∇ψ dx = 0 ∀ψ ∈ Q
(8.13)

The proper space V is the H(curl):

H(curl) = {v ∈ [L2(Ω)]3 : curl v ∈ [L2(Ω)]3}

Again, the differential operator curl is understood in the weak sense. The canonical norm
is

‖v‖H(curl) =
{
‖v‖2

L2
+ ‖ curl v‖2

L2

}1/2
.

Similar to H1 and H(div), there exists a trace operator for H(curl). Now, only the
tangential components of the boundary values are well defined:

Theorem 127 (Trace theorem). There exists a tangential trace operator trτ v : H(curl)→
W (∂Ω) such that

trτ v = (v|∂Ω)τ

for smooth functions v ∈ [C(Ω)]3.

Theorem 128. Let Ω = ∪Ωi. Assume that u|Ωi ∈ H(curl,Ωi), and the tangential traces
are continuous across the interfaces γij. Then u ∈ H(curl,Ω).

The theorems are according to the ones we have proven for H(div). But, the proofs (in
R3) are more involved.

The gradient operator ∇ relates the space H1 and H(curl):

∇ : H1 → H(curl)
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Furthermore, the kernel space

H0(curl) = {v ∈ H(curl) : curl v = 0}

is exactly the range of the gradient:

H0(curl) = ∇H1

Theorem 129. The mixed system (8.13) is a well posed problem on H(curl)×H1/R.

Proof: The bilinear-forms

a(A, v) =

∫
µ−1 curlA · curl v dx

and

b(v, ϕ) =

∫
v · ∇ϕdx

are continuous w.r.t. the norms of V = H(curl) and Q = H1/R.
The LBB-condition in this case is trivial. Choose v = ∇ϕ:

sup
v∈H(curl)

∫
v∇ϕdx
‖v‖H(curl)

≥
∫
∇ϕ · ∇ϕdx
‖∇ϕ‖H(curl)

=
‖∇ϕ‖2

L2

‖∇ϕ‖L2

= ‖∇ϕ‖L2 ' ‖ϕ‖Q

The difficult part is the kernel coercivity of a(., .). The norm involves also the L2-norm,
while the bilinear-form only involves the semi-norm ‖ curl v‖L2 . Coercivity cannot hold on
the whole V : Take a gradient function ∇ψ. On the kernel, the L2-norm is bounded by the
semi-norm:

‖v‖L2 � ‖ curl v‖ ∀ v ∈ V0,

where

V0 = {v ∈ H(curl) :

∫
v∇ϕdx = 0 ∀ϕ ∈ H1}

This is a Friedrichs-like inequality.

Finite elements in H(curl)

We construct finite elements in three dimensions. The trace theorem implies that functions
in H(curl) have continuous tangential components across element boundaries (=faces).

We design tetrahedral finite elements. The pragmatic approach is to choose the element
space as VT = P 1, and choose the degrees of freedom as the tangential component along
the edges in the end-points of the edges. The dimension of the space is 3 × dim{P 1} =
3× 4 = 12, the degrees of freedom are 2 per edge, i.e., 2× 6 = 12. They are also linearly
independent. In each face, the tangential component has 2 components, and is linear.
Thus, the tangential component has dimension 6. These 6 values are defined by the 6
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degrees of freedom of the 3 edges in the face. Neighboring elements share this 6 degrees of
freedom in the face, and thus have the same tangential component.

There is a cheaper element, called Nédélec, or edge-element. It has the same accuracy
for the curl-part (the B-field) as the P 1-element. It is similar to the Raviart-Thomas
element. It contains all constants, and some linear polynomials. All 3 components are
defined in common. The element space is

VT = {a+ b× x : a, b ∈ R3}.

These are 6 coefficients. For each of the 6 edges of a tetrahedron, one chooses the integral
of the tangential component along the edge

ψEi(u) =

∫
Ei

u · τEi ds.

Lemma 130. The basis function ϕEi associated with the edge Ei is

ϕEi = λE1
i
∇λE2

i
−∇λE2

i
λE1

i
,

where E1
i and E2

i are the two vertex numbers of the edge, and λ1, . . . λ4 are the vertex shape
functions.

Proof:

• These functions are in VT

• If i 6= j, then ψEj(ϕEi) = 0.

• ψEi(ϕEi) = 1

Thus, edge elements belong to H(curl). Next, we will see that they have also very
interesting properties.

The de’Rham complex

The spaces H1, H(curl), H(div), and L2 form a sequence:

H1 ∇−→ H(curl)
curl−→ H(div)

div−→ L2

Since ∇H1 ⊂ [L2]3, and curl∇ = 0, the gradients of H1 functions belong to H(curl).
Similar, since curlH(curl) ⊂ [L2]3, and div curl = 0, the curls of H(curl) functions belong
to H(div).

The sequence is a complete sequence. This means that the kernel of the right differential
operator is exactly the range of the left one (on simply connected domains). We have used
this property already in the analysis of the mixed system.

The same property holds on the discrete level: Let
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Wh be the nodal finite element sub-space of H1

Vh be the Nédélec (edge) finite element sub-space of H(curl)
Qh be the Raviart-Thomas (face) finite element sub-space of H(div)
Sh be the piece-wise constant finite element sub-space of L2

Theorem 131. The finite element spaces form a complete sequence

Wh
∇−→ Vh

curl−→ Qh
div−→ Sh

Now, we discretize the mixed formulation (8.13) by choosing edge-finite elements for
H(curl), and nodal finite elements for H1: Find Ah ∈ Vh and ϕh ∈ Wh such that∫

µ−1 curlAh · curl vh dx +
∫
∇ϕh · vh dx =

∫
j · vh dx ∀ vh ∈ Vh∫

Ah · ∇ψh dx = 0 ∀ψh ∈ Wh

(8.14)

The stability follows (roughly) from the discrete sequence property. The verification of the
LBB condition is the same as on the continuous level. The kernel of the a(., .)- form are
the discrete gradients, the kernel of the b(., .)-form is orthogonal to the gradients. This
implies solvability. The discrete kernel-coercivity (with h-independent constants) is true
(nontrivial).

