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Chapter 1

Introduction

Differential equations are equations for an unknown function involving differential opera-
tors. An ordinary differential equation (ODE) requires differentiation with respect to one
variable. A partial differential equation (PDE) involves partial differentiation with respect
to two or more variables.

1.1 Classification of PDEs

The general form of a linear PDE of second order is: find v : Q2 C R? — R such that

Z a;ij)) n Zbi(x)au(?’) +e(x)u(z) = f(z). (1.1)

The coefficients a; j(x), b;(z), c(xr) and the right hand side f(z) are given functions. In
addition, certain type of boundary conditions are required. The behavior of the PDE
depends on the type of the differential operator

0 0 )
[/::”Za a”@x]_‘_zbamz

2,7=1 =1

Replace by s;. Then
d

d
Z 8;Q4,5S; + Z bl‘Si +c=0
3,7=1

i=1
describes a quartic shape in R?. We treat the following cases:

1. In the case of a (positive or negative) definite matrix a = (a;;) this is an ellipse,
and the corresponding PDE is called elliptic. A simple example is a = I, b = 0, and
c=0,i.e.
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Elliptic PDEs require boundary conditions.

2. If the matrix a is semi-definite, has the one-dimensional kernel span{v}, and b-v # 0,
then the shape is a parabola. Thus, the PDE is called parabolic. A simple example

Z 8xd f

Often, the distinguished direction corresponds to time. This type of equation requires
boundary conditiosn on the d — 1-dimensional boundary, and initial conditions in the
different direction.

3. If the matrix a has d — 1 positive, and one negative (or vise versa) eigenvalues, then
the shape is a hyperbola. The PDE is called hyperbolic. The simplest one is

2

2
_Za a .

Again, the distinguished direction often corresponds to time. Now, two initial con-
ditions are needed.

4. If the matrix a is zero, then the PDE degenerates to the first order PDE

ou

Boundary conditions are needed at a part of the boundary.

These cases behave very differently. We will establish theories for the individual cases.
A more general classicfication, for more positive or negative eigenvalues, and systems of
PDE:s is possible. The type of the PDE may also change for different points x.

1.2 Weak formulation of the Poisson Equation

The most elementary and thus most popular PDE is the Poisson equation

—Au=f in €, (1.2)
with the boundary conditions
U = Up on I'p,
o= on I'y, (1.3)
getau = g onl'p.

The domain € is an open and bounded subset of RY, where the problem dimension d is
usually 1, 2 or 3. For d = 1, the equation is not a PDE, but an ODE. The boundary
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I' := 00 consists of the three non-overlapping parts I'p, 'y, and FR The outer unit
normal vector is called n. The Laplace differential operator is A := Zl " a et the normal

derivative at the boundary is a% = Z?Zl nia%i. Given are the functions f, up and g in

proper function spaces (e.g., f € Ly(£2)). We search for the unknown function w, again, in
a proper function space defined later.
The boundary conditions are called

e Dirichlet boundary condition on I'p. The function value is prescribed,
e Neumann boundary condition on I'y. The normal derivative is prescribed,

e Robin boundary condition on I'g. An affine linear relation between the function
value and the normal derivative is prescribed.

Exactly one boundary condition must be specified on each part of the boundary.
We transform equation (1.2) together with the boundary conditions (1.3) into its weak
form. For this, we multiply (1.2) by smooth functions (called test functions) and integrate

over the domain:
—/Auvdx: /fvdx (1.4)
Q Q

We do so for sufficiently many test functions v in a proper function space. Next, we apply
Gauss’ theorem fQ divpdx = pr -nds to the function p := Vuv to obtain

/diV(Vuv)da::/Vu-nvds
Q

r

From the product rule there follows div(Vuv) = Auv + Vu - Vu. Together we obtain

/Vu-Vvdm— —vds-/fvdx
Q

Up to now, we only used the differential equation in the domain. Next, we incorporate
the boundary conditions. The Neumann and Robin b.c. are very natural (and thus are
called natural boundary conditions). We simply replace % by g and —au + g on I'y and
['g, respectively. Putting unknown terms to the left, and known terms to the right hand
side, we obtain

/Vu VUd:L‘—I—/ auvds—/ —vds—/fvdx—i—/ guds.
I'r I'p I'n+Tr

Finally, we use the information of the Dirichlet boundary condition. We work brute force
and simple keep the Dirichlet condition in strong sense. At the same time, we only allow
test functions v fulfilling v = 0 on I'p. We obtain the
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Weak form of the Poisson equation:
Find w such that v = up on I'p and

/Vu~Vvd:c—|—/ auvds:/fvdx—l—/ guds (1.5)
Q FR Q I—‘N“l‘l_‘R

Vv such that v =0 on I'p.

We still did not define the function space in which we search for the solution u. A proper
choice is
Vi={v € Ly(Q) : Vu € [Lo(Q)]* and ulp € Ly(0N)}.

It is a complete space, and, together with the inner product
(u,v)v 1= (u, ) Ly0) + (Vu, V) y) + (14, 0) Ly

it is a Hilbert space. Now, we see that f € Ly(Q2) and g € Ly(I") is useful. The Dirichlet
b.c. up must be chosen such that there exists an u € V with u = up on I'p. By definition
of the space, all terms are well defined. We will see later, that the problem indeed has a
unique solution in V.

1.3 The Finite Element Method

Now, we are developing a numerical method for approximating the weak form (1.5). For
this, we decompose the domain € into triangles 7. We call the set 7 = {T'} triangulation.
The set N = {z;} is the set of nodes. By means of this triangulation, we define the finite
element space, Vj:

Vi, i ={v € C(Q) : v|r is affine linear VT € T}

This is a sub-space of V. The derivatives (in weak sense, see below) are piecewise constant,
and thus, belong to [Ly(2)]>. The function v, € Vj, is uniquely defined by its values v(x;)
in the nodes z; € M. We decompose the set of nodes as

N = Np UAN;,

where Np are the nodes on the Dirichlet boundary, and N} are all others (f as free). The
finite element approximation is defined as

Find wuy, such that u,(z) = up(z) Vo € Np and

/Vuh~Vvhd:c—|—/ auhvhdSZ/fvhd:c—i—/ gup ds (1.6)
Q Tr n+T'r

Vv, € Vj, such that vy (x) =0 Vo € Np
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Now it is time to choose a basis for V},. The most convenient one is the nodal basis
{¢;} characterized as

ei(z;) = biy. (1.7)
The Kronecker-¢ is defined to be 1 for « = j, and 0 else. These are the popular hat
functions. We represent the finite element solution with respect to this basis:

un(e) = 3 wigile) (13)

By the nodal-basis property (1.7) there holds wy(z;) = >, uipi(z;) = u;. We have to
determine the coefficients u; € RY, with N = |N|. The Np := |[Np| values according to
nodes on ['p are given explicitely:

u; = up(x;) = up(x;) Vz; €I'p

The others have to be determined from the variational equation (1.6). It is equivalent to
fulfill (1.6) for the whole space {v, € V,, : vp(z) = 0V x; € Np}, or just for its basis
{pi : x; € Nt} associated to the free nodes:

Z{/v%-v%dwr/ ozsoisode}uiz/fsojder/ gpids  (1.9)
Q I'r I'n+Tr

V; such that z; € N}

We have inserted the basis expansion (1.8). We define the matrix A = (A;;) € RV*N and
the vector f = (f;) € RY as

Ay = /Vg@pV(pjd:c—l—/ ap;p;ds,
Q I'r

fi = /f%dwr/ gpjds.
I'n+Tr

According to Dirichlet- and free nodes they are splitted as

_( App App ~( fp
A_<AfD Aff) and f_(ff)'

Now, we obtain the system of linear equations for u = (u;) € RY, u = (up, uy):

(AiD Aif)(l;?):(q}?) (1-10)

At all, we have N coefficients u;. Np are given explicitely from the Dirichlet values. These
are Ny equations to determine the remaining ones. Using the known up, we can reformulate
it as symmetric system of equations for u; € RMf:

Appus = fr— Agpup
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Chapter 2

The abstract theory

In this chapter we develop the abstract framework for variational problems.

2.1 Basic properties

Definition 1. A vector space V is a set with the operations + : V. xV — V and
R xV =V such that for all u,v € V and \, u € R there holds

s utv=v+tu
o (ut+v)+w=u+ (v+w)
e\ (u+v)=Xu+Arv, A+p)-u=\u+p-u
Examples are R™, the continuous functions C°, or the Lebesgue space L.

Definition 2. A normed vector space (V.|| -||) is a vector space with the operation ||.| :
V — R being a norm, i.e., foru,v € V and X\ € R there holds

o [uto| < llull+ vl
o [[Aull = [Alu]
o lu =0 u=0
Examples are (C°, || - ||sup), or (C° | - ||L,)-

Definition 3. In a complete normed vector space, Cauchy sequences (u,) € VY converge
to anu € V. A complete normed vector space is called Banach space.

Examples of Banach spaces are (La, || - ||1,), (C° | - |lsup), but not (C° | - ||L,)-

Definition 4. The closure of a normed vector-space (W, || - ||v), denoted as WV s the
smallest complete space containing W .

11
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Example: UH'”LQ = L.

Definition 5. A functional or a linear form [(-) on V is a linear mapping l(-) : V — R.
The canonical norm for linear forms is the dual norm

[(v)

yx 1= sup —r

[ )
H | 0#£veV ||U||

A linear form [ is called bounded if the norm is finite. The vector space of all bounded
linear forms on V' s called the dual space V*.

An example for a bounded linear form is I(-) : Ly = R:v — [wvdx.

Definition 6. A bilinear form A(-,-) on V is a mapping A : V x V' — R which is linear
inu and in v. It is called symmetric if A(u,v) = A(v,u) for all u,v € V.

Examples are the bilinear form A(u,v) = [wvdz on La, or A(u,v) := u” Av on R", where
A is a (symmetric) matrix.

Definition 7. A symmetric bilinear form A(-,-) is called an inner product if it satisfies
e (V) >0VveV
e (V,V)=0&0v=0

Often, is is denoted as (-,-)a, (+,-)v, or simply (-,-).

An examples on R is u” Av, where A is a symmetric and positive definite matrix.

Definition 8. An inner product space is a vector space V' together with an inner product
(.7 ')V-

Lemma 9. Cauchy Schwarz inequality. If A(-,-) is a symmetric bilinear form such
that A(v,v) >0 for all v € V', then there holds

Afu,v) < Alu, ) Av, o)
Proof: For t € R there holds
0< A(u —tv,u — tv) = A(u,u) — 2tA(u,v) + t*A(v,v)

If A(v,v) =0, then A(u,u) —2tA(u,v) > 0 for all t € R, which forces A(u,v) =0, and the
inequality holds trivially. Else, if A(v,v) # 0, set t = A(u,v)/A(v,v), and obtain

0 < A(u,u) — A(u,v)?/A(v,v),
which is equivalent to the statement. O

Lemma 10. |jv||y := (v,v)%//Q defines a norm on the inner product space (V, (-, )v).
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Definition 11. An inner product space (V, (-,-)y) which is complete with respect to || - ||v
15 called o Hilbert space.

Definition 12. A closed subspace S of an Hilbert space V' is a subset which is a vector
space, and which is complete with respect to || - ||v.

A finite dimensional subspace is always a closed subspace.

Lemma 13. Let T be a continuous linear operator from the Hilbert space V' to the Hilbert
space W. The kernel of T, ker T :={v € V : Tv = 0} is a closed subspace of V.

Proof: First we observe that ker T is a vector space. Now, let (u,) € ker T converge
to u € V. Since T' is continuous, Tu,, — Tu, and thus Tu = 0 and u € ker T'. O

Lemma 14. Let S be a subspace (not necessarily closed) of V. Then
St={veV:(vw)=0Ywe S}

18 a closed subspace.

The proof is similar to Lemma 13.

Definition 15. Let V' and W be vector spaces. A linear operator T : V — W is a linear
mapping from V to W. The operator is called bounded if its operator-norm

T
Tl = sup I
0#£veV vl

1s finite.

An example is the differential operator on the according space % S (CHO, 1), |+ lsup +
H% ' HSUP) - (C<O7 1)7 H : Hsup)-

Lemma 16. A bounded linear operator is continuous.

Proof. Let v, — v, i.e. |Jv, —v|ly — 0. Then ||Tv, — Tv|| < ||T||lv—wllvs — v||y converges
to 0, i.e. Tv, — Tw. Thus T is continuous. O

Definition 17. A dense subspace S of V is such that every element of V' can be ap-
prozimated by elements of S, i.e.

Ve > 0Vu € Vv € S such that ||lu—vl|ly <e.

Lemma 18 (extension principle). Let S be a dense subspace of the normed space V', and
let W be a complete space. LetT' : S — W be a bounded linear operator with respect to the
norm ||T||v—w. Then, the operator can be uniquely extended onto V.
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Proof. Let u € V, and let v,, be a sequence such that v,, — u. Thus, v, is Cauchy. Tv,
is a well defined sequence in W. Since T is continuous, T, is also Cauchy. Since W
is complete, there exists a limit w such that Tv, — w. The limit is independent of the
sequence, and thus T'u can be defined as the limit w. O

Definition 19. A bounded linear operator T : V. — W is called compact if for every
bounded sequence (u,) € VN, the sequence (T'u,) contains a convergent sub-sequence.

Lemma 20. Let V,W be Hilbert spaces. A operator is compact if and only if there exists
a complete orthogonal system (u,) and values A\, — 0 such that

(uny um)V = 5n,m (Tuna Tum)W = )\n(sn,m

This is the eigensystem of the operator K : V — V* :uw (Tu, Ty .

Proof. (sketch) There exists an maximizing element of % Scale it to |[v|ly =1
and call it vy, and Ay = % Repeat the procedure on the V-complement of u; to
generate uy, and so on. O

2.2 Projection onto subspaces

In the Euklidean space R? one can project orthogonally onto a line through the origin, i.e.,
onto a sub-space. The same geometric operation can be defined for closed subspaces of
Hilbert spaces.

Theorem 21. Let S be a closed subspace of the Hilbert space V. Let uw € V. Then there
exists a unique closest point ug € S':

lu—ull < Ju—of VoeV

There holds
u—1uy LS

Proof: Let d := inf,cg |[u—v||, and let (v,) be a minimizing sequence such that ||u—uv,|| — d.
We first check that there holds

[ = vmll* = 2 [lon — ull® + 2 lvm — ull* = 4]11/2(vn + vin) — ull*.

Since 1/2(v,, +vy,) € S, there holds ||1/2(v,, +v,,) —ul| > d. We proof that (v,,) is a Cauchy
sequence: Fix & > 0, choose N € N such that for n > N there holds ||u — v,|* < d* + &2.
Thus for all n,m > N there holds

v — v || < 2(d? + €%) + 2(d* + £2) — 4d* = 4%

Thus, v, converge to some uy € V. Since S is closed, uy € S. By continuity of the norm,
|u — wo|| = d.
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Fix some arbitrary w € S, and define p(t) := ||lu—wuo — tw [|?. (+) is a convex function,
——

es
it takes its unique minimum d at ¢ = 0. Thus

_ do(t)

0
dt

li=o = {2(u — ug, w) — 2t(w, w) }|1=0 = 2(u — ug, w)

We obtained u — uy LS. If there were two minimizers uy # uy, then ug —u; = (ug — u) —
(u; —u)LS and uy — uy € S, which implies uy — u; = 0, a contradiction. O

Theorem 21 says that given an u € V', we can uniquely decompose it as
U= ug + Uy, up €S uy €8t
This allows to define the operators Ps: V — S and Py : V — St as
Psu = uyg Piu:= (I — Ps)u = u,
Theorem 22. Ps and Pg are linear operators.

Definition 23. A linear operator P is called a projection if P2 = P. A projector is
called orthogonal, if (Pu,v) = (u, Pv).

Lemma 24. The operators Ps and Pg are both orthogonal projectors.

Proof: For u € S there holds Pu = u. Since Pu € S, there holds P?u = Pu. It is
orthogonal since

(Pu,v) = (Pu,v — Pv+ Pv) = ( P;L ,v — Pv) + (Pu, Pv) = (Pu, Pv).
€ €St

With the same argument there holds (u, Pv) = (Pu, Pv). The co-projector Py = I — Pg
is a projector since
(I —Ps)*=1—-2Ps+ P3=1— Ps.

It is orthogonal since ((I — Ps)u,v) = (u,v) — (Psu,v) = (u,v) — (u, Psv) = (u, (I — Ps)v)
O

2.3 Riesz Representation Theorem
Let uw € V. Then, we can define the related continuous linear functional [,(-) € V* by
L,(v) == (u,v)y VoeV.

The opposite is also true:
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Theorem 25. Riesz Representation Theorem. Any continuous linear functional | on
a Hilbert space V' can be represented uniquely as

[(v) = (u,v) (2.1)
for some u; € V. Furthermore, we have

1Ulv = flallv-

Proof: First, we show uniqueness. Assume that u; # uy both fulfill (2.1). This leads to
the contradiction

0 = l(u1 - Ug) — l(u1 — UQ)
= (up,u; — u2) — (ug,ug — up) = ||Juy — usl*.

Next, we construct the u;. For this, define S := ker{. This is a closed subspace.
Case 1: St = {0}. Then, S =V, ie., [ =0. So take u; = 0.
Case 2: S+ # {0}. Pick some 0 # 2z € S*. There holds I(z) # 0 (otherwise, z € SN St =
{0}). Now define
_ (=)

il FEEAE
Then
) = (0= 10)/1)2) + G M) U2)2)
St S

= U(2)/112]*(z,1(v)/1(2)z)
= I(v)

Finally, we prove ||l||y+ = ||w]|v:
l(v up, v
11|y~ = sup Ho) ZSUP( Lolv [l v
0£vEV ||U|| v HUHV
and (2) (2)
I(z I(z
lull = %2l = 720 < -

(]2 121

2.4 Symmetric variational problems

Take the function space C'(£2), and define the bilinear form

A(u,v) ::/VUVU+/uvds
0 r
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and the linear form

fw) = [ foda

The bilinear form is non-negative, and A(u,u) = 0 implies u = 0. Thus A(,-) is an inner
product, and provides the norm ||v|[4 := A(v,v)"2. The normed vector space (C, ||.||4) is
not complete. Define

Vo— m\\-llA’

which is a Hilbert space per definition. If we can show that there exists a constant ¢ such
that

f(v):/ﬂfvdxchvHA YveV

then f(.) is a continuous linear functional on V. We will prove this later. In this case, the
Riesz representation theorem tells that there exists an unique u € V' such that

A(u,v) = f(v).

This shows that the weak form has a unique solution in V.
Next, take the finite dimensional (= closed) finite element subspace V;, C V. The finite
element solution wu, € Vj, was defined by

A(up, vy) = f(vn) Vop € Vi,

This means
A(u — up,vp) = A(u,vp) — Alup,vp) = fop) — flop) =0

uy, is the projection of u onto Vj, i.e.,
Ju—uplla < [lu—vnlla Vo€V

The error u — uy, is orthogonal to V.

2.5 Coercive variational problems

In this chapter we discuss variational problems posed in Hilbert spaces. Let V be a Hilbert
space, and let A(-,-) : V' x V — R be a bilinear form which is

e coercive (also known as elliptic)

Au,u) > aq||ull3 VuelV, (2.2)

e and continuous
A(u,v) < agllully |lvlly  Vu,v €V, (2.3)



18 CHAPTER 2. THE ABSTRACT THEORY

with bounds «; and ay in R*. It is not necessarily symmetric. Let f(.) : V — R be a
continuous linear form on V| i.e.,

f) < I fllv+llvllv-
We are posing the variational problem: find u € V' such that
A(u,v) = f(v) VoeV.
Example 26. Diffusion-reaction equation:

Consider the PDE
—div(a(x)Vu) + c(z)u = f in 0,

with Neumann boundary conditions. Let V' be the Hilbert space generated by the inner
product (u,v)y := (u,v)r, + (Vu, Vv)r,. The variational formulation of the PDE involves
the bilinear form

Au,v) = /Q(a(x)Vu) -Vu da:+/Qc(:U)uv dx.

Assume that the coefficients a(z) and c(x) fulfill a(x) € R¥? a(x) symmetric and \; <
Amin(@(2)) < Apax(a(z)) < A2, and ¢(z) such that 1 < ¢(z) < 7, almost everywhere. Then
A(-,-) is coercive with constant a; = min{\;,v1} and as = max{As, 72 }.

Example 27. Diffusion-convection-reaction equation:
The partial differential equation
—Au+b-Vu+u=f in

with Dirichlet boundary conditions © = 0 on 02 leads to the bilinear form
Alu,v) = /Vqudx—i— /b-Vuvd:l:—i— /uvdx.

If divb < 0, what is an important case arising from incompressible flow fields (div b = 0),
then A(-,-) is coercive and continuous w.r.t. the same norm as above.

Instead of the linear form f(-), we will often write f € V*. The evaluation is written
as the duality product

<f’ U>V*><V = f(U)

Lemma 28. A continuous bilinear form A(-,-) : V. x V — R induces a continuous linear
operator AV — V* via

(Au,v) = A(u,v) Yu,veV.

The operator norm ||Allv_v+ is bounded by the continuity bound ay of A(-,-).
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Proof: For every u € V', A(u,-) is a bounded linear form on V' with norm

Alu,v aollu v
1A, Yy = sup A8 < g, ellelv il _ oy
Tl = ST ol

Thus, we can define the operator A : u € V. — A(u,-) € V*. It is linear, and its operator
norm is bounded by

Aulli« Au,v *
IAlly—y- = SUPM = sup sup m
wev lullv wevev lullv lv]lv
A
= ey A aollylelly

u€V veV ||UHV||U||V ueV veV HUHVHUHV B

O

Using this notation, we can write the variational problem as operator equation: find
u € V such that
Au=f (in V™).

Theorem 29 (Banach’s contraction mapping theorem). Given a Banach space V and a
mapping T : V — V', satisfying the Lipschitz condition

[T(v1) = T(v2)|| < Llvr — w2l Vv, €V
for a fixzed L € [0,1). Then there exists a unique u € V' such that
u="T(u),

i.e. the mapping T has a unique fized point u. The iteration u* €V given, compute

converges to u with convergence rate L:
lu = w*H < Lilu - u*|

Theorem 30 (Lax Milgram). Given a Hilbert space V', a coercive and continuous bilinear
form A(-,-), and a continuous linear form f(.). Then there exists a unique u € V' solving

A(u,v) = f(v) YoeV.

There holds
ully < it f]lv- (2.4)

Proof: Start from the operator equation Au = f. Let Jy : V* — V be the Riesz
isomorphism defined by

(Jvg,v)v =gv) VveV, VgeV™
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Then the operator equation is equivalent to
JvA’LL = Jvf (m V),
and to the fixed point equation (with some 0 # 7 € R chosen below)
u=u—T1Jy(Au— f). (2.5)
We will verify that
T(w):=v—1Jy(Av — f)
is a contraction mapping, i.e., ||T'(v1) =T (v2)||y < L||vy —ve||y with some Lipschitz constant
L e€[0,1). Let vy,v3 € V, and set v = v; — vg. Then
1T (v1) = T() 7 = [{vr = rdv(Avy = )} = {v2 = 7Jv (Ava = )}
= |lv—1JvAv|3
= loll} — 2r(vAv, )y + 72 v Avl
[v]I, = 27 {Av, v) + 7°[| Av][T.
0]} — 27 A(v, v) + 7| Av|[.

Il = 2raajvlly, + 7*alvl}

IA I

(1 — 2701 + 7203)||lv1 — vall}
Now, we choose 7 = ay /a3, and obtain a Lipschitz constant
L>=1-a3/a5€]0,1).

