Multigrid Analysis

Joachim Schöberl

June 29, 2005

Abstract

The discretization of a partial differential equation leads to a large system of linear equations. Multigrid methods are iterative solvers for these equations. The idea is not to use only one finite element mesh, but a whole hierarchy of grids. The algorithm combines cheap iterative methods on each level. The result is an equation solver of optimal arithmetic complexity $O(N)$.

While the principle is very simple, a rigorous analysis is quite involved. It requires results from partial differential equations, finite element analysis, Hilbert space theory, as well as linear algebra. The topics of the lecture is to discuss the design and analysis of multigrid methods.

In the first part, we consider various techniques for a simple model problem. This chapter is split into no-regularity techniques and techniques based on shift theorems. The second part discusses extensions to important real-life problems including elasticity and Maxwell equations.

1 Overview of Finite Elements

Multigrid analysis is strongly connected to finite element analysis. Therefore, we start with a short overview of finite elements. We focus on results relevant to multigrid, for general fem theory please contact one of the available textbooks.

Let $\Omega \subset \mathbb{R}^{d}, d=1,2,3$ be an open, bounded, polyhedral domain. We consider the Poisson problem with homogenous Dirichlet boundary conditions:

$$
\begin{array}{rll}
-\Delta u & =f & \text { in } \Omega \\
u & =0 & \\
\text { on } \partial \Omega .
\end{array}
$$

Its weak form is to search u in a suitable Hilbert function space V such that

$$
\begin{equation*}
A(u, v)=f(v) \quad \forall v \in V \tag{1}
\end{equation*}
$$

where the symmetric bilinear-form $A(.,$.$) and the linear form f($.$) are defined by$

$$
\begin{equation*}
A(u, v):=(\nabla u, \nabla v) \quad \text { and } \quad f(v):=(f, v) \tag{2}
\end{equation*}
$$

Here and in the following, (.,.) and $\|$.$\| denote the L_{2}(\Omega)$ inner product and $L_{2}(\Omega)$-norm, respectively. The bilinear-form $A(.,$.$) defines a second inner product. The corresponding$ norm

$$
\|v\|_{A}=A(v, v)^{1 / 2}
$$

is called energy norm.

1.1 Sobolev Spaces

We define a multi-index $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{N}_{0}^{d}$, its absolut value $|\alpha|=\sum \alpha_{i}$, and the derivatives $\partial^{\alpha}=\partial_{x_{1}}^{\alpha_{1}} \ldots \partial_{x_{d}}^{\alpha_{d}}$.

For $k \in \mathbb{N}_{0}$, we define the Hilbert-space (semi)norms

$$
|v|_{k}^{2}:=\sum_{|\alpha|=k}\left\|\partial^{\alpha} v\right\|^{2}
$$

and norms

$$
\|v\|_{k}^{2}:=\sum_{l=0}^{k}|v|_{l}^{2}
$$

The corresponding inner products are

$$
(u, v)_{k}=\sum_{|\alpha| \leq k}\left(\partial^{\alpha} u, \partial^{\alpha} v\right)
$$

Let $C^{\infty}(\bar{\Omega})$ be the function space of infinitely differentiable functions on $\bar{\Omega}$, and $C_{0}^{\infty}(\Omega)$ its subspace with compact support ($=$ functions vanish in neighbourhood of $\partial \Omega$) in Ω.

Define the Sobolev spaces

$$
H^{k}=\overline{C^{\infty}}\|\cdot\|_{k} \quad \text { and } \quad H_{0}^{k}=\overline{C_{0}^{\infty}\|\cdot\|_{k}}
$$

On the boundary, we define almost everywhere the normal derivative $\partial_{n}=\sum n_{i} \partial_{x_{i}}$. If the domain has Lipschitz continuous boundary, then

$$
H_{0}^{k}=\left\{v \in H^{k}: v=\partial_{n} v=\ldots \partial_{n}^{k-1} v=0 \text { on } \partial \Omega\right\}
$$

There holds Friedrichs inequality

$$
\|v\| \leq c_{F}|v|_{1} \quad \forall v \in H_{0}^{1}
$$

where the constant c_{F} depends only on the domain Ω. The dual space of H_{0}^{k} is called H^{-k}. It consists of continuous linear functionals

$$
\begin{aligned}
f(.): H_{0}^{k} & \rightarrow \mathbb{R} \\
v & \rightarrow f(v)
\end{aligned}
$$

For example, a function $f \in L_{2}$ generates the linear functional $v \in H_{0}^{1} \rightarrow(f, v)$. The dual norm is

$$
\|f\|_{-k}=\sup _{v \in H_{0}^{k}} \frac{f(v)}{\|v\|_{k}}
$$

The duality product

$$
\begin{aligned}
\langle., .\rangle_{H^{-k} \times H_{0}^{k}}: H^{-k} \times H_{0}^{k} & \rightarrow \mathbb{R} \\
(f, v) & \rightarrow f(v)
\end{aligned}
$$

is a generalization of the L_{2}-inner product.
The Sobolev spaces form a nested sequence of spaces

$$
\ldots H^{2} \subset H^{1} \subset H^{0}=L_{2} \subset H^{-1} \subset H^{-2} \ldots
$$

Later, we will define also Sobolev spaces of fractional order.
Friedrichs' inequality proves norm equivalence $\|.\|_{A} \simeq\|.\|_{1}$. Thus,

$$
V:=\left(H_{0}^{1},\|\cdot\|_{A}, A(., .)\right)
$$

is a Hilbert space.
Unique and stable solvability of (1) follows directly from the Riesz' theorem:
Theorem 1 (Riesz' representation theorem). For any continuous linear functional f on a Hilbert space V there exists an unique $u_{f} \in V$ such that

$$
\left(u_{f}, v\right)_{V}=f(v) \quad \forall v \in V
$$

and

$$
\left\|u_{f}\right\|_{V}=\|f\|_{V^{*}}
$$

On the other hand, any $u \in H_{0}^{1}$ is the solution of a weak problem with $f \in H^{-1}$: Take $f():.=A(u,$.$) .$

Regularity, shift theorem: If the right hand side f belongs to a more regular function space than H^{-1}, the solution might be more regular than H^{1}, too. If Ω is convex, and $f \in L_{2}$, then the solution u belongs to H^{2}, and the shift theorem

$$
\|u\|_{2} \preceq\|f\|_{0}
$$

is valid. Shift theorems are very specific for each problem class.
Notation: We write $a \preceq b$ if there exists an in principle computable constant c of moderate value ≈ 1 such that $a \leq c b$. In particular, the constant c does not depend on the number of elements in the discretization. We write $a \simeq b$ if $a \preceq b$ and $b \preceq a$.

If not stated otherwise, we will use the above definitions of V and A.

1.2 Finite Element Spaces

The finite element method (FEM) provides a computable approximation to the solution of (1).

A triangulation \mathcal{T} is a set of (closed) simplicial (triangular, tetrahedral) elements T

$$
\mathcal{T}=\{T\}
$$

Each element T is seen as a one to one, affine-linear mapping from the reference element T^{R}, i.e.,

$$
T=F_{T}\left(T^{R}\right)
$$

We define the local mesh size $h_{T}=\left\|F_{T}^{\prime}\right\|$. This measure is equivalent to diam(T). The triangulation is called

- regular if two elements T and T^{\prime} are either identic, or have a common face (only 3D), or a common edge, or a common vertex, or are distinct.
- shape regular if it is regular, and $\operatorname{cond}\left(F_{T}^{\prime}\right)=\left\|F_{T}^{\prime}\right\| \cdot\left\|\left(F_{T}^{\prime}\right)^{-1}\right\| \preceq 1$.
- quasi uniform if it is shape regular, and $h_{T} \simeq h$, where h is a global mesh size parameter.

Next, we define the FE sub-space

$$
V_{h}=\left\{v \in V:\left.v\right|_{T} \circ F_{T} \in P^{k}\left(T^{R}\right)\right\},
$$

where $P^{k}\left(T^{R}\right)$ is the set of polynomials up to total order $k \geq 1$ on the reference element. Functions in V_{h} are continuous.

On shape regular meshes there holds the following approximation estimate:
Lemma 2 (Approximation). Let $k=1$ or $k=2$. For given $v \in H^{k} \cap V$, there exists a $v_{h} \in V_{h}$ such that

$$
\sum_{T \in \mathcal{T}}\left\{h_{T}^{-2}\left\|v-v_{h}\right\|_{0, T}^{2}+\left\|\nabla\left(v-v_{h}\right)\right\|_{0, T}^{2}\right\} \preceq \sum_{T \in \mathcal{T}} h_{T}^{2(k-1)}|v|_{k, T}^{2}
$$

Proof: For $k=2$, define the nodal interpolation operator I_{h} and choose $v_{h}=I_{h} v$. For $k=1$, replace I_{h} by the Clément quasi-interpolation operator (see literature or Section ... below).

Lemma 3 (Inverse inequality). On shape regular triangulations there holds

$$
\left\|\nabla v_{h}\right\| \preceq\left\|h_{T}^{-1} v_{h}\right\| \quad \forall v_{h} \in V_{h} .
$$

Proof: By transformation to the reference element.
The FEM defines the approximation $u_{h} \in V_{h}$ as unique solution of

$$
\begin{equation*}
A\left(u_{h}, v_{h}\right)=f\left(v_{h}\right) \quad \forall v_{h} \in V_{h} \tag{3}
\end{equation*}
$$

FEM theory, as well as multigrid analysis, is heavily based on orthogonality relations. Subtracting (3) from (1) leads to

$$
A\left(u-u_{h}, v_{h}\right)=0 \quad \forall v_{h} \in V_{h}
$$

i.e., the error is orthogonal to V_{h}

$$
u-u_{h} \perp_{A} V_{h}
$$

The FEM approximation u_{h} is the A-orthogonal projection of u onto V_{h} :

$$
u_{h}=P_{V_{h}} u
$$

with $P_{V_{h}}: V \rightarrow V_{h}$ defined by

$$
A\left(P w, v_{h}\right)=A\left(w, v_{h}\right) \quad \forall w \in V \quad \forall v_{h} \in V_{h}
$$

(Picture orthogonality)
An equivalent definition of the projection is

$$
P_{h} u \in V_{h} \quad \text { such that: } \quad\left\|u-P_{h} u\right\|_{A} \leq \min _{v_{h} \in V_{h}}\left\|u-v_{h}\right\|_{A} .
$$

Proof: For any $v_{h} \in V_{h}$ there holds

$$
\begin{aligned}
\left\|u-u_{h}\right\|_{A}^{2} & \leq\left\|u-u_{h}\right\|_{A}^{2}+\left\|u_{h}-v_{h}\right\|_{A}^{2} \\
& =\left\|u-u_{h}\right\|_{A}^{2}+2\left(u-u_{h}, u_{h}-v_{h}\right)_{A}+\left\|u_{h}-v_{h}\right\|_{A}^{2} \\
& =\left\|u-u_{h}+u_{h}-v_{h}\right\|_{A}^{2}=\left\|u-v_{h}\right\|_{A}^{2}
\end{aligned}
$$

This is Cea's Lemma for symmetric bilinear-forms.
Theorem 4. On shape regular meshes there holds the a priori error estimate

$$
\begin{equation*}
\left\|u-u_{h}\right\|_{A}^{2} \preceq \sum_{T} h_{T}^{2}|u|_{2}^{2} \tag{4}
\end{equation*}
$$

On quasi-uniform meshes and convex domains there holds

$$
\begin{equation*}
\left\|u-u_{h}\right\|_{A} \preceq h\|f\|_{0} \tag{5}
\end{equation*}
$$

Proof. Follows immediately from orthogonality, approximation, and shift theorem.