The complete sequences on the continuous level and on the discrete level are con-
nected in the de’Rham complex: Choose the canonical interpolation operators (vertex-
interpolation IW , edge-interpolation IV , face-interpolation IQ, L2-projection IS). This
relates the continuous level to the discrete level:

H1 ∇−→ H(curl)
curl−→ H(div)

div−→ L2yIW yIV yIQ yIS
Wh

∇−→ Vh
curl−→ Qh

div−→ Sh .

(8.15)

Theorem 132. The diagram (8.15) commutes:

IV∇ = ∇IW IQ curl = curl IV IS div = div IQ

Proof: We prove the first part. Note that the ranges of both, ∇IW and IV∇, are in
Vh. Two functions in Vh coincide if and only if all functionals coincide. It remains to prove
that ∫

E

(∇IWw) · τ ds =

∫
E

(IV∇w) · τ ds

Per definition of the interpolation operator IV there holds∫
E

(IV∇w) · τ ds =

∫
E

∇w · τ ds
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Integrating the tangential derivative gives the difference∫
E

∇w · τ ds =

∫
E

∂w

∂τ
ds = w(E2)− w(E1)

Starting with the left term, and using the property of the nodal interpolation operator, we
obtain ∫

E

(∇IWw) · τ ds = (IWw)(E2)− (IWw)(E1) = w(E2)− w(E1).

We have already proven the commutativity of the H(div) − L2 part of the diagram. The
middle one involves Stokes´ theorem. 2

This is the key for interpolation error estimates. E.g., in H(curl) there holds

‖u− IV u‖2
H(curl) = ‖u− IV u‖2

L2
+ ‖ curl(I − IV )u‖2

L2

= ‖u− IV u‖2
L2

+ ‖(I − IQ) curlu‖2
L2

� h2 ‖u‖2
H1 + h2‖ curlu‖2

H1

Since the estimates for the L2-term and the curl-term are separate, one can also scale each
of them by an arbitrary coefficient.

The sequence is also compatible with transformations. Let F : T̂ → T be an (element)
transformation. Choose

w(F (x)) = ŵ(x)

v(F (x)) = (F ′)−T v̂(x) (covariant transformation)

q(F (x)) = (detF ′)−1(F ′)q(x) (Piola-transformation)

s(F (x)) = (detF ′)−1ŝ(x)

Then

v̂ = ∇ŵ ⇒ v = ∇w
q̂ = curl v̂ ⇒ q = curl v

ŝ = div q̂ ⇒ s = div q

Using these transformation rules, the implementation of matrix assembling for H(curl)-
equations is very similar to the assembling for H1 problems (mapping to reference element).



Chapter 9

Parabolic partial differential
equations

PDEs involving first order derivatives in time, and an ellitpic differential operator in space,
are called parabolic PDEs. For example, time dependent heat flow is described by a
parabolic PDE.

Let Ω ⊂ Rd, and Q = Ω× (0, T ). Consider the initial-boundary value problem

∂u(x, t)

∂t
− div(a(x)∇xu(x, t)) = f(x, t) (x, t) ∈ Q,

with boundary conditions

u(x, t) = uD(x, t) (x, t) ∈ ΓD × (0, T ),

a(x)
∂u

∂n
= g(x, t) (x, t) ∈ ΓN × (0, T ),

and initial conditions
u(x, 0) = u0(x) x ∈ Ω.

Weak formulation in space: Find u : [0, T ]→ H1
0,D(Ω) such that∫

Ω

∂tu(x, t)v(x) dx+

∫
Ω

a∇u(x, t) · ∇v(x, t) dx =

∫
Ω

f(x, t)v(x, t) dx+

∫
ΓN

g(x, t)v(x, t) dx

∀ v ∈ H1
0,D, t ∈ (0, T ]

In abstact form: Find u : [0, T ]→ V s.t.

(u′(t), v)L2 + a(u(t), v) = 〈f(t), v〉 ∀ v ∈ V, t ∈ (0, T ]

In operator form (with 〈Au, v〉 = a(u, v)):

u′(t) + Au(t) = f(t) ∈ V ∗

171
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Function spaces:

X = L2((0, T ), V ) X∗ = L2((0, T ), V ∗)

with norms

‖v‖X =

(∫ T

0

‖v(t)‖2
V dt

)1/2

‖v‖X∗ =

(∫ T

0

‖v(t)‖2
V ∗ dt

)1/2

Definition 133. Let u ∈ L2((0, T ), V ). It has a weak derivative w ∈ L2((0, T ), V ∗) if∫ T

0

ϕ(t) 〈w, v〉V ∗×V dt = −
∫ T

0

ϕ′(t)(u, v)L2 dt ∀ v ∈ V, ∀ϕ ∈ C∞0 (0, T )

Definition 134.

H1((0, T ), V ;L2) = {v ∈ L2((0, T ), V ) : v′ ∈ L2((0, T ), V ∗)}

with norm
‖v‖2

H1 = ‖v‖2
X + ‖v′‖2

X∗ .

This space is a one-dimensional Sobolev space with range in a Hilbert space.

Theorem 135 (Trace theorem). Point evaluation is continuous:

max
t∈[0,T ]

‖v(t)‖L2 � ‖v‖H1

This allows the formulation of the initial value u(0) = u0.

Theorem 136. Assume that a(., .) is coercive

a(u, u) ≥ µ1‖u‖2
V ∀u ∈ V

and continuous
a(u, v) ≤ µ2‖u‖V ‖v‖V ∀u, v ∈ V.