Banach’s contraction mapping theorem state that (2.5) has a unique fixed point. Finally,
we obtain the bound (2.4) from

lulli < o' Alu,u) = a7 f(u) < ar'||f]

Vi U||v7

and dividing by one factor ||u]|. O

2.5.1 Approximation of coercive variational problems

Now, let V}, be a closed subspace of V. We compute the approximation u; € V} by the
Galerkin method
A(uh,vh) = f(Uh) Vvh € Vh. (26)

This variational problem is uniquely solvable by Lax-Milgram, since, (V}, ||.||v) is a Hilbert

space, and continuity and coercivity on V}, are inherited from the original problem on V.
The next theorem says, that the solution defined by the Galerkin method is, up to a

constant factor, as good as the best possible approximation in the finite dimensional space.

Theorem 31 (Cea). The approzimation error of the Galerkin method is quasi optimal

lu = unlly < az/an inf flu —vplly
veVy,
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Proof: A fundamental property is the Galerkin orthogonality
A(u — up, wp,) = A(u, wy) — Aup, wp) = f(wy) — f(wp) =0 Yuw, € V.
Now, pick an arbitrary v, € V},, and bound

Hu—uhH%, ozflA(u—uh,u—uh)

ay P A(u — up,u— vy) + oy P AU — up, v — up)
evy
< /oy flu —upv|lu —vnllv.

Divide one factor ||u — uy]|. Since v, € V}, was arbitrary, the estimation holds true also for
the infimum in V},. O

If A(-,-) is additionally symmetric, then it is an inner product. In this case, the coer-
civity and continuity properties are equivalent to to

arflulli < A(w,u) < asflully,  YueV.

The generated norm ||.|[4 is an equivalent norm to ||.||y. In the symmetric case, we can
use the orthogonal projection with respect to (.,.)4 to improve the bounds to

lu —unlli < aptflu—unlly < ot inf flu— ol < az/onllu —vally.
v EVh
The factor in the quasi-optimality estimate is now the square root of the general, non-
symmetric case.

2.6 Inf-sup stable variational problems

The coercivity condition is by no means a necessary condition for a stable solvable system.
A simple, stable problem with non-coercive bilinear form is to choose V = R?, and the

bilinear form B(u,v) = uyv; —uyve. The solution of B(u,v) = fTvisu; = f; and ug = — fo.
We will follow the convention to call coercive bilinear forms A(-,-), and the more general
ones B(-, ).

Let V and W be Hilbert spaces, and B(+,-) : V' x W — R be a continuous bilinear form
with bound
B(u,v) < Bollullv[vlw  VueV, VveW. (2.7)

The general condition is the inf-sup condition
B
inf sup _Blwv) > . (2.8)

o2 2 Tl Tollw =
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Define the linear operator B : V. — W* by (Bu, V). = B(u,v). The inf-sup
condition can be reformulated as

(Bu,v)
sup
vew [|vllw

261||u||v, YueV

and, using the definition of the dual norm,
| Bullw+ = Bullullv. (2.9)
We immediately obtain that B is one to one, since
Bu=0=u=0

Lemma 32. Assume that the continuous bilinear form B(-,-) fulfills the inf-sup condition
(2.8). Then the according operator B has closed range.

Proof: Let Bu"™ be a Cauchy sequence in W*. From (2.9) we conclude that also u™ is
Cauchy in V. Since V is complete, u, converges to some u € V. By continuity of B, the
sequence Bu™ converges to Bu € W*. a

The inf-sup condition (2.8) does not imply that B is onto W*. To insure that, we can
pose an inf-sup condition the other way around:

B
inf sup - DY) S g0 (2.10)
vy uEV Jullv llv]lw
u#0

It will be sufficient to state the weaker condition

B
aup B0)

g;g ||U||v ||U||W

>0  VYveW (2.11)

Theorem 33. Assume that the continuous bilinear form B(-,-) fulfills the inf-sup condition
(2.8) and condition (2.11). Then, the variational problem: find uw € V' such that

B(u,v) = f(v) VoeW (2.12)
has a unique solution. The solution depends continuously on the right hand side:

lullv < 87 fllw-

Proof: We have to show that the range R(B) = W*. The Hilbert space W* can be split
into the orthogonal, closed subspaces

W* = R(B) ® R(B)™*.
Assume that there exists some 0 # g € R(B)*. This means that

(Bu,g)w+ =0  YuelV.
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Let v, € W be the Riesz representation of g, i.e., (v, w)y = g(w) for all w € W. This v,
is in contradiction to the assumption (2.11)

sup B(u,vg) _ sup (Bu, g)w+ _ 0
wev  |lullv wev  |Jully
Thus, R(B)* = {0} and R(B) = W™, 0

Example 34. A coercive bilinear form is inf-sup stable.
Example 35. A complex symmetric variational problem:
Consider the complex valued PDE

—Au +u = f,

with Dirichlet boundary conditions, f € Ly, and ¢ = y/—1. The weak form for the real
system u = (u,,u;) € V2 is

(VUT, VUT)LQ + (ui7 v'r)Lz - (f7 U’r‘) vvr eV
(Uravi)Lg — (VUZ, VU@')LQ = —<f, Ui) \V/UZ‘ € Vv

We can add up both lines, and define the large bilinear form B(-,-) : V2 x V? — R by
B((ur, w;), (v, v5)) = (Vuy, Vo) + (ui,vr) + (ur, v) — (Vuyg, Vo)

(2.13)

With respect to the norm [[v]ly = (||v||2, + [|Vv[%,)"/?, the bilinear form is continuous, and
fulfills the inf-sup conditions (exercises !) Thus, the variational formulation: find u € V?
such that

B(u,v) = (f,v.) — (f, ) Vo e V?

is stable solvable.

2.6.1 Approximation of inf-sup stable variational problems

Again, to approximate (2.12), we pick finite dimensional subspaces V;, C V and W;, C W,
and pose the finite dimensional variational problem: find u; € V}, such that

B(uh,vh) = f(Uh) VU}L c Wh.

But now, in contrast to the coercive case, the solvability of the finite dimensional equation
does not follow from the solvability conditions of the original problem on V x W. E.g.,
take the example in R? above, and choose the subspaces V,, = W), = span{(1,1)}.

We have to pose an extra inf-sup condition for the discrete problem:

. B(Uh,'Uh)
inf sup ——FF———
up €Vp vy EWp ||uh||V ||Uh||W
vy #0

wp, #0

> Bin- (2.14)

On a finite dimensional space, one to one is equivalent to onto, and we can skip the second
condition.
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Theorem 36. Assume that B(-,-) is continuous with bound (33, and B(-,-) fulfills the
discrete inf-sup condition with bound 31. Then there holds the quasi-optimal error estimate

Ju—un|l < (1+B2/B1) inf |lu— vl (2.15)
v EVE

Proof: Again, there holds the Galerkin orthogonality B(u,wy,) = B(up,wy,) for all wy, € Vj,.
Again, choose an arbitrary v, € Vj:

lu —wunlly < flu—wnlly + [lon — unlly
B(vp, — up, wy)

< lu—wallv + 85, sup
wp EWY, ||U}h||v

B<Uh —u, U)h)

lw—vnllv + By, sup
wp €W ”whHV

[w —vplly + B sup Ballvn — ullv [lwnllw
wp €W, l|wn |lw

= (14 B2/Bw)llw — vallv.

IN



Chapter 3

Sobolev Spaces

In this section, we introduce the concept of generalized derivatives, we define families of
normed function spaces, and prove inequalities between them. Let €2 be an open subset of
R?, either bounded or unbounded.

3.1 Generalized derivatives

Let a = (v, ..., aq) € N be a multi-index, || = >~ «y, and define the classical differential
operator for functions in C*°(2)

a1\ a \™
D=2} ()
() (o)

For a function u € C(Q), the support is defined as
supp{u} := {z € Q : u(z) # 0}.

This is a compact set if and only if it is bounded. We say u has compact support in €2, if
suppu C Q. If Q is a bounded domain, then u has compact support in €2 if and only if u
vanishes in a neighbourhood of 0).

The space of smooth functions with compact support is denoted as
D(Q) :=CP(Q) := {u € C™(Q) : u has compact support in 2}. (3.1)

For a smooth function u € Cl°/(Q), there holds the formula of integration by parts
/ Dupdx = (—1)l° / uD%pdx Vo € D(Q). (3.2)
Q Q

The Ls inner product with a function u in C'(£2) defines the linear functional on D

ulg) = (1) pp 1= [ upda.

Q

25
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We call these functionals in D" distributions. When u is a function, we identify it with
the generated distribution. The formula (3.2) is valid for functions u € C*. The strong
regularity is needed only on the left hand side. Thus, we use the less demanding right hand
side to extend the definition of differentiation for distributions:

Definition 37. For u € D', we define g € D' to be the generalized derivative Dju of u by

<gv ‘P>D/><D = (_1)|a| <u7 Da@)pfxp VoeD

If w e C% then Dy coincides with D®.
The function space of locally integrable functions on €2 is called

LY(Q) = {u : ug € Li(K) V compact K C Q}.

It contains functions which can behave very badly near 9Q. E.g., e’ is in L. (0,1). If Q
is unbounded, then the constant function 1 is in L€, but not in L.

Definition 38. For u € L', we call g the weak derivative D%u, if g € L satisfies

/Qg(x)go(x) dr = (—1) / u(x)D%p(z) dz VeoeD.

Q

The weak derivative is more general than the classical derivative, but more restrictive
than the generalized derivative.

Example 39. Let Q = (—1,1) and
u(z) = 14+ z <0
1=z x>0
1 <0
g(x):{_l :)3>0}

is the first generalized derivative D; of w, which is also a weak deriwative. The second
generalized derivative h is

Then,

(hyp) = =2p(0)  VpeD
It is not a weak derivative.

In the following, we will focus on weak derivatives. Unless it is essential we will skip
the sub-scripts w and g.



3.2. SOBOLEV SPACES 27

3.2 Sobolev spaces

For k € Ny and 1 < p < 0o, we define the Sobolev norms
1/p
lullwsoy == D ID%l, |
|a|<k

for k € Ny we set
[ullwe @) == fg@g”DauHLm-
In both cases, we define the Sobolev spaces via
W) = {u€ L - Jullwg < oo)

In the previous chapter we have seen the importance of complete spaces. This is the
case for Sobolev spaces:
Theorem 40. The Sobolev space W (Q) is a Banach space.

Proof: Let vj be a Cauchy sequence with respect to || - ||yx. This implies that D%v; is a
Cauchy sequence in L, and thus converges to some v in ||.||,.

We verify that D*v; — v® implies [, D*vjpdz — [, v*¢dz for all ¢ € D. Let K be
the compact support of ¢. There holds

/(Davj —vY)pdr = /(D%j —vY)pdx
0 K

1 Dvj — v*|| L, () [|¢]] Lo

<
< 1D = ol Il e — O

Finally, we have to check that v® is the weak derivative of v:

/U‘Qp de = lim [ D%j;pdx

Jj—00 (o)

= lim (—1)"'/ij0‘90de
Q

j—00
= (—1)a/vDag0da:.
0
(|

An alternative definition of Sobolev spaces were to take the closure of smooth functions
in the domain, i.e.,

W = 1C=(Q) : [ s < o0} 4.
A third one is to take continuously differentiable functions up to the boundary
— —— =Ml
k. (oo Wp
Wy = C0>=(%Q) .

Under moderate restrictions, these definitions lead to the same spaces:
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Theorem 41. Let 1 < p < oco. Then sz’ =W}

Definition 42. The domain Q) has a Lipschitz boundary, 0F), if there exists a collection
of open sets O;, a positive parameter £, an integer N and a finite number L, such that for
all x € 99 the ball of radius € centered at x is contained in some O;, no more than N of
the sets O; intersect non-trivially, and each part of the boundary O; N2 is a graph of a
Lipschitz function p; : R — R with Lipschitz norm bounded by L.

Theorem 43. Assume that Q has a Lipschitz boundary, and let 1 < p < oo. Then
Wk =Wk,
p p

The case W is special, it is a Hilbert space. We denote it by
H*(Q) == W5 (9Q).

The inner product is
(u, v)gr := Z (D%, D)y,

o] <k

In the following, we will prove most theorems for the Hilbert spaces H*, and state the
general results for sz.

3.3 Trace theorems and their applications

We consider boundary values of functions in Sobolev spaces. Clearly, this is not well defined
for H° = L,. But, as we will see, in H' and higher order Sobolev spaces, it makes sense
to talk about u|sg. The definition of traces is essential to formulate boundary conditions
of PDEs in weak form.

We start in one dimension. Let u € C([0, h]) with some h > 0. Then, we can bound

u(0) = (1 - %) U(T)|zm0 = — /Oh {(1 - %) u(x)}/ dx
= /h %u(z) + <1 - %) u'(r) dx

Lo

~ h_1/2||U||L2(0,h) + h1/2||ul||L2(07h)‘

0
1
h

X
Julle. + |1 = 7]

/|| 2,
Lo

This estimate includes the scaling with the interval length h. If we are not interested in the
scaling, we apply Cauchy-Schwarz in R?, and combine the L, norm and the H! semi-norm
|||z, to the full H! norm and obtain

[u(0)] < VATYZ + hl/z\/llulli + W7, = ¢ llulla

Next, we extend the trace operator to the whole Sobolev space H*:
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Theorem 44. There is a well defined and continuous trace operator
tr: H'((0,h)) — R
whose restriction to C'([0, h]) coincides with
u — u(0).

Proof: Use that C*([0,%]) is dense in H'(0, k). Take a sequence u; in C'*([0, h]) con-
verging to u in H'-norm. The values u;(0) are Cauchy, and thus converge to an ug. The
limit is independent of the choice of the sequence u;. This allows to define tru := ug. O

Now, we extend this 1D result to domains in more dimensions. Let €2 be bounded, 0f2
be Lipschitz, and consists of M pieces I'; of smoothness C*.

We can construct the following covering of a neighbourhood of 92 in Q: Let @ = (0,1)2.
For 1 <i < M, let s; € C'(Q,Q) be invertible and such that |[s]|, < ¢, [|(s))" [z, < e,
and dets; > 0. The domains S; := s;(Q)) are such that s;((0,1) x {0}) = I';, and the
parameterizations match on s;({0,1} x (0,1)).

Theorem 45. There exists a well defined and continuous operator
tr: H'(Q) — Ly(09)
which coincides with u|aq for u € C1(Q).
Proof: Again, we prove that
tr: C1(Q) — Ly(09) : u — ulpq

is a bounded operator w.r.t. the norms ||.||z: and L, and conclude by density. We use
the partitioning of 02 into the pieces I';, and transform to the simple square domain
Q = (0,1)%. Define the functions u; on @ = (0,1)? as

() = u(si(7))

We transfer the Ly norm to the simple domain:

M
lerul2,om = / u(z)? de
=1 i

- fj [ utsicop

1
-~ 2
DY /0 (6,02 de

(95@»
23

(6,0)‘ dg

IN
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To transform the H'-norm, we differentiate with respect to Z by applying the chain rule

dﬂz - du ~ dSi -
() = () 5 2,

T

. du :
Solving for = is

du, . di;,_ (ds\T .
R =F@ (F) @
The bounds onto s" and (s')~! imply that
c | Veu| < |Vt < c| Vel

We start from the right hand side of the stated estimate:

M
e = Y [ VauPdo
=1 i
M
S / IVu(s:(2)) 2 det () di
i=1 7 Q

M
ch/Nmej
i=1 7@

We got a lower bound for det(s’) = (det(s’)™!)~! from the upper bound for (s’)~'.
It remains to prove the trace estimate on (). Here, we apply the previous one dimen-

sional result
1 2
ru<f,0>\2sf:/0 {u(é,nm(%i’”)) }dn vEe (0.1)

The result follows from integrating over &

/01 u(€,0)[Pde < C/Ol/ol{u(f,n)2+ (%ﬁ;n))z} dn d¢

< cllulltng)-

O

Considering the trace operator from H'(Q) to Ly(99) is not sharp with respect to the
norms. We will improve the embedding later.

By means of the trace operator we can define the sub-space

HY Q) ={uec H(Q):tru=0}
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It is a true sub-space, since u = 1 does belong to H', but not to Hj}. It is a closed sub-space,
since it is the kernel of a continuous operator.

By means of the trace inequality, one verifies that the linear functional

g(v) := / g tr vdx
I'n
is bounded on H!.

Integration by parts

The definition of the trace allows us to perform integration by parts in H':

/prdx——/udiv gpda:—i—/ trup-ndr Ve [CHQ)
Q Q o9

The definition of the weak derivative (e.g. the weak gradient) looks similar. It allows only
test functions ¢ with compact support in 2, i.e., having zero boundary values. Only by
choosing a normed space, for which the trace operator is well defined, we can state and
prove integration by parts. Again, the short proof is based on the density of C*(Q) in H'.

Sobolev spaces over sub-domains

Let © consist of M Lipschitz-continuous sub-domains €2; such that

o ()= Uij\ilﬁi

e O,NN =0 ifi#j
The interfaces are v;; = Qn ﬁj. The outer normal vector of €); is n;.
Theorem 46. Let u € Lo(S2) such that

o u; :=ulg, 1s in H'(Q;), and g; = Vu; is its weak gradient

e the traces on common interfaces coincide:

oy, wp = try,; uy

Then u belongs to HY(Y). Its weak gradient g = Vu fulfills g

Q; = Gi-

Proof: We have to verify that g € Ly(2)4, defined by glg, = ¢, is the weak gradient of
u, i.e.,

/g-gpdx:—/udivgocm Ve [C’SO(Q)]d
Q Q
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We are using Green’s formula on the sub-domains

M M
/g-(pdm Z/ gi-goda::Z/ Vu; - pdx
Q i=1 /S i=1 /S
M
= Z—/ uidivgpd:p+/ tru; o - n;ds
i=1 Q; o9

= —/udivgpd.ﬂ:+2/ {tr, wig-n +try, u;o-n;} ds
0 Yij

Yij ¢
= —/udivgpcm
Q

We have used that ¢ = 0 on 012, and n;, = —n; on ;. O

Applications of this theorem are (conforming nodal) finite element spaces. The parti-
tioning 2; is the mesh. On each sub-domain, i.e., on each element T, the functions are
polynomials and thus in H'(T). The finite element functions are constructed to be contin-

uous, i.e., the traces match on the interfaces. Thus, the finite element space is a sub-space
of H!.

Extension operators

Some estimates are elementary to verify on simple domains such as squares ). One tech-
nique to transfer these results to general domains is to extend a function v € H'(Q) onto
a larger square (), apply the result for the square, and restrict the result onto the general
domain €2. This is now the motivation to study extension operators.

We construct a non-overlapping covering {S;} of a neighbourhood of 9 on both sides.
Let 092 = UT; consist of smooth parts. Let s : (0,1) x (=1,1) — S; : (§,7) — = be an
invertible function such that

5:((0,1) x (0,1)) = S5;NQ

s, x o)) = Ti
si((0,1) x (=1,0)) = S;\Q

Assume that ||%]|;_ and || (%)_1 ||z, are bounded.
This defines an invertible mapping * — Z(x) from the inside to the outside by

i(x) = si(§(x), —n(x)).
The mapping preserve the boundary I';. The transformations s; should be such that + —
is consistent at the interfaces between S; and S;.
With the flipping operator f : (£,n7) — (£, —n), the mapping is the composite z(z) =
si(f(s;')). From that, we obtain the bound
di ds | ||/ ds\ "
dx dx dx

S ‘
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Define the domain Q = QU S U...USy.
We define the extension operator by

(Eu)(z) = u(x) Ve Us,

(Bu)(x) = u(z) VzeQ (3:3)

Theorem 47. The extension operator E : HY(Q) — HY(Q) is well defined and bounded
with respect to the norms
[Eullp, @ < cllullry@

and
IVEull 1, < clVullLy@

Proof: Let u € C*(Q). First, we prove the estimates for the individual pieces S;:

0
/ Bu(2)? di = / u(z)? det (—‘”) dz < el|ull2,s.00)
S:\Q 5:N0 dx '

For the derivatives we use
dEuw(z)  du(x(2)) dudzx

di di  drdi

Since % and (
€T

. dw)—l __ dz

oxr = 2% gre bounded, one obtains
dz dx )

VaEu(i)| ~ [Vau(z)],

/ |V:Eu|*dr < c/ |Vul? dx
Sz\Q S; U

These estimates prove that F is a bounded operator into H' on the sub-domains S; \ €.
The construction was such that for u € C*(2), the extension Eu is continuous across 9,

and also across the individual S;. By Theorem 46, Eu belongs to H'(f2), and

and

M
IVEull? 0 = IVullg + Y IVullsaa < el Vaull? o)
i=1

By density, we get the result for H'(Q). Let u; € C'(2) — w, than wu; is Cauchy, Fu; is

Cauchy in H'(Q), and thus converges to u € H'(Q).

The extension of functions from Hj () onto larger domains is trivial: Extension by 0
is a bounded operator. One can extend functions from H'(f2) into H} (), and further, to
an arbitrary domain by extension by 0.

For & = s;(&,—n), &,m € (0,1)%, define the extension
Fyu(@) = (1 - 1) u(z)

This extension vanishes at 9€)
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Theorem 48. The extension Ey is an extension from HY(Q) to HY(Q). It is bounded
w.r.t.

1 Eoull gy < ellullm@

Proof: Exercises
In this case, it is not possible to bound the gradient term only by gradients. To see this,
take the constant function on 2. The gradient vanishes, but the extension is not constant.

3.3.1 The trace space H'/?

The trace operator is continuous from H'(Q) into Ly(99). But, not every g € Ly(09) is
a trace of some u € H*(Q2). We will motivate why the trace space is the fractional order
Sobolev space H/2(99).

We introduce a stronger space, such that the trace operator is still continuous, and
onto. Let V = H'(Q), and define the trace space as the range of the trace operator

W={tru:uec H(Q)}

with the norm
el = inf Jollv. (34)

tr u=tr v

This is indeed a norm on W. The trace operator is continuous from V' — W with norm 1.

Lemma 49. The space (W, ||.||w) is a Banach space. For all g € W there exists anu € V
such that tr u= g and ||u|ly = ||g|lw

Proof: The kernel space Vy := {v : tr v = 0} is a closed sub-space of V. If tr u = tr v,
then z :=u — v € V. We can rewrite

|| tr u|lw = inf ||u—z|lv = ||u — Pyullv YueV
zeVp

Now, let g, = tr u,, € W be a Cauchy sequence. This does not imply that wu, is Cauchy,
but Py u, is Cauchy in V:

HPVOl (un — um)llv = [ tr (un — wm)[w-

The Py uy, converge to some u € Vit and g, converge to g := tr w. O
The minimizer in (3.4) fulfills

tru=g and (u,v)y =0 Yo el
This means that u is the solution of the weak form of the Dirichlet problem

—Aut+u = 0 in €2
u = g on 0f2.
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To give an explicit characterization of the norm |.||y, we introduce Hilbert space
interpolation:

Let V; C Vy be two Hilbert spaces, such that Vj is dense in V{, and the embedding
operator id : Vi — Vj is compact. We can pose the eigen-value problem: Find z € Vi,
A € R such that

(z,0)y, = Az, 0)y, VveV.

There exists a sequence of eigen-pairs (zp, Ax) such that A\, — oco. The z; form an or-
thonormal basis in Vj, and an orthogonal basis in V.

The converse is also true. If z; is a basis for 1}, and the eigenvalues A\, — 0o, then the
embedding V; C V} is compact.