The shift theorem provides a better rate of convergence in a weaker norm:

Theorem 5 (Aubin Nitsche). Let $u_{h}=P_{V_{h}} u$. On quasi-uniform meshes and convex domains there holds

$$
\left\|u-u_{h}\right\|_{0} \preceq h\left\|u-u_{h}\right\|_{A}
$$

Proof. Pose the additional variational problem

$$
A(w, v)=\left(u-u_{h}, v\right)_{0} \quad \forall v \in V
$$

Due to regularity there holds $w \in H^{2}$ and $\|w\|_{2} \preceq\left\|u-u_{h}\right\|_{0}$. Define w_{h} according to Lemma 2. The choice $v=u-u_{h}$ gives

$$
\begin{aligned}
\left\|u-u_{h}\right\|_{0}^{2} & =A\left(w, u-u_{h}\right)=A\left(w-w_{h}, u-u_{h}\right) \\
& \leq\left\|w-w_{h}\right\|_{A}\left\|u-u_{h}\right\|_{A} \\
& \preceq h|w|_{2}\left\|u-u_{h}\right\|_{A} \\
& \preceq h\left\|u-u_{h}\right\|_{0}\left\|u-u_{h}\right\|_{A} .
\end{aligned}
$$

Dividing one factor proves the result.
This technique is essential for many types of multigrid proofs. The following theorem proves a multi-level decomposition using the Aubin-Nitsche trick. It relates the H^{1} norm to scaled L_{2}-norms on different levels:

Theorem 6. Let $L \in \mathbb{N}, \mathcal{T}_{0}, \mathcal{T}_{1}, \ldots, \mathcal{T}_{L}$ a family of hierarchically refined quasi-uniform triangulations on a convex domain Ω. The mesh-size of \mathcal{T}_{l} is $h_{l}=2^{-l}$. The generated fe-spaces $V_{0} \subset V_{1} \subset \ldots \subset V_{L}$ are nested. Let $P_{l}: V_{L} \rightarrow V_{l}$ be the A-orthogonal projections.

Take $u_{L} \in V_{L}$ and its decomposition

$$
u_{L}=w_{0}+\sum_{l=1}^{L} w_{l} \quad \text { with } \quad w_{0}=P_{0} u_{L}, \quad w_{l}=\left(P_{l}-P_{l-1}\right) u_{L}
$$

Then there holds

$$
\left\|u_{L}\right\|_{A}^{2} \simeq\left\|w_{0}\right\|_{A}^{2}+\sum_{l=1}^{L} h_{l}^{-2}\left\|w_{l}\right\|_{0}^{2}
$$

Proof. From $\left(w_{l}, v_{l-1}\right)_{A}=\left(P_{l} u_{L}, v_{l-1}\right)_{A}-\left(P_{l-1} u_{L}, v_{l-1}\right)_{A}=0$ there follows $w_{l} \perp_{A} V_{l-1}$. The whole decomposition is A-orthogonal. Thus

$$
\left\|u_{L}\right\|_{A}^{2}=\left\|\sum_{l=0}^{L} w_{l}\right\|_{A}^{2}=\sum_{l=0}^{L} \sum_{k=0}^{L}\left(w_{l}, w_{k}\right)_{A}=\sum_{l=0}^{L}\left\|w_{l}\right\|_{A}^{2}
$$

The inverse estimate Lemma 3 applied to $w_{l} \in V_{l}$ claims $\left\|w_{l}\right\|_{A} \preceq h_{l}^{-1}\left\|w_{l}\right\|_{0}$, and the Aubin-Nitsche Lemma (applied to $w_{l}=\left(I-P_{l-1}\right) w_{l}$ proves the opposite estimate $\left\|w_{l}\right\|_{0} \preceq$ $h_{l}\left\|w_{l}\right\|_{A}$.

After choosing a basis $\left(\varphi_{1}, \ldots, \varphi_{n}\right)$ for $V_{h}, n=\operatorname{dim} V_{h}$, one ends up with the linear system

$$
\begin{equation*}
A \underline{u}=\underline{f} \tag{6}
\end{equation*}
$$

with $A_{i j}=A\left(\varphi_{j}, \varphi_{i}\right)$ and $\underline{f}_{i}=f\left(\varphi_{i}\right)$. The FEM approximation is $u_{h}=\sum_{i=1}^{n} \underline{u}_{i} \varphi_{i}$. We use underbars for vectors in \mathbb{R}^{n}, and sub-scripts h for fe functions.

The isomorphism between \mathbb{R}^{n} and V_{h} is denoted by

$$
\begin{aligned}
\Phi & : \mathbb{R}^{n} \rightarrow V_{h} \\
& : \underline{v} \rightarrow \sum_{i=1}^{n} \underline{v}_{i} \varphi_{i}
\end{aligned}
$$

Its dual $\Phi^{*}: V_{h}^{*} \rightarrow \mathbb{R}^{n}$ is defined by

$$
\left(\Phi^{*} d_{h}\right)^{T} \underline{v}=\left\langle d_{h}, \Phi \underline{v}\right\rangle_{V_{h}^{*} \times V_{h}} \quad \forall d_{h} \in V_{h}^{*} \quad \forall \underline{v} \in \mathbb{R}^{n}
$$

By choosing $\underline{v}=e_{i}$, the $i^{\text {th }}$ unit vector, we observe

$$
\left(\Phi^{*} d_{h}\right)_{i}=\left(\Phi^{*} d_{h}\right)^{T} e_{i}=\left\langle d_{h}, \Phi e_{i}\right\rangle_{V_{h}^{*} \times V_{h}}=\left\langle d_{h}, \varphi_{i}\right\rangle_{V_{h}^{*} \times V_{h}}=d_{h}\left(\varphi_{i}\right)
$$

Instead of matrices in $\mathbb{R}^{n \times n}$, we will prefer to work with operators between V_{h} and its dual V_{h}^{*}. For this, define $A_{h}: V_{h} \rightarrow V_{h}^{*}$ implicitly by

$$
\left\langle A_{h} u_{h}, v_{h}\right\rangle=A\left(u_{h}, v_{h}\right) \quad \forall u_{h}, v_{h} \in V_{h} .
$$

There holds

$$
A=\Phi^{*} A_{h} \Phi
$$

since

$$
e_{j}^{T} A e_{i}=A\left(\varphi_{i}, \varphi_{j}\right)=\left\langle A_{h} \varphi_{i}, \varphi_{j}\right\rangle=\left\langle A_{h} \Phi e_{j}, \Phi e_{j}\right\rangle=e_{j}^{T} \Phi^{*} A_{h} \Phi e_{j}
$$

for $i, j=1, \ldots, n$.
We are interested in efficient solution methods for the linear system (6).

2 Iterative methods

Let C be a regular matrix. The preconditioned Richardson iteration is
Choose u^{1}.
For $k=1,2, \ldots$

$$
\begin{aligned}
& d^{k}=f-A u_{k} \\
& w^{k}=C^{-1} d_{k} \\
& u^{k+1}=u^{k}+\tau w^{k}
\end{aligned}
$$

The game is to define matrices C such that the iteration converges fast, and the application of C^{-1} is efficient.

The iteration can be written as

$$
u^{k+1}=u^{k}+\tau C^{-1}\left(f-A u^{k}\right) .
$$

Define the error as $e^{k}=u^{k}-u$ and use $f=A u$ to obtain the error transition relation

$$
\begin{aligned}
e^{k+1} & =u^{k+1}-u=u^{k}-u+\tau C^{-1} A\left(u-u^{k}\right) \\
& =\underbrace{\left(I-\tau C^{-1} A\right)}_{M} e^{k} .
\end{aligned}
$$

The goal is to prove estimates for $\|M\|$ in a proper norm.
It is useful to choose symmetric and positive definite preconditioning matrices C. Then the iteration matrix $M=\left(I-\tau C^{-1} A\right)$ is self-adjoint w.r.t. the energy inner product $(u, v)_{A}=u^{T} A v:$

$$
\begin{aligned}
(M u, v)_{A} & =\left(\left(I-\tau C^{-1} A\right) u\right)^{T} A v=u^{T}\left(A-\tau A C^{-1} A\right) v \\
& =u^{T} A\left(I-\tau C^{-1} A\right) v=(u, M v)_{A}
\end{aligned}
$$

If a matrix is self-adjoint in some norm, its corresponding matrix norm is equal to the spectral radius ($=$ the absolute value of its largest eigen-value).

The following two statements are equivalent:

- λ_{i} is an eigen-value of $A x=\lambda C x$
- $\mu_{i}:=1-\tau \lambda_{i}$ is an eigen-value of $\left(I-\tau C^{-1} A\right) x=\mu x$

Thus

$$
\|M\|_{A}=\sup _{\lambda \in \sigma\left(C^{-1} A\right)}|1-\tau \lambda|
$$

Let $\sigma\left(C^{-1} A\right) \subset\left[\lambda_{1}, \lambda_{n}\right]$ with $\lambda_{1}>0$. Then the optimal choice $\tau=\frac{2}{\lambda_{1}+\lambda_{n}}$ leads to $\|M\| \leq 1-\frac{2}{1+\lambda_{n} / \lambda_{1}}$.

Thus, the goal is to prove spectral estimates

$$
\lambda_{1}\|v\|_{C}^{2} \leq\|v\|_{A}^{2} \leq \lambda_{n}\|v\|_{C}^{2} .
$$

In practice, one uses conjugate gradient iterations instead of the Richardson iteration. Also there, the spectral estimates are the basis for estimating the rate of convergence.