Then, the parabolic problem has a unique solution depending continuously on the right hand
side and the initial conditions:

‖u‖H1((0,T ),V ;L2) � ‖u0‖L2 + ‖f‖L2((0,T ),V ∗ .

We only prove stability: Choose test functions v = u(t):

(u′(t), u(t))L2 + a(u(t), u(t)) = 〈f(t), u(t)〉

Use that
d

dt
‖u(t)‖2

L2
= 2(u′(t), u(t))L2 ,
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and integrate the equation over (0, T ):

1

2

{
‖u(T )‖2

L2
− ‖u0‖2

L2

}
=

∫ T

0

〈f(s), u(s)〉 − a(u(s), u(s)) ds

≤
∫ T

0

‖f(s)‖V ∗‖u(s)‖V − µ1‖u(s)‖2
V ds

≤ ‖f‖X∗‖u‖X − µ1‖u‖2
X

Since ‖u(T )‖ ≥ 0, one has

µ1‖u‖2
X − ‖f‖X∗‖u‖X ≤

1

2
‖u0‖L2

Solving the quadatic inequality, one obtains the bound

‖u‖X ≤
1

2µ1

{
‖f‖X∗ +

√
‖f‖2

X∗ + 2µ1‖u0‖2
L2

}
The bound ‖u′‖L2((0,T ),V ∗) follows from u′(t) = f(t)− Au(t).

9.1 Semi-discretization

We start with a discretization in space. Choose a (finite element) sub-space Vh ⊂ V . The
Galerkin discretiztaion is: Find u : [0, T ]→ Vh such that

(u′h(t), vh)L2 + a(uh(t), vh) = 〈f(t), vh〉 ∀ vh ∈ Vh, ∀ t ∈ (0, T ],

and initial conditions

(uh(0), vh)L2 = (u0, vh)L2 ∀ vh ∈ Vh.

Choose a basis {ϕ1, . . . ϕN} of Vh. Expand the solution w.r.t. this basis:

uh(x, t) =
N∑
i=1

ui(t)ϕi(x),

and choose test functions v = ϕj. With the matrices

M = ((ϕj, ϕi)L2)i,j=1,...,N A = (a(ϕj, ϕi))i,j=1,...,N ,

and the t-dependent vector
f(t) = (〈f(t), ϕj〉)i=1,...,N ,

one obtains the system of ordinary differential equations (ODEs)

Mu′(t) + Au(t) = f(t), u(0) = u0
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In general, the (mass) matrix M is non-diagonal. In the case of the (inexact) vertex
integration rules, or non-conforming P1-elements, M is a diagonal matrix. Then, this ODE
can be efficiently reduced to explicit form

u′(t) +M−1Au(t) = f(t)

Theorem 137. There holds the error estimate

‖u− uh‖H1((0,T ),V ;L2) � ‖(I −Rh)u‖H1((0,T ),V ;L2),

where Rh is the Ritz projector

Rh : V → Vh : a(Rhu, vh) = a(u, vh) ∀u ∈ V, ∀ vh ∈ Vh.

Proof: The error is split into two parts:

u(t)− uh(t) = u(t)−Rhu(t)︸ ︷︷ ︸
ρ(t)

+Rhu(t)− uh(t)︸ ︷︷ ︸
Θh

The first part, u(t) − Rhu(t) is the elliptic discretization error, which can be bounded by
Cea’s lemma. To bound the second term, we use the properties for the continuous and the
discrete formulation:

〈f, vh〉 = (u′, vh) + a(u, vh) = (u′, vh) + a(Rhu, vh)

= (u′h, vh) + a(uh, vh),

i.e.,

(u′ − u′h, vh) + a(Rhu− uh, vh) = 0,

or

(Rhu
′ − u′h, vh) + a(Rhu− uh, vh) = (Rhu

′ − u′, vh).

With the abbreviations from above we obtain the discrete parabolic equation for Θh:

(Θ′h, vh) + a(Θh, vh) = (ρ′, vh)

Θh(0) = (I −Rh)u(0).

The stability estimate, and the trace theorem bounds

‖Θh‖H1((0,T ),V ;L2) � ‖(I −Rh)u(0)‖L2(Ω) + ‖ρ′‖L2((0,T ),V ∗)

� ‖(I −Rh)u‖H1((0,T ),V ;L2)

2
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9.2 Time integration methods

Next, we discuss methods for solving the system of ODEs:

Mu′(t) + Au(t) = f(t) (9.1)

u(0) = u0

We focus on simple time integration rules and the specific properties arising from the
space-discretization of parabolic PDEs. Let

0 = t0 < t1 < tm = T,

a partitioning of the interval [0, T ]. Define τj = tj+1 − tj. Integrating (9.1) over the
intervalls leads to

M {u(tj+1)− u(tj)}+

∫ tj+1

tj

Au(s) ds =

∫ tj+1

tj

f(s) ds.

Next, we replace the integrals by numerical integration rules. The left-sided rectangle
rule leads to

M{u(tj+1)− u(tj)}+ τjAu(tj) = τjf(tj)

With the notation uj = u(tj), this leads to the sequence of linear equations

Muj+1 = Muj + τj(fj − Auj)

In the case of a diagoal M -matrix, this is an explicit formulae for the new time step !
Using the right-sided rectangle rule leads to

M{uj+1 − uj}+ τjAuj+1 = τjfj+1,

or
(M + τjA)uj+1 = Muj + τjfj+1.

In case of the right-side rule, a linear system must be solve in any case. Thus, this method
is called an implicit time integration method. These two special cases are called the explicit
Euler method, and the implicit Euler method. A third simple choice is the trapezoidal rule
leading to

(M +
τj
2
A)uj+1 = Muj +

τj
2

(fj + fj+1 − Auj)

It is also an implcit method. Since the trapezoidal integration rule is more accurate, we
expect a more accurate method for approximating the ODE.