Given u € Vj, it can be expanded in the orthonormal eigen-vector basis:
U= Z Uk 2k with wr = (u, 21)v,

The ||.|lv, - norm of w is

|ull}, = Zukzkazulzl = ww(zr, 2, = Y up
k.l

k

If w € Vi, then

||u||%/1 = (Z Uka,ZulZl) Zukul Zk,Zl Zukul)\k Zk,Zl Zuk)\k
k l

The sub-space space V; consists of all u = ) w2, such that ), )\kui is finite. This suggests
the definition of the interpolation norm

%/5 = Z(uv Zk)%/o o

k

[

and the interpolation space Vs = [Vp, V)]s as
Ve =A{u€e Vo |ully, <oo}.

We have been fast with using infinite sums. To make everything precise, one first works
with finite dimensional sub-spaces {u : 3n € N and v = )_}_, ux2;}, and takes the closure.

In our case, we apply Hilbert space interpolation to H*(0,1) C L(0,1). The eigen-value
problem is to find 2, € H' and )\, € R such that

(Zk7v)L2 + (lew U/)Lz = Ak (Zk’a U)Lz Ve Hl
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By definition of the weak derivative, there holds (z},) = (1 — \x)2s, ie., 28 € H?. Since
H? C C°, there holds also z € C?, and a weak solution is also a solution of the strong form

2k — 20 = Mz on (0,1)

2, (0)=2,(1) = 0 (3.5)

All solutions, normalized to ||zx||r, = 1, are
20 = 1 )\0 =1
and, for kK € N,
zi(z) = V2 cos(kmz) A = 1+ k*n?.
Indeed, expanding u € Ly in the cos-basis u = ug + > oo, ugv/2 cos(krx), one has

[e.e]

HUH%Q = Z(u7 Zk)%Q

k=0

and
(o0}

lullf = D (1 +k*7%) (u, 201,

k=0

Differentiation adds a factor k7. Hilbert space interpolation allows to define the fractional
order Sobolev norm (s € (0,1))

||UH§13(01 Z 1+ k%)% (u Zk)%g
k=0

We consider the trace tr|g of H'((0,1)%) onto one edge £ = (0,1) x {0}. For g €
Wg = tr H'((0,1)?), the norm ||g||w is defined by

lgllw = [lug]l -

Here, u, solves the Dirichlet problem u,|p = g, and (uy,v)gn = 0 Vo € H' such that
trpv =0.
Since W C Ly(FE), we can expand g in the Ly-orthonormal cosine basis zj

1) =3 guala)

The Dirichlet problems for the z;,

—Auk +ur = 0 in
U, = 2 on K
% = 0 on 0N\ E,
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have the explicit solution
UO(x7 y) =1

and (1-y) (1-y)
km(l—y —km(l1—y
ug(x,y) = ﬂcos(lmrm)e re

€k7r + e—kﬂ'

The asymptotic is
lurllZ, =~ (k+ 1)~

and
V|7, ~ k

Furthermore, the w;, are orthogonal in (.,.)g1. Thus uy =) g,ui has the norm

luglFn =D gallunlli =Y ga(l + k).

This norm is equivalent to H'/?(E).
We have proven that the trace space onto one edge is the interpolation space H'/?(E).
This is also true for general domains (Lipschitz, with piecewise smooth boundary).

3.4 Equivalent norms on H'! and on sub-spaces
The intention is to formulate 2" order variational problems in the Hilbert space H'. We
want to apply the Lax-Milgram theory for continuous and coercive bilinear forms A(.,.).
We present techniques to prove coercivity.

The idea is the following. In the norm

lollzn = IollZ, + [VollL,,

the ||V - || L,-semi-norm is the dominating part up to the constant functions. The Ly norm
is necessary to obtain a norm. We want to replace the Ly norm by some different term
(e.g., the Ly-norm on a part of €2, or the Lo-norm on 0f2), and want to obtain an equivalent
norm.

We formulate an abstract theorem relating a norm |.||y to a semi-norm ||.||4. An
equivalent theorem was proven by Tartar.

Theorem 50 (Tartar). Let (V,(.,.)v) and (W, (.,.)w) be Hilbert spaces, such that the
embedding id : V. — W is compact. Let A(.,.) be a non-negative, symmetric and V-
continuous bilinear form with kernel Vo = {v : A(v,v) = 0}. Assume that

Iy = ol +lvli YoeV (3.6)

Then there holds
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1. The kernel Vi is finite dimensional. On the factor space V/Vy, A(.,.) is an equivalent
norm to the quotient norm

|lulla >~ inf ||u— vy VueV (3.7)
veVY

2. Let B(.,.) be a continuous, non-negative, symmetric bilinear form on V such that
A(.,.) + B(.,.) is an inner product. Then there holds

Iy = old +llolls - YveV

3. Let Vi C 'V be a closed sub-space such that Vo N'Vy = {0}. Then there holds

[ollv = lvlla - Yveh

Proof: 1. Assume that V; is not finite dimensional. Then there exists an (., .)y-orthonormal
sequence up € Vy. Since the embedding id : V' — W is compact, it has a sub-sequence
converging in ||.||w. But, since

2 = [|ux — will = [l — willy + llue — wlla = [Jux — wlly

for k # [, uy is not Cauchy in W. This is a contradiction to an infinite dimensional kernel
space V. We prove the equivalence (3.7). To bound the left hand side by the right hand
side, we use that V = ker A, and norm equivalence (3.6):

[ulla = inf [lu—v[a < inf |lu—ovlly
veVD veVy

The quotient norm is equal to [|Py1uf. We have to prove that [Py rully < [|[Pyrulla for
all u € V. This follows after proving ||ully < |lul|4 for all u € V5. Assume that this is not
true. Le., there exists a V-orthogonal sequence (uy) such that ||ug||a < k71|ugllv. Extract
a sub-sequence converging in ||.||w, and call it u; again. From the norm equivalence (3.6)
there follows

2 = |lue — wlly = llue — wllw + |lug — wlla — 0

2. On Vg, ||.||s is a norm. Since Vj is finite dimensional, it is equivalent to |||y, say with
bounds

allvly <l < ellli,  YveV

From 1. we know that

csl[olli < lolld < callollf Vo e Vg



3.4. EQUIVALENT NORMS ON H' AND ON SUB-SPACES 39

Now, we bound

[l = lPwully + [1Pypully

IA

1
oI Do 5 + I[Py I

U_PVOLU

IA

2
= (Ihull + call Pyully ) + 1 Pl
C1

- =z S (122 P
2l + 2 (1422 ) IRl
<l + fuly

3. Define B(u,v) = (Pyu, Py, )v. Then A(.,.) + B(.,.) is an inner product: A(u, u)+
B(u,u) = 0 implies that v € V; and v € Vi, thus v = {0}. From 2. there follows that
A(.,.)+ B(.,.) is equivalent to (.,.)y. The result follows from reducing the equivalence to
Vi.

O

We want to apply Tartar’s theorem to the case V.= H', W = Ly, and ||v||4 = || V]|,
The theorem requires that the embedding id : H' — L, is compact. This is indeed true
for bounded domains €2:

Theorem 51. The embedding of H* — H' for k > 1 is compact.

We sketch a proof for the embedding H' C L,. First, prove the compact embedding
H} Q) — Ly(Q) for a square @, w.l.o.g. set @ = (0,1)2. The eigen-value problem: Find
z € H}(Q) and X such that

(Z7U)L2 + (VZ, VU)LQ = )\(U, U)Lz Vv e H&(Q)

has eigen-vectors z;; = sin(kmx)sin(lry), and eigen-values 1 + k*m? + [?72 — oo. The
eigen-vectors are dense in Ly. Thus, the embedding is compact.

On a general domain 2 C Q, we can extend H'(2) into H}(Q), embed H}(Q) into
Ly(Q), and restrict Lo(Q) onto Lo(€2). This is the composite of two continuous and a
compact mapping, and thus is compact. O

The kernel Vj of the semi-norm ||Vo|| is the constant function.

Theorem 52 (Friedrichs inequality). Let I'p C 0 be of positive measure |I'p|. Let
Vp={ve HYQ): trr,v=0}. Then

[olle, 2 IVollL,  YveVp

Proof: The intersection Vy N Vp is trivial {0}. Thus, Theorem 50, 3. implies the
equivalence
[ll5 = Nlvllz, + IVvllz, = IVl ..
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Theorem 53 (Poincaré inequality). There holds

||U||§{1(Q) < ||VU||%2 + (/dex)2

Proof: B(u,v) := ([,udz)([,vdz) is a continuous bilinear form on H', and (Vu, Vv)+
B(u,v) is an inner product. Thus, Theorem 50, 2. implies the stated equivalence. O

e Let w C Q have positive measure |w| in R%. Then
lullfro) = IVOlz,0) + 0] L)

e Let v C 90 have positive measure || in R*!. Then
lullzr @) = IVOlZ, @) + 0]l L),

Theorem 54 (Bramble Hilbert lemma). Let U be some Hilbert space, and L : H* — U be
a continuous linear operator such that Lq = 0 for polynomials ¢ € P*~1. Then there holds

Lol < [l

Proof: The embedding H* — H*~! is compact. The V-continuous, symmetric and
non-negative bilinear form A(u,v) =3, ,=x(0%u, 0°v) has the kernel PP~ Decompose
|ull%, = llull3x1 + A(u,u). By Theorem 50, 1, there holds

Julla = inf flu ol
The same holds for the bilinear-form
Ay(u,v) := (Lu, Lv)y + A(u,v)

Thus
] 4y >~ inf fu—=vlge  YueV

Equalizing both implies that
(Lu, Lu)y < [lulll, = [luly  YueV,
i.e., the claim.

We will need point evaluation of functions in Sobolev spaces H®. This is possible, we
u € H? implies that u is continuous.

Theorem 55 (Sobolev’s embedding theorem). Let Q C R? with Lipschitz boundary. If
u € H® with s > d/2, then u € Lo, with

ullL = lullas

There is a function in C° within the Lo, equivalence class.



Chapter 4

The weak formulation of the Poisson
equation

We are now able to give a precise definition of the weak formulation of the Poisson problem
as introduced in Section 1.2, and analyze the existence and uniqueness of a weak solution.
Let Q be a bounded domain. Its boundary 0f) is decomposed as 02 = I'p UT'y UT'g
according to Dirichlet, Neumann and Robin boundary conditions.
Let

e up € HY2(I'p),
o f e LyQ),
o ge Ly(I'yUTR),
e o€ L (Ip),a>0.
Assume that there holds
(a) The Dirichlet part has positive measure |I'p| > 0,
(b) or the Robin term has positive contribution fFR adr > 0.

Define the Hilbert space
V= H'(Q),

the closed sub-space
Vo ={v:trr, v =0},

and the linear manifold
VD:{UEVZtrFD UZUD}.

Define the bilinear form A(.,.): V xV — R

A(u,v):/Vqudx—i-/ auv ds
Q Tr

41
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and the linear form

f(v):/vadx—l—/FNUFRgvdx.

Theorem 56. The weak formulation of the Poisson problem

Find v € Vp such that

A(u,v) = f(v) Yvely (4.1)

has a unique solution w.

Proof: The bilinear-form A(.,.) and the linear-form f(.) are continuous on V. Tartar’s
theorem of equivalent norms proves that A(.,.) is coercive on Vj.
Since up is in the closed range of trr,, there exists an up € Vp such that

tr 4p = up and lapllv = lupll gz,
Now, pose the problem: Find z € Vj such that
A(z,v) = f(v) — A(up,v) Yo e V.

The right hand side is the evaluation of the continuous linear form f(.) — A(up,.) on
Vo. Due to Lax-Milgram, there exists a unique solution z. Then, u := up + z solves (4.1).
The choice of up is not unique, but, the constructed w is unique. O

4.1 Shift theorems

Let us restrict to Dirichlet boundary conditions up = 0 on the whole boundary. The
variational problem: Find u € Vj such that

A(u,v) = f(v) Vv el

is well defined for all f € V{, and, due to Lax-Milgram there holds

ullvy < el fllvg

Vice versa, the bilinear-form defines the linear functional A(u,.) with norm

[A(u, )]

vg < cllullvg
This dual space is called H~:

H = [H(Q))
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Since H} C Lo, there is Ly C H'(Q2). All negative spaces are defined as H~%(Q) :=
[H§*(2), for s € RT. There holds

.HICHyCL,CH'CcH?*. ..

The solution operator of the weak formulation is smoothing twice. The statements of
shift theorem are that for s > 0, the solution operator maps also

f c H—l+s —SuE H1+5

with norm bounds
[ull s =N fll-1+s

In this case, we call the problem H'** - regular.
Theorem 57 (Shift theorem).
(a) Assume that 2 is convex. Then, the Dirichlet problem is H? reqular.
(b) Let s > 2. Assume that 0Q € C*. Then, the Dirichlet problem is H*®-regular.

We give a proof of (a) for the square (0, 7)? by Fourier series. Let
Vi = span{sin(kx)sin(ly) : 1 < k,l < N}
For an u = Z]k\{lzl ug sin(kx) sin(ly) € Vi, there holds

lullf = Nullz, +110:ullz, + 19yullz, + [102ullZ, + 0:.0,ullz, + |10;ull?
N

ST+ E+ P+ K+ B+ 1,

k=1
N

Z(k4 + l4)uilv

k=1

12

12

and, for f = —Au,

N N
= Aullz, = D (K + )Py = (K + 1)y,
k=1 k=1
Thus we have ||u|| g2 ~ ||Aul|L, = ||f||z, for u € Viy. The rest requires a closure argument:
There is {—Av : v € Vy} = Vi, and Vi is dense in Ls. O

Indeed, on non-smooth non-convex domains, the H2-regularity is not true. Take the
sector of the unit-disc

Q={(rcosg,rsing):0<r<1, 0<¢<w}
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with w € (m,27). Set § = m/w < 1. The function

u=(1—7r)rsin(of)

is in H}, and fulfills Au = —(43 + 4)rPsin(¢B) € Lo. Thus u is the solution of a Dirichlet
problem. But u ¢ H?.

On non-convex domains one can specify the regularity in terms of weighted Sobolev
spaces. Let € be a polygonal domain containing M vertices V;. Let w; be the interior angle
at V;. If the vertex belongs to a non-convex corner (w; > m), then choose some

m
ﬁiE(l—;,l)

Define
Bi

wx)= [[ -V
non-convex
Vertices V;

Theorem 58. If f is such that wf € Lo. Then f € H™', and the solution u of the
Dirichlet problem fulfills
lwD?ullz, < [Jwf|L,-



Chapter 5

Finite Element Method

Ciarlet’s definition of a finite element is:
Definition 59 (Finite element). A finite element is a triple (T, Vr,Wr), where
1. T is a bounded set
2. Vi is function space on T of finite dimension Ny
3. Up ={k ..., ]TVT} 15 a set of linearly independent functionals on V.
The nodal basis {¢} ... 3"} for Vi is the basis dual to ¥y, i.e.,
Vi (er) = 8y

Barycentric coordinates are useful to express the nodal basis functions.

Finite elements with point evaluation functionals are called Lagrange finite elements,
elements using also derivatives are called Hermite finite elements.

Usual function spaces on 7' C R? are

PP = span{z'y’ :0<i,0<j i+j<p}
Q" = span{z'y’ :0<i<p, 0<j<p}

Examples for finite elements are
e A linear line segment
e A quadratic line segment

e A Hermite line segment

A constant triangle

A linear triangle

A non-conforming triangle

45
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e A Morley triangle
e A Raviart-Thomas triangle

The local nodal interpolation operator defined for functions v € C™(T) is

Nr
Irv = Z V7 (v)eT
a=1

It is a projection. R
Two finite elements (7', Vi, ¥r) and (T, V3, U5) are called equivalent if there exists an
invertible function F' such that

~

° T:F(T)
o Vr={0oF1:0eVz}
° \I/T:{lﬁiT:VTHRIUHwZT(UOF)}

Two elements are called affine equivalent, if I' is an affine-linear function.

Lagrangian finite elements defined above are equivalent. The Hermite elements are not
equivalent.

Two finite elements are called interpolation equivalent if there holds

Ir(v)o F'=Is(vo F)
Lemma 60. Fquivalent elements are interpolation equivalent

The Hermite elements define above are also interpolation equivalent.
A regular triangulation 7 = {1} b Ty} of a domain € is the subdivision of a domain
(2 into closed triangles T; such that 0 = UT; and T; N T} is

e cither empty
e or an common edge of T; and T}
e or T; = Tj in the case 1 = j.

In a wider sense, a triangulation may consist of different element shapes such as segments,
triangles, quadrilaterals, tetrahedra, hexhedra, prisms, pyramids.

A finite element complex {(7', Vr, Ur)} is a set of finite elements defined on the geo-
metric elements of the triangulation 7.

It is convenient to construct finite element complexes such that all its finite elements
are affine equivalent to one reference finite element (T\, VT, ‘ilT) The transformation Fr is
such that T = Fp(T).

Examples: linear reference line segment on (0, 1).
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The finite element complex allows the definition of the global interpolation operator for
C™-smooth functions by

]TU\T = ]TUT vT S T
The finite element space is

Vr={v=I1rw:weC"(Q)}

We say that Vi has regularity r if Vo € C". If V7 # C°, the regularity is defined as —1.
Examples:

e The P! - triangle with vertex nodes leads to regularity 0.

e The P! - triangle with edge midpoint nodes leads to regularity —1.

e The P - triangle leads to regularity —1.

For smooth functions, functionals ¢, and 17 . sitting in the same location are equiv-
alent. The set of global functionals ¥ = {1, ...,%x} is the linearly independent set of
functionals containing all (equivalence classes of) local functionals.

The connectivity matrix Cp € RV*N7 is defined such that the local functionals are
derived from the global ones by

Ur(u) = Cr¥(u)
Examples in 1D and 2D

The nodal basis for the global finite element space is the basis in Vi dual to the global
functionals v}, i.e.,

wj(%‘) = 5ij
There holds

Nt
wilr = [T%':Z@D%(%)SO%
a=1

Nt
= > (Ch(pi)at
a=1
NT NT
= Z(Cffr@i)aﬁp% = Z CriaeT
a=1 a=1

5.1 Finite element system assembling

As a first step, we assume there are no Dirichlet boundary conditions. The finite element
problem is

Find u;, € Vr such that : A(up,vn) = f(vp) Vo, € Vr (5.1)
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The nodal basis and the dual functionals provides the one to one relation between RY and
VT:

N
RY sy« u, €V with up = Z Pill; and u; = V;(up).
=1

Using the nodal basis expansion of u;, in (5.1), and testing only with the set of basis
functions, one has

N
A(Zui%a%):f(%) Vj=1...N
i=1

With
Ay = A(%‘?S@j) and f.= f(SOj),

—J
one obtains the linear system of equations

Au=f

The preferred way to compute the matrix A and vector f is a sum over element contribu-
tions. The restrictions of the bilinear and linear form to the elements are

Ap(u,v) = / Vu-Vvdr + / auv ds
T oanT

and

fr(v) :/vadx—l—/agwgvds

Alu,v) = Z Ar(u,v) fv) = Z fr(v)

TeT TeT

Then

On each element, one defines the Ny X Ny element matrix and element vector in terms
of the local basis on T

Arap = Ar(eg, 95) fro=11(%a)

Then, the global matrix and the global vector are
A=) CrACy

TeT
and
= Z Crfy
TeT
Namely,

f,o= fle) =) frleilr) =Y 1 Criagf)

TeT TeT «

= Z Z CT,iafT(SO%> = Z Z CT,iaia

TeT « TeT «
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and

Ay = Y Alpilr,gilr) = Y AQ | Cria, Y Crjpeh)

TeT TeT o B
- Z Z Z CriaAr,asCr s
TeT o f

On the elements T, the integrands are smooth functions. Thus, numerical integration
rules can be applied.

In the case of Dirichlet boundary conditions, let vp C {1,..., N} correspond to the
vertices x; at the Dirichlet boundary, and v; = {1,... N} \ 7p.
We have the equations

1EYD S
Inserting u; = up(x;) for i € ~; results in the reduced system
D Ajui = fi = > Ajiup(xs)
i€y €YD

An alternative approach is to approximate Dirichlet boundary conditions by Robin b.c.,
% + au = aup, with large parameter «.

5.2 Finite element error analysis

Let u be the solution of the variational problem, and w;, its Galerkin approximation in the
finite element sub-space V},. Cea’s Lemma bounds the finite element error u — uy; by the
best approximation error

lu = unlly < € inf flu—osfly.

The constant factor C' is the ratio of the continuity bound and the coercivity bound of the
bilinear form A(.,.).

Provided that the solution w is sufficiently smooth, we can take the finite element
interpolant to bound the best approximation error:

inf [|[u—vpllv < ||lu— I7ullv
eV

In the following, we will bound the interpolation error.

Lemma 61. Let T and T' be d-dimensional domains related by the invertible affine linear

transformation Fr : T — T
Fr(z) = a+ Bz,



90 CHAPTER 5. FINITE ELEMENT METHOD

where a € R? and B is a reqular matriz in R¥?. Then there holds:

luo Frll,,g = (det B) ™2 |ul| Loer (5.2)

4 3(op)_i i 0 O WN\oPr By s .. Bys  (53)
amim...axil u T) = @xjm...aleu T J I N A .

Jm=1 n=1
w0 F sy = (det B)"2(IB™ [ul gmry (5.4)
Proof: Transformation of integrals, chain rule. O
We define the diameter of the element T
hr = diam T
A triangulation is called shape regular, if all its elements fulfill
T| = hi

with a “good” constant ~ 1. If one studies convergence, one considers families of triangu-
lations with decreasing element sizes hp. In that case, the family of triangulations is called
shape regular, if there is a common constant C' such that all elements of all triangulations
fulfill |T'| > ChA.

Lemma 62. Let Fr = a + Bx be the mapping from the reference triangle to the triangle
T. Let |T| = h%. Then there holds

|Br| =~ hr
IBF'| ~ hi!

The following lemma is the basis for the error estimate. This lemma is the main
application for the Bramble Hilbert lemma. Sometimes, it is called the Bramble Hilbert
lemma itself:

Lemma 63. Let (T, Vy, Vy) be a finite element such that the element space Vi contains
polynomials up to order P*. Then there holds

||U — ITUHHl S C|’U|Hm Yve Hm(T>
forallm>d/2, m>1, and m <k + 1.

Proof: First, we prove that id — I is a bounded operator from H™ to H':

lv—Irvllm < lwlm + 1 2ol = [ollm + 1 va(0)@allm

< ol + ) llpallala(v)]

< lvllzm
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The last step used that for H™, with m > d/2, point evaluation is continuous. Now, let
v € P¥(T). Since P* C Vy, and I7 is a projection on Vz, there holds v — Izv = 0. The
Bramble Hilbert Lemma applied for U = H! and L = id — Iy proves the result. O

To bound the finite element interpolation error, we will transform functions from the
elements T" to the reference element 1.