2.1 Representation in FE space

A simple preconditioner is the Jacobi preconditioner, i.e., choose

$$
C=\operatorname{diag} A
$$

The goal is to rewrite the preconditioning matrix operation C^{-1} as operator in the finite element space, namely

$$
C_{h}^{-1}: V_{h}^{*} \rightarrow V_{h}
$$

The definition is

$$
C_{h}^{-1}=\Phi C^{-1} \Phi^{*}
$$

We start with $d_{h} \in V_{h}^{*}$ and compute $w_{h}=C_{h}^{-1} d_{h}$. Intermediate steps are $\underline{d}=\Phi^{*} d_{h} \in$ $\mathbb{R}^{n}, \underline{w}=C^{-1} \underline{d} \in \mathbb{R}^{n}$ and $w_{h}=\Phi \underline{w}$. The matrix preconditioning operation is

$$
\underline{w}=\underline{C}^{-1} \underline{d}=\sum_{i=1}^{n} e_{i}\left(e_{i}^{T} A e_{i}\right)^{-1} e_{i}^{T} \underline{d} .
$$

Let $\underline{d}_{i}=e_{i}^{T} \underline{d}$ and $\underline{w}_{i}=\left(e_{i}^{T} A e_{i}\right)^{-1} \underline{d}_{i}$. This scalar equation can be written in variational form:

$$
\underline{v}_{i}^{T}\left(e_{i} A e_{i}\right) \underline{w}_{i}=\underline{d}_{i} \underline{v}_{i} \quad \forall v_{i} \in \mathbb{R},
$$

Now, using the definition of the matrix and the vector \underline{d}, we have

$$
\underline{v}_{i} A\left(\varphi_{i}, \varphi_{i}\right) \underline{w}_{i}=d\left(\varphi_{i}\right) \underline{v}_{i} \quad \forall \underline{v}_{i} \in \mathbb{R}
$$

This is a variational problem on $V_{i}:=\operatorname{span}\left\{\varphi_{i}\right\}:$ The finite element function $\underline{w}_{i} \varphi_{i}$ is the unique solution $w_{i} \in V_{i}$ of

$$
A\left(v_{i}, w_{i}\right)=d\left(v_{i}\right) \quad \forall v_{i} \in V_{i} .
$$

Finally, we get

$$
w_{h}=\Phi \underline{w}=\sum \Phi e_{i} \underline{w}_{i}=\sum \varphi_{i} \underline{w}_{i}=\sum w_{i} .
$$

Combining the steps above, we have derived the preconditioning operator

$$
\begin{gathered}
C_{h}^{-1}: V_{h}^{*} \rightarrow V_{h}: d(.) \rightarrow w \\
w=\sum w_{i} \quad \text { with } \quad w_{i} \in V_{i} \text { s.t. } A\left(w_{i}, v_{i}\right)=d\left(v_{i}\right) \quad \forall v_{i} \in V_{i} .
\end{gathered}
$$

The error reduction operator translated to the finite element space, $M_{h}: V_{h} \rightarrow V_{h}$, is

$$
\begin{aligned}
M_{h} & =\Phi M \Phi^{-1}=\Phi\left(I-\tau C^{-1} A\right) \Phi^{-1} \\
& =\Phi\left(I-\tau\left(\Phi^{-1} C_{h}^{-1}\left[\Phi^{*}\right]^{-1} \Phi^{*} A_{h} \Phi\right)\right) \Phi^{-1} \\
& =I-\tau C_{h}^{-1} A_{h}
\end{aligned}
$$

Lemma 7. Let $P_{i}: V_{h} \rightarrow V_{i}$ be the A-orthogonal projection. Then

$$
M_{h}=I-\tau \sum_{i=1}^{n} P_{i}
$$

Proof. Set $u_{h}^{2}=M_{h} u_{h}^{1}=u_{h}^{1}-\tau w_{h}$, where $w_{h}=C_{h}^{-1} A_{h} u_{h}^{1}$. By the results above,

$$
w_{h}=\sum w_{i}, \quad \text { with } \quad A\left(w_{i}, v_{i}\right)=\left\langle A_{h} u^{1}, v_{i}\right\rangle \quad \forall v_{i} \in V_{i} .
$$

In other words, $w_{i}=P_{i} u^{1}$
Now, we started with a preconditioner in matrix-form, and translated the operation into fe notation. The analysis is performed in the fe notation. In the following, we will work in the fe notation. Only, when it comes to implementation, one has to think about the matrix-vector representation.

Some more examples:

- The Gauss-Seidel iteration is $(k \in \mathbb{N}, i \in\{1, \ldots, n\})$:

$$
u^{k+i / n}=u^{k+(i-1) / n}-e_{i} A_{i i}^{-1} e_{i}^{T}\left(f-A u^{k+(i-1) / n}\right)
$$

The iteration matrix of one full step $u^{k} \rightarrow u^{k+1}$ is

$$
M=M_{n} \ldots M_{2} M_{1} \quad \text { with } \quad M_{i}=I-e_{i} A_{i i}^{-1} e_{i}^{T} A
$$

In fe form, one step is

$$
M_{i}=\left(I-P_{i}\right),
$$

the product is

$$
M_{h}=\left(I-P_{n}\right) \ldots\left(I-P_{2}\right)\left(I-P_{1}\right)
$$

P_{i} is an A-orthogonal projection, so also $I-P_{i}$. The norm of an orthogonal projection is 1 (or, in the trivial case, it is 0). Thus, the Gauss-Seidel iteration without damping is non-expansive in A-norm. Later we will see whether it is convergent.
In general, the multiplicative iteration is not A-self-adjoint, namely

$$
M_{h}^{*}=\left(I-P_{1}\right) \ldots\left(I-P_{n}\right)
$$

Only if $P_{1}=P_{n}, P_{2}=P_{n-1}, \ldots$, it is A-self-adjoint. Such an iteration is called symmetric.

- Block version: Let $i=1, \ldots, N$, and $E_{i} \in \mathbb{R}^{N \times m_{i}}$ be a full-rank matrix. Now, define the block-Jacobi preconditioner

$$
C^{-1}:=\sum_{i=1}^{N} E_{i}\left(E_{i}^{T} A E_{i}\right)^{-1} E_{i}^{T}
$$

The usual case is $E=\left(e_{i_{1}}, e_{i_{2}}, \ldots, e_{i_{N}}\right)$. The embedding matrices $\mathbb{R}^{m_{i}}$ generate small spaces

$$
V_{i}=\Phi E_{i} \mathbb{R}^{m_{i}}
$$

The translation of the iteration matrix is the same as in the Jacobi case.

$$
M_{h}=I-\tau \sum_{i=1}^{N} P_{i}
$$

Examples: Block relaxation of some nodes, local or global, anisotropic, high order blocks, systems of pdes, ...
The iteration does not depend on the specific choice of the basis, it depends on the sub-spaces V_{i}, only.

- Two-level preconditioner: Let V_{H} be a finite element sub-space of V_{h} on a coarser grid. Set $N_{H}=\operatorname{dim} V_{H}$. Basis functions are φ_{i}^{H}. The coarse grid basis functions can be expressed as linear combination of fine grid basis functions:

$$
\varphi_{j}^{H}=\sum_{i=1}^{N} c_{i j} \varphi_{i}
$$

Define transformation matrix

$$
E_{H}=\left(c_{i j}\right)_{\substack{i=1 \ldots N \\ j=1 \ldots N_{H}}}^{\substack{ \\\hline}}
$$

Example: 1D hat functions.
The corresponding finite element function is

$$
u_{H}=\sum_{j=1}^{N_{H}} \underline{u}_{j}^{H} \varphi_{j}^{H}=\sum_{j=1}^{N_{H}} \sum_{i=1}^{N} \underline{u}_{j}^{H} c_{i j} \varphi_{i}=\sum_{i=1}^{N}\left(E_{H} \underline{u}^{H}\right)_{i} \varphi_{i}=\Phi E_{H} \underline{u}^{H}
$$

The matrix E_{H} transforms the coarse-grid coefficient vector \underline{u}_{H} to the fine grid coefficient vector representing the same finite element function. It is called prolongation.
The idea of two-level preconditioning is to add a correction step on the coarse grid:

$$
\begin{aligned}
& d^{k}=f-A u_{k} \\
& w_{H}^{k}=E_{H}\left(E_{H}^{T} A E_{H}\right)^{-1} E_{H}^{T} d_{k} \\
& u^{k+1}=u^{k}+w_{H}^{k}+\ldots
\end{aligned}
$$

The matrix $E_{H}^{T} A E_{H}$ is the fe - matrix on the coarse grid space w.r.t the basis φ_{i}^{H}. The additive 2-Level iteration is defined as

$$
M_{h}=I-\tau\left(P_{H}+\sum_{i=1}^{N} P_{i}\right)
$$

The multiplicative one with additive smoother is

$$
M_{h}=\left(I-P_{H}\right)\left(I-\tau \sum_{i=1}^{N} P_{i}\right)
$$

and the multiplicative one with multiplicative smoother is

$$
M_{h}=\left(I-P_{H}\right)\left(I-P_{1}\right) \ldots\left(I-P_{N}\right)
$$

- Multi-level preconditioner: Let $V_{0} \subset V_{1} \subset \ldots \subset V_{L}$ a nested sequence of fe spaces. Let $V_{l}=\operatorname{span}\left\{\varphi_{l, i}, i=1, \ldots n_{l}\right\}$. Then the additive multi-level iteration is

$$
M_{h}=I-\tau \sum_{l=0}^{L} \sum_{i=1}^{n_{l}} P_{l, i}
$$

The multiplicative counterpart is the conventional multigrid iteration.

3 Additive Schwarz theory

Let $(V, A(.,)$.$) be a Hilbert space. Let \left\{\left(V_{i}, C_{i}(.,).\right)\right\}$ be a countable set of Hilbert spaces. Denote embedding operators $E_{i}: V_{i} \rightarrow V$. Then, the
inexact additive Schwarz preconditioner $C^{-1}: V^{*} \rightarrow V, d(.) \rightarrow w$ is defined by

$$
w=\sum_{i} E_{i} w_{i} \quad \text { with } \quad C_{i}\left(w_{i}, v_{i}\right)=d\left(E_{i} v_{i}\right) \forall v_{i} \in V_{i} .
$$

The following theorem analyzes whether C^{-1} is indeed the inverse of an operator $C: V \rightarrow$ V^{*}.