All single-step time integration methods can be written in the form

uj+1 = Gj(uj, fj),

where Gj is linear in both arguments and shall be continuous with bounds

‖Gj(uj, fj)‖M ≤ L ‖uj‖M + τj l ‖fj‖M−1 ,

with L ≥ 1.
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Lemma 138. The time integration method fulfills the stability estimate

‖uj‖M ≤ Lj ‖u0‖M + lLj
j−1∑
i=0

τi‖fi‖M−1 (9.2)

The explicit Euler method is written as

uj+1 = (I − τM−1A)u+ τM−1fj,

and has bounds

L = max{1, τλmax(M−1A)− 1} ' max{1, τ
h2
}

l = 1

If τ > h2, the powers Lj become very large. This means that the explicit Euler method
becomes instable. Thus, for the explicit Euler method, the time-step τ must not be greater
than ch2.

The implicit Euler method is written as

uj+1 = (M + τA)−1Muj + τ(M + τA)−1fj,

and has the bounds

L = 1

l = 1

The method is stable for any time-step τ . Such a method is called A-stable.

Lemma 139. The time discretization error ej := u(tj) − uj of the implicit Euler method
satisfies the difference equation

M{ej+1 − ej}+ τAej+1 = dj,

where the dj satisfy

dj =

∫ tj+1

tj

{f(s)− Au(s)} ds− τj{f(tj+1)− Au(tj+1)}.

Lemma 140. The error of the integration rule can be estimated by

‖dj‖ � τ ‖(f − Au)′‖L∞ = τ ‖u′′‖L∞
Convergence of the time-discretization method follows from stability plus approxima-

tion:

Theorem 141. The error of the implicit Euler method satisfies

‖u(tj)− uj‖M ≤
j∑
i=0

τ‖dj‖ � τ ‖u′′‖L∞(0,T )

The trapezoidal rule is A-stable, too. It is based on a more accurate integration rule,
and leads to second order convergence O(τ 2). Convergence of higher order can be obtained
by Runge-Kutta methods.
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9.3 Space-time formulation of Parabolic Equations

In the previous section we have discretized in space to obtain an ordinary differential
equation, which is solved by some time-stepping method. This approach is known as
method of lines. Now we formulate a space-time variational problem. This is discretized
in time and space by a (discontinuous) Galerkin method. We obtain time-slabs which are
solved one after another. This approach is more flexible, since it allows to use different
meshes in space on different time-slabs.

9.3.1 Solvability of the continuous problem

Let V ⊂ H be Hilbert spaces, typically H = L2(Ω) and V = H1(Ω). Duality is defined
with respect to H. For t ∈ (0, T ) we define the familiy A(t) : V → V ∗ of uniformely
continuous and elliptic operators:

(a) 〈A(t)u, u〉 ≥ α1‖u‖2
V

(b) 〈A(t)u, v〉 ≤ α2‖u‖V ‖v‖V

We assume that 〈A(t)u, v〉 is integrable with respect to time. We do not assume that A(t)
is symmetric. We consider the parabolic equation: Find u : [0, T ]→ V such that

u′ + Au = f ∀ t ∈ (0, T )

u(0) = u0

We define X = {v ∈ L2(V ) : v′ ∈ L2(V ∗)} and Y = L2(V ), with its dual Y ∗ = L2(V ∗). A
variational formulation of is: Find u ∈ X such that∫ T

0

〈u′ + Au, v〉 =

∫ T

0

〈f, v〉 ∀ v ∈ Y (9.3)

(u(0), v0)H = (u0, v0) ∀v0 ∈ H (9.4)

Adding up both equations leads to the variational problem B(u, v) = f(v) with the
bilinear-form B(., .) : X × (Y ×H)→ R:

B(u, (v, v0)) =

∫ T

0

〈u′ + Au, v〉+ (u(0), v0)H

and the linear-form f : Y ×H → R:

f(v, v0) =

∫ T

0

〈f, v〉+ (u0, v0)H

We assume that f ∈ Y ∗ and u0 ∈ H

Theorem 142 (Lions). Problem (9.3)-(9.4) is uniquely solvable.
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Proof. We apply the theorem by Babuška-Aziz. We observe that all forms are continuous
(trace-theorem). We have to verify both inf-sup conditions.

First, we show

inf
u∈X

sup
(v,v0)∈Y×H

B(u, v)

‖u‖X‖(v, v0)‖Y×H
≥ β > 0 (9.5)

We fix some u ∈ X and set (with A−T the inverse of the adjoint operator)

v := A−Tu′ + u

v0 := u(0)

and obtain

B(u, v) =

∫ 〈
u′ + Au,A−Tu′ + u

〉
dt + (u(0), u(0))H

=

∫ 〈
A−Tu′, u′

〉
+ 〈Au, u〉+ 〈u′, u〉+ 〈u, u′〉 dt + ‖u0‖2

H

=

∫ 〈
A−Tu′, u′

〉
+ 〈Au, u〉+

d

dt
‖u‖2

H + ‖u0‖2
H

≥ α−1
2 ‖u′‖2

L2(V ∗) + α1‖u‖2
L2(V ) + ‖u(T )‖2

H

� ‖u‖2
X

Since ‖(v, v0)‖Y � ‖u‖X the first inf − sup-condition is proven. For the other one, we show

∀ 0 6= (v, v0) ∈ Y ×H ∃u ∈ X : B(u, v) > 0 (9.6)

We fix some v, v0. We define u by solving the parabolic equation

u′ + γLu = ATv, u(0) = v0,

where L is a symmetric, constant-in-time, continuous and elliptic operator on V . The
parameter γ > 0, γ = O(1) will be fixed later. The equation has a unique solution, which
can be constructed by spectral theory. If (v, v0) 6= 0, then also u 6= 0.