Theorem 64. Let T be a shape reqular triangulation of Q. Let Vr be a CY-reqular finite
element space such that all local spaces contain P'. Then there holds

1/2
v = I7v|| Ly = {Z h4T\U|H2(T)2} Yo e H*(Q)

TeT

|’U — I’]”Uﬁ_p(g) S C {Z h%w |'U|H2(T)2} Vo e HQ(Q)

TeT

Proof: We prove the H' estimate, the Ly one follows the same lines. The interpolation
error on each element is transformed to the interpolation error on one reference element:

v — ]’ﬂ’ﬁp(ﬂ) = Z |(id — ]T)UTﬁIl(T)
TeT

= ;;ﬁmtBTﬂugﬂwyud—]fwToFﬂi%ﬂ
S

= > (det By)|| By P (id — Iz)(vr o Fr)l[3
TeT

On the reference element 7 we apply the Bramble-Hilbert lemma. Then, we transform
back to the individual elements:

v = Irvfing) = Z(det Br)|| Bz ||*|vr o Frl} (7

TeT

< Y (det Br) |B'|| (det B7Y) |Br||* [or | ay
TeT

= Z h%HUTH?ﬁ(T)'
TeT

O

A triangulation is called quasi — uniform, is all elements are essentially of the same
size, i.e., there exists one global A such that

h~ hr VT eT.
On a quasi-uniform mesh, there hold the interpolation error estimates

lu = IrullL,@ =X 27 fulpe
]u — [TU|H1(Q) = h ‘u’Hz

We are interested in the rate of the error in terms of the mesh-size h.
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Theorem 65 (Finite element error estimate). Assume that
e the solution u of the weak bup is in H?,
o the triangulation T is quasi-uniform of mesh-size h,
o the element spaces contain P'.

Then, the finite element error is bounded by

llu — up|| g = bl g2

Error estimates in Ly-norm

The above theorem bounds the error in the Lo-norm of the function, and the Ly-norm of
the derivatives with the same rate in terms of h. This is obtained by the natural norm of
the variational formulation.

The interpolation error suggests a faster convergence in the weaker norm L,. Under
certain circumstances, the finite element error measured in Lo also decays faster. The
considered variational problem is

Findu eV : A(u,v) = f(v) YvelV.
We define the dual problem as
Find w e V : A(v,w) = f(v) VoeV.
In the case of a symmetric bilinear form, the primal and the dual problem coincide.
Theorem 66 (Aubin-Nitsche). Assume that
o the dual weak bup is H* reqular
o the triangulation T is quasi-uniform of mesh-size h,
e the element spaces contain P!.
Then, there holds the Lo-error estimate
lu = upll, = B [ulp
Proof: Solve the dual problem with the error u — u;, as right hand side:
Find w e V : A(v,w) = (u — up,v)p, YoelV.

Since the dual problem is H? regular, there holds w € H?, and ||w||gz = ||u — unl|L,-
Choose the test function v := u — uy to obtain the squared norm

A(u — up, w) = (U — Up, U — Up) L,y-
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Using the Galerkin orthogonality A(u — up,v,) = 0 for all v, € V},, we can insert I7w:
Ju—upl7, = A(u — up, w — I7w).
Next we use continuity of A(.,.) and the interpolation error estimates:
lu = unll7, = llu—wnllg [Jw = Irwlm = flu = w2 fw]ge.

From H? regularity:
lu = unllz, = hllu—upllm lu = sl

and, after dividing one factor

lw = unllz, 2 hllw—unllm = B¥[|ulle.

Approximation of Dirichlet boundary conditions

Till now, we have neglected Dirichlet boundary conditions. In this case, the continuous
problem is
Find u € Vp : A(u,v) = f(v) Vv eV,

where
Vp={ve H trr,v=up} and  Vog={ve H":trp,v=0}
The finite element problem is
Find uy, € Vip : A(up,vp) = f(vp) Yoy, € Vi,

where

Vip = {I7v :v € Vp} and Vio = {I7v : v € V}.

The definition of V;,p coincides with {v, € V}, : vp(x;) = up(z;) V vertices z; on I'p}.
There holds Vg C Vg, but, in general, there does not hold V,,p C Vp.

Theorem 67 (Error estimate for Dirichlet boundary conditions). Assume that
o A(.,.) is coercive on Vig:

A(Uh,Uh) > H’UhH%/ Y, € Vi

o A(.,.) is continuous on V:

Au,v) < ag ||ullv]|v]|v Vu,veV
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Then there holds the finite element error estimate
lu—up| =2 hlulge

Proof:  'To make use of the coercivity of A(.,.), we need an element in V}o. There holds
Galerkin orthogonality A(u — up,vy) =0V v, € Vi

lu —unllyy = llu—Ihu+ Iyvu —unlly < 2lu = Tyullf + 2 [ Tou — w3,

2
S 2 Hu — IhuH%/ -+ a—A([hu — Up, Ihu — uh)
1

2 2
2l — Thull} + —A(Ihu —u, [pu — up) + a—A(u — up, Iyu — up,)
1

IN

20(2

< 2lju— Il + = = ww = ulll T = ]| +0

2
< 2fu— Ll + a—l [hw = ul[([[Ihu = ul] + [lu — un]])

2a 2a
= (2+—2)Ilu—fhu\lv+ o 2l = Tyullv|lu — v
Qg

Next, we apply ab < 1a® 4 3b* for a = zﬂﬂu — Ihul|ly and b= |lu — up||v:
1
lu — ually < (2+ —)||U — Dyully, +2 §||u = Dwulfy + 5w = ually

Moving the term 1||u — uy|| to the left, we obtain

lu = wnlly = flu = ull§ = bl g

High order elements

One can obtain faster convergence, if the solution is smooth, and elements of higher order
are used:

Theorem 68. Assume that

e the solution is smooth: w € H™ for m > 2
e all element spaces Vi contain polynomials PP for p > 1
e the mesh is quasi-uniform
Then there holds
W — Tyul|, + [Ju = Tyul e < RS g

The proof is analogous to the case m = 2 and k = 1. The constants in the estimates
depend on the Sobolev index m and on the polynomial order p. Nodal interpolation is
instable (i.e., the constant grow with p) for increasing order p. There exist better choices
to bound the best approximation error.
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Graded meshes around vertex singularities

On non-convex meshes domains, the solution is in general not in H?, but in some weighted
Sobolev space. The information of the weight can be used to construct proper locally
refined meshes.
On a sector domain with a non-convex corner of angle w > , the solution is bounded
in the weighted Sobolev norm
HTBDQqu@ < Cv

with 8 = Z. One may choose a mesh such that
hp~hrl —~ NTeT

where rp is the distance of the center of the element to the singular corner, and h € R" is
a global mesh size parameter.
We bound the interpolation error:

lu—Trulf = > Bplulmea) = Y B PP D?ulp,m

TeT TeT
~ B’ D%ull},q) 2 C R

The number of elements in the domain can be roughly estimated by the integral over
the density of elements. The density is number of elements per unit volume, i.e., the inverse
of the area of the element:

Ny ~ / T dx = / W2 2P de = b2 /7‘_25 de ~ Ch™
Q Q

In two dimensions, and 5 € (0, 1), the integral is finite.
Combining the two estimates, one obtains a relation between the error and the number
of elements:
lu = Irull§, = Ng'

This is the same order of convergence as in the H? regular case !

5.3 A posteriori error estimates

We will derive methods to estimate the error of the computed finite element approximation.
Such a posteriori error estimates may use the finite element solution wuy, and input data
such as the source term f.

n(un, f)

An error estimator is called reliable, if it is an upper bound for the error, i.e., there
exists a constant C such that

|u — unlly < Crn(up, f) (5.5)
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An error estimator is efficient, if it is a lower bound for the error, i.e., there exists a
constant Cy such that
|u — unlly > Coynlup, f). (5.6)

The constants may depend on the domain, and the shape of the triangles, but may not
depend on the source term f, or the (unknown) solution u.

One use of the a posteriori error estimator is to know the accuracy of the finite element
approximation. A second one is to guide the construction of a new mesh to improve the
accuracy of a new finite element approximation.

The usual error estimators are defined as sum over element contributions:

0 (up, f) = Z 7 (un, f)

TeT

The local contributions should correspond to the local error. For the common error
estimators there hold the local efficiency estimates

1w — unl| 1 wry = Conr(un, f).
The patch wr contains T and all its neighbor elements.

In the following, we consider the Poisson equation —Awu = f with homogenous Dirichlet
boundary conditions u = 0 on 92. We choose piecewise linear finite elements on triangles.

The Zienkiewicz Zhu error estimator

The simplest a posteriori error estimator is the one by Zienkiewicz and Zhu, the so called
27 error estimator.
The error is measured in the H'-semi norm:

[Vu — Vu||L,

Define the gradient p = Vu and the discrete gradient p, = Vu,. The discrete gradient
pp, is a constant on each element. Let p;, be the p.w. linear and continuous finite element
function obtained by averaging the element values of pj, in the vertices:

1

pn(x;) = m PhiT for all vertices z;

The hope is that the averaged gradient is a much better approximation to the true gradient,
ie.,
[P = DnllL, < allp—pallL. (5.7)

holds with a small constant o < 1. This property is known as super-convergence.lt is
indeed true on (locally) uniform meshes, and smoothness assumptions onto the source
term f.
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The Z7Z error estimator replaces the true gradient in the error p — p, by the good
approximation py:
n(un) = [1Pn — prlla@)

If the super-convergence property (5.7) is fulfilled, than the ZZ error estimator is reli-
able:

IVu —Vuplz, = lp—pullz, < llpw — Pullz, + lp — Pallz,
< th _ﬁhHLz + Oé”p _ph||L27

and

1 ~
IVu — Vu| L, < m”ph — Pallz,

It is also efficient, a similar short application of the triangle inequality.

There is a rigorous analysis of the ZZ error estimator, e.g., by showing equivalence to
the following residual error estimator.

The residual error estimator

The idea is to compute the residual of the Poisson equation
f + A Up,

in the natural norm H~!. The classical A-operator cannot be applied to uy,, since the first
derivatives, Vuy, are non-continuous across element boundaries. One can compute the
residuals on the elements

f|T +A Up|T VT eT,

and one can also compute the violation of the continuity of the gradients on the edge
E =T, NT,. We define the normal-jump term

[8%} . ouy, Ouy,

371 T anl |T1 8%2 |T2‘

The residual error estimator is

0 (un, )= 1 (un, f)?
T

with the element contributions

2

0 (uny £)7 = W2 f + Dunllf oy + > b

E:ECT
ECQ

g

The scaling with Ay corresponds to the natural H~' norm of the residual.

Lo(E)
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To show the reliability of the residual error estimator, we need a new quasi-interpolation
operator, the Clément- operator II,. In contrast to the interpolation operator, this operator
is well defined for functions in L.

We define the vertex patch of all elements connected with the vertex x

Wy = U T,
T:xeT
the edge patch consisting of all elemenets connected with the edge
WE = U T,
T:ENT#)
and the element patch consisting of the element T" and all its neighbors
Wr = U T/.
T TNT'#0
The nodal interpolation operator I, was defined as
Ihv = Z v(zi) e,
T, EV

where @; are the nodal basis functions. Now, we replace the nodal value v(x;) be a local
mean value.

Definition 69 (Clément quasi-interpolation operator). For each verter z,let 7= be the
mean value of v on the patch w,, i.e.,

1
YT = / vdx.
|wI| We

My = Z VYT

T, €V

The Clément operator is

In the case of homogeneous Dirichlet boundary values, the sum contains only inner vertices.

Theorem 70. The Clément operator satisfies the following continuity and approximation
estimates:

||VHhU||L2(T) = HVU”M(WT)
|lv — Hhv||L2(T) = hTHVUHL2(wT)
1/2
lv = Hpv||ym) = hE/ V| L w)
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Proof: First, choose a reference patch &Wr of dimension ~ 1. The quasi-interpolation
operator is bounded on H'(wr):

lo =Tl ) + IV (0 = o)l 5y 2 ollmr @ (5.8)

If v is constant on wy, then the mean values in the vertices take the same values, and
also (II,v)p is the same constant. The constant function (on wr) is in the kernel of
|v — I, v|| g1 (7). Due to the Bramble-Hilbert lemma, we can replace the norm on the right
hand side of (5 8) by the semi-norm:

lo = ol 0y + IV (0 = T)ll ) = V0] ooy (5.9)

The rest follows from scaling. Let F': x — hx scale the reference patch &r to the actual
patch wy. Then

v = vl Loy + 2V = TTh0) || yry 2RIV Ly )

The estimate for the edge term is similar. One needs the scaling of integrals form the
reference edge E to E: )
1/2
[0l o) = hgg"llv o FHLQ(E)

Theorem 71. The residual error estimator is reliable:

[ — unll < 0" (un, f)
Proof: From the coercivity of A(.,.) we get

A(u — up, u — up,) A(u — up,v)
sup —————=
[ — wnl[ oot |[0]lm

lu = un|l =

The Galerkin orthogonality A(u — up,vy) = 0 for all v, € V}, allows to insert the Clément
interpolant in the numerator. It is well defined for v € H*:

Alu — —1II
lu —up||m < sup (u = un, v )
0£veH! V]| a1

We use that the true solution u fulfills A(u,v) = f(v), and insert the definitions of A(.,.)
and f(.):

Alu —up,v —Ipw) = f(v— o) — A(up, v — )
= /fvdx—/Vuth—Hhv)d
= Z/fvdx—Z/VuhVU—Hhv)d

TeT TeT
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On each T, the finite element function uy, is a polynomial. This allows integration by parts
on each element:

A(u — up, v — ) Z/fvdx—

TeT TeT

6uh

{—/TAuh(v—Hhv) de+ [ 20— 1) ds }

T an

All inner edges E have contributions from normal derivatives from their two adjacent
triangles T 1 and T 2. On boundary edges, v — IIv vanishes.

A(u — up, v — o)

S RIS RIS Wy B e [ T
— Z/f—l—Auh )(v —1T,v) dx+2/ {8%} (v —1Iyv)ds

Applying Cauchy-Schwarz first on Ly(T") and Lo(E), and then in R™:

A(u — up, v — )
ou
< Z 1f + Aup| ol — Wpoll oy + Z H {8_7?}
T E

= > hellf + Aunllramyhr v = Mol oy + D
T E

||U — || Ly ()

[a”h]
1/2

{Zh%HfJFAUhH%Q(T)} {ZhEzHU—HhUHZLQ(T)} +

T T

5 ) 1/2 1/2
Up _
{ZhE { } } {ZhE‘lnv_HhU”%z(E)}
Lo(E) E

We apply the approximation estimates of the Clément operator, and use that only a
bounded number of patches are overlapping:

h' 2l — 0| (s

IN

Zh52||v — Tpoll7, ) = Z IV, 2 IVOIZ, )
T T
and similar for the edges

Z hi' o = Tholl7, ) < IVoll7,0)
3
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Combining the steps above we observe

A(u — up, v — I,o)

|lu—uplly =< sup

veH! o[l
2 2 dun 1|2 1/2
{ZT hT“f + AuhHLQ(T) + ZE he H [B_n} HLQ(E)} HVUHLZ(Q)
= sup
Ve [[v] 1
5 ) 1/2
Up,
< (S S5 1
n
T E L2 (E)

what is the reliability of the error estimator n"¢*(uy, f)

Theorem 72. If the source term f is piecewise polynomial on the mesh, then the error
estimator 0" s efficient:

|u — un|lv = 0" (un, )
Goal driven error estimates

The above error estimators estimate the error in the energy norm V. Some applications
require to compute certain values (such as point values, average values, line integrals, fluxes
through surfaces, ...). These values are descibed by linear functionals b: V' — R. We want
to design a method such that the error in this goal, i.e.,

b(u) = b(un)

is small. The technique is to solve additionally the dual problem, where the right hand
side is the goal functional:

Findw eV : A(v,w) = b(v) YoeV.

Usually, one cannot solve the dual problem either, and one applies a Galerkin method also
for the dual problem:

Find wp € Vh . A(Uh, wh) = b(Uh) \V/Uh € Vh.

In the case of point values, the solution of the dual problem is the Green function (which
is not in H'). The error in the goal is

bu —up) = A(u — up,w) = Alu — up, w — wy,).

A rigorous upper bound for the error in the goal is obtained by using continuity of the
bilinear-form, and energy error estimates n' and n? for the primal and dual problem,
respectively:

b(u — up)| < |lu— upllv||w — willv < 0" (un, £) 0 (wh, b).
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A good heuristic is the following (unfortunately, not correct) estimate

blu—uy) = A(u—up,w—wy) 2 Y |lu—wllmery lw—wnllmy 2D 0p(n, f) 0 (wy, b)
T

TeT
(5.10)

The last step would require a local reliability estimate. But, this is not true.
We can interpret (5.10) that way: The local estimators n%(wy) provide a way for
weighting the primal local estimators according to the desired goal.

Mesh refinement algorithms

A posteriori error estimates are used to control recursive mesh refinement:

Start with initial mesh 7°
Loop
compute fe solution u, on 7
compute error estimator nr(up, f)
if n < tolerance then stop
refine elements with large 7 to obtain a new mesh

The mesh refinement algorithm has to take care of
e generating a sequence of regular meshes

e generating a sequence of shape regular meshes

Red-Green Refinement:
A marked element is split into four equivalent elements (called red refinement):

But, the obtained mesh is not regular. To avoid such irregular nodes, also neighboring
elements must be split (called green closure):

If one continues to refine that way, the shape of the elements may get worse and worse:
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A solution is that elements of the green closure will not be further refined. Instead, remove
the green closure, and replace it by red refinement.

Marked edge bisection:
Each triangle has one marked edge. The triangle is only refined by cutting from the middle
of the marked edge to the opposite vertex. The marked edges of the new triangles are the
edges of the old triangle.

If there occurs an irregular node, then also the neighbor triangle must be refined.

NN

To ensure finite termination, one has to avoid cycles in the initial mesh. This can be
obtained by first sorting the edges (e.g., by length), end then, always choose the largest
edges as marked edge.

Both of these refinement algorithms are also possible in 3D.

5.4 Non-conforming Finite Element Methods

In a conforming finite element method, one chooses a sub-space Vj, C V', and defines the
finite element approximation as

Find u, € Vj, : A(up,vp) = f(vp) Yoy, € Vi

For reasons of simpler implementation, or even of higher accuracy, the conforming frame-
work is often violated. Examples are:

e The finite element space V}, is not a sub-space of V' = H™. Examples are the non-
conforming P! triangle, and the Morley element for approximation of H?2.

The Dirichlet boundary conditions are interpolated in the boundary vertices.

The curved domain is approximated by straight sided elements

The bilinear-form and the linear-form are approximated by inexact numerical inte-
gration

The lemmas by Strang are the extension of Cea’s lemma to the non-conforming setting.
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The First Lemma of Strang

In the first step, let V,, C V, but the bilinear-form and the linear-form are replaced by
mesh-dependent forms
Ah(.7.) . Vh X Vh —R

and

fh() . Vh — R

We do not assume that A, and fj, are defined on V. We assume that the bilinear-forms
Ay, are uniformly coercive, i.e., there exists an a; independent of the mesh-size such that

Ap(vp,vn) > o |Jonllf Yoy, € Vi
The finite element problem is defined as
Find uj, € V, : Ap(up,vp) = fulon) Yo, € Vy
Lemma 73 (First Lemma of Strang). Assume that
o A(.,.) is continuous on V'
o Au(.,.) is uniformly coercive

Then there holds

Alom,wn) — A
=l =, f— o+ s A=l )l

hEVh whEV ||wh||
+ sup J(wn) = fulwn)
wpEVR ||whH
Proof: Choose an arbitrary v, € V,, and set w;, := u, — v,. We use the uniform

coercivity, and the definitions of v and wuy,:

aqllup — vl < Anlup — v, up — vp) = Apup — vp, wy)

= A(U — Up, wh) + [A(Uh, wh) — Ah(’L)h, wh)] + [Ah(uh, wh) — A(u, wh)]
= A(u — v, wp) + [A(vn, wp) — An(vn, wr)] + [fo(wr) — f(wy)]

Divide by |lup, — vp|| = ||wp]|, and use the continuity of A(.,.):

| A(vp, wp) — Ap(vp, wh)| + | f(wn) — ful(ws)]
[[wal [[wa|

lan — wall = flu — val| + (5.11)

Using the triangle inequality, the error ||u — uy|| is bounded by

— < inf — —
Ju—unll < g flu = o+ lon ~

The combination with (5.11) proves the result. O
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Example: Lumping of the Ly bilinear-form:
Define the H! - bilinear-form

A(u,v):/Vu-Vv+/uvdm,
Q Q

and perform Galerkin discretization with P! triangles. The second term leads to a non-
diagonal matrix. The vertex integration rule

IT] &
dr ~ — E o
LU ! 3 a=1 v<$T’ )

is exact for v € P'. We apply this integration rule for the term [ wv dx:
y g

Ap(u,v) = /Vu -V + Z @ Z w(xpa)v(T7,0)

TeT a=1
The bilinear form is now defined only for u,v € Vj,. The integration is not exact, since
wv € P? on each triangle.
Inserting the nodal basis ¢;, we obtain a diagonal matrix for the second term:

1 for @ =x; = 27,4

@i(l'T,oc)ij(xTva) = { 0 else

To apply the first lemma of Strang, we have to verify the uniform coercivity

3
T
il lon(z7.0)? > g lop|?dz Vv, € Vj, (5.12)
e T JT

which is done by transformation to the reference element. The consistency error can be
estimated by

3
T
|/ upvp dz — % > un(@a)vn(za)l 2 B3 | Vunl| o) [ Voul ey (5.13)
T a=1

Summation over the elements give

Alup,vn) — Ap(un, vn) 2 B lunl gy lonll o @)

The first lemma of Strang proves that this modification of the bilinear-form preserves the
order of the discretization error:

A —A
|u—upl[pn = inf {HU_Uh”H1+ sup [Avn, wn) h(vhvwh)’}
VhEVR wpREVR HwhHHl

A(Ipu, wy) — Ap(Ihu, w
= |lu— Ihul||gr + sup [AUru, wn) (I, wn)|
wpEVY ||wh||H1

P2 || Inull o ||wn |

(PN

h||u||gz + sup
wpEV], HwhHH1

= hullae

A diagonal L, matrix has some advantages:
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o It avoids oscillations in boundary layers (exercises!)

e In explicit time integration methods for parabolic or hyperbolic problems, one has to
solve linear equations with the Lo-matrix. This becomes cheap for diagonal matrices.
The Second Lemma of Strang

In the following, we will also skip the requirement V,, C V. Thus, the norm |.||y cannot
be used on V},, and it will be replaced by mesh-dependent norms ||.||,. These norms must
be defined for V' 4 V. As well, the mesh-dependent forms Ay(.,.) and f,(.) are defined on
V +V,. We assume

e uniform coercivity:
Ap(vp, o) > cullonll; - Vo €V

e continuity:
Ah(u, Uh) < OéQHUHhHUhHh YueV + Vh, Vvh c Vh

The error can now be measured only in the discrete norm ||u — ||y, -

Lemma 74. Under the above assumptions there holds

A _
[ — upllp < inf [lu—oulln + sup | An(u, wn) = fr(wp)|
U}Le‘/h wh,EVh ||wh||h

(5.14)

Remark: The first term in (5.14) is the approximation error, the second one is called
consistency error.
Proof: Let v, € V},. Again, set wy, = uy — vy, and use the Vj,-coercivity:

= Ah(u — Vp, wh) + [fh(wh) - Ah(“» wh)]

ar [Jun —onlli < An(up — vp,up — vp) = Apup — vp, wy)

Again, divide by ||up — vs||, and use continuity of A(.,.):

Ap(u, wp) = fa(ws)
[[wn[n

[un = vnlln = [l = vnlln +
The rest follows from the triangle inequality. O

The non-conforming P! triangle

The non-conforming P! triangle is also called the Crouzeix-Raviart element.
The finite element space generated by the non-conforming P! element is

V¢ :={v € Ly : vjr € P'(T),and v is continuous in edge mid-points}
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The functions in V;* are not continuous across edges, and thus, V' is not a sub-space
of H*. We have to extend the bilinear-form and the norm in the following way:

Ap(u,v) = Z/Vqudx Vu,ve V4V
TeT

and
ol =Y IVolli,ey  VYoeV+Vie
TeT

We consider the Dirichlet-problem with v =0 on I'p.