Theorem 8 (Additive Schwarz Lemma). Define the splitting norm

$$
\|u\|\left\|^{2}:=\inf _{\substack{u=\sum_{i} E_{i} v_{i} \\ v_{i} \in V_{i}}} \sum_{i}\right\| v_{i} \|_{C_{i}}^{2} .
$$

Assume that $\left|\|\cdot \mid\|\right.$ is an equivalent norm to $\|\cdot\|_{A}$. Then C is an isomorphism between V and V^{*}, and

$$
\begin{equation*}
\|u\|_{C}=\| \| u\| \| . \tag{7}
\end{equation*}
$$

Proof. The right hand side of (7) is a constrained minimization problem on $X:=V_{1} \times V_{2} \ldots$ with constraint $\sum E_{i} v_{i}=u$. We will formulate it as Kuhn-Tucker system (a saddle point problem). First, rewrite the constrained minimization problem as unconstrained one using the characteristic function of the feasible set:

$$
\|u\|\left\|^{2}=\inf _{\substack{v_{i} \in V_{i} \\ \sum E_{i} v_{i}=u}} \sum\right\| v_{i} \|_{C_{i}}^{2}=\inf _{v_{i} \in V_{i}} \sup _{\mu \in V^{*}} \underbrace{\sum_{i}\left\|v_{i}\right\|_{C_{i}}^{2}+2\left\langle\mu, u-\sum_{i} E_{i} v_{i}\right\rangle}_{:=L(v, \lambda)}
$$

We search for the saddle-point (u, λ) of the strictly-convex/concave Lagrange functional $L(v, \lambda)$. The condition $\partial_{V_{i}} L(v, \mu)=0$ is

$$
\begin{equation*}
C_{i}\left(u_{i}, v_{i}\right)+\left\langle\lambda, E_{i} v_{i}\right\rangle=0 \quad \forall v_{i} \in V_{i}, i=1,2, \ldots \tag{8}
\end{equation*}
$$

the partial derivative w.r.t. $\mu \in V^{*}$ is the constraint

$$
\begin{equation*}
\left\langle\mu, \sum_{i} E_{i} u_{i}\right\rangle=\langle\mu, u\rangle \quad \forall \mu \in V^{*} \tag{9}
\end{equation*}
$$

Existence and uniqueness of a solution follows from saddle-point theory. The essential LBB condition follows from the assumption $V=\sum E_{i} V_{i}$ is stable.

Equations (8) and equation (9) state

$$
u=C^{-1} \lambda
$$

Thus, u is in the domain of C. Testing (8) with $v_{i}=u_{i}$ gives

$$
\|\|u\|\|^{2}=\sum\left\|u_{i}\right\|_{C_{i}}^{2}=\sum\left\langle\lambda, E_{i} u_{i}\right\rangle=\langle\lambda, u\rangle=\langle C u, u\rangle
$$

The ASM Lemma reduces the analysis of the condition number $\kappa\left(C^{-1} A\right)=\lambda_{n} / \lambda_{1}$ to the norm estimates

$$
\lambda_{1}\| \| u\| \|^{2} \leq\|u\|_{A}^{2} \leq \lambda_{n}\| \| u\| \|^{2} .
$$

Usually, the left inequality requires some work. The technique is to construct an explicit decomposition $u=\sum E_{i} u_{i}$. Often, the right estimate is simply the Lemma below:

Lemma 9. Define the interaction matrix $G=\left(g_{i j}\right)$ by

$$
g_{i j}=\sup _{u_{i} \in V_{i}, v_{j} \in V_{j}} \frac{A\left(E_{i} u_{i}, E_{j} v_{j}\right)}{\left\|u_{i}\right\|_{C_{i}}\left\|u_{j}\right\|_{C_{j}}} .
$$

Let $\rho(G)$ denote the spectral radius of G. Then

$$
\|u\|_{A}^{2} \leq \rho(G)\| \| u\| \|^{2} .
$$

Proof. Let $u=\sum E_{i} v_{i}$ (with $v_{i} \in V_{i}$) be an arbitrary decomposition. Then

$$
\|u\|_{A}^{2}=\left\|\sum_{i} E_{i} v_{i}\right\|_{A}^{2}=\sum_{i, j} A\left(E_{i} v_{i}, E_{j} v_{j}\right) \leq \sum_{i, j} g_{i j}\left\|v_{i}\right\|_{C_{i}}\left\|v_{j}\right\|_{C_{j}} .
$$

From $c^{T} G c \leq \rho(G)\|c\|^{2}$ applied to $c_{i}=\left\|v_{i}\right\|_{C_{i}}$ there follows

$$
\|u\|_{A}^{2} \leq \rho(G) \sum_{i}\left\|v_{i}\right\|_{C_{i}}^{2}
$$

Since the decomposition was arbitrary, the estimate is true for the infimum as well.

3.1 Overlapping domain decomposition

In this section we apply the abstract ASM theory to domain decomposition methods.
Decompose the domain Ω into overlapping sub-domains Ω_{i} of (local) diameter H_{i}. The overlap is of order H_{i}. Only a finite number of domains overlap.

This allows to define a partition of unity $\left\{\psi_{i}\right\}, \psi_{i} \in C^{\infty}(\Omega)$ with the following properties:

$$
\begin{array}{ll}
& \sum \psi_{i}=1, \\
\left\|\psi_{i}\right\|_{L_{\infty}} \preceq 1 \quad \text { and } \quad\left\|\nabla \psi_{i}\right\|_{L_{\infty}} \preceq H_{i}^{-1}
\end{array}
$$

The functions ψ_{i} live inside Ω_{i}

$$
\operatorname{supp} \psi_{i} \subset \Omega_{i} .
$$

For technical reasons we will need that ψ_{i} are strictly inside:

$$
\operatorname{dist}\left(\operatorname{supp}\left(\psi_{i}\right), \partial \Omega_{i} \backslash \partial \Omega\right) \succeq H_{i}
$$

Now, let V_{h} be a finite element space on a shape-regular triangulation. The local mesh size fulfills $h \leq H$. Define sub-spaces

$$
V_{i}=\left\{v_{i} \in V_{h}: v_{i}=0 \text { in } \Omega \backslash \Omega_{i}\right\}
$$

We assume that everything was chosen s.t. $V=\sum V_{i}$. The operator $E_{i}: V_{i} \rightarrow V_{h}$ is trivial embedding, and the local forms are the same as the global:

$$
C_{i}\left(u_{i}, v_{i}\right)=A\left(E u_{i}, E v_{i}\right)=A\left(u_{i}, v_{i}\right)
$$

Some remarks:

- The implementation of the additive Schwarz preconditioner requires the solution of local Dirichlet problems in V_{i}.
- A special case with $h \simeq H$ is the Jacobi preconditioner (or a block-Jacobi preconditioner with small blocks).

We prove the splitting estimate required by the ASM theory:
Lemma 10. There holds

$$
\begin{equation*}
\left|\left\|u_{h} \mid\right\| \preceq \min \left\{H_{i}\right\}^{-1}\left\|u_{h}\right\|_{A} \quad \forall u_{h} \in V_{h} .\right. \tag{10}
\end{equation*}
$$

Proof. Let $I_{h}: H^{1} \rightarrow V_{h}$ be a Clément-type operator with the following properties:

$$
I_{h} v_{h}=v_{h} \quad(\text { projection })
$$

and

$$
\left\|\nabla I_{h} v_{h}\right\|_{0} \preceq\left\|\nabla v_{h}\right\|_{0} \quad(A-\text { continuity }) .
$$

Then, for given $u_{h} \in V_{h}$ we chose the decomposition

$$
u_{i}=I_{h}\left(\psi_{i} u\right)
$$

By linearity, $\sum_{i} u_{i}=\sum_{i} I_{h}\left(\psi_{i} u_{h}\right)=I_{h}\left(\left(\sum_{i} \psi_{i}\right) u_{h}\right)=I_{h} u_{h}=u_{h}$. The assumption $\operatorname{supp}\left\{\psi_{i}\right\}$ strictly inside Ω_{i} ensures that $u_{i} \in V_{i}$.

Thus, $\left(u_{i}\right)$ is a feasible candidate for the minimization problem.
We start to estimate

$$
\left\|\left||u|\left\|^{2} \leq \sum\right\| u_{i}\left\|_{A}^{2}=\sum\right\| \nabla I_{h}\left(\psi_{i} u_{h}\right)\left\|_{0}^{2} \preceq \sum\right\| \nabla\left(\psi_{i} u_{h}\right) \|_{0}^{2}\right.\right.
$$

The involved functions are smooth enough to apply the product rule (together with ($a+$ $\left.b)^{2} \leq 2\left(a^{2}+b^{2}\right)\right)$:

$$
\|\|u\|\|^{2} \preceq \sum\left\{\left\|\left(\nabla \psi_{i}\right) u_{h}\right\|_{0}^{2}+\left\|\psi_{i}\left(\nabla u_{h}\right)\right\|_{0}^{2}\right\}
$$

Next, using L_{∞} estimates and local support of ψ_{i} :

$$
\left|\|u \mid\|^{2} \preceq \sum_{i}\left\{\left\|H_{i}^{-1} u_{h}\right\|_{\Omega_{i}}^{2}+\left\|\nabla u_{h}\right\|_{0, \Omega_{i}}^{2}\right\}\right.
$$

Since a finite number of domains are overlapping, parts of the norms are duplicated a finite number of times:

$$
\left.\|\|u\|\|^{2} \preceq\left\|H_{i}^{-1} u_{h}\right\|_{0, \Omega}^{2}+\left\|\nabla u_{h}\right\|_{0, \Omega}^{2}\right\}
$$

Finally, Friedrichs inequality gives the result

$$
\|\|u\|\|^{2} \preceq \min \left\{H_{i}\right\}^{-2}\left\|u_{h}\right\|_{0, \Omega}^{2} \preceq \min \left\{H_{i}\right\}^{-2}\left\|\nabla u_{h}\right\|_{0}^{2} .
$$

The other estimate, $\|u\|_{A} \preceq\| \| u\| \|$ follows from Theorem 9 . Since only a finite number of domains overlap, each row of G has the same finite number of non-zero entries. The spectral radius is bounded by the number of overlapping sub-domains.

Remark:

- For $H \simeq h$, there follows from the proof of Lemma 10 the equivalence

$$
\begin{equation*}
\left\|\mid u_{h}\right\|\|\simeq\| h^{-1} u_{h} \|_{L_{2}} \tag{11}
\end{equation*}
$$

3.2 Overlapping Domain Decomposition with Coarse Grid System

Now, we improve the overlapping domain decomposition algorithm by adding a global coarse grid space. This will give optimal condition number estimates.

Let $V_{H} \subset V$. Let $E_{H}: V_{H} \rightarrow V_{h}$ be an embedding operator (usually called prolongation). In the case $V_{H} \subset V_{h}$ we choose $E_{h}=i d$. We assume that the prolongation operator has the following properties:

$$
\left\|\nabla E_{H} u_{H}\right\|_{0} \preceq\left\|\nabla u_{H}\right\|_{0} \quad(A-\text { continuity })
$$

$$
\left\|H_{i}^{-1}\left(u_{H}-E_{H} u_{H}\right)\right\|_{0} \preceq\left\|\nabla u_{H}\right\|_{0} \quad \text { (approximation) }
$$

The coarse-grid form C_{H} is defined by $C_{H}(.,)=.A_{H}(.,)=.A(.,$.$) . (An alternative possi-$ bility would be $\left.C_{H}(.,)=.A\left(E_{H} ., E_{H}.\right)\right)$.