B(u, v) =

∫ 〈
u′ + Au,A−T (u′ + γLu)

〉
+ ‖v0‖2

H

=

∫ 〈
u′, A−Tu′

〉
+ 〈u, u′〉+

〈
u′, A−TγLu

〉
+ γ 〈u, Lu〉 dt+ ‖v0‖2

H

≥
∫

1
α2
‖u′‖2

V ∗ + 1
2
d
dt
‖u‖2

H − ‖u′‖V ∗‖A−TγLu‖V + γ 〈u, Lu〉+ ‖v0‖2
H

The second term is integrated in time, and we apply Young’s inequality for the negative
term:

B(u, v) ≥
∫

1
α2
‖u′‖2

V ∗ − 1
2α2
‖u′‖2

V ∗ − α2

2
‖A−TγLu‖2

V + γ 〈u, Lu〉+ 1
2
‖v0‖2

H + 1
2
‖v(T )‖2

H

≥
∫

1
2α2
‖u′‖2

V ∗ −
α2γ2

2
‖A−TL‖2

V→V ‖u‖2
V + γ 〈u, Lu〉+ 1

2
‖u(0)‖2

H
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We fix now γ sufficiently small such that α2γ2

2
‖A−TγL‖2

V→V ‖u‖2
V ≤ γ 〈u, Lu〉 to obtain

B(u, v) � ‖u′‖2
L2(V ∗) + ‖u0‖2

H > 0.

A similar proof of Lions’s theorem is found in Ern + Guermond.

9.3.2 A first time-discretization method

We discretize in time, but keep the spatial function space infinit dimensional. A first
reasonable attempt is to use Xh = P 1(V ), and Yh = P 0,disc(V ). Evaluation of B(., .) leads
to

B(uh, vh) =
n∑
j=1

∫ tj

tj−1

〈u′h + Auh, vh〉+ (u0, vh)

=
n∑
j=1

〈uj − uj−1, vj〉+
τj
2
〈A(uj−1 + uj), vj〉+ (u0, v0)

Here, the time derivative evaluates to finite differences of point values in tj. Since uj ∈ V ,
the duality pairs coincide with inner products in H. Thus, for every time-step we get the
equation

uj − uj−1 +
τ

2
A(uj + uj−1) = τfj

This is the trapezoidal method (Crank-Nicolson). From numerics for odes we remember it
is A-stable, but not L-stable. We cannot prove a discrete inf − sup condition.

9.3.3 Discontinuous Galerkin method

We give an alternative, formally equivalent variational formulation for the parabolic equa-
tion by integration by parts in time∫

−〈u, v′〉+ 〈Au, v〉+ (u(T ), v(T ))H − (u(0), v(0))H =

∫
〈f, v〉

Now, we plug in the given initial condition u(0) = u0:∫
−〈u, v′〉+ 〈Au, v〉+ (u(T ), v(T ))H =

∫
〈f, v〉+ (u0, v(0))H

The higher H1-regularity is now put onto the test-space, which validates point-evaluation
at t = 0 and t = T . The trial-space is now only L2, which gives no meaning for u(T ).
There are two possible remedies, either to introduce a new variable for u(T ), or, to restrict
the test space:
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1. Find u ∈ L2(V ), uT ∈ H such that∫
−〈u, v′〉+〈Au, v〉+(uT , v(T ))H =

∫
〈f, v〉+(u0, v(0))H ∀ v ∈ L2(V ), v′ ∈ L2(V ∗)

(9.7)

2. Find u ∈ L2(V ) such that∫
−〈u, v′〉+ 〈Au, v〉 =

∫
〈f, v〉+ (u0, v(0))H ∀ v ∈ L2(V ), v′ ∈ L2(V ∗), v(T ) = 0

(9.8)

Both problems are well posed (continuity and inf − sup conditions, exercise). Now, the
initial condition was converted from an essential to a natural boundary condition.

Next, we integrate back, but we do not substitute the initial condition back:∫
〈u′ + Au, v〉+ (u(0), v(0))H =

∫
〈f, v〉+ (u0, v(0))

The initial condition is again a part of the variational formulation. Note that this for-
mulation is fulfilled for u ∈ H1, and smooth enough test functions providing the trace
v(0).

This technique to formulate initial conditions is used in the Discontinuous Galerkin
(DG) method. For every time-slab (tj−1, tj) we define a parabolic equation, where the
initial value is the end value of the previous time-slab.

Here, we first define a mesh T = {t0, t1, . . . tn}, and then the mesh-dependent formula-
tion:∫ tj

tj−1

〈u′ + Au, v〉+(u(t+j−1), v(t+j−1))H =

∫ tj

tj−1

〈f, v〉+(u(t−j−1), v(t+j−1))H ∀ j ∈ {1, . . . n}

(with the notation u(t−0 ) := u0). By using left and right sided limits, we get the u from the
current time-slab, and the end-value from the previous time-slab, respectively. The vari-
ational formulation is valid for the solution u ∈ H1, and piece-wise regular test-functions
on the time-intervals.

The bilinear-form is defined as

B(u, v) =
n∑
j=1

∫ tj

tj−1

〈u′ + Au, v〉+ ([u]tj−1
, v(t+j−1))H

where the jump is defined as [u]tj = u(t+j )− u(t−j ), and the special case [u]t0 = u(t+0 ). The
solution satisfies

B(u, v) =

∫
〈f, v〉+ (u0, v(0)) ∀ p.w. smooth v
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The bilinear-form is defined for discontinuous trial and discontinuous test functions. It
allows to define

Xh = Yh = P k,dc(V )

Let us elaborate the case of piece-wise constants in time:

τ 〈Auj, vj〉+ (uj − uj−1, vj) = τ 〈fj, vj〉

which leads to the implicit Euler method

uj − uj−1

τ
+ Auj = fj

The imlicit Euler method is A and L-stable.
We define the mesh-dependent norms

‖u‖2
Xh

=
∑
j

‖u‖2
L2(tj−1,tj ,V ) + ‖u′‖2

L2(tj−1,tj ,V ∗)
+ 1

tj−tj−1
‖[u]tj−1

‖2
V ∗

‖v‖2
Yh

=
∑
j

‖v‖2
L2(tj−1,tj ,V )

Since v|[tj−1,tj ] is a polynomial, we can bound

‖v(t+j−1)‖2
V ≤

c

tj − tj−1

‖v‖2
L2(tj−1,tj ,V ),

where the constant c deteriors with the polynomial degree. Thus, the bilinear-form is well
defined and continuous on Xh × Yh.