We will apply the second lemma of Strang.

The continuous P! finite element space V¢ is a sub-space of V;"“. Let I), : H* — V)¢ be
the nodal interpolation operator.

To bound the approximation term in (5.14), we use the inclusion V¢ C V;*:

06 o= wnll < = Tyl <

We have to bound the consistency term

r(wp) = An(u,wn) — fwy

= /Vquh— /fwhd:z:

- Z —whds—Z/T(Au—i—f)whds

or O
ou
= —wy, ds
Z o O h

Let £ be an edge of the triangle 7. Define the mean value w,”. If E is an inner edge,
then the mean Value on the corresponding edge of the neighbor element is the same. The
normal derivative 2% 5% on the neighbor element is (up to the sign) the same. If E' is an edge
on the Dirichlet boundary, then the mean value is 0. This allows to subtract edge mean
values:

r(wp) ZZ/ (wy, — Wr7) ds

T ECT
Since f 5 Wh — WY ds = 0, we may insert the constant function 85’;1“
ou afhu _
=X Y [ (G- %) - it s

T ECT

Apply Cauchy-Schwarz on Ly(E):

=2 > IV~ L)l lwn — @ aey

T ECT
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To estimate these terms, we transform to the reference element f, where we apply the

-~

Bramble Hilbert lemma. Let "= Fr(T), and set
u=wuoFr Wy, = wy, o Fr
There hold the scaling estimates
lwalmry =~ ’@h|H1(T)
o PRERE P [
ulmzery = g [l ey
IV (= Bn)llnacey = 19 = 1) o

On the reference element, we apply the Bramble Hilbert lemma, once for wy, and once for
u. The linear operator
L: HYT) — Lo(E) : @ — @ — @n

is bounded on H'(T) (trace theorem), and Lw = 0 for w € P, thus

.~ =E .
[@n = W N, = 10l )

Similar for the term in w: There is ||V(u — Iyu)||,(m) =X ||w||g2(r), and u — Iyu vanishes for
u € P
Rescaling to the element 7" leads to

lwn =W ||y = B Jwnlmr)
IV(u— L)l ymy = B2 |ulween

This bounds the consistency term

r(wn) 2 bl wnlm @y 2 Bl m ) s
T

The second lemma of Strang gives the error estimate
[ = unl| = hflull g
There are several applications where the non-conforming P! triangle is of advantage:
e The L, matrix is diagonal (exercises)

e [t can be used for the approximation of problems in fluid dynamics described by the
Navier Stokes equations (see later).

e The finite element matrix has exactly 5 non-zero entries in each row associated with
inner edges. That allows simplifications in the matrix generation code.



Chapter 6

Linear Equation Solvers

The finite element method, or other discretization schemes, lead to linear systems of equa-
tions
Au = f.
The matrices are typically

e of large dimension N (10* — 10® unknowns)

e and sparse, i.e., there are only a few non-zero elements per row.

A matrix entry A;; is non-zero, if there exists a finite element connected with both

degrees of freedom ¢ and j.
A 1D model problem: Dirichlet problem on the interval. A uniform grid with n ele-

ments. The matrix is

(n—1)x (n—1)

A 2D model problem: Dirichlet problem on a unit-square. A uniform grid with 2n?
triangles. The unknowns are enumerated lexicographically:
h

S——

69
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The FEM - matrix of dimension N = (n — 1)? is

D I 4 -1
-1 D -1 -1 4 -1
— with D = e T
-1 D -1 -1 4 -1
—-I D -1 (n—1)x (n—1)

and the (n — 1) x (n — 1) identity matrix I.

6.1 Direct linear equation solvers

Direct solvers are factorization methods such as LU-decomposition, or Cholesky factoriza-
tion. They require in general O(N3) = O(n®) operations, and O(N?) = O(n*) memory. A
fast machine can perform about 10° operations per second. This corresponds to

n ~N time memory
10 102 1 ms 80 kB
100 10* 16 min 800 MB
1000 105 30 years 8 TB

A band-matrix of (one-sided) band-width b is a matrix with

The LU-factorization maintains the band-width. L and U are triangular factors of band-

width b. A banded factorization method costs O(Nb?) operations, and O(Nb) memory.

For the 1D example, the band-with is 1. Time and memory are O(n). For the 2D example,

the band width is O(n). The time complexity is O(n?), the memory complexity is O(n?).
This corresponds to

n time  memory
10 10 ps 8 kB
100 0.1s 8 MB
1000 16 min 8 GB

Block-elimination methods

By splitting the unknowns into two groups, we rewrite the equation Au = f as a block

system
(An A12)(U1) (71)
Ay Ay U2 f2 '
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First, expressing u; from the first row gives
ur = Al (fi — Arzua),
and the Schur-complement equation to determine us

(f122 — A21A1_11A1%)u2 = fo — Ag1 A fi.

=:S

This block-factorization is used in sub-structuring algorithms: Decompose the domain into
m x m sub-domains, each one containing 2+ x ™ triangles. Split the unknowns into interior
(I), and coupling (C) unknowns.

The interior ones corresponding to different sub-domains have no connection in the matrix.
The block matrix is

Ara Arca

( A Ajc ) _ :
Acr Ac Arme Arcme
Acry -+ Acrmer  Ac

Factorizing the block-diagonal interior block A; splits into m? independent factorization
problems. If one uses a banded factorization, the costs are

Computing the Schur complement

S=Ac—AciAT Are = Ac = > AcriAr Arc,
i=1
is of the same cost. The Schur complement is of size mn, and has band-width n. Thus,
the factorization costs O(mn?). The total costs are of order
nd

—2+mn
m

3
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Equilibrating both terms lead to the optimal number of sub-domains m = n'/3, and to the
asymptotic costs

n3.33

If a parallel computer is used, the factorization of A; and the computation of Schur com-

plements can be performed in parallel.

The hierarchical sub-structuring algorithm, known as nested dissection, eliminates in-
terior unknowns hierarchically:

Let n = 2. On level [, with 1 < [ < L, one has 4' sub-domains. Each sub-domain has
O(2L7Y) unknowns. The factorization of the inner blocks on level [ costs

4[ (2L7Z)3 — 23[17[
Forming the Schur-complement is of the same cost. The sum over all levels is
L
1 1
3=l — 3L [ Z 4 — 4 ) & 23
> Sttt
=1
The factorization costs are O(n?). Storing the matrices on each level costs
4[ (2L—l)2 — 22[/.
The total memory is O(L x 22F) = O(n? logn).
This corresponds to

n time memory
10 1 ps 3 kB
100 1 ms 500 kB
1000 1s 150 MB

A corresponding sparse factorization algorithm for matrices arising from unstructured
meshes is based on minimum degree ordering. Successively, the unknowns with the least
connections in the matrix graph are eliminated.

In 2D, a direct method with optimal ordering is very efficient. In 3D, the situation is
worse for the direct solver. There holds N = n3, time complexity = O(N?), and memory

= O(N13),
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6.2 Iterative equation solvers

Iterative equation solvers improve the accuracy of approximative solution by an successive
process. This requires in general much less memory, and, depending on the problem and
on the method, may be (much) faster.

The Richardson iteration

A simple iterative method is the preconditioned Richardson iteration (also known as simple
iteration, or Picard iteration):

start with arbitrary «°

for k =0,1,... convergence
d* = f — AuF
wk — C—ldk
uFtl = uF + Tk

Here, 7 is a damping parameter which may be necessary to ensure convergence. The
matrix C' is called a preconditioner. It should fulfill

1. C'is a good approximation to A
2. the matrix-vector multiplication w = C'~'d should be cheap

A simple choice is C' = diag A, the Jacobi preconditioner. The application of C~! is cheap.

The quality of the approximation C' ~ A will be estimated below. The optimal choice for

the first criterion would be C' = A. But, of course, w = C'~'d is in general not cheap.
Combining the steps, the iteration can be written as

" =P 7O (f — AuP)

Let u be the solution of the equation Au = f. We are interested in the behavior of the

error Uk — Uu:

ut —u = uF —u - TOTH(f — AuF)

(
uf —u+ 7C7H(Au — AuF)
= (I—-7C7"A)(u" — )

We call the matrix
M=I1-7C"A

the iteration matriz. The error transition can be estimated by

[ — ] < M flu® — .
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The matrix norm is the associated matrix norm to some vector norm. If p := [|[M|| < 1,
then the error is reduced. The error after k steps is

lu* —ull < pFllu’ — ull
To reduce the error by a factor £ (e.g., ¢ = 107%), one needs

_loge
~ logp

its

iterations.
We will focus on the symmetric (A = A”T) and positive definite (u? Au > 0 for u #
0) case (short: SPD). Then it makes sense to choose symmetric and positive definite
preconditioners C' = CT. Eigenvalue decomposition allows a sharp analysis. Pose the
generalized eigenvalue problem
Az = \Cxz.

Let (\;, 2;) be the set of eigen-pairs. The spectrum is 0{C~'A} = {\;}. The eigen-vectors
z; are normalized to
[zille =1

The eigenvalues can are bounded from below and from above by the Rayleigh quotient:
vl Av v Av

min < A\ < max
v vI'Co v vTCwo

The ratio of largest to smallest eigen-value is the relative spectral condition number

_ My
-3

K
We will establish the spectral bounds
%! vICv <ol Av < Yo oI Cv Yov e RN,
which allow to bound the eigenvalues

>\i S ['717 ")/2]a

and the condition number s < %
A vector v can be expressed in terms of the eigen-vector basis z; as v = Y v;e;. There

holds

lolle = > o7
ol = > xf
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Lemma 75. The iteration matrizc M can be bounded in A-norm and in C-norm:

|M|la < sup |1 —7A
Xe[v1,y2]

IM|lc < sup |1—TA|

AE[v1,72]

Proof: Express v = > v;z;. Then
Mv=(I—-7C 1A = Zvi([ —7C ' A)z; = sz’(l —TN\)zi

The norm is

IMoly = D APl

< sup (1—=7X\) Z A\iv?
< sup (L—7X0)? ol
)‘6[717’72]
and thus 1Mo
VA
|M||4 = sup < sup |1—7A|
verr [[Vlla T Aefu)
The proof is equivalent for || M||c. O
1
1-ty,
Y
Y
Y
1-1y,

The optimal choice of the relaxation parameter 7 is such that

1 =7y =—(1—7%),

ie.,
2
T =
Y1+ 2
The convergence factor is
1— 7y = T2— N
Y2+ M

Assume we knew sharp spectral bounds v; = A; and v = A\. Then the convergence factor
is
k—1 2
M| = A1 -
k+1 K
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The number of iterations to reduce the error by a factor ¢ is

__loge loge
T logp | —2/k

1

its

=loge™

Take the 1D stiffness matrix of dimension N x N:

and the trivial preconditioner C' = I. The eigen-vectors z; and eigen-values \; are
(1)
z; = |sin
N+1/,.n
s )
N +1

Ai = 2—2cos(

The extremal eigenvalues are

T
AN = 2-2 ~ —
1 COS(N 1) E

N 2

A = 2-2 ~4—- —.

N cos(N+1 e

The optimal damping is

B 2 1
M4y 2
and the convergence factor is
2/\1 271'2
Ml~1l-—=~1-—
M1 =

The number of iterations is
Njs ~ loge ' N?

For the 2D model problem with N = (n — 1)?, the condition number behaves like
K~ n?.
The costs to achieve a relative accuracy € are

Njis x Costs-per-iteration ~ log e 'n’N ~ log e ind

The costs per digit are comparable to the band-factorization. The memory requirement is
optimal O(N).
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The gradient method

It is not always feasible to find the optimal relaxation parameter 7 a priori. The gradient
method is a modification to the Richardson method to find automatically the optimal
relaxation parameter 7:

The first steps are identic:

d"=f— At Wb =C "

Now, perform the update

k+1 k

U :uk+7'w

such that the error is minimal in energy norm:
Find 7 such that ||ju — «*™||4 = min!

Although the error cannot be computed, this minimization is possible:

—u R = et =t

= (u—u"T A —up) — 27(u — )T Aw* + 72 (W) Aw®

I

This is a convex function in 7. It takes its minimum at
0 = 2(u — uF)T Aw" + 27, (W) T Aw*,

ie.,
wr A(u — uF) whd”
T = _=
ot (wk)T Awk (wk)T Awk
Since the gradient method gives optimal error reduction in energy norm, its convergence
rate can be estimated by the Richardson iteration with optimal choice of the relaxation

parameter:

k—1
Ju — u[| 4

_ k+1 <
o < S

The Chebyshev method

We have found the optimal choice of the relaxation parameter for one step of the iteration.
If we perform m iterations, the overall rate of convergence can be improved by choosing
variable relaxation parameters 7, ...7,,.

The m-step iteration matrix is

M = Mm co M2M1 == ([ - TmCilA) cee ([ - 7'107114).
By diagonalization, the A-norm and C-norm are bounded by

IM|| < max [(1—7A)...(1—7,A)

A€ [’Yl 7’YN}
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The goal is to optimize 7, ... 7y:

min  max |[(1 —7A)...(1—7,A)
T1y..-Tm AG[’Yl,"/N]

This is a polynomial in A, of order m, and p(0) = 1:

min max Al 6.1
PEP™ Aely1,yN] ()] (6.1)
p(0)=1

This optimization problem can be solved explicitely by means of Chebyshev polynomials.
These are the polynomials defined by

T () = cos(m arccos(z))  |z| <1
)= cosh(m arccosh(z)) |z| > 1

The T, fulfill the recurrence relation
To(z) = 1
Ti(z) = =
Toi1(x) = 22T, (x) — Thq(2)
The T, fulfill also

To(e) = 5 [(a 4 Va7 1) 4 (o +VaZ — 1))

N —

The optimum of (6.1) is

T, (23?—71—72 >

Y2—71

p(z) =
" (3)

2=

—CoT, (M)

T2— M
The numerator is bounded by 1 for the range 73 < x < 7,. The factor C,, can be

computed as
2™ V72—V

= with c=—
1+ cm V2t v
Using the condition number we have
2
~l-—
c N
and 5
Cp~(1l——7)"

VE
Now, an error reduction by a factor of € can be achieved in
Nis =~ log 5_1\/E

steps. The original method by choosing m different relaxation parameters 7 is not a good
choice, since
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e it is not numerically stable

e one has to know a priori the number of iterations

The recurrence relation for the Chebyshev polynomials leads to a practicable iterative
method called Chebyshev iteration.

The conjugate gradient method

The conjugate gradient algorithm automatically finds the optimal relaxation parameters
for the best k-step approximation.
Let po, p1, ... be a finite sequence of A-orthogonal vectos, and set

Vi, = span{po, . . . pk—1}
We want to approximate the solution u in the linear manifold ug + Vj:

min _||u — v||4
UEu0+Vk

We represent uy, as
k—1

Up = ug + Z ap
1=0
The optimality criteria are
k—1
0= (u—uppja=(u—1u—> ap,p)a 0<j<k
1=0

The coefficients «; follow from the A-orthogonality:
(u — UO)TAPz (f — AUO)TPZ

al = =
plTApl plTApl
The o are computable, since the A-inner product was chosen. The best approximations
can be computed recursively:

Uk4+1 = Uk + QkPk
Since uy — ug € Vi, and p_L 4V}, there holds
(f — Aug) p
i Apr

Any k-step simple iteration approximates the solution u; in the manifold
uo + Kr(do)
with the Krylov space
K(do) = {C7 'y, CTTACT dy, ..., CTHACTH*1d, ).

Here, dy = f — Aug is the initial residual. The conjugate gradient method computes an
A-orthogonal basis of the Krylov-space. The term conjugate is equivalent to A-orthogonal.
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Conjugate Gradient Algorithm:
Choose ug, compute dy = f — Aug, set py = C~1d,.
for k=0,1,2,... compute

o = dfpk
PZApk
Ugr1 = Uk + Qg Pr

dpy1 = dp — oy Apy,

B = — d;irlg_lApk
Py Ak
i1 = C 'y + Bipk

Remark 76. In exact arithmetic, the conjugate gradient algorithm terminates at a finite
number of steps k < N.

Theorem 77. The conjugate gradient algorithm fulfills for k < k
1. The sequence py, is A-orthogonal. It spans the Krylov-space Ky(dy)
2. The u, minimizes

min  |ju— |4
vE’LLo+/Ck(dQ)

3. There holds the orthogonality

d'p=0 Vi<k

Proof: Per induction in k. We assume

pprl = 0 Vi<k
dip, = 0 Vi<k

This is obvious for £ = 0. We prove the property for k£ + 1: For [ < k there holds
diipe = (dy, — axApe) ' pr = dfipr — axpil Ap = 0
per induction. For [ = k there is

dgpk T

——— pi, Ap, = 0.
pfAPk F

di 1ok = (di — i Api) o = di pi —
Next, prove the A-orthogonality of the p,. For [ < k we have

(Prs1,p)a = (C'dpyr + Bibrs i) a
- d}crﬂc_lApl
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There is

C~ ' Ap, € span{py, ...k},
and d}_,p; = 0 for j < k. For | = k there is

(Prs1,06)a = (O 'dyys + Bipr, Pi) a
dl, C~1Ap
= (C_ldk—i-lapk)A - k;Tpkk p;;FApk =0
k

O

The coefficients «y, and 3 should be computed by the equivalent, and numerically more
stable expressions

ap — d{Cfldk - ngrlOildk-i-l
Pt Apy drc=1dy, -

Theorem 78. The conjugate gradient iteration converges with the rate

Ve —1\*
— < | =
[ u ukHA_< 1

Proof: The conjugate gradient gives the best approximation in the Krylov space. Thus,
it can be bounded by the Chebyshev method leading to that rate.

The conjugate gradient iteration is stopped as soon as a convergence criterion is fulfilled.
Ideally, on wants to reduce the error in the energy norm by a factor &:

[ = uplla < e flu = uol|4
But, the energy error cannot be computed. We rewrite
lu = well = AT — Au) |3 = A7 il = dy A7 ),

If C is a good approxiamtion to A, then also C~! is one to A~!. The error can be
approximated by

df C~td.
This scalar is needed in the conjugate gradient iteration, nevertheless.
For solving the 2D model problem with C' = I, the time complexity is
loge™ Nv/k =loge ' n?

The costs for one digit are comparable to the recursive sub-structuring algorithm. In 3D,
the conjugate gradient method has better time complexity.



82 CHAPTER 6. LINEAR EQUATION SOLVERS

6.3 Preconditioning

In the following, let the symmetric and positive definite matrix A arise from the finite
element discretization of the H'-elliptic and continuous bilinear-form A(.,.). We construct
preconditioners C' such that the preconditioning action

w=C"1xd
is efficiently computable, and estimate the spectral bounds
" u'Cu < ulAu < Yo ul'Cu VueRY

The analysis of the preconditioner is performed in the finite element framework. For
this, define the Galerkin isomorphism

G:RN—>Vh:g—>u:Zuigoi,
where ¢; are the fe besis functions. Its dual is
GV = RY 1 d(-) — (d(@s))im1,..n-

To distinguish vectors and the corresponding finite element functions, we write vectors
u € RY with underlines (when necessary).
The evaluation of the quadratic form is

u’ Au = A(Gu, Gu) ~ || Gul|#n

The Jacobi Preconditioner

The Jacobi preconditioner C' is

C = diag A.

The preconditioning action is written as

)

N
Clxd= Zei(eiTAei)’leT d
i=1

Here, e; is the i unit-vector. Thus, el Ae; gives the i diagonal element A;; of the matrix,
which is
Ay = Alpi, i) ~ ||<Pz||§{1

The quadratic form generated by the preconditioner is

N N
u"Cu=Y uilelh =) uleili
i=1 i=1
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Theorem 79. Let h be the minimal mesh-size of a shape-reqular triangulation. Then there
holds
2 uTCu < ul Au < u''Cu (6.2)

Proof: We start to prove the right inequality
u"Au =Y uipily 2w Cu="> "l

We define the interaction matrix O with entries

Oz’j _ { 1 A(‘piv()pj) 7é 0

0 else

On a shape regular mesh, only a (small) finite number of basis functions have overlapping
support. Thus, O has a small number of entries 1 per row. There holds

1Y wigilld = D0 wiwAlpi, @)
i j

%

— Zzuiuj()wl(%@j)
< ZZ(uiHsOi||A)Oz‘j(uj||90j||A>
< p(O)Z(UiH@iHA)Z

= p(O)u" Cu.

The spectral radius p(O) = max,cgny % is bounded by the (small) finite row-sum norm
of O.
The other estimate is proven element by element. Note that

u' Au = [|ullF o) = Z | Zui%”%ﬂ(:r’)
T

and
uCu = upildng =D > il -
7 T 1

We prove the inequality for each individual element. The triangle T" has diameter hy. On
T, we expand u in terms of the element shape functions ¢,, namely u|yr = 22:1 U Po-
We transform to the reference element 7'

1Y uaaltngy = 1) uapalliymy + 1V Y tapalltm
h% H Zua@a\|i2(f) + Hvzua@a“iz(f)

= h2T H ZuaaaHiQ(f)

12
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and

Z ||U’0490a||%{1(T) = Z ||ua90a||%2(T) + Z ||Vua90a||%2(T)
= h2T Z ||ua@04||312(f) + Z ||vua@a”§/2(f)
« «

Z ||u069/50¢||12(f)

PN

1/2
Both, (u)a — || 22, ta®Pall L, 7 and u — {Za “u“@)‘”iz(f)} are norms on R?. Since all

norms in R? are equivalent, we have

Z Huagoa‘ﬁ{l(T) < hz?|| Zua%H%{l(T)- (6.3)
By summing over all elements and choosing h = min hy, we have proven the left inequality
of (6.2). O

Remark: Inequality (6.3) is sharp. To prove this, choose u, = 1.

Block-Jacobi preconditioners
Instead of choosing the diagonal, one can choose a block-diagonal of A, e.g.,

e In the case of systems of PDEs, choose blocks consisting of all degrees of freedom
sitting in one vertex. E.g., mechanical deformations (u,,u,, u.).

e For high order elements, choose blocks consisting of all degrees of freedom associated
to the edges (faces, inner) of the elements.

e On anisotropic tensor product meshes, choose blocks consisting of unknowns in the
short direction

e Domain decomposition methods: Choose blocks consisting of the unknowns in a
sub-domain

Decompose the unknowns into M blocks, the block ¢ has dimension NN;. Define the
rectangular embedding matrices

E; e RVNo =1 ... M.

E; consists of INV; unit vectors corresponding to the unknowns in the block i. Each u € RV
can be uniquely written as

M
u = Z Eu,  with u; € RY
i=1
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The diagonal blocks are

The block Jacobi preconditioner is

M.

?

M
C'xd=) EA'Eld
i=1

The quadratic form induced by C can be written as
u"Cu=Y ul A, =Y |GEw|;

where u = Y E;u;.
Ezxample: Discretize the unit interval I = (0,1) into n elements of approximate size
h ~ 1/n. Split the unknowns into two blocks, the left half and the right half, and define
the corresponding block-Jacobi preconditioner.
Set
I'=15UT,;Ul,

with Iy = (0, Z,/2), Thy2 = [®nj2, Tnjo41), and Iy = (Tn/241, 1). Decompose
u= FEju; + Fau,.