Now, let the DD preconditioner with coarse grid system be defined as ASM method with respect to the set of triplets

$$
\left\{\left(V_{H}, E_{H}, A_{H}(., .), \cup_{i}\left(V_{i}, i d, A(., .)\right)\right\}\right.
$$

Lemma 11. The $D D$ preconditioner with $C G$ fulfills the stable splitting estimate

$$
\mid\left\|u_{h}\right\|\|\preceq\| u_{h} \|_{A} \quad \forall u_{h} \in V_{H}
$$

Proof. Let additionally $I_{H}: V \rightarrow V_{H}$ be a Clément-type interpolation operator into the coarse grid space fulfilling $|\cdot|_{1}$-continuity and L_{2} approximation

$$
\left\|H_{i}^{-1}\left(u-I_{H} u\right)\right\|_{L_{2}}+\left\|\nabla I_{H} u\right\|_{L_{2}} \preceq\|\nabla u\|_{L_{2}} \quad \forall u \in V .
$$

From the proof of Lemma 10 we know that

$$
\begin{equation*}
\inf _{v_{h}=\sum_{i} v_{i}} \sum\left\|v_{i}\right\|_{A}^{2} \preceq\left\|H_{i}^{-1} v_{h}\right\|_{0}^{2}+\left\|\nabla v_{h}\right\|_{0}^{2} \quad \forall v_{h} \in V_{h} . \tag{12}
\end{equation*}
$$

We choose the 2-level decomposition

$$
u_{h}=E_{H} u_{H}+u_{f}
$$

with

$$
u_{H}=I_{H} u_{h} \quad \text { and } \quad u_{f}=u_{h}-E_{H} I_{H} u_{H}
$$

(with index f as fine).
We bound the minimal decomposition by this candidate:

$$
\begin{aligned}
\left\|u_{h}\right\| \|^{2} & =\inf _{u_{h}=E_{H} v_{H}+\sum v_{i}}\left\{\left\|v_{H}\right\|_{A}^{2}+\sum\left\|v_{i}\right\|_{A}^{2}\right\} \\
& =\inf _{v_{H} \in V_{H}}\left\{\left\|v_{H}\right\|_{A}^{2}+\inf _{\substack{v_{i} \in V_{i} \\
u_{h}-E_{H} v_{H}=v_{i}}} \sum\left\|v_{i}\right\|_{A}^{2}\right\} \\
& \leq\left\|u_{H}\right\|_{A}^{2}+\inf _{u_{f}=\sum v_{i}} \sum\left\|v_{i}\right\|_{A}^{2}
\end{aligned}
$$

We apply (12) with $v_{h}=u_{h}-E_{H} u_{H}=u_{f}$:

$$
\left\|\left\|u_{h}\right\|\right\|^{2} \preceq\left\|u_{H}\right\|_{A}^{2}+\left\|H_{i}^{-1} u_{f}\right\|_{0}^{2}+\left\|u_{f}\right\|_{A}^{2} .
$$

From $|.|_{1}$-continuity of I_{H} and E_{H} we get

$$
\left\|u_{H}\right\|_{A}+\left\|u_{f}\right\|_{A} \preceq\left\|u_{H}\right\|_{A}
$$

L_{2}-approximation of E_{H} and I_{H} proofs
$\left.\left\|H_{i}^{-1} u_{f}\right\|_{0}=\left\|H_{i}^{-1}\left(u_{h}-E_{H} I_{H} u_{h}\right)\right\|_{0} \leq\left\|H_{i}^{-1}\left(u_{h}-I_{H} u_{h}\right)\right\|_{0}+\| H_{i}^{-1}\left(i d-E_{H}\right) I_{H} u_{h}\right)\left\|_{0} \preceq\right\| u_{h} \|_{A}$.

We denote the ASM preconditioner associated with the fine-grid spaces V_{i} by D_{h}^{-1} : $V_{h}^{*} \rightarrow V_{h}$. By the ASM Lemma, the energy norm $\left\langle D_{h} u_{h}, v_{h}\right\rangle_{V_{h}^{*} \times V_{h}}$ generated by D_{h} is exactly the splitting norm:

$$
\left\|v_{h}\right\|_{D_{h}}^{2}:=\inf _{v_{H}=\sum v_{i}} \sum\left\|v_{i}\right\|_{A}^{2} .
$$

It is a Hilbert-space norm, the inner product is denoted by $D_{h}(.,$.$) .$
The 2-level method can be seen as a ASM with two local spaces (namely V_{H} and V_{h}), and inexact bilinear-forms A_{H} and D_{h} :

$$
\mid\left\|u_{h}\right\|\left\|_{2-\text { level }}^{2}=\inf _{u_{h}=E_{H} u_{H}+u_{f}}\right\| u_{H}\left\|_{A_{H}}^{2}+\right\| u_{f} \|_{D_{h}}^{2} .
$$

Lemma 12. The estimate

$$
\left\|u_{h}\right\|_{A} \preceq\| \| u_{h} \|_{2-\text { level }} \quad \forall u_{h} \in V_{h}
$$

is valid.
Proof. We apply Lemma 9 for 2 sub-spaces and bound all entries of G :

$$
g_{H H}=\sup _{u_{H}, V_{H} \in V_{H}} \frac{A\left(E_{H} u_{H}, E_{H} v_{H}\right)}{\left\|u_{H}\right\|_{A}\left\|v_{H}\right\|_{A}} \preceq c,
$$

which is due to continuity od E.

$$
g_{f f}=\sup _{u_{f}, v_{f} \in V_{h}} \frac{A\left(u_{f}, v_{f}\right)}{\left\|u_{f}\right\|_{D}\left\|v_{f}\right\|_{D}} \preceq c
$$

which follos from finite overlap of local spaces implying $\left\|v_{h}\right\|_{A} \preceq\left\|v_{h}\right\|_{D}$. The off-diagonal value $g_{H f}$ is bounded by an additional Cauchy-Schwarz inequality.

3.3 Clément-type quasi-interpolation operators

We used several times local quasi-interpolation operators fulfilling various continuity and approximation estimates. Now, we are going to construct and analyse such operators.

Let V_{h} be a finite element sub-space (or order p_{h}) of $H_{0, D}^{1}(\Omega)$ on a shape-regular triangulation $\{\mathcal{T}\}$. Choose the nodal basis $\left\{\varphi_{i}\right\}$ for the set of nodes $\mathcal{N}=\left\{N_{i}\right\}$. The nodes are assigned to vertices, edges, faces and elements.

To each node N_{i} define a set ω_{i} such that $\operatorname{dist}\left(N_{i}, \omega_{i}\right) \preceq h_{i}$, and function $f_{i} \in L_{\infty}\left(\omega_{i}\right)$ such that the following is true:

$$
\begin{equation*}
\left\|f_{i}\right\|_{L_{\infty}} \preceq h_{i}^{-d} \quad\left\|f_{i}\right\|_{L_{1}} \preceq 1 \tag{13}
\end{equation*}
$$

Assume that $f_{i}($.$) coincides with point evaluation in the node when applied to polynomials$ up to order p :

$$
\left(f_{i}, v\right)_{L_{2}\left(\omega_{i}\right)}=v\left(N_{i}\right) \quad \forall v \in \Pi^{p}
$$

Then, the Clément-type operator is defined as

$$
\begin{aligned}
I_{h}: & L_{2} \rightarrow V_{h} \\
& I_{h} v=\sum_{N_{i} \in \mathcal{N}}\left(f_{i}, v\right)_{L_{2}\left(\omega_{i}\right)} \varphi_{i}
\end{aligned}
$$

Lemma 13. On finite element spaces, the L_{2} norm and the H^{1} semi-norm are equivalent to the discrete norms, respectively:

$$
\begin{gathered}
\left\|v_{h}\right\|_{L_{2}}^{2} \simeq \sum_{N_{i}} h_{i}^{d}\left|v_{h}\left(N_{i}\right)\right|^{2} \\
\left\|\nabla v_{h}\right\|_{L_{2}}^{2} \simeq \sum_{\substack{N_{i}, N_{j} \in \mathcal{N} \\
\exists T: N_{i} \in T, N_{j} \in T}} h_{i}^{d-2}\left|v_{h}\left(N_{i}\right)-v_{h}\left(N_{j}\right)\right|^{2}
\end{gathered}
$$

Proof. Both estimates are proven by transformation techniques.
Theorem 14 (Continuity). For $p \geq-1$, the operator I_{h} is continuous in L_{2} norm. For $p \geq 0$, the operator I_{h} is continuous in the H^{1} semi-norm.

Proof. By means of Lemma 13 it is enough to establish

$$
\left(I_{h} v\right)\left(N_{i}\right)=\left(f_{i}, v\right)_{L_{2}\left(\omega_{i}\right)} \preceq h_{i}^{-d / 2}\|v\|_{L_{2}\left(\omega_{i}\right)}
$$

to prove the L_{2} estimate. This follows immediately from (13) by $\left\|f_{i}\right\|_{L_{2}\left(\omega_{i}\right)}^{2} \leq$ $\left\|f_{i}\right\|_{L_{1}\left(\omega_{i}\right)}\left\|f_{i}\right\|_{L_{\infty}\left(\omega_{i}\right)} \preceq h_{i}^{-d}$.

To establish he H^{1} estimate, we start with

$$
\left(I_{h} v\right)\left(N_{i}\right)-\left(I_{h} v\right)\left(N_{j}\right)=\int_{\omega_{i}} f_{i}(x) v(x) d x-\int_{\omega_{j}} f_{j}(y) v(y) d y
$$

The assumptino $p \geq 0$ onto f_{i} ensures that $\int f_{i} d x=1$. Thus,

$$
\left(I_{h} v\right)\left(N_{i}\right)-\left(I_{h} v\right)\left(N_{j}\right)=\int_{\omega_{i}} \int_{\omega_{j}} f_{i}(x) f_{j}(y)[v(x)-v(y)] d y d x
$$

The difference $v(x)-v(y)$ is expressed as integral

$$
v(x)-v(y)=\int_{y}^{x} \partial_{\tau} v(\xi) d \xi=\int_{0}^{1}(x-y)^{T}(\nabla v)(y+s(x-y)) d s
$$

Changing order of integration (i.e. $\int_{0}^{1} \int_{\omega_{i}} \int_{\omega_{j}}$), and a couple of C.-S. estimates, proves that

$$
\left|\left(I_{h} v\right)\left(N_{i}\right)-\left(I_{h} v\right)\left(N_{j}\right)\right| \preceq h_{i}^{(-d+2) / 2}\|\nabla v\|_{L_{2}\left(\left[\omega_{i}, \omega_{j}\right]\right)}
$$

with the convex hull $\left[\omega_{i}, \omega_{j}\right]$ of $\omega_{i} \cup \omega_{j}$.