Theorem 143. The discrete problem is inf − sup stable on Xh × Yh

Proof. We mimic the first inf − sup condition in Theorem 142, where we have set v =
u+ A−Tu′. We give the proof for the lowest order case (k=0)

vh := uh + γ
tj−tj−1

A(tj−1)−1[uh]j−1,

with γ = O(1) to be fixed later. Thanks to the discontinuous test-space, this is a valid
test-function.

In the following we skip the subsripts h, and set τ = tj − tj−1. There holds

‖v‖Yh � ‖u‖Xh .

B(uh, vh) =
n∑
j=1

∫ tj

tj−1

〈
Au, u+ γ

τ
A−Tj−1[u]j−1

〉
+
∑
j

([u]j−1, u+ γ
τ
A−1
j−1[u]j−1)H

=

∫
〈Au, u〉+

∑
j

∫ 〈
Au, γ

τ
A−T [uj]

〉
+
∑
j

(uj − uj−1, uj)H +
∑
j

γ
τ
‖[u]tj−1

‖A−1
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The second term is split by Young’s inequality:∫
tj−1

tj
〈
Au, γ

τ
A1
j−1[u]j−1

〉
≤
∫

1
2
〈Au, u〉+ γ2

2τ2

∫
‖A−1[u]‖A

Thus, for sufficiently small γ it can be absorbed into the first and last term.
We reorder the summation of the third term:

(u1, u1)2 − (u1, u2) + (u2, u2)2 − (u2, u3) + . . .

= 1
2
‖u1‖2

H + 1
2
‖u1 − u2‖2

H + . . .

Thus, we got (for piecewise constants in time):

B(uh, vh) ≥ ‖u‖2
L2,V

+
∑
‖[u]tj‖2

H +
1

τ
‖[u]‖2

V ∗ � ‖uh‖2
Xh

By stability, we get for the discrete error

‖Ihu− uh‖Xh � sup
vh

Bh(Ihu− uh, vh)
‖vh‖Yh)

= sup
vh

Bh(Ihu− u, vh)
‖vh‖Yh)

= sup
vh

∑
j

∫
〈u′ + Au− (Ihu)′ + AIhu, vh〉+

∑
j([u]− [Ihu], vh)H

‖vh‖L2(V )

� . . .

where the convergence rate depends as usual on the regulariy of the exact solution



Chapter 10

Second order hyperbolic equations:
wave equations

We consider equations second order in time

ü+ Au = f

with initial conditions

u(0) = u0 and u̇(0) = v0,

with a symmetric, elliptic operator A.

10.1 Examples

• scalar wave equation (acoustic waves)

∂2u

∂t2
−∆u = f

• electromagnetic wave equation:

µ
∂H

∂t
= − curlE

ε
∂E

∂t
= curlH

with the magnetic field H and the electric field E, and material parameters perme-
ability µ and permittivity ε. By differentiating the first equation in space, and the
second on in time, we obtain

ε
∂2E

∂t2
+ curl

1

µ
curlE = 0

183
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• elastic waves: We consider the hyperelastic elastic energy

J(u) =

∫
Ω

W (C(u))− fu

A body is in equilibrium, if J ′ = 0. If not, then J ′ ∈ V ∗ acts as an accelerating force.
Newton’s law is

ρü = −J ′(u),

in variational form ∫
ρüv + 〈J ′(u), v〉 = 0 ∀ v

In non-linear elasticity we have J ′(u) = divP−f , where P is the first Piola-Kirchhoff
stress tensor. In linearized elasticity we obtain∫

ρüv +

∫
Dε(u) : ε(v) =

∫
fv

We observe conservation of energy in the following sense for elasticity, and similar for
the other cases. We define the kinetic energy as 1

2
‖u̇‖2

ρ and the potential energy as J(u).
Then

d

dt

{
1
2
‖u̇‖2

ρ + J(u)
}

= (u̇, ü)ρ + 〈J ′(u), u̇〉 = 0

For the linear equation set J(u) = 1
2
〈Au, u〉 − 〈f, u〉

10.2 Time-stepping methods for wave equations

We consider the method of lines, where we first discretize in space, and then apply some
time-stepping method for the ODE. In principal, one can reduce the second order ODE to a
first order system, and apply some Runge-Kutta method for it. This will in general require
the solution of linear systems of twice the size. In addition, the structure (symmetric and
positive definite) may be lost, which makes it difficult to solve.

We consider two approaches specially taylored for wave equations.

(a) for the second order equation

(b) for first order systems

10.2.1 The Newmark time-stepping method

We consider the ordinary differential equation

Mü+Ku = f

We consider single-step methods: From given state un ≈ u(tn) and velocity u̇n ≈ u̇(tn) we
compute un+1 and u̇n+1. The acceleration ün = M−1(fn−Kun) follows from the equation.
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The Newmark method is based on a Taylor expansion for u and u̇, where second order
derivatives are approximated from old and new accelerations. The real parameters β and
γ will be fixed later, τ is the time-step:

un+1 = un + τ u̇n + τ 2
[
(1

2
− β)ün + βün+1

]
(10.1)

u̇n+1 = u̇n + τ [(1− γ)ün + γün+1] (10.2)

Inserting the formula for un+1 into Mü+Ku = f at time tn+1 we obtain

Mün+1 +K
(
un + τ u̇n + τ 2

[
(1

2
− β)ün + βün+1

])
= fn+1

Now we keep unknows left and put known variables to the right:[
M + βτ 2K

]
ün+1 = fn+1 −K

(
un + τ u̇n + τ 2(1

2
− β)ün

)
The Newmark method requires to solve one linear system with the spd matrix M + τ 2βK,
for which efficient direct or iterative methods are available. After computing the new
acceleration, the new state un+1 and velocity u̇n+1 are computed from the explicit formulas
(10.1) and (10.2).