The corresponding finite element functions are u; = G E;u,;. There holds

Gu(x) zel
ui(x) =< linear z €T |
0 x e _[2

and us vice versa. The quadratic form is
T 2
u' Cu= E ug Ay = E |G Eiu;il|
i i

Evaluation gives

lul = uall gy + llua ey

& Hul”%ﬂ(h) + hil’“(l’n/z)’Q

A

[ullZr e + b el (trace theorem)

= lull,

12

and thus
u"Cu=>"Jluli = b7 ul ~ b u" Au.
7

The situation is the same in R
Exercise: Sub-divide the interval I into M sub-domains of approximative size H ~ 1/M.
What are the sprectral bounds of the block-Jacobi preconditioner ?
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Additive Schwarz preconditioners

The next generalization is an overlapping block Jacobi preconditioner. For ¢ = 1,..., M
let B; € RV*Ni be rectangular matrices such that each u € RY can be (not necessarily
uniquely) written as

M
u = Z Eu;,  with u; € RY
i=1

Again, the overlapping block-Jacobi preconditioning action is

M
C'xd=) EA'Eld

=1

Ezxample: Choose the unit-interval problem from above. The block 1 contains all nodes in
(0,3/4), and the block 2 contains nodes in (1/4,1). The blocks overlap, the decomposition
is not unique.

The columns of the matrices F; are not necessarily unit-vectors, but are linearly in-
dependent. In this general setting, the preconditioner is called Additive Schwarz precon-
ditioner. The following lemma gives a useful representation of the quadratic form. It
was proven in similar forms by many authors (Nepomnyaschikh, Lions, Dryja+Widlund,
Zhang, Xu, Oswald, Griebel, ...) and is called also Lemma of many fathers, or Lions’
Lemma:

Lemma 80 (Additive Schwarz lemma). There holds

M
u'Cu= inf Y ulAu,
liERNi -

u=3 E;u; i=1

Proof: The right hand side is a constrained minimization problem of a convex function.
The feasible set is non-empty, the CMP has a unique solution. It is solved by means of
Lagrange multipliers. Define the Lagrange-function (with Lagrange multipliers A € RY):

L((ui), A) = > _ul Aug + A" (u = Y~ Eyuy).

Its stationary point (a saddle point) is the solution of the CMP:
0= Vo, L((w),\) = 24u; + E )
0=VaL((u),\) =u—Y_ Eu

The first line gives

u; = %AilEiT A.

Use it in the second line to obtain

1 i 1,
ozu—§ZEiAi EX=u—C7'\
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ie., A =2Cu, and

The minimal value is
> uf A = ) uTCEATAATE] Cu
= Y u"CEA'E] Cu
= uw'CC'Cu=u"Cu

Next, we rewrite the additive Schwarz iteration matrix
M
[-7CT'A=1-7) EATE[A
i=1

in the fe framework. Let
Vi=GERY CV,

be the sub-space corresponding to the range of E;, and define the A-orthogonal projection
P :V,—=V,: A(Pu,v;) = Au,v;) Vv, €V,

Lemma 81. Set u = Gu, the application of the iteration matriz is o = (I —7C 1 A)u, and
set 4 = Gu. Then there holds

M
i = <I—TZB> u.
=1

Proof: Let w; = A;'ET Au. Then

U
There holds w; := GEw, € V;, and
A(GEw,;,GEw;) = v} E] ABuw,
= v Aw; = v El Au

= A(Gu, GEv,) Vou; € RYM,

u—T1GEwW,.

ie., w; = Pu. -

The additive Schwarz preconditioner is defined by the space splitting
M
-3
i=1

If the spaces V; are A-orthogonal, then ), P, = I, and (with 7 = 1), and the iteration
matrix is M = 0.

The reformulation of the additive Schwarz lemma 80 in the finite element framework is
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Lemma 82 (Additive Schwarz lemma). Let u = Gu. There holds

M

T s 112

w Cu= inf > il
u=y_ u; =1

1
Alu,v) :/ u’v’+€/uvda¢
0

with 0 < & < 1. The bilinear-form is H'-elliptic and continuous, but the bounds depend
on the parameter €. Let C'; be the Jacobi preconditioner. The proof of Theorem 79 shows
that

Ezxample: Let

eh*u" Cyu < u" Au < u" Cu.

The non-robust lower bound is sharp: Take u = (1,...,1)7.
The solution is to add the additional sub-space

Vo = span{1} = GE,R!

to the AS preconditioner (with E; € R¥*! consisting of 1-entries). The preconditioning
action is

C™!' x d = diag{A}'d + Eo(EL AEy)'Eld.
The spectral bounds are robust in e:
u"Cu =< u"Au < u" Cu,
namely
M
uW'Cu = inf Yl

u; €V; -
uzzg/f ug =0

M
o 2 . 2
=t Sllalf el
2

uo o X
u—ug=xM u; 1=

‘2
Hl

< inf AR -
Jnf Jluolla + ™ lw — uo

The last step was the result of the Jacobi preconditioner applied to (u,v)g:. Finally, we
choose ug = fol u dx to obtain

u' Cu 2 ol +h* u — o7
e lluollz, + 21V (u = uo)ll7,
e [lullz, +h2(IVulli,

B2l

LA TATA
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Overlapping domain decomposition preconditioning

Let Q = UM,Q; be a decomposition of ) into M sub-domains of diameter H. Let Q; be
such that

O cQ  dist{oQ \ 99,00} = H,

and only a small number of Q; are overlapping. Choose a finite element mesh of mesh
size h < H, and the finite element space is V},. The overlapping domain decomposition
preconditioner is the additive Schwarz preconditioner defined by the sub-space splitting

Vi=Y_Vi with V=V, Hy().

The bilinear-form A(.,.) is H!-elliptic and continuous. The implementation takes the sub-
matrices of A with nodes inside the enlarged sub-domains (2;.

Lemma 83. The overlapping domain decomposition preconditioner fulfills the spectral es-
timates

Proof: The upper bound is generic. For the lower bound, we construct an explicit
decomposition u = > u;.
There exists a partition of unity {1;} such that

M
i=1

and
IVill ., < H™".

Let 11, : Ly — Vj, be a Clément-type quasi-interpolation operator such that II, is a
projection on V4, and

Mol 2 llvllp,,  and [ VILw||z, 2 [[Vollz,.
For given u € V},, we choose the decomposition
U; = Hh(?/fiu)-

Indeed u; € V; is a decomposition of u € Vj,:

Zui = Zﬂh(zﬁzu) =1II,, ((Z %)U) =ILu=mu
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The lower bound follows from

u'Cu = u:infU‘ZHUiH?A
< Xl = 3 sl
= ZHHh ]
< Zuwiuum
= X {lwl ) + IVl 6 )
< 3 {5 + Tl 6, + i Vul? o) )

i

< > Il gy + H 22 6 + 19U, 6 )
< ||u||L2 + H2 [ul}2 0 + [ Vul 0
< R,

Overlapping DD preconditioning with coarse grid correction

The local DD preconditioner above gets worse, if the number of sub-domains increases. In
the limit, if H ~ h, the DD preconditioner is comparable to the Jacobi preconditioner.
To overcome this degeneration, we add one more subspace. Let 7y be a coarse mesh of
mesh-size H, and 7, is the fine mesh generated by sub-division of 7. Let Vg be the finite
element space on 7g. The sub-domains of the domain decomposition are of the same size
as the coarse grid.
The sub-space decomposition is

M
Vi=Vu+) Vi
i=1
Let Gy : RV# — Vy be the Galerkin isomorphism on the coarse grid, i.e.,

Ng

H

GHHH = E UHP;
=1

The coarse space fulfills V; C Vj,. Thus, every coarse grid basis ¢ can be written as
linear combination of fine grid basis functions 4,0?:

N
o =) Enjigl.
j=1
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The first basis function pf is

Example:

of = ol + =¢h
The whole matrix is
1
1/2 1/2
Eyg = 1
1/2 1/2

1

There holds
Guug = GrLEguy.

Proof:

Ny Np

Ng

H h

Guuy = g UH i P; :E E umi B jip;
i—1

i=1 j=1
Np,

= Z @?(EHQH)J‘ = GLuy

j=1
The matrix Ey transforms the coefficients u;; w.r.t. the coarse grid basis to the coeflicients

w, = Eguy w.r.t. the fine grid basis. It is called prolongation matriz.

The DD preconditioner with coarse grid correction is

C™' xd=Y EA'E/d+ Ey(EFAEy) ' Efd

The first part is the local DD preconditioner from above. The second part is the coarse
grid correction step. The matrix E% (called restriction matriz) transfers the defect d from
the fine grid to a defect vector on the coarse grid. Then, the coarse grid problem with
matrix ELAFy is solved. Finally, the result is prolongated to the fine grid.

The matrix Ay := EL AEy is the Galerkin matrix w.r.t. the coarse grid basis:

Api; = € E[jAEye; = A(GhEpe;, GhEne;)
= A(GHQi, GH@j) = A(@ﬁ? ()05{)
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Theorem 84. The overlapping domain decomposition preconditioner with coarse grid sys-
tem fulfills the optimal spectral estimates

u"Cu < u"Au < v’ Cu.

IA

Proof: The quadratic form generated by the preconditioner is

M
T, . 2 12
w'Cu= inf ugli+ ) il
umug S g i=1

Again, the upper bound v’ Au < u?’Cu follows from the finite overlap of the spaces
Vg, Vi,...Vy. To prove the lower bound, we come up with an explicit decomposition.
We split the minimization into two parts:

M
T, s . 2 112
wCu= inf  inf lunlla + Z [l 4 (6.4)
u—up =y u; i=1

In the analysis of the DD precondition without coarse grid system we have observed that

M
nf D ll 2 H = w3, + V(- )7,
u—ug=3u; i=1

Using this in (6.4) gives

w'Cu = inf {Jlugli+H lu—ugli, + IV(u—un)lli,}

ug €Vy

< inf {|Vugli, + H? |u—unll?, + | Vuli,}

- ugEVy

To continue, we introduce a Clément operator Il : H' — V3 being continuous in the
H'-semi-norm, and approximating in Ly-norm:

IV gull7, + H|u = Tgul?, < [Vaul,
Choosing now ug := Ilgu in the minimization problem we obtain the result:

u'Cu IVITgully + H2 flu = TgullZ, + [IVull,

=
= IVul® = Jlull

O
The inverse factor H ~2 we have to pay for the local decomposition could be compensated
by the approximation on the coarse grid.

The costs for the setup depend on the underlying direct solver for the coarse grid
problem and the local problems. Let the factorization step have time complexity N. Let
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N be the number of unknowns at the fine grid, and M the number of sub-domains. Then
the costs to factor the coarse grid problem and the M local problems are of order

N (03
M*+ M —
o ()
Equilibrating both terms gives the optimal choice of number of sub-domains
M = NwT,

and the asymptotic costs

@

N 2a—1,

Example: A Cholesky factorization using bandwidth optimization for 2D problems has
time complexity N2. The optimal choice is M = N?/3, leading to the costs of

N3,

Multi-level preconditioners

The preconditioner above uses two grids, the fine one where the equations are solved,
and an artificial coarse grid. Instead of two grids, one can use a whole hierarchy of grids
1o, Tq,..., 7, = T. The according finite element spaces are

WowcVvic...cVy,=1V,.
Let E; be the prolongation matrix from level [ to the finest level L. Define
A = EFAE, and D, = diag{ A;}.
Then, the multi-level preconditioner is
L
C™' = EByAy'Eg + > ED['E]
=1

The setup, and the application of the preconditioner takes O(N) operations. One can
show that the multi-level preconditioner fulfills optimal spectral bounds

u"Cu < u" Au < u” Cu.

An iterative method with multi-level preconditioning solves the matrix equation Au = f
of size N with O(N) operations !
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Chapter 7
Mixed Methods

A mixed method is a variational formulation involving two function spaces, and a bilinear-
form of a special saddle point structure. Usually, it is obtained from variational problems
with constraints.

7.1 Weak formulation of Dirichlet boundary condi-
tions

We start with the Poisson problem

—Au=f in Q, (7.1)
and boundary conditions
U = Up on ['p,
% =0 on I'y.

In contrast to the earlier method, we multiply equation (7.1) with test functions v € H*
(without imposing Dirichlet constraints), and integrate by parts. Using the Neumann
boundary conditions, we obtain

/Vqud:U—/ @vds:/fvdx
Q T'p on 9

The normal derivative g—:fb is not known on I'p. We simply call it —A:
ou
A= ——
on

To pose the Dirichlet boundary condition, we multiply v = up by sufficiently many test
functions, and integrate over I'p:

/u,udsz/ upp ds VYue?
I'p I'p

95
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Combining both equations, we get the system of equations: Find v € V = H'(Q) and
A € (Q =7 such that

JoVu-Vvde + [ vAds = [ fudx Vo eV,

(7.2)
Jr, wids = Jp uppds VYpeQ.

A similar formulation can be obtained for interface conditions.

7.2 A Mixed method for the flux

We start from the second order pde
div(aVu) = f in €,

and boundary conditions

u = Up onl'p
ou
— = onl’
aE)n g nl'y

Next, we introduce the flux variable o := aVu to rewrite the equations as: Find u and o
such that

alo—Vu = 0, (7.3)
dive = —f, (7.4)
and boundary conditions
= Up onl'p
o-n = g onl'y.

We want to derive a variational formulation for the system of equations. For that, we
multiply the first equations by vector-valued test functions 7, the second equation by test
functions v, and integrate:

Jola™to)-T7de — [,7-Vudz = 0 VT
Jo div ovde = — [ fudzx Yo

We would like to have the second term of the first equation of the same structure as the
first term in the second equation. This can be obtained by integration by parts applied to
either one of them. The interesting case is to integrate by parts in the first line to obtain:

/aardm+/div Tudx—/ Tnuds—/ T, uds = 0.
Q Q I'p 'n
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Here, we make use of the boundary conditions. On the Dirichlet boundary, we know
u = up, and use that in the equation. The Neumann boundary condition ¢ - n = g must
be put into the approximation space, it becomes an essential boundary condition. Thus,
it is enough to choose test functions of the sub-space fulfilling 7 - n = 0. The problem is
now the following. The space V will be fixed later. Find ¢ € V,0,, =g on 'y, and v € )
such that

a o) -tdr —+ ivrTtudr = UpDTy dS 7, T, =0on Iy
9 ! d od d r'p d v r
deiV ovdx = — [ fodz Vo

The derivatives are put onto the flux unknown o (and its test function 7). We don’t have
to derive the primal unknown u. This will give us better approximation for the fluxes than
for the scalar. That is one of the reasons to use this mixed method.

7.3 Abstract theory

A mixed variational formulation involves two Hilbert spaces V' and @), bilinear-forms

a(u,v) : VxV =R,
b(u,q) :+ VxQ—R,

and continuous linear-forms
fv) + V=R,
glqg) + Q@—R.
The problem is to find v € V and p € () such that

a(u,v) + blv,p) = flv) VYvel,
b(u, q) = glg)  VgeQ

The two examples from above are of this form.

(7.5)

Instead of considering this as a system of equations, one can look at the mixed method
as one variational problem on the product spaces V' x ). For this, simply add both lines,
and search for (u,p) € V x @ such that

a(u,v) + b(u, q) + b(v,p) = f(v) + g(q) V(v,q) € V x Q.
Define the big bilinear-form B(.,.) : (V x Q) x (V x Q) — R as
B((u,p), (v, q)) = a(u,v) + b(u, q) + b(v, p),
to write the whole system as single variational problem

Find (u,p) € V x Q: B((w,p), (v,q) = f(v) +9(qg)  Y(v,9) €V xQ
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By the Riesz-representation theorem, we can define operators:

A: VoV u—Au: (Auv)y = alu,v) YveV
B: V—-Q: u—Bu: (Bu,q)g = bluq VYq¢eQ
B*: Q—V: p—DB'p: (B*p,v)y = blv,p) YveV.
By means of these operators, we can write the mixed variational problem as operator

equation
Au 4+ Bp =Jvf,

Here, we used the Riesz-isomorphisms Jy : V* — V and Jg : Q" — Q.

In the interesting examples, the operator B has a large kernel:
Vo :={v:Bv =0}

Lemma 85. Assume that B*Q) is closed in V. Then there holds the V -orthogonal decom-
position
V=V + B*Q

Proof: There holds
Vo = {v:Bv=0}

{v:(Bv,q)g=0 VqeQ}
{v:(v,B*q)y =0 Vqe€Q}.

This means, Vj is the V-orthogonal complement to B*Q. O
Now, we will give conditions to ensure a unique solution of a mixed problem:

Theorem 86 (Brezzi’s theorem). Assume that a(.,.) and b(.,.) are continuous bilinear-
forms

a(u,v) < ag|lullv||v]v Yu,veV, (7.7)
bu,q) < PBellullvlldle  VYueV,VgeQ.

Assume there holds coercivity of a(.,.) on the kerneli.e.,
alu,u) > oy |Jull¥ YVu eV, (7.9)
and there holds the LBB (Ladyshenskaja-Babuska-Brezzi) condition

b(u, q)
sup
ueV ||u||V

> Billdlle VaeQ. (7.10)
Then, the mized problem is uniquely solvable. The solution fulfills the stability estimate

lullv +lIplle < efllf]

with the constant ¢ depending on aq, s, B, Bs.

ve + llglle-},
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Proof: The big bilinear-form B(.,.) is continuous
B((u,p), (v,9)) = (ull + llpl) Ul + llgll)-
We prove that it fulfills the inf — sup condition

inf sup B((u,p), (v, q)) >
va wp ([0llv + llalle)(Jullv + llplleo)

Then, we use Theorem 33 (by Babuska-Aziz) to conclude continuous solvability.
To prove the inf — sup-condition, we choose arbitrary v € V and ¢ € Q. We will
construct u € V and p € @) such that

lullvy + llplle = {lvllv + llalle

and
B((u,p), (v,0) = ][}, + llallg-
First, we use (7.10) to choose u; € V' such that

blur,q) = llalla  and  [lully < 267" [lalle-

Next, we solve a problem on the kernel:
Find up € Vo a(ug, wo) = (v, wo)y — aluy, wp) Ywy € Vp

Due to assumption (7.9), the left hand side is a coercive bilinear-form on Vy. The right

hand side is a continuous linear-form. By Lax-Milgram, the problem has a unique solution
fulfilling
[uollv = lvllv + [lwllv

We set
U = Ug + Uq.

By the Riesz-isomorphism, we define a z € V' such that
(z,w)y = (v,w)y — a(u,w) VweV
By construction, it fulfills 21y V. The LBB condition implies

blv B*
Iplle < 55" sup H< H> 57 s “’H H”

and thus B*(Q is closed, and z € B*(). Take the p € @) such that

=618 pllv,

z = B™p.

It fulfills
Iplle < B tIzlv = llvllv + llallg
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Concluding, we have constructed u and p such that

[ullv +llplle = l[vllv + lldlle,

and

B((u,p), (v,q)) = a(u,v)+ b(v,p)+ b(u,q)
= a(u,v) + (z,0)y + b(u, q)

a(u,v) + (v,v)y — a(u,v) + b(u, q)

[0][§ + b(ur, q)

= [lvll¥ + llalle

7.4 Analysis of the model problems

Now, we apply the abstract framework to the two model problems.

Weak formulation of Dirichlet boundary conditions

The problem is well posed for the spaces
V=HYQ) and Q=H Y*Ip)

Remember, H~'/2(I'p) is the dual to H'/?(I'p). The later one is the trace space of H'(Q),
the norm fulfills

”UDHJLP/?(FD)2 u};llfl HwHHl(ﬂ)-

tr w=up

The bilinear-forms are

a(u,v) = / Vu Vo dz
Q
b(u, )\) = <)\,tr u)H*1/2><H1/2

To be precise, the integral fFD Audzx is extended to the duality product (A, u). For regular
functions (A € Ly(I'p)), we can write the Ly-inner product.

Theorem 87. The mized problem (7.2) has a unique solution u € H'(Q) and \ €
H=Y2(I'p).

Proof: The spaces V' and @, and the bilinear-forms af(.,.) and b(.,.) fulfill the assump-
tions of Theorem 86. The kernel space Vj is

Voz{u:/ updr =0 Vpe Ly(T'p)} ={u:trr, u=0}
I'p
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The continuity of a(.,.) on V is clear. It is not coercive on V', but, due to Friedrichs
inequality, it is coercive on V.
The bilinear-form b(.,.) is continuous on V' x Q:

b(u, ) = (o tr W) yayzsepre < pll-vrell 0 wll e,y = llellellullar = llullellullv

The LBB - condition of b(.,.) follows more or less from the definition of norms:

q,u
ldlo = sup %4
wCH1/2 HUHHU2
~ sup - 2.
weEH/2 lnfuJEHl(Q) ||w||H1(Q)
tr w=u
~ s sw (q,u)
weH/?2 weH(Q) ||w||H1
tr w=u
t b
= sup @trw) (w, q)
wernt 0l wev |wllv

Mixed method for the fluxes

This mixed method requires the function space H(div,2):

Definition 88. A measurable function g is called the weak divergence of o on Q C R? if
there holds

/ggpdazz—/a-Vgpdm Ve CP(Q)
Q Q
The function space H(div) is defined as

H(div, Q) := {0 € [Ly(Q)]* : div 0 € Ly},

1ts norms 1s 1o
ol gy = {llollz, + [ div ol|7, }

The mixed method is formulated on the spaces
V = H(div) Q =L,
The bilinear-forms are
a(o,7) = /a_lm' de  Vo,TeV

b(o,v) = /divavdx VoeV,Vve@

We assume that the symmetric matrix a € R%“¢ and its inverse a~! are bounded.
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Theorem 89. The mixed problem for the fluzes is well posed.

Proof: We check the conditions of the theorem of Brezzi: The bilinear-forms are
bounded, namely

a(o,7) = /a_IUTde < lla Mz llollzy Iy = llollv lI7llv

and
b(o,v) = /div ovdr < ||divo|z, [[v][z, < llollv[vle-

The kernel space Vo = {7 : b(1,v) = 0Vv € Q} is
Vo = {7 € H(div) : div 7 = 0}

There holds the kernel-ellipticity of a(.,.). Let 7 € V4. Then

o(rir) = [ #atrdo 2 it Awa(a) [ 1P do = eI, = el
We are left to verify the LBB condition

di d
sup [div ovdx

= vll, Vo€ L. (7.11)
cer(div) |0l maiv)

For given v € Ly, we will construct a flux o satisfying the inequality. For this, we solve
the artificial Poisson problem —A¢ = v with Dirichlet boundary conditions ¢ = 0 on 0.
The solution satisfies ||V¢||L, =< ||v|/L,. Set 0 = —Vp. There holds div ¢ = v. Its norm is

o2 asy = lollZ, + I div oIz, = IVellZ, + [0lZ, X v,
Using it in (7.11), we get the result

[div ovdz Jv?dx
= = v,
o] faiv) o || 7 aiv)

The function space H(div)

The mixed formulation has motivated the definition of the function space H(div). Now,
we will study some properties of this space. We will also construct finite elements for
the approximation of functions in H(div). In Section 3.3.1, we have investigated traces of
functions in H'. Now, we apply similar techniques to the space H(div). Again, the proofs
are based on the density of smooth functions.

For a function in H'!, the boundary values are well defined by the trace operator. For
a vector-valued function in H(div), only the normal-component is well defined on the
boundary:
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Theorem 90. There exists a normal-trace operator
tr, : H(div) — H~2(0Q)
such that for o € H(div) N [C(Q)]¢ it coincides with its normal component
tr,o=0-n on 0S).