Theorem 15 (Approximation). For $1 \leq q \leq \min \left\{p, p_{h}\right\}$, there holds the approximation estimate

$$
\left\|h_{i}^{q}\left(v-I_{h} v\right)\right\|_{0}+\left\|h_{i}^{q-1} \nabla\left(v-I_{h} v\right)\right\|_{0} \preceq\left\|\nabla^{q} v\right\|_{0}
$$

Proof. Since I_{h} preservers locally polynomials up to order $\min \left\{p, p_{h}\right\}$ (in the sense of $\left.\left(I_{h} w\right)\right|_{T}=\left.w\right|_{T}$ if $\left.w\right|_{\omega_{T}}$ is a polynomial).

We split the global norm into element terms, and insert an arbitrary polynomial w of order q :

$$
h_{i}^{q}\left\|v-I_{h} v\right\|_{L_{2}(T)}=h_{i}^{q}\left\|\left(i d-I_{h}\right)(v-w)\right\|_{L_{2}(T)} \preceq h_{i}^{q}\|v-w\|_{L_{2}\left(\omega_{T}\right)} .
$$

The rest is the approximation $\inf _{w \in \Pi^{q}}\|v-w\|_{L_{2}\left(\omega_{T}\right)} \preceq h_{i}^{q}\left\|\nabla^{q}\right\|_{L_{2}\left(\omega_{T}\right)}$. The H^{1} estimate is the same argument.

There are many possibilities to choose the local domains ω_{i} and weighting functions f_{i}. Thus various properties can be achieved:

- The operators I_{h} can be constructed as projections onto V_{h}. For this, choose ω_{i} such that $N_{i} \in \overline{\omega_{i}}$. Then, take the restiction of V_{h} onto ω_{i}, i.e. $V_{i}=\left\{\left.v_{h}\right|_{\omega_{i}}: v_{h} \in V_{h}\right\}$. The linear functional

$$
\begin{aligned}
f_{i}(v): & V_{i} \rightarrow \mathbb{R} \\
& f_{i}(v)=\left(P_{L_{2}}^{V_{i}} v\right)\left(N_{i}\right)
\end{aligned}
$$

(with $P_{L_{2}}^{V_{i}}$ the L_{2} projection of $L_{2}\left(\omega_{i}\right)$ onto V_{i}) is continous on L_{2}. Thus, it can be represented as L_{2} function f_{i}. In general, the norm of f_{i} depends on the choice of ω_{i}. The original construction by Clément used

$$
\omega_{i}=\left\{T \in \mathcal{T}: N_{i} \in \bar{T}\right\}
$$

an alternative version (by Scott and Zhang) uses

$$
\omega_{i}=T_{N_{i}} \quad T_{N_{i}} \text { some element s.t. } N_{i} \in T_{N_{i}}
$$

- The choice

$$
\begin{equation*}
f_{i}=\left(\int \varphi_{i} d x\right)^{-1} \varphi_{i} \tag{14}
\end{equation*}
$$

is consistent of order 0 . The corresponding quasi-interpolation operator is L_{2} selfadjoint:

$$
\begin{aligned}
\left(I_{h} u, v\right)_{L_{2}} & =\left(\sum_{i}\left(\int \varphi_{i}\right)^{-1}\left(\varphi_{i}, u\right)_{L_{2}} \varphi_{i}, v\right)_{L_{2}} \\
& =\sum_{i}\left(\int \varphi_{i}\right)^{-1}\left(\varphi_{i}, u\right)_{L_{2}}\left(\varphi_{i}, v\right)_{L_{2}} \\
& =\left(u, I_{h} v\right)_{L_{2}}
\end{aligned}
$$

- The case of jumping coefficients accross sub-domains requires special care. The influence domain ω_{i} must be chosen as sub-set of elements with large coefficient. Then, under the so called quasi-monotonicity assumption, the quasi-interpolation operator is continuous in energy norm.
- It is possible to choose lower dimensional manifolds ω_{i}. Then, of coarse, I_{h} is not defined on L_{2} anymore, but the H^{1} estimates may stay valid. Scott and Zhang used boundary faces for ω_{i} to preserver polynomial boundary conditions.

4 Multi-level and multigrid methods

Multi-level and multigrid methods can be seen as extension of 2-level methods. Instead of one fine and one coarse grid, one works with a hierarchy of many grids. On each grid (except maybe the coarsest), one applies a cheap (local) preconditioner.

Let $L \in \mathbb{N}$ denote the number of levels,

$$
\mathcal{T}_{0}, \mathcal{T}_{1}, \ldots, \mathcal{T}_{L}
$$

be a family of nested triangulations, and

$$
V_{0} \subset V_{1} \subset \ldots \subset V_{L}
$$

the generated family of nested finite element spaces.
On each level $l, 0 \leq l \leq L$, we need a (cheap) preconditioner D_{l}, i.e. an operation

$$
D_{l}^{-1}: V_{l}^{*} \rightarrow V_{l} .
$$

It shall be defined by means of the symmetric bilinear form $D_{l}(.,):. V_{l} \times V_{l} \rightarrow \mathbb{R}$ via

$$
D_{l}\left(D_{l}^{-1} g_{l}, v_{l}\right)=g_{l}\left(v_{l}\right) \quad \forall g_{l} \in V_{l}^{*} \forall v_{l} \in V_{l} .
$$

The simplest (and typical) choice is a Jacobi preconditioner. For computations, a (symmetric) Gauss Seidel preconditioner is favourable. In terms of the last section we will call D an additive (or multiplicative) Schwarz preconditioner.

Since $V_{l} \subset V_{L}$, every functional in V_{L}^{*} has a canonical restriction onto V_{l}^{*}, and we can apply D_{l}^{-1} on the whole V_{L}^{*} without special notation.

One possibility to combine the preconditioners is to add them all up (ASM), i.e. define the preconditioning operation $C^{-1}: V_{L}^{*} \rightarrow V_{L}$ as

$$
\begin{equation*}
C^{-1}=\sum_{l=0}^{L} D_{l}^{-1} . \tag{15}
\end{equation*}
$$

This method is called multi-level preconditioner. The case of Jacobi preconditioners D_{l} is called BPX preconditioner (after Bramble,Pasciak and Xu), or MDL (multilevel diagonal scaling).

An other possibility is to run the individual preconditioners sequentially (MSM):

$$
\begin{equation*}
u^{k+(l+1) /(L+1)}=u^{k+l /(L+1)}+D_{l}^{-1}\left(f-A_{L} u^{k+l /(L+1)}\right) . \tag{16}
\end{equation*}
$$

The corresponding iteration operator M is

$$
\left(I-D_{L}^{-1} A_{L}\right)\left(I-D_{L-1}^{-1} A_{L}\right) \ldots\left(I-D_{0}^{-1} A_{L}\right)
$$

To obtain an A-symmetric iteration, one should run the symmetric version. This iteration is the classical multigrid V-1-1 - cycle.

4.1 Implementation

The implementation of the additive and the multiplicative preconditioners use the hierarchical structure. Let $N_{l}=\operatorname{dim}\left\{V_{l}\right\}$.

Define, for $0 \leq l<k \leq L$, the embedding matrices $E_{l}^{k}: \mathbb{R}^{N_{l}} \rightarrow \mathbb{R}^{N_{k}}$. For $l<m<k$, there holds $E_{l}^{k}=E_{m}^{k} E_{l}^{m}$.

The finite element matrix $A_{l} \in \mathbb{R}^{N_{l} \times N_{l}}$ on level l fulfills the Galerkin relation

$$
A_{l}=\left(E_{l}^{L}\right)^{T} A_{L} E_{l}^{L}
$$

On each level, there is defined the preconditioning matrix $D_{l}^{-1} \in \mathbb{R}^{N_{l} \times N_{l}}$ (e.g., $D_{l}=$ $\operatorname{diag} A_{l}$).

The additive Schwarz preconditioner in matrix notation is

$$
C^{-1}=\sum_{l=0}^{L} E_{l}^{L} D_{l}^{-1}\left(E_{l}^{L}\right)^{T}
$$

We define the intermediate preconditioners

$$
C_{l}^{-1}=\sum_{k=0}^{l} E_{k}^{l} D_{k}^{-1}\left(E_{k}^{l}\right)^{T}
$$

Clearly, there is $C^{-1}=C_{L}$.
Theorem 16. Starting with $C_{0}^{-1}=D_{0}^{-1}$, the preconditioners can be computed recursively:

$$
\begin{equation*}
C_{l}^{-1}=D_{l}^{-1}+E_{l-1}^{l} C_{l-1}^{-1}\left(E_{l-1}^{l}\right)^{T} . \tag{17}
\end{equation*}
$$

Proof. Per induction. Assume the relation is true for $l-1$. Then

$$
\begin{aligned}
& D_{l}^{-1}+E_{l-1}^{l} C_{l-1}^{-1} E_{l-1}^{T}= \\
& =D_{l}^{-1}+\sum_{k=0}^{l-1} E_{l-1}^{l} E_{k}^{l-1} D_{k}^{-1}\left(E_{k}^{l-1}\right)^{T}\left(E_{l-1}^{l}\right)^{T} \\
& =D_{l}^{-1}+\sum_{k=0}^{l-1} E_{k}^{l} D_{k}^{-1}\left(E_{k}^{l}\right)^{T} \\
& =C_{l}^{-1}
\end{aligned}
$$

The computational complexity $C P U\left(C_{l}^{-1}\right)$ can be estimated from (17). The operations D_{l}^{-1}, E_{l-1}^{l} and $\left(E_{l-1}^{l}\right)^{T}$ are all of linear complexity $O\left(N_{l}\right)$. Thus

$$
C P U\left(C_{l}^{-1}\right)=O\left(N_{l}\right)+C P U\left(C_{l-1}^{-1}\right)
$$

If the number of unknowns grows geometrically (i.e. $N_{l}=O\left(\beta^{l}\right)$ with $\beta>1$), one obtains optimal! complexity

$$
C P U\left(C_{l}^{-1}\right)=O\left(N_{l}\right)
$$

For the multiplicative version we define C_{l}^{-1} per recursion as follows: $C_{0}^{-1}=D_{0}^{-1}$, and $C_{l}^{-1}: d_{l} \rightarrow w_{l}$ is defined by the algorithm:

$$
\left.\begin{array}{rl}
w_{l}^{0} & =E_{l-1}^{l} C_{l-1}^{-1}\left(E_{l-1}^{l}\right)^{T} d_{l} \tag{18}\\
w_{l} & =w_{l}^{0}+D_{l}^{-1}\left(d_{l}-A_{l} w_{l}^{0}\right)
\end{array}\right\}
$$