The Newmark method satisfies a discrete energy conservation. See [Steen Krenk: ”En-
ergy conservation in Newmark based time integration algorithms” in Compute methods in
applied mechanics and engineering, 2006, pp 6110-6124] for the calculations and various
extensions: [

1
2
u̇Mu̇+ 1

2
uTKequ

]n+1

n
= −(γ − 1

2
)(un+1 − un)Keq(un+1 − un)

where
Keq = K + (β − 1

2
γ)τ 2KM−1K,

and the notation [E]ba := E(b)− E(a). Here, the right hand side f is skipped. From this,
we get the conservation of a modified energy with the so called equivalent stiffness matrix
Keq. Depending on the parameter γ we get

• γ = 1
2
: conservation

• γ > 1
2
: damping

• γ < 1
2
: growth of energy (unstable)

If Keq is positive definite, then this conservation proves stability. This is unconditionally
true if β ≥ 1

2
γ (the method is called unconditionally stable). If β < 1

2
γ, the allowed time

step is limited by

τ 2 ≤ λmax(M
−1K)−1 1

1
2
γ − β

.

For second order problems we have λmax(M
−1K) ' h−2, and thus τ � h which is a

reasonable choice also for accuracy.
Choices for β and γ of particular interests are:
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• γ = 1
2
, β = 1

4
: unconditionally stable, conservation of original energy (Keq = K)

• γ = 1
2
, β = 0: conditionally stable. We have to solve

Mün+1 = fn+1 −K(un + τnu̇n + τ2

2
ün)

which is explicit iff M is cheaply invertible (mass lumping, DG).

10.2.2 Methods for the first order system

We reduce the wave equation
ü−∆u = f

to a first order system of pdes. We introduce σ =
∫ t

0
∇u. Then

σ̇ = ∇u
u̇− div σ = f̃

with the integrated source f̃ =
∫ t

0
f . In the following we skip the source f .

A mixed variational formulation in H(div) × L2, for given initial conditions u(0) and
σ(0), is:

(σ̇, τ) = −(u, div τ) ∀ τ
(u̇, v) = (v, div σ) ∀ v

After space discretization we obtain the ode system(
Mσ 0
0 Mu

)(
σ̇
u̇

)
=

(
0 −BT

B 0

)(
σ
u

)
We get a similar struture from the Maxwell system:

(µḢ, H̃) = (curlE, H̃) ∀ H̃
(εĖ, Ẽ) = −(curl Ẽ,H) ∀ Ẽ

Conservation of energy is now seen from

d

dt

[
1
2
σTMσσ + 1

2
uTMuu

]
= σTMσσ̇ + uTMuu̇ = −σTBTu+ uTBσ = 0

A basis transformation with M1/2 leads to the transformed system (the transformed B
is called B again): (

σ̇
u̇

)
=

(
0 −BT

B 0

)(
σ
u

)
The matrix is skew-symmetric, and thus the eigenvalues are imaginary. They are contained
in i [−ρ(B), ρ(B)], where the spectral radious ρ(B) ' h−1 for the first order operator. Using
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Runge-Kutta methods, we need methods such that i [−τρ(B), τρ(B)] is in the stability
region. For large systems, explicit methods (M cheaply invertible !) are often preferred.
While the stability region for the explicit Euler and improved Euler method do not included
an interval on the imaginary axis, the RK4 method does.

Methods taylored for the skew-symmetric (Hamiltonian) structure are symplectic meth-
ods: The symplectic Euler method is

Mσ
σn+1 − σn

τ
= −BTun

Mu
un+1 − un

τ
= Bσn+1

For updating the second variable, the new value of the first variable is used. For the
analysis, we can reduce the large system to 2 × 2 systems, where β are singular values of
M
−1/2
σ BM

−1/2
u :

σ̇ = −βu u̇ = βσ

The symplectic Euler method can be written as(
σn+1

un+1

)
=

(
1 0
τβ 1

)(
1 −τβ
0 1

)
︸ ︷︷ ︸
T=

 1 −τβ
τβ 1− (τβ)2



(
σn
un

)

The eigenvalues of T satisfy λ1λ2 = det(T ) = 1, and iff τβ ≤
√

2 they are conjugate
complex, and thus |λ1| = |λ2| = 1. Thus, the discrete solution is oscillating without
damping or growth.

Again, diagonal mass matrices Mu and Mσ render explicit methods efficient.
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Chapter 11

Hyperbolic Conservation Laws

We consider the equation
∂u

∂t
+ div f(u) = 0

in space dimension n, with the state u ∈ Rm, and the flux f : Rm → Rm×n. We need initial
conditions u(x, 0) = u0(x), and proper boundary conditions.

Examples:

• Transport equation m = 1, n ∈ {1, 2, 3, . . .}.
f(u) = bTu

with b ∈ Rn the given wind.

• Burgers’ equation m = 1, n = 1
f(u) = 1

2
u2

Burgers’ equation is a typical model problem to study effects of non-linear conserva-
tion laws.