Proof: For smooth functions, the trace operator gives the normal component on the
boundary. We have to verify that this operator is bounded as operator from H(div) to
H=Y2(0Q). Then, by density, we can extend the trace operator to H(div). Let o €
H(div) N [CY(Q)]¢:

o-neds o-ntrpds
| trpollg-12 = sup ‘[89—¢ ~ sup Jon Ld
©EH/2(89Q) [l /2 PEH(Q) [l
tr ) -nds di dx
— aw Joalo tr p) ~ aw Jo div(oyp)
wEHL(Q) o]l 1 wEHL(Q) ool 1
_ Joldiva)pdz + [ o - Vpde [ div o[, el + llollzs Vel
= sup ~ Ssup
PEH(Q) [l 2 PEHL(Q) ol 2
. 1/2
< A{llollz, + 1div all7,} " = llo /i)

Lemma 91. There holds integration by parts

/ o-Vydr+ /(div o)pdr = (tr, 0,8 Q) yo1/2, 172
Q Q

for all o € H(div) and ¢ € H'(Q).
Proof: By density of smooth functions, and continuity of the trace operators.

Now, let Qq,...8; be a non-overlapping partitioning of 2. In Section 3.3.1, we have
proven that functions which are in H 1(©;), and which are continuous across the boundaries
vi; = Q; N Qy, are in H*(). A similar property holds for functions in H(div).

Theorem 92. Let o € [Ly(2)]? such that

U|Q¢ € H(le, Q’L)

trn; 0lo, = —trn; olq, on ;.

Then o € H(div,{2), and
(div o)]q, = div (o
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The proof follows the lines of Theorem 46.

We want to compute with functions in H(div). For this, we need finite elements for
this space. The characterization by sub-domains allows the definition of finite element
sub-spaces of H(div). Let 7 = {T'} be a triangulation of Q. One family of elements are
the BDM (Brezzi-Douglas-Marini) elements. The space is

Vi = {0 € [Ly)*: o|r € [P*]?, o -n continuous across edges}.

This finite element space is larger than the piece-wise polynomial H!-finite element space
of the same order. The finite element functions can have non-continuous tangential com-
ponents across edges.

The cheapest element for H(div) is the lowest order Raviart-Thomas element RTO.
The finite element (7', Vo, {1;}) is defined by the space of shape functions Vz, and linear
functionals ;. The element space is

VTz{(Z>+c(‘;) :a,b,cER},

the linear functionals are the integrals of the normal components on the three edges of the
triangle

%(a)z/a-nds i =1,2,3

The three functionals are linearly independent on V7. This means, for each choice of
01,09, 03, there exists three unique numbers a, b, ¢ € R such that

a T
o= <b> +c (y) .
satisfies ¢;(0) = o;.

FExercise: Compute the shape functions for the RTO - reference triangle.

The global finite element functions are defined as follows. Given one value o; for each
edge e; of the triangulation. The corresponding RTO0 finite element function o is defined

by
olr € Vr and / olr - ne, ds = oy
e

for all edges e; C T" and all triangles T € 7T .

We have to verify that this construction gives a function in H(div). For each ele-
ment, o|7 is a linear polynomial, and thus in H(div,7"). The normal components must be
continuous. By construction, there holds

/U\T,i-nds = /0|T7j-nds
€ €
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for the edge e = I; N T;. The normal component is continuous since o - n. is constant on
an edge: Points (x,y) on the edge e fulfill zn, + yn, is constant. There holds

0N, = {(Z) +e ('%)} . (n$> = an, + bny, + c¢(zn, + yn,) = constant

) Ty
The global RT0-basis functions ¢fT are associated to the edges, and satisfy

/gpr~ned5:5ij Vi, j=1,... Nedges

€

By this basis, we can define the RT - interpolation operator
I = Z (/ a-neds) BT
edges e; i
It is a projection on V},. The interpolation operator preserves the divergence in mean:

Lemma 93. The RTO0 - interpolation operator satisfies
/ div I,o dx = / div odz
T T

Let P, be the Ly projection onto piece-wise constant finite element functions. This
is: Let Qn = {q € Ly : q|7 = const VT' € T}. Then P,p is defined by Pyp € @ and
Jo Papandz = [, Ppgnda ¥ g, € Q. This is equivalent to P,p satisfies P,p € @), and

/Phpdx:/pdx VT eT.
T T

The Raviart-Thomas finite elements are piecewise linear. Thus, the divergence is piece-
wise constant. From div [0 € ), and Lemma 93 there follows

for all triangles T € T .

div ]hO' = Ph div o.
This relation is known as commuting diagram property:

H(div) &% 2

l& lﬂl (7.12)
VAT S5 Q
The analysis of the approximation error is based on the transformation to the reference
element. For H! finite elements, _interpolation on the element 7" is equivalent to interpo-
lation on the reference element T, i.e., (Iyv) o Fr = I(v o Fr). This is not true for the
H(div) elements: The transformation F' changes the direction of the normal vector. Thus
[ o-nds# [,6-nds.
The Piola transformation is the remedy:
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Definition 94 (Piola Transformation). Let F : T — T be the mapping from the reference
element T' to the element T. Let 6 € Lo(T). Then, the Piola transformation

o="P{s}

15 defined by
o(F(2)) = (det F") ' Flo(z).

The Piola transformation satisfies:
Lemma 95. Let 6 € H(div,T), and o = P{6}. Then there holds
(div o) (F(z)) = (det F’T1 div ¢

Let é be an edge of the reference element, and e = F(é). Then

/J-ndSZ/c}-ﬁds

Proof: Let 3 € C(T), and ¢(F(2)) = $(z). Then there holds

/div ocpdr = /U'Vgodx
T T

= /f [(det F') "' F'a] - [(F') "V ] (det F') di

_ /ijgbdfc:/Adiv&@dfc
T T

_ / (det F')~ (div &) da.
T

Since Cg° is dense in Ly(T"), there follows the first claim. To prove the second one, we show

that
/(U ‘n)pds = /(6 -n)pdz
holds for all ¢ € C*(T'), ¢ = 00n IT \ e. Then, let ¢ — 1 on the edge e:

/6(0' ‘n)pds = /Tdiv(mp) dr = /Adiv(&gb) dz = /(6 ‘)@ ds.

T é
g

Lemma 96. The Raviart-Thomas triangle T' and the Raviart-Thomas reference triangle

are interpolation equivalent:
I P{o} = P{L;7 5}

Proof: The element spaces are equivalent, i.e., Vi = P{Vz}, and the functionals ¢;(0) =
fe o -nds are preserved by the Piola transformation.
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Theorem 97. The Raviart-Thomas interpolation operator satisfies the approximation
properties

lo = ol = hiIValLw
|dive — div [T 0| ,0) = A|Vdivo| e

Proof: Transformation to the reference element, using that the interpolation preserves
constant polynomials, and the Bramble Hilbert lemma. The estimate for the divergence
uses the commuting diagram property

[div(l = 7)o, = [|(1 = Pu)div o[z, < AV divollz,

7.5 Approximation of mixed systems

We apply a Galerkin-approximation for the mixed system. For this, we choose (finite
element) sub-spaces V}, C V and @}, C @, and define the Galerkin approximation (u, pn) €
Vi X Qn by

B((un, pr); (vn, qn)) = f(vn) + 9(qn) Vo, € Vi Van € Q.
Theorem 98. Assume that the finite element spaces fulfill the discrete stability condition

inf  sup B((u, p), (v.9)) > 3. (7.13)

veVina€Qnuevi,peQs, ([Vllv + llal(lullv +llplle) —

Then the discretization error is bounded by the best-approrimation error

U — U + ||lp — < inf U— v + ||lp —
Ju—wnlly+ o= pulle < _inf _ {llu=willy +Ip = aullo}

Proof: Theorem 36 applied to the big system B((u,p), (v,q)). O

The stability on the continuous level V' x ) does not imply the discrete stability !
Usually, one checks the conditions of Brezzi on the discrete level to prove stability of
B(.,.) on the discrete levels. The continuity of a(.,.) and b(.,.) are inherited from the
continuous levels. The stability conditions have to be checked separately. The discretet
kernel ellipticity

CL(Uh,Uh) ~ HUhH%/ Yu, € Vo, = {?)h eV, : b(vh,qh) =0 th € Qh}, (7.14)
and the discrete LBB condition

b
Sup (uha Qh)

= llalle  Van € Qn (7.15)
up€Vp HuhHV
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The discrete LBB condition is posed for less dual variables ¢, in @), C @, but the space in
the supremum is also smaller. It does not follow from the LBB condition on the continuous
levels.

There is a canonical technique to derive the discrete LBB condition from the continuous
one:

Lemma 99. Assume there exists a quasi-interpolation operator
Hh V- Vh

which s continuous
ol 2ol Vo ey,

and which satisfies
b(I1v, gn) = b(v, qn) Van € Q.

Then, the continuous LBB condition implies the discrete one.
Proof: For all p,, € @)y, there holds

b(vn, pn) > sup b(ILyv, pr) o b(v,pn)

sup > = = |Ip
L T P A 1 T e e Pl
(Il
Approximation of the mixed method for the flux
Choose the pair of finite element spaces, the Raviart Thomas spaces
_ ) RT _ :
Vi={ve H(div):v|p € V" } C V = H(div)
and the space of piece-wise constants
Qn={q€Ly:qlr € P’} CQ=Lo.
Pose the discrete mixed problem: Find (op,,u;) € V), X @, such that
Jola™oy) - mde + [ div upde = fFD upT, ds V1, €V (7.16)
Jo div oy v, da = — [ fupdx Yo, € Qp. '

Lemma 100 (Discrete Stability). The discrete mized variational problem (7.16) is well
posed.

Proof: By Brezzi’s theorem. Continuity of the bilinear-form and the linear-form follow
from the continuous level. We prove the kernel ellipticity: Since

div V), C Qh,
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there holds
div thhd$20 thEQh = div op =0,

and thus Vo, C Vp. In this special case, the discrete kernel ellipticity is simple the restriction
of the continuous one to V4. We are left with the discrete LBB condition. We would like
to apply Lemma 99. The quasi-interpolation operator is the Raviar-Thomas interpolation
operator I The abstract condition

b(If T o, vp) = blo,vp) v € Qp,

/ div If o do = / div odz,
T T

which was proven in Lemma 93. But, the interpolation operator is not continuous on
H(div). The edge-integrals are not well defined on H(div). We have to include the sub-
space [H']¢ C H(div). There holds

reads as

I o || maiy < o] m Yo e [HY,
and the stronger LBB condition (see Section on Stokes below)

(div o, v)

sup L2 > Bllvll L, Vo € Ly.

oe[H)d o |
We follow the proof of Lemma 99: For all v, € ), there holds

sup b(on, vn) (div I o, vy,) sup (div o, vs)

> —RT = = |lvnllz,-
onevi llonllv oe[H1)d HIETUHV oe[H1)d o] ’

Brezzi’s theorem now proves that the discrete problem is well posed, i.e., it fulfills the
discrete inf-sup condition.
(Il

Theorem 101 (A priori estimate). The mized finite element methods for the fluzes satisfies
the error estimates

lo = anllz, + | div(e = on)llz, + llu = wnllL, = b (follm + lullar + 1 fllm) (7.17)

Proof: By discrete stability, one can bound the discretization error by the best approx-
imation error

lo = ol + llu —unllz, = inf {llo = 7ullmaw) + lu — vnllz. } -
oheQn
The best approximation error is bounded by the interpolation error. The first term is

(using the commuting diagram property and diveo = f)

inf {lo =7z, + | divie = m)lle.} < oL ollo, +1(T=P) divellr, < h (lollm + [ fllm) -

THhEV)
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The second term is

inf [lu—wnllL, < llu— Poullr, = hllullg.
v EQR

O

The smoothness requirements onto the solution of (7.17) are fulfilled for problems on
convex domains, and smooth (constant) coefficients a. There holds ||u||gz < || f||z,- Since
o = aVu, there follows ||o||g1 =< ||f]lz,- The mixed method requires more smoothness
onto the right hand side data, f € H'. It can be reduced to H' on sub-domains, what is
a realistic assumption. On non-convex domains, u is in general not in H? (and ¢ not in
H'). Again, weighted Sobolev spaces can be used to prove similar estimates on properly
refined meshes.

Approximation of the mixed method for Dirichlet boundary conditions

A possibility is to choose continuous and piece-wise linear finite element spaces on the
domain and on the boundary

Vi, = {U € C(Q) : ’U‘T € P! VT},
Qn=1{neC): ulgecP! VE C0Q}.
Theorem 102. The discrete mized method is well posed.

Proof: Exercises.



Chapter 8

Applications

We investigate numerical methods for equations describing real life problems.

8.1 The Navier Stokes equation

The Navier Stokes equation describe the flow of a fluid (such as water or air). The in-
compressible Navier Stokes equation models incompressible fluids (such as water). The
stationary N.-St. equation models a solution in steady state (no change in time).

The field variables are the fluid velocity v = (u,, uy, u.), and the pressure p. Conserva-
tion of momentum is

—vAu+ plu-Viu—Vp=f

The first term describes friction of the fluid (v is called viscosity). The second one arises
from conservation of momentum of moving particles. It is called the convective term (p is
the density). The source term f models forces, mainly gravity. The incompressibility of
the fluid is described by

divu=0.

Different types of boundary conditions onto v and p are possible.

The Navier Stokes equation is nonlinear. In general, no unique solution is guaranteed.
The common approach to find a solution is the so called Oseen iteration: Given u*, find
the next iterate (u*1, p**1) by solving

_VAukJrl T p(uk . V)ukJrl o Vpk+1 —

div ot =

o =

Under reasonable conditions, this Oseen equation is uniquely solvable. Since u* is the
solution of the old step, it satisfies div u* = 0. Furthermore, we assume that the velocity
u* is bounded in L..-norm.

111
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From now on, we continue to investigate the Oseen equation. Given a vector-field
w = (Wy, Wy, w,) € [Leo]® such that div w = 0. Find u and p such that

—Au+(w-V)u—Vp = f
divu = 0.

We have removed the viscosity by rescaling the equation. The factor p/v is incorporated
into the vector-field w.

As usual, we go over to the weak formulation: Find uw € V = [H!]> and p € Q = L,
such that

[{VuVvo+ (w-V)uvtde + [divepde = [fvdz VYveV (8.1)

[divugdz = 0 VqeQ. '

This variational problem is a mixed formulation. It satisfies the conditions of Brezzi:
The bilinear forms are

a(u,v) = /{VUVU + (w - V)uv} dx,
b(u,q) = /div uqdz.

Both forms are continuous. The form a(.,.) is non-symmetric. In a(.,.), the z, y, and
z components of u and v are independent. To investigate af(.,.), it is enough to consider
scalar bilinear-forms. We define the inflow and outflow boundaries

I = {z€dQ:w-n<0},
I, = {z€0Q:w-n>0}.

If we pose Dirichlet boundary conditions on I';, then a(.,.) is coercive (see example 27, and
exercises). The ratio of the continuity bound and the coercivity bound depends on the
norm of the convection w. With increasing w, the problem is getting worse.

The form b(.,.) satisfies the LBB condition:

= HQHLz Vq € LQ'
u€[H} 13 foalyeet

In the case of (partial) Dirichlet boundary conditions (Hyp = {u : u = 0 on I'p}),
this condition is very nontrivial to prove. If there are only Dirichlet b.c., one has to use
Q=Ly={q: [,qdz =0}

Under these conditions, Brezzi’s theorem proves a unique solution of the Oseen equa-
tion.
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Finite elements for Navier-Stokes equation

We want to approximate the Oseen equation by a Galerkin method: Find u; € V}, and
pr € @y such that

J{Vu, Vo, + (w - Vyupvptde + [divoyppde = [ fopde Vo, €V,
) (8.2)
[ divwy, g dz =0 Y, € Q.

To obtain convergence u;, — u and p, — p, it is important to choose proper approxi-
mation spaces V, and @);,. Using the simplest elements, namely continuous and piece-wise
linear elements for V;, C [H']3, and piece-wise constants for @, C Lo does not work. The
discrete LBB condition is not fulfilled: In 2D, there are asymptotically twice as many
triangles than vertices, i.e., dim V, ~ dim Qp, and [divu,g,dz = 0 Vg, € Q) implies
Up ~ 0.

The simplest spaces which lead to convergence are the non-conforming P; element for
the velocities, and piece-wise constant elements for the pressure. The arguments are

e There are unknowns on the edges to construct a Fortin operator satisfying

/u-nds = /(Ihu) -nds,

and thus proving the discrete LBB condition.

e The error due to the non-conforming space V;, ¢ V is of the same order as the
approximation error (see Section 5.4).

8.2 Elasticity

We start with a one-dimensional model. Take a beam which is loaded by a force density f
in longitudinal (z) direction. We are interested in the displacement u(x) in x direction.
The variables are

e The strain e: It describes the elongation. Take two points z and y on the beam.
After deformation, their distance is y + u(y) — (x + u(z)). The relative elongation of
the beam is

{ytuly) - (w+u@)} —(y—z) uly) —u)

y—=z y—z

In the limit y — x, this is u/. We define the strain ¢ as

e=u.
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e The stress o: It describes internal forces. If we cut the piece (x,y) out of the beam,
we have to apply forces at  and y to keep that piece in equilibrium. This force is
called stress o. Equilibrium is

o(y) — o) + / " f(syds =0,

or
o = —f
Hook’s law postulates a linear relation between the strain and the stress:
o= Fe.
Combining the three equations
e=u o= FEe o =—f

leads to the second order equation for the displacement u:
—(Bu) = f.
Boundary conditions are
e Dirichlet b.c.: Prescribe the displacement at the boundary

e Neumann b.c: Prescibe the stress at the boundary

Elasticity in more dimensions
We want to compute the deformation of the body Q C R¢.
e The body is loaded with a volume force density f : Q — R9.
e The displacement is described by a the vector-valued function
u: Q) — R
e The strain € becomes a symmetric tensor in R¥“. The elongation in the direction of

the unit-vector n is
nlen.

The (linearized!) relation between the displacement u and the strain is now
e — 1 8’&1 i auj
Yo 2 0a:j 61’1 ’

e=¢e(u) = % {Vu+ (Vu)"}.

or, in compact form
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If the displacement is a pure translation (u = const), then the strain vanishes. Also,
if the displacement is a linearized (!) rotation, (in two dimensions u = (uy,u,) =
(y, —x), the strain vanishes. We call these deformations the rigid body motions:

R*P = {(Zl> +b( yx> :al,ag,bGR}
) _

R = {a+bxx:a,b€R3}

e The stress becomes a tensor ¢ € R??. Consider the part V C €. To keep V in
equilibrium, on has to apply the surface force density on at OV

/ ands—i—/fdx:O.
oV 1%

Apply Gauss theorem to obtain the differential form
diveo =—f.

The div-operator is applied for each row of o. A further hypothesis, equilibrium of
angular momentum, implies that ¢ is symmetric.

e Hook’s law is now a relation between two second order tensors:
0ij = E Dijrier,
Kl

in short
o= De,

where D is a fourth order tensor. For an isotropic material (same properties in all
directions), the matrial law has the special structure

o=2ue+ \tr{e} I

The two parameters p and A are called Lamé’s parameters. The trace tr is defined

as tr{e} = 30 eu.
Collecting the equations
e =c¢e(u) o= De dive=—f

leads to
—div De(u) = f.
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Multiplication with test-functions v :  — R?, and integrating by parts leads to

/Ds(u):Vvdx:/f-vdm You

Q

The operator ’:’ is the inner product for matrices, A : B = Zij A;;jB;j. Next, we use that
o = De(u) is symmetric. Thus, 0 : Vo =0 : (Vo)" =0 : 3{Vv+ (Vv)'}.

The equations of elasticity in weak form read as: Find u € V = [H017 p(9)]¢ such that

/QDE(U):E(v)da::/Qf-vd:v YvelV.

Displacement (Dirichlet) boundary conditions (u = up at I'p) are essential b.c., and
are put into the space V. Neumann boundary conditions (natural b.c.) model surface
forces sigman = g, and lead to the additional term fFN g - vds on the right hand side.

The bilinear-form in the case of an isotropic material reads as
/QM e(u) : e(v) + A div u div v dz.

We assume a positive definite material law
De:e>¢c:¢ V symmetric e € R%*?

Theorem 103. Assume that the Dirichlet boundary I'p has positive measure. Then the
equations of elasticity are well posed in [H']|%.

Proof: Continuity of the bilinear-form and the linear-form are clear. Ellipticity of the
bilinear-form follows from the positive definite matrial law, and the (non-trivial) Korn
inequality

[ et cyde = ulfngy  Vue ()
The Lax-Milgram theorem proves a unique solution u. O

The discretization of the elasticity problem is straight forward. Take a finite dimensional
sub-space V}, C V, and perform Galerkin projection. One may use the ’standard’ nodal
finite elements for each component.

Structural mechanics

Many engineering applications involve thin structures (walls of a building, body of a car,
...). On thin structures, the standard approach has a problem: One observed that the
simulation results get worse as the thickness decreases. The explanation is that the constant
in Korn’s inequality gets small for thin structures. To understand and overcome this
problem, we go over to beam, plate and shell models.
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We consider a thin (¢t < 1) two-dimensional body
Q=1x(-t/2,t/2) with [=(0,1)

The goal is to derive a system of one-dimensional equations to describe the two-dimensional
deformation. This we obtain by a semi-discretization. Define

o= { (10) €V o = Sl i) =3 oo

This function space on 2 C R? is isomorph to a one-dimensional function space with values
in RM=+My+2 e perform semi-discretization by searching for @ € Vj; such that

A(@,9) = f(§) VeV
As M,, M, — oo, XN/M — V', and we obtain convergence @ — wu.

The lowest order (qualitative) good approximating semi-discrete space is to set M, = 1

and M, = 0. This is .
()

Evaluating the bilinear-form (of an isotropic material) leads to

U_yﬁ ﬁ_yg _ ! 177/
A(( " ),( . >) = (2,u+)\)t/0Ude—|—
3 1 1 3
et NG [ 5 g [ = a5 ds

The meaning of the three functions is as follows. The function U(x) is the average
(over the cross section) longitudinal displacement, w(x) is the vertical displacement. The
function [ is the linearized rotation of the normal vector.

We assume that the load f(z,y) does not depend on y. Then, the linear form is

0 —yj o 1
f( i )—t/o fod:E+t/0 fyw dz

The semi-discretization in this space leads to two decoupled problems. The first one
describes the longitudinal displacement: Find U € H'(I) such that

1 1
(2u+)\)t/ U’U’dx:t/ f,Ude YU e HY(I).
0 0

The small thickness parameter ¢ cancels out. It is a simple second order problem for the
longitudinal displacement.
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The second problems involves the 1D functions w and : Find (w, §) € V =7 such that

B 1 B 1 B
2 A)— '8'd ' — v — B)dx = vd Y (w V
Qur NG [ BT [ - —fe =t [ a5 e

The first term models bending. The derivative of the rotation [ is (approximative) the
curvature of the deformed beam. The second one is called the shear term: For thin beams,
the angle 3 &~ tan 3 is approximatively w’. This term measures the difference w’ — 3. This
second problem is called the Timoshenko beam model.

For simplification, we skip the parameters ; and A, and the constants. We rescale the
equation by dividing by #3: Find (w, 8) such that

/ﬁ’ﬁ’ dr + tl? (w' = B) (@' — B)dz = /t‘2fw dz. (8.3)

This scaling in ¢ is natural. With ¢ — 0, and a force density f ~ t2, the deformation
converges to a limit. We define the scaled force density

f=t7f
In principle, this is a well posed problem in [H!]?:

Lemma 104. Assume boundary conditions w(0) = ((0) = 0. The bilinear-form
A((w, B), (w, B)) of (8.3) is continuous

A((w, B), (@, B)) = 72 (fwll e + 1Bl et ) (10| 2+ [15]]s12)

and coercive

A((w, B), (w, 8)) > [lwliz + 1817

Proof:

As the thickness ¢t becomes small, the ratio of the continuity and coercivity bounds
becomes large ! This ratio occurs in the error estimates, and indicates problems. Really,
numerical computations show bad convergence for small thickness ¢.