Theorem 17. The iteration defined in (16) can be written as

$$
M=I-C_{L}^{-1} A_{L}
$$

where C_{L} is defined by (18).
Proof. One step of the iteration (16) is $m_{l}=I-E_{l}^{L} D_{l}^{-1}\left(E_{l}^{L}\right)^{T} A_{L}$, and, by recursion, we define

$$
\begin{aligned}
M_{0} & =m_{0} \\
M_{l} & =m_{l} M_{l-1}
\end{aligned}
$$

The multiplicative iteration defined in (16) is $M=M_{L}$. The operation C_{l}^{-1} defined in (18) is

$$
\begin{aligned}
C_{l}^{-1} & =E_{l-1}^{l} C_{l-1}^{-1}\left(E_{l-1}^{l}\right)^{T}+D_{l}^{-1}\left(I-A_{l} E_{l-1}^{l} C_{l-1}^{-1}\left(E_{l-1}^{l}\right)^{T}\right) \\
& =\left(I-D_{l}^{-1} A_{l}\right) E_{l-1}^{l} C_{l-1}^{-1}\left(E_{l-1}^{l}\right)^{T}+D_{l}^{-1}
\end{aligned}
$$

Now, we proof by induction

$$
M_{l}=I-E_{l}^{L} C_{l}^{-1}\left(E_{l}^{L}\right)^{T} A_{L}
$$

Assume, the relation is true for $l-1$. Then

$$
\begin{aligned}
I-E_{l}^{L} C_{l}^{-1}\left(E_{l}^{L}\right)^{T} A= & I-E_{l}^{L}\left[\left(I-D_{l}^{-1} A_{l}\right) E_{l-1}^{l} C_{l-1}^{-1}\left(E_{l-1}^{l}\right)^{T}+D_{l}^{-1}\right]\left(E_{l}^{L}\right)^{T} A_{L} \\
= & I-E_{l}^{L} D_{l}^{-1}\left(E_{l}^{L}\right)^{T} A_{L}-E_{l-1}^{L} C_{l-1}^{-1}\left(E_{l-1}^{L}\right)^{T} A_{L} \\
& \quad+E_{l}^{L} D_{l}^{-1}\left(E_{l}^{L}\right)^{T} A_{L} E_{l-1}^{L} C_{l-1}^{-1}\left(E_{l-1}^{L}\right)^{T} A_{L} \\
= & \left(I-E_{l}^{L} D_{l}^{-1}\left(E_{l}^{L}\right)^{T} A_{L}\right)\left(I-E_{l-1}^{L} C_{l-1}^{-1}\left(E_{l-1}^{L}\right)^{T} A_{L}\right) \\
= & m_{l} M_{l-1} \\
= & M_{L}
\end{aligned}
$$

Other versions of multigrid cycles can be computed similarly to the above V-cycle with post-smoothing. A symmetric V-cycle with pre-smoothing and post-smoothing is defined as:

$$
\begin{aligned}
w_{l}^{0} & =D_{l}^{-1} d_{l} \\
w_{l}^{1} & =w_{l}^{0}+E_{l-1}^{l} C_{l-1}^{-1}\left(E_{l-1}^{T}\right)\left(d_{l}-A_{l} w_{l}^{0}\right) \\
w_{l} & =w_{l}^{1}+D_{l}^{-1}\left(d_{l}-A_{l} w_{l}^{1}\right)
\end{aligned}
$$

One can run several steps of the smoothing iterations.

4.2 Analysis of the additive multi-level method

The additive multi-level method is an ASM method with the set of triples

$$
\left\{\left(V_{l}, i d, D_{l}(., .)\right)\right\}
$$

Thus, the norm generated by the preconditioner is exactly the splitting norm

$$
\|u\|_{C}^{2}=\left|\|u \mid\|^{2}=\inf _{\substack{u=\sum_{v_{l}} \\ v_{l} \in V_{l}}} \sum_{l=0}^{L}\left\|w_{l}\right\|_{D_{l}}^{2}\right.
$$

What is the D_{l}-norm ? For the bilinear-form $A(u, v)=(\nabla u, \nabla v)$, and D_{l} is a Jacobi preconditioner, it is the corresponding splitting norm

$$
\left\|u_{l}\right\|_{D_{l}}^{2}=\inf _{\substack{u=\sum v_{i} \\ v_{i} \in \operatorname{span}\left\{\varphi_{i}\right\}}} \sum\left\|v_{i}\right\|_{A}^{2} \simeq \inf _{\substack{u=\sum v_{i} \\ v_{i} \in \operatorname{span}\left\{\varphi_{i}\right\}}} \sum h_{l, i}^{-2}\left\|v_{i}\right\|_{L_{2}}^{2} .
$$

One verifies that this local norm is equivalent to the global L_{2}-norm, i.e.

$$
\begin{equation*}
\left\|u_{l}\right\|_{D_{l}}^{2} \simeq\left\|h_{l}^{-1} u_{l}\right\|_{L_{2}}^{2} . \tag{19}
\end{equation*}
$$

Lemma 18. For the additive multi-level preconditioner C with Jacobi smoothers there holds the following norm equivalence:

$$
\begin{equation*}
\|u\|_{C}^{2} \simeq \inf _{\substack{u=\sum v_{l} \\ v_{l} \in v_{l}}} \sum_{l=0}^{L}\left\|h_{l}^{-1} v_{l}\right\|_{L_{2}}^{2} . \tag{20}
\end{equation*}
$$

Next, we will investigate the bounds of the norm estimates $\lambda_{1}\|u\|_{A}^{2} \leq\|u\|_{C}^{2} \leq \lambda_{2}\|u\|_{C}^{2}$. Especially, we are interested in the (in)dependency of the number of levels L.

Lemma 19. Assume that Ω is convex, and the triangulation is quasi-uniform. Then there holds

$$
\|u\|_{C}^{2} \preceq\|u\|_{A}^{2}
$$

The proof is given in Theorem 6. It used the A-orthogonal decomposition $v_{l}:=\left(P_{l}^{A}-\right.$ $\left.P_{l-1}^{A}\right) u$.

Lemma 20. Assume that the family of triangulations is shape-regular. Further, assume $h_{l} \simeq h_{l-1}$. Then

$$
\|u\|_{C}^{2} \preceq L\|u\|_{A}^{2}
$$

Proof. We choose $w_{0}=I_{0} u$, and $w_{l}=\left(I_{l}-I_{l-1}\right) u$ for $1 \leq l \leq L$, where I_{l} is a Clément type quasi-interpolation operator. Then

$$
\left\|h_{l}^{-1} w_{l}\right\|_{0} \preceq\left\|h_{l}^{-1}\left(u-I_{l} u\right)\right\|_{0}+\left\|h_{l}^{-1}\left(u-I_{l-1} u\right)\right\|_{0} \preceq\|u\|_{A}^{2} .
$$

If we consider h_{0} to be a constant, then $\left\|h_{0}^{-1} w_{0}\right\|_{0} \preceq\|u\|_{A}$.
Remark: If the coarse grid \mathcal{T}_{0} is already fine, i.e., it is not appropriate to consider h_{0} to be a constant, one should use $D_{0}(.,)=.A(.,$.$) . Then, h_{0}$ does not enter the generic constant c.

Lemma 21. There holds

$$
\|u\|_{A}^{2} \preceq L\|u\|_{C}^{2}
$$

Proof. Follows from Lemma 9. Since $\left\|u_{l}\right\|_{A} \preceq\left\|u_{l}\right\|_{D_{l}}$ implies $g_{i j} \preceq 1$, and $G \in \mathbb{R}^{L \times L}$, the spectral radius $\rho(G)$ is bounded by $c L$.

The above, quite simple, norm estimates depend on the number of levels L. This might be acceptable for the analysis of preconditioners, since, in practice, the number of levels is not too large (maybe, 5 to 10). But, it is not optimal. An improved analysis can remove the factors L in both estimates. This allows to push the number of levels to infinity, and prove theorems about H^{1}.

Theorem 22. Let $\left\{\mathcal{I}_{l}\right\}$ be a familiy of quasi-uniform triangulations of mesh-sizes $h_{l} \simeq 2^{-l}$. Let V_{l} be the piece-wise linear finite element space. Then there holds

$$
\begin{equation*}
\|u\|_{A}^{2} \preceq\|u\|_{C}^{2} \quad \forall v \in V_{L} . \tag{21}
\end{equation*}
$$

Proof. We will establish the sharper estimate for the coefficients of the interaction matrix G :

$$
\begin{equation*}
g_{i j}=\sup _{\substack{u \in V_{i} \\ v \in V_{j}}} \frac{A(u, v)}{\|u\|_{D_{i}}\|v\|_{D_{j}}} \preceq \gamma^{|i-j|} \tag{22}
\end{equation*}
$$

for some $\gamma \in(0,1)$. Then, the row sum (and thus, the spectral radius), is bounded independently of L :

$$
\sum_{j} g_{i j} \leq \sum_{j \in Z} \gamma^{|i-j|} \leq 2 \frac{1}{1-\gamma}
$$

Assume that $i<j$, and choose $u_{i} \in V_{i}$ and $v_{j} \in V_{j}$. Define the union of edges at the coarser grid

$$
\mathcal{E}_{i}=\cup \partial T: T \in \mathcal{T}_{i}
$$

First, we verify

$$
A\left(u_{i}, w\right)=0 \quad \forall w \in V \text { s.t. } w=0 \text { on } \mathcal{E}_{i}
$$

by integration by parts: $\left(\nabla u_{i}, \nabla w\right)=\sum_{T}(-\Delta u, w)_{L_{2}(T)}+\left(\partial_{n} u, w\right)_{L_{2}(\partial T)}=0$.
Next, define the fine-grid finite element function $\tilde{v}_{j} \in V_{j}$ as

$$
\tilde{v}_{j}(x)= \begin{cases}v_{j}(x) & x \text { a vertex in } \mathcal{E}_{i} \\ 0 & x \text { a vertex not in } \mathcal{E}_{i} .\end{cases}
$$

Since $v_{j}-\tilde{v}_{j}=0$ on \mathcal{E}_{i}, there holds

$$
A\left(u_{i}, v_{j}\right)=A\left(u_{i}, \tilde{v}_{j}\right)
$$

Define the strip

$$
S_{i j}=\cup T_{j}: T_{j} \in \mathcal{T}_{j} \text { and } T_{j} \cap \mathcal{E}_{i} \neq \emptyset
$$