• Wave equation in Rn: u = (p, v1, . . . vn), here m = n+ 1:

f(p, u) =


u1 · · · un
p

. . .

p


• Euler equations (model for compressible flows) in Rn: m = n + 2, state u =

(ρ,m1, . . . ,mn, E), with density ρ, momentum m = ρv, and energy. The flux function
is

f =

 ρv
ρv ⊗ v + pI

(E + p)v


with the internal energy e = E/ρ − 1

2
|v|2 (proportional to temperature), and state

equation p = p(ρ, e). Equations are conservation of mass, momentum and energy.

189
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11.1 A little theory

Set n = 1, m = 1. We assume that f is convex, i.e. f ′ is strictly monotone increasing. For
linear fluxes f = bu, the solution is the traveling wave

u(x, t) = u0(x− bt).

It is constant along the characteristic lines x(t) = x0 + bt.

For smooth fluxes f , the solution is constant along characteristic lines x(t) = x0 +
f ′(u0(x0))t:

u(x(t), t) = u0(x0)

proof:

0 =
d

dt
u(x(t), t) =

∂u

∂t
+
dx

dt

∂u

∂x
=
∂u

∂t
+ f ′(u)

∂u

∂x
= ft + (f(u))x

The smooth solution exists as long as characteristic lines don’t intersect.
Example: Burgers equation. The velocity of the characteristic is f ′(u) = (1

2
u2)′ = u,

i.e. the solution itself.

11.1.1 Weak solutions and the Rankine-Hugoniot relation

If characteristic lines intersect, the solution forms a shock. the Rankine-Hugoniot relation
is a equation for the speed of the shock.

We assume the solution is piecewise smooth. To have meaningful discontinuous solu-
tions, we have to consider weak solutions in space-time:∫

Ω×(0,T )

uϕt + f(u)∇ϕ = 0 ∀ϕ ∈ C∞0

(initial condition is skipped here, easily covered by non-vanishing test-functions for t = 0).
The weak form states that for F = (f, u) there holds

divx,t F = 0

in weak senses. Thus, F ∈ H(div). This requires that F · n is continuous across disconti-
nuities. Let s(t) the position of the shock. The normal vector satisfies

n ∼ (1,−s′)

Thus, [F · n] = 0 reads as
f(ul)− uls′ = f(ur)− urs′

and we get the Rankine-Hugoniot relation

s′ =
f(ul)− f(ur)

ul − ur
Example Burgers: The speed of the shocks is

s′ =
1
2
u2
l − 1

2
u2
r

ul − ur
=
ul + ur

2
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11.1.2 Expansion fans

Assume u(x+) > u(x−), then, due to convexity of the flux there is also f ′(u(x+)) >
f ′(u(x−)). The speed on the right is higher than on the left. Here, all monotone increasing
functions (between u(x−) and u(x+)), constant along lines x+ f ′(u)t are weak solutions.

Another conditions is necessary to pick the meaningful physical solution. Two choices
are

Viscosity solutions. Consider the regularized equation

uεt + f(uε)x − εuεxx = 0

The limit (if existent) limε→0 u
ε is called viscosity solution.

Entropy solutions. We define some quantity E(u) called entropy, where, for physical
reasons, the total amount should not increase:

d

dt

∫
Ω

E(u) ≤ 0

To localize it, we define the entropy flux F such that

F ′ = E ′f ′

If the solution is smooth, then

E(u)t + F (u)x = E ′ut + F ′ux = E ′(ut + f ′ux) = 0

Thus
d

dt

∫
Ω

E(u) =

∫
Ω

E(u)t = −
∫

Ω

F (u)x = −
∫
∂Ω

F (u) · n

No entropy changes for smooth solutions with isolated boundary. But, this is not true for
discontinuous solutions.

We pose the entropy decrease E(u)t + F (u)x ≤ 0 in weak sense:

−
∫

Ω×(0,T )

E(u)ϕt + F (u)∇ϕ ≤ 0 ∀ϕ ∈ C∞0 , ϕ ≥ 0

Similar to the Rankine-Hugoniot relation we integrate back on smooth regions in space-
time ∑

(Ω×(0,T ))i

∫ (
E(u)t + divF (u)︸ ︷︷ ︸

=0

)
ϕ−

∫
γ

(
[E(u)]s′ − [F (u)]

)
ϕ ≤ 0 ∀ϕ ≥ 0

Example Burgers: Choose the entropy E(u) = u2. Then

F (u) =

∫
E ′f ′ =

∫
2uu =

2

3
u3
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Calculating

[E]s′ − [F ] = (u2
r − u2

l )
ur + ul

2
+

2

3
(u3

r − u3
l ) = . . .

= −(ur − ul)
(ur − ul)2

6

Now, posing the non-negative condition for [E]s′ − [F ] we allow jumps only for ur < ul.

11.2 Numerical Methods

The natural methods for conservation laws are finite volume / discontinuous Galerkin
methods: ∫

T

∂u

∂t
v − f(u)∇v +

∫
∂T

g(ul, ur)v = 0 ∀T ∀ v ∈ P k(T )

Here, g is the numerical flux on the element boundary, calculated from left- and right sided
states. For continuous u = ul = ur, it satisfies

g(u, u) = f(u)n

Otherwise, up-wind like fluxes (many different choices !) are used.
Finite volume methods can be designed such that entropy is non-increasing, often the

calculations are technical. They are also used to prove the existence of solutions.
Higher order methods do not satisfy the maximum principle, which may lead to prob-

lems for non-linear equations (Euler: divide by ρ). Here, limiters are used: If the solution
produces oscillations, it is smoothed (somehow). E.g., switch back to a finite volume
method.

Recent development (by Guermond+Pasquetti+Popov) is the so-called entropy viscos-
ity method: If the entropy relation is violated, artificial viscosity is switched on. Ideally,
this happens only close to shocks.

Space-time methods include special mesh-generation related to the finite speed of prop-
agation (front tracking methods, tent-pitching methods). [Gopalakrishnan, Schöberl, Win-
tersteiger 2016, master thesis Wintersteiger].