The large coefficient in front of the term [ (w’ — )(@' — (3) forces the difference w' — 3
to be small. If we use piece-wise linear finite elements for w and 3, then wj, is a piece-wise
constant function, and [, is continuous. If wj — B, ~ 0, then [, must be a constant
function !

The idea is to weaken the term with the large coefficient. We plug in the projection P°
into piece-wise constant functions: Find (wp, 8,) such that

/ Bhi, dz + - / — Bu) P°(w}, — By) dz = / fay, dz. (8.4)

Now, there are finite element functions wy, and 3, fulfilling P°(wj}, — (3;,) = 0.
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In the engineering community there are many such tricks to modify the bilinear-form.
Our goal is to understand and analyze the obtained method.

Again, the key is a mixed method. Start from equation (8.3) and introduce a new
variable

p=t"w - pB). (8.5)

Using the new variable in (8.3), and formulating the definition (8.5) of p in weak form leads
to the bigger system: Find (w,3) € V and p € @ such that

[B3de + [(@—PB)pde = [ fide V(w,B) eV
J(w' = B)pde — & [ppde = 0 Vp e Q.

This is a mixed formulation of the abstract structure: Find v € V and p € () such that

(8.6)

a(u,v) + blv,p) = fv) VYoveV,

b(u,q) — t%c(p,q) = 0 VqeQ. (8.7)

The big advantage now is that the parameter ¢ does not occur in the denominator, and
the limit ¢ — 0 can be performed.
This is a family of well posed problems.

Theorem 105 (extended Brezzi). Assume that the assumptions of Theorem 86 are true.
Furthermore, assume that
a(u,u) = 0,

and c(p, q) is a symmetric, continuous and non-negative bilinear-form. Then, the big form
B((u,p), (v,q)) = a(u,v) + b(u, q) + b(v,p) — t* c(p, q)
is continuous and stable uniformly in t € [0, 1].

We check Brezzi’s condition for the beam model. The spaces are V = [H']? and Q) = L.
Continuity of the bilinear-forms a(.,.), b(.,.), and ¢(.,.) is clear. The LBB condition is

!

— B)qd
sup [(w = B)gdx
w Wl g+ (18]

- HQHL2

We construct a candidate for the supremum:

Then
J@W' = Blgdz [ ¢*dw
lwlle + 118l — (]|

= llgllz,
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Finally, we have to check kernel ellipticity. The kernel is
Vo ={(w,B): 8=u'}.
On Vj there holds

1w II* + 11815 = IBIL, + 18Il
18, = al(w, B), (w, B))

The lowest order finite element discretization of the mixed system is to choose contin-
uous and piece-wise linear elements for wy, and 3, and piecewise constants for p,. The
discrete problem reads as: Find (wy, 8,) € V3, and pp, € @y, such that

[BByde  + [(@, B pnde = [fande  ¥(wy ) € Vi
Sy, = Bu)pnde — € [pyppde = 0 Y pn € Qn.

This is a inf-sup stable system on the discrete spaces V}, and ;. This means, we obtain
the uniform a priori error estimate

lwllz + 11817 =
=

(8.8)

l(w = wn, 8= Bl + P —pulle, = inf  |[(w = @n, 8= Bu)lla, + [P — BallL,

Wh,Bh,Ph

= h{llwllzz + 1612 + [plla }

The required regularity is realistic.
The second equation of the discrete mixed system (8.8) states that

pn =t 2P (w), — )

If we insert this observation into the first row, we obtain exactly the discretization method
(8.4) ! Here, the mixed formulation is a tool for analyzing a non-standard (primal) dis-
cretization method. Both formulations are equivalent. They produce exactly the same
finite element functions. The mixed formulation is the key for the error estimates.

The two pictures below show simulations of a Timoshenko beam. It is fixed at the left
end, the load density is constant one. We compute the vertical deformation w(1) at the
right boundary. We vary the thickness ¢ between 107! and 1073. The left pictures shows
the result of a standard conforming method, the right picture shows the results of the
method using the projection. As the thickness decreases, the standard method becomes
worse. Unless h is less than ¢, the results are completely wrong ! The improved method
converges uniformly well with respect to ¢:

- L L L L L
1 10 100 1000 1000C 1 10 100 1000
Elements Elements
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8.3 Maxwell equations
Maxwell equations describe electro-magnetic fields. We consider the special case of sta-
tionary magnetic fields. Maxwell equations are three-dimensional.

A magnetic field is caused by an electric current. We suppose that a current density

J € [L(P

is given. (Stationary) currents do not have sources, i.e., div j = 0.
The involved (unknown) fields are

e The magnetic flux B (in German: Induktion). The flux is free of sources, i.e.,

div B=0.

e The magnetic field intensity H (in German: magnetische Feldstirke). The field is
related to the current density by Henry’s law:

/j-nds: H-1ds V Surfaces S
S s

By Stokes” Theorem, one can derive Henry’s law in differential form:
curl H =

The differential operator is curl = rot = Vx. Both fields are related by a material law.
The coefficient p is called permeability:

B =puH

The coefficient p is 10® to 10* times larger in iron (and other ferro-magnetic metals) as
in most other media (air). In a larger range, the function B(H) is also highly non-linear.

Collecting the equations we have
divB=0  B=uH curl H = (8.9)

In principle, Maxwell equations are valid in the whole R3. For simulation, we have to
truncate the domain and have to introduce artificial boundary conditions.

The picture below shows the magnetic field caused by a tangential current density in a
coil:
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Compare these equations to the diffusion equation —div aVu = f. Here, we could
introduce new unknowns ¢ = Vu and ¢ = ag. On simply connected domains, g is a
gradient field if and only if curl g = 0. We could reformulate the equations as: Find vector
fields g and o such that

curl g =0 o =ag div o =—f.

The system of magnetostatic equations looks similar. Only, the right hand side data is
applied to the curl-equation, instead of the div-equation. In a similar way as curl g = 0
allows to introduce a scalar field v such that g = Vu, div B = 0 allows to introduce a
vector potential A such that

B = curl A.

Inserting the vector-potential into the equations (8.9), one obtains the second order equa-
tion
curl g~ teurl A = j. (8.10)

The two original fields B and H can be obtained from the vector potential A.

The vector-potential A is not uniquely defined by (8.10). One may add a gradient field
to A, and the equation is still true. To obtain a unique solution, the so called Coloumb-
Gauging can be applied:

div A= 0. (8.11)

As usual, we go over to the weak form. Equations (8.10) and (8.11) together become:
Find A such that

/,ulcurlA curlvdx:/j'vdx Vv e?
Q Q

and

/A-wda;:o.
Q
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We want to choose the same space for A and the according test functions v. But, then
we have more equations than unknowns. The system is still solvable, since we have made
the assumption div j = 0, and thus 7 is in the range of the curl- operator. To obtain a

symmetric system, we add a new scalar variable ¢. The problem is now: Find A € V =7
and ¢ € Q = H'/R such that

[utewlA -curlvde + [Veo-vde = [j-vdx VoeV

[A-Vida =0 Ve (8.12)

The proper space V' is the H(curl):

H(curl) = {v € [Ly(Q)]? : curl v € [Ly(Q)]*}

Again, the differential operator curl is understood in the weak sense. The canonical norm
is

1/2
[0l reurty = { V1|7, + [l curl v]|z, }

Similar to H' and H(div), there exists a trace operator for H(curl). Now, only the
tangential components of the boundary values are well defined:

Theorem 106 (Trace theorem). There exists a tangential trace operator tr, v : H(curl) —
W(0R2) such that

trrv = (v|an)r

for smooth functions v € [C(Q)]>.

Theorem 107. Let Q = UQ,;. Assume that ulg, € H(curl,$2;), and the tangential traces
are continuous across the interfaces ;;. Then u € H(curl, 2).

The theorems are according to the ones we have proven for H(div). But, the proofs (in
R3) are more involved.

The gradient operator V relates the space H! and H (curl):
V: H' — H(curl)
Furthermore, the kernel space
H°(curl) = {v € H(curl) : curl v = 0}
is exactly the range of the gradient:
H(curl) = V H*

Theorem 108. The mized system (8.12) is a well posed problem on H(curl) x H'/R.
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Proof: The bilinear-forms
a(A,v) = /,u_l curl A - curlv dx

and

b(v,p) = /U-Vgodx

are continuous w.r.t. the norms of V' = H(curl) and Q = H'/R.
The LBB-condition in this case is trivial. Choose v = V:

' 2
sup [vVpdz - [V -Vodr |Velli,

> = = [IVollz, =~ llvlle
vEH (curl) ”UHH(CUTI) ”VSOHH(curl) HVSOHLQ ?

The difficult part is the kernel coercivity of a(.,.). The norm involves also the Lo-norm,
while the bilinear-form only involves the semi-norm || curl v||z,. Coercivity cannot hold on
the whole V: Take a gradient function V1. On the kernel, the Lo-norm is bounded by the
semi-norm:

[0z, 2 ffeurl o] Vo e,

where
Voz{veH(curl):/vVgodx:O Ve H'Y}

This is a Friedrichs-like inequality.

Finite elements in H/(curl)

We construct finite elements in three dimensions. The trace theorem implies that functions
in H (curl) have continuous tangential components across element boundaries (=faces).

We design tetrahedral finite elements. The pragmatic approach is to choose the element
space as Vy = P!, and choose the degrees of freedom as the tangential component along
the edges in the end-points of the edges. The dimension of the space is 3 x dim{P'} =
3 x 4 = 12, the degrees of freedom are 2 per edge, i.e., 2 x 6 = 12. They are also linearly
independent. In each face, the tangential component has 2 components, and is linear.
Thus, the tangential component has dimension 6. These 6 values are defined by the 6
degrees of freedom of the 3 edges in the face. Neighboring elements share this 6 degrees of
freedom in the face, and thus have the same tangential component.

There is a cheaper element, called Nédélec, or edge-element. It has the same accuracy
for the curl-part (the B-field) as the P'-element. It is similar to the Raviart-Thomas
element. It contains all constants, and some linear polynomials. All 3 components are
defined in common. The element space is

Ve={a+bxz:abecR}.
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These are 6 coefficients. For each of the 6 edges of a tetrahedron, one chooses the integral
of the tangential component along the edge

Vg, (u) :/;U'TEZ. ds.

Lemma 109. The basis function ¢g, associated with the edge E; is
YE; = /\Egv/\Ef - V/\Ef )‘Eil?

where E} and E? are the two vertex numbers of the edge, and Ay, ...\ are the vertex shape

functions.
Proof:

e These functions are in Vp
o If i # j, then ¥, (pg,) = 0.

b ¢E1(90E1> =1

Thus, edge elements belong to H(curl). Next, we will see that they have also very
interesting properties.

The de’Rham complex
The spaces H', H(curl), H(div), and L, form a sequence:

ot L H(cwrl) &% H(div) 2% 12

Since VH' C [Ly)?, and curl V = 0, the gradients of H' functions belong to H(curl).
Similar, since curl H(curl) C [Ls]?, and div curl = 0, the curls of H(curl) functions belong
to H(div).

The sequence is a complete sequence. This means that the kernel of the right differential
operator is exactly the range of the left one (on simply connected domains). We have used
this property already in the analysis of the mixed system.

The same property holds on the discrete level: Let

W, be the nodal finite element sub-space of H*

Vi, be the Nédélec (edge) finite element sub-space of H (curl)

Qr  be the Raviart-Thomas (face) finite element sub-space of H(div)
Sn be the piece-wise constant finite element sub-space of Lo

Theorem 110. The finite element spaces form a complete sequence

v curl div
Wy, — Vi, — Qn — S



126 CHAPTER 8. APPLICATIONS

Now, we discretize the mixed formulation (8.12) by choosing edge-finite elements for
H (curl), and nodal finite elements for H': Find A;, € V}, and ¢, € W}, such that

[pteurl 4y -curlvyde + [V, -vde = [j-vpde Yo, € Vj

(8.13)
fAhV¢hdx =0 VQ/JhGWh

The stability follows (roughly) from the discrete sequence property. The verification of the
LBB condition is the same as on the continuous level. The kernel of the af(.,.)- form are
the discrete gradients, the kernel of the b(.,.)-form is orthogonal to the gradients. This
implies solvability. The discrete kernel-coercivity (with h-independent constants) is true
(nontrivial).

The complete sequences on the continuous level and on the discrete level are con-
nected in the de’Rham complex: Choose the canonical interpolation operators (vertex-
interpolation I, edge-interpolation IV, face-interpolation I?, Lo-projection I°). This
relates the continuous level to the discrete level:

2 % H(ewl) 2 H(div) 2% 12

lIW lIV lIQ L’S (8.14)

\Y% curl div
Wh — Vh — Qh — Sh .

Theorem 111. The diagram (8.14) commutes:
I"v=vIiV ICcul=curllV  I[¥div=divI®

Proof: We prove the first part. Note that the ranges of both, VI" and IVV, are in
V. Two functions in V}, coincide if and only if all functionals coincide. It remains to prove

that
/(VIWw) -Tds = /(]VVw) -Tds
E E

Per definition of the interpolation operator IV there holds

/(]VVw)-Tds:/Vw-Tds
E E

Integrating the tangential derivative gives the difference
/ Vw-1ds = / 2 ds =w(E?) — w(E")

Starting with the left term, and using the property of the nodal interpolation operator, we
obtain

E(www) crds = (I"Mw)(E?) — (I"w)(E") = w(E?) — w(EY).
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We have already proven the commutativity of the H(div) — Ly part of the diagram. The
middle one involves Stokes” theorem. O
This is the key for interpolation error estimates. E.g., in H(curl) there holds

lu = Il ey = Nl =T ull, + [ curl(Z = IV)ullZ,
= u—1"ullf, + (1 = 19) curlul]7,

= B ||ull3 + B3| curlul|3:

Since the estimates for the Lo-term and the curl-term are separate, one can also scale each
of them by an arbitrary coefficient.

The sequence is also compatible with transformations. Let F': T — T be an (element)
transformation. Choose

w(F(r)) = w(x)

v(F(x)) = (F) To(x) (covariant transformation)
q(F(z)) = (det F)"'(F')q(x) (Piola-transformation)
s(F(x)) (det F')~*5(z)

Then

v=Vw = v=Vw
g=curlv = qg=curlv
s=divg = s=divgq

Using these transformation rules, the implementation of matrix assembling for H(curl)-
equations is very similar to the assembling for H' problems (mapping to reference element).
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Chapter 9

Parabolic partial differential
equations

PDEs involving first order derivatives in time, and an ellitpic differential operator in space,
are called parabolic PDEs. For example, time dependent heat flow is described by a
parabolic PDE.

Let Q C R and Q = Q x (0,7T). Consider the initial-boundary value problem

ou(z,t)
ot

with boundary conditions

—div(a(z)Vu(x, t)) = f(z,t) (z,t) € Q,

uw(z,t) = up(z,t) (x,t) € I'p x (0,7),
a(x)% = g(x,t) (x,t) e 'y x (0,7,

and initial conditions

u(z,0) = up(x) x €€

Weak formulation in space: Find u : [0,T] — Hj p(€) such that
/@u x,t)v dx+/aVu(m,t) Vo(z,t)d /f z,t)v(z,t) d:zc—i—/ g(z, t)v(x,t)dx
I'n

Vve Hjp, te(0,T]
In abstact form: Find w : [0,7] — V s.t.
(u'(t),v) L, + alu(t),v) = (f(t),v) VoeV, te (0,T]
In operator form (with (Au,v) = a(u,v)):

u'(t) + Au(t) = f(t) evr

129



130 CHAPTER 9. PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS

Function spaces:

X =L,((0,7),V) X" =Ly((0,T),V7)

T 1/2
o = ([ ot Hvdt) ot = ([ It )

Definition 112. Let u € Ly((0,7),V). It has a weak derivative w € Lo((0,T), V*) if

with norms

T
/ (1) (w,0)ey di = —/ SO (u,0), dt Vv eV, Vo e CR(0,T)
0

0

Definition 113.
HY((0,T),V;Ly) = {v € Ly((0,7),V) : v € Ly((0,T),V*)}

with norm

[vllz = [lvll% + [0/
This space is a one-dimensional Sobolev space with range in a Hilbert space.

Theorem 114 (Trace theorem). Point evaluation is continuous:

<
mase o8], = o]l

This allows the formulation of the initial value u(0) = wy.
Theorem 115. Assume that a(.,.) is coercive
a(u,u) > mullf, YueV

and continuous
a(u,v) < wollullv vllv  Vu,veV.

Then, the parabolic problem has a unique solution depending continuously on the right hand
side and the initial conditions:

HUHHl((o,T),v;LQ) = ”u0HL2+Hf”Lz((O:T):V*'

We only prove stability: Choose test functions v = u(t):

(' (1), u(t)) L, + a(u(t), u(t)) = (f(t), u(t))

Use that
d

SO, =20 (6), u(®),
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and integrate the equation over (0,7):
T
3 ), = ol ) = [ (760 u(s) = aluls),u(s)) ds
T
/O LF () lv=llu(s)llv = pmllu(s)] ds

< N lxellullx = pllullx

IN

Since ||u(T)|| > 0, one has

1
ullx < 5 luoll

pallulli = 11f 1l

Solving the quadatic inequality, one obtains the bound

xe+4/1]

The bound ||v/|| £, ((0,1),v+) follows from u'(t) = f(t) — Au(t).

1
Jullx < 5 {11 e + 2wl )

9.1 Semi-discretization

We start with a discretization in space. Choose a (finite element) sub-space V;, C V. The
Galerkin discretiztaion is: Find u : [0, 7] — V}, such that

(up, (), vn) Ly + alun(t),vn) = (f(t),vn) Yo, € Vi, YVt € (0,71,
and initial conditions
(un(0),vn) L, = (U0, V1) Ly Vo, € V.

Choose a basis {¢1,...on} of V,. Expand the solution w.r.t. this basis:

= Z u;(t)pi(z)

and choose test functions v = ¢;. With the matrices

M = ((j,0i)r2)i jor.. v A= (alpj,9i); 1.

and the t-dependent vector

F@) = (@) 05))iza,...v

-----

one obtains the system of ordinary differential equations (ODEs)

Mu'(t) + Au(t) = f(t), u(0) = g
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In general, the (mass) matrix M is non-diagonal. In the case of the (inexact) vertex
integration rules, or non-conforming P;-elements, M is a diagonal matrix. Then, this ODE
can be efficiently reduced to explicit form

u'(t) + M~ Au(t) = £(t)

Theorem 116. There holds the error estimate
|w = un | g o,m),viee) = — Ri)ullgo,r),vice),
where Ry, is the Ritz projector
Ry:V —=V,: a(Rpu,vp) = alu, vy) YueV,Yu, €V,
Proof: The error is split into two parts:

u(t) — up(t) = u(t) —VRhu(tZ—i-ﬁhu(t)v— up(t)

p(t) On

The first part, u(t) — Rpu(t) is the elliptic discretization error, which can be bounded by
Cea’s lemma. To bound the second term, we use the properties for the continuous and the
discrete formulation:

(fyon) = (W) + alu,v,) = (W, vh) + a(Ryu, vp)
= (up, vn) + alun, va),
ie.,
(u — upy, vp) + a(Rpu — up, vp) = 0,

or
(Rpu' — up, vp) + a(Rpu — up, vp) = (R’ — o', vp).

With the abbreviations from above we obtain the discrete parabolic equation for Oy:

(©hsvn) +a(On,vn) = (0, vn)
©,(0) = (I — Rp)u(0).

The stability estimate, and the trace theorem bounds

(I = Rn)u(0)|| o) + 10 | Lacco,m), v+
(I = Rp)ull g (0,1),v:L0)

1Ow | 1 ((0.7),v:L0)

A 1A
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9.2 Time integration methods

Next, we discuss methods for solving the system of ODEs:
Mu'(t) + Au(t) = f(t) (9.1)
u(0) = wug

We focus on simple time integration rules and the specific properties arising from the
space-discretization of parabolic PDEs. Let

0:t0<t1<tm:T,

a partitioning of the interval [0,7]. Define 7; = t;1; — ¢;. Integrating (9.1) over the
intervalls leads to

Mty —u)}+ [ Auts)ds= [ f)as

j tj
Next, we replace the integrals by numerical integration rules. The left-sided rectangle
rule leads to

M{u(tj1) — ulty)} + 7 Au(ty) = 75 f(;)
With the notation w; = u(t;), this leads to the sequence of linear equations

MUj+1 = MU]' + Tj(fj — AUJ)
In the case of a diagoal M-matrix, this is an explicit formulae for the new time step !
Using the right-sided rectangle rule leads to
M{uj1 —uj} + 7jAU 1 = T fi41,
or
(M + 7 A)ujpr = Muj + 75 fi41.

In case of the right-side rule, a linear system must be solve in any case. Thus, this method
is called an implicit time integration method. These two special cases are called the explicit
Euler method, and the implicit Euler method. A third simple choice is the trapezoidal rule
leading to

. -
(M + E]A)uj-l-l = Mu; + Ej(fj + fir1 — Auy)

It is also an implcit method. Since the trapezoidal integration rule is more accurate, we
expect a more accurate method for approximating the ODE.
All single-step time integration methods can be written in the form

w1 = Gjuj, fj),
where Gj is linear in both arguments and shall be continuous with bounds
1G (s, fi)llar < Lllugllar + 75 Ll fillar-1,
with L > 1.
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Lemma 117. The time integration method fulfills the stability estimate
j—1

lgllar < L7 Naolar +1L7 Y~ 7l fill e (9-2)
=0
The explicit Euler method is written as
ujyy = (I — TMflA)u + TMflfj,
and has bounds
_ T
L = max{l,mApae(MtA) — 1} ~ max{1, ﬁ}
I =1

If 7 > h?, the powers L’ become very large. This means that the explicit Euler method
becomes instable. Thus, for the explicit Euler method, the time-step 7 must not be greater
than ch?.

The implicit Euler method is written as

Uj+1 = (M —+ TA)ilMUj —+ T(M + TA)ilfj,
and has the bounds
L =1
I =1
The method is stable for any time-step 7. Such a method is called A-stable.
Lemma 118. The time discretization error e; = u(t;) — u; of the implicit Euler method
satisfies the difference equation
M{€j+1 — ej} + TA€j+1 = dj,

where the d; satisfy

tj+1
&= [~ Al ds = i f(ty) ~ Aut),
tj
Lemma 119. The error of the integration rule can be estimated by
sl 2 71(f = Au)'llz = 7 [[0"]] 1o

Convergence of the time-discretization method follows from stability plus approxima-
tion:
Theorem 120. The error of the implicit Fuler method satisfies

J

lu(t) = wllar < Y Tldill = 7 [l o)
=0

The trapezoidal rule is A-stable, too. It is based on a more accurate integration rule,
and leads to second order convergence O(72). Convergence of higher order can be obtained
by Runge-Kutta methods.



Chapter 10

Hyperbolic partial differential
equations

Wave phenomena are are described by PDEs involving second order time derivatives:

O*u(x,t)

—ap div(a(x)Vu) = f

They require two initial conditions

u(z,0) = wup(z),
ou(x,t)
oy = vo(z).

Space discretization is accoring to parablic problems, and lead to the second order ODE
Mu"(t) + Au(t) = f,

and initial conditions
uw(0) =uy ¥ (0) = vp.

By introducing a new function v = u/, the second order ODE can be reduced to the first
order system

MV = f— Au,

and initial conditions
u(0) = ug v(0) = vy.

Time integration methods for first order systems can be applied.
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