There holds

$$
\left|S_{i j} \cap T_{i}\right| \leq c 2^{j-i}\left|T_{i}\right| \quad \forall T_{i} \in \mathcal{T}_{i}
$$

Using the above observations, and the fact that $\nabla u_{i}=$ const on each T_{i}, we estimate

$$
\begin{aligned}
A\left(u_{i}, v_{j}\right) & =A\left(u_{i}, \tilde{v}_{j}\right)=\sum_{T \in \mathcal{T}_{i}}\left(\nabla u_{i}, \nabla \tilde{v}_{j}\right)_{L_{2}\left(S_{i j} \cap T\right)} \\
& \leq\left\{\sum_{T}\left\|\nabla u_{i}\right\|_{L_{2}\left(S_{i j} \cap T\right)}^{2}\right\}^{1 / 2}\left\{\sum_{T}\left\|\nabla \tilde{v}_{j}\right\|_{L_{2}\left(S_{i j} \cap T\right)}^{2}\right\}^{1 / 2} \\
& \preceq 2^{(i-j) / 2}\left\{\sum_{T}\left\|\nabla u_{i}\right\|_{L_{2}(T)}^{2}\right\}^{1 / 2}\left\{\sum_{T}\left\|\nabla \tilde{v}_{j}\right\|_{L_{2}\left(S_{i j} \cap T\right)}^{2}\right\}^{1 / 2} \\
& \preceq \gamma^{|i-j|}\left\|\nabla u_{i}\right\|_{L_{2}}\left\|\nabla \tilde{v}_{j}\right\|_{L_{2}} \\
& \preceq \gamma^{|i-j|} h_{i}^{-1}\left\|u_{i}\right\|_{L_{2}} h_{j}^{-1}\left\|\tilde{v}_{j}\right\|_{L_{2}} \\
& \preceq \gamma^{|i-j|} h_{i}^{-1}\left\|u_{i}\right\|_{L_{2}} h_{j}^{-1}\left\|v_{j}\right\|_{L_{2}} \\
& \simeq \gamma^{|i-j|}\left\|u_{i}\right\|_{D_{i}}\left\|v_{j}\right\|_{D_{j}}
\end{aligned}
$$

For the reverse estimate, $\|u\|_{C} \preceq\|u\|_{A}$, we will improve the estimates onto the decomposition $\sum h_{l}^{-2}\left\|\left(I_{l}-I_{l-1}\right) u\right\|_{L_{2}}^{2}$. Some of the terms will depend more on the smooth parts of u, while other terms will depend more on the high frequency part. The idea is similar to Fourier decomposition of u.

We define the so-called K-functionals, $K_{\Omega}: \mathbb{R}^{+} \times H^{1}(\Omega) \rightarrow \mathbb{R}$ as

$$
K_{\Omega}(t, u)=\inf _{v \in H^{2}(\Omega)}\left\{\|u-v\|_{L_{2}(\Omega)}^{2}+t^{2}\|v\|_{H^{2}(\Omega)}^{2}\right\}^{1 / 2}
$$

For rough functions $u \in L_{2}$, there is the trivial bound $K(t, u) \leq\|u\|_{L_{2}}$, and for smooth functions, there tholds $K(t, u) \leq t\|u\|_{H^{2}}$. The asymptotic decay as $t \rightarrow 0$ is a measure of smoothness.

Let $I_{l}: L_{2} \rightarrow V_{l}$ be quasi-interpolation operators preserving locally linear polynomials. Since for arbitrary $v \in H^{2}$ there holds

$$
\begin{aligned}
\left\|\left(I_{l}-I_{l-1}\right) u\right\|_{L_{2}}^{2} & \preceq\left\|\left(I_{l}-I_{l-1}\right)(u-v)\right\|_{L_{2}}^{2}+\left\|\left(I_{l}-I_{l-1}\right) v\right\|_{L_{2}}^{2} \\
& \preceq\|u-v\|_{L_{2}}^{2}+h_{l}^{4}\|v\|_{H^{2}}^{2}
\end{aligned}
$$

if follows that

$$
\left\|\left(I_{l}-I_{l-1}\right) u\right\|_{L_{2}}^{2} \preceq K\left(h_{l}^{2}, u\right)^{2},
$$

and, after summation,

$$
\|u\|_{C}^{2} \preceq \sum h_{l}^{-2}\left\|\left(I_{l}-I_{l-1}\right) u\right\|_{L_{2}}^{2} \preceq \sum h_{l}^{-2} K\left(h_{l}^{2}, u\right)^{2} .
$$

Lemma 23. Let Ω be a Lipschitz domain. For $\gamma \in \mathbb{R}^{+} \backslash\{1\}$ there holds

$$
\begin{equation*}
\sum_{l \in \mathbb{Z}} \gamma^{-l} K\left(\gamma^{l}, u\right)^{2} \preceq\|\nabla u\|_{L_{2}}^{2} . \tag{23}
\end{equation*}
$$

Proof. First, we verify estimate (23) for the domain $\Omega=\mathbb{R}^{d}$ by Fourier analysis. Let

$$
\hat{u}(\xi)=(2 \pi)^{-1 / 2} \int_{\mathbb{R}^{d}} e^{i \xi \cdot x} u(x) d x
$$

Then $\|u\|_{L_{2}}=\|\hat{u}\|_{L_{2}},\|\nabla u\|_{L_{2}}=\||\xi| \hat{u}\|_{L_{2}}$, etc. The K-functional is

$$
K(t, u)=\inf _{v \in H^{2}}\left\{\|\hat{u}-\hat{v}\|_{L_{2}}^{2}+t^{2}\left\||\xi|^{2} \hat{v}\right\|_{L_{2}}^{2}\right\}^{1 / 2}
$$

The global optimization splits into the one dimensional, quadratic minimization problems $|\hat{u}(\xi)-\hat{v}(\xi)|^{2}+t^{2}|\xi|^{4}|\hat{v}|^{2}$, which solution is taken at

$$
\hat{v}(\xi)=\frac{1}{1+t^{2}|\xi|^{4}} \hat{u}(\xi)
$$

and takes the value

$$
\frac{t^{2}|\xi|^{4}}{1+t^{2}|\xi|^{4}}|\hat{u}(\xi)|^{2} .
$$

Integrating ξ over \mathbb{R}^{d}, one obtains

$$
K(t, u)^{2}=\int_{\mathbb{R}^{d}} \frac{t^{2}|\xi|^{4}}{1+t^{2}|\xi|^{4}}|\hat{u}(\xi)|^{2} d \xi
$$

The quantity of interest is

$$
\begin{aligned}
\sum_{l \in \mathbb{Z}} \gamma^{-l} K\left(\gamma^{l}, u\right)^{2} & =\sum_{l \in \mathbb{Z}} \int_{\mathbb{R}^{d}} \frac{\gamma^{l}|\xi|^{4}}{1+\gamma^{2 l}|\xi|^{4}}|\hat{u}(\xi)|^{2} d \xi \\
& \leq \sup _{\xi \in \mathbb{R}^{d}}\left\{\sum_{l \in \mathbb{Z}} \frac{\gamma^{l}|\xi|^{2}}{1+\gamma^{2 l}|\xi|^{4}}\right\} \int|\xi|^{2}|\hat{u}(\xi)|^{2} d \xi
\end{aligned}
$$

The second factor is exactly $\|\nabla u\|^{2}$, the first factor is bounded by a constant. To prove this, let $l_{0} \in \mathbb{R}$ such that $\gamma^{-l_{0}}=|\xi|^{2}$. Assume $|\gamma|>1$. Then, the first factor is

$$
\sum_{l \in \mathbb{Z}} \frac{\gamma^{l-l_{0}}}{1+\gamma^{2\left(l-l_{0}\right)}}=\sum_{l \in \mathbb{Z}} \frac{1}{\gamma^{l_{0}-l}+\gamma^{l-l_{0}}} \leq \sum_{l>l_{0}} \frac{1}{\gamma^{l-l_{0}}}+\sum_{l \leq l_{0}} \frac{1}{\gamma^{l_{0}-l}} \leq \frac{2 \gamma}{\gamma-1}
$$

Thus, we have proved

$$
\begin{equation*}
\sum_{l \in \mathbb{Z}} \gamma^{-l} K_{\mathbb{R}^{d}}\left(\gamma^{l}, u\right)^{2} \preceq\|\nabla u\|_{L_{2}\left(\mathbb{R}^{d}\right)}^{2} \tag{24}
\end{equation*}
$$

We are left to prove estimate (23) on the Lipschitz domain Ω. Let $E: H^{1}(\Omega) \rightarrow H^{1}\left(\mathbb{R}^{d}\right)$ be a continous extension operator (which is available for Lipschitz domains). From

$$
\begin{aligned}
K_{\Omega}(t, u) & =\inf _{v \in H^{2}(\Omega)}\left\{\|u-v\|_{L_{2}(\Omega)}^{2}+t^{2}\|v\|_{H^{2}(\Omega)}^{2}\right\}^{1 / 2} \\
& \leq \inf _{v \in H^{2}\left(\mathbb{R}^{d}\right)}\left\{\|E u-v\|_{L_{2}\left(\mathbb{R}^{d}\right)}^{2}+t^{2}\|v\|_{H^{2}\left(\mathbb{R}^{d}\right)}^{2}\right\}^{1 / 2} \\
& =K_{\mathbb{R}^{d}}(t, E u),
\end{aligned}
$$

together with (24), there follows estimate (23).
Theorem 24. On Lipschitz domains Ω, spaces $V=H^{1}(\Omega)$, and quasi-uniform triangulations $\left\{\mathcal{T}_{l}\right\}$ of mesh-sizes $h_{l}=2^{-l}$, there holds the norm estimate

$$
\|u\|_{C} \preceq\|u\|_{A} \quad \forall u \in V_{L} .
$$

Proof. Follos immediately form the collected results above:

$$
\|u\|_{C}^{2} \preceq \sum_{l=0}^{L} h_{l}^{-2}\left\|\left(I_{l}-I_{l-1}\right) u\right\|_{L_{2}}^{2} \preceq \sum_{l=0}^{L} h_{l}^{-2} K\left(h_{l}^{2}, u\right)^{2} \preceq\|\nabla u\|_{L_{2}(\Omega)}^{2} .
$$

4.3 Analysis of the multigrid V-cycle

In this section, we analyse the multiplicative version of the multi-level iteration. This is the popular V-cycle multigrid iteration.

Theorem 25. Assume that there exists s.p.d. bilinear forms $\widetilde{D}_{l}(.,):. V_{l} \times V_{l} \rightarrow \mathbb{R}$ sucht that

- The smoothers are properly scaled:

$$
\begin{equation*}
\left\|v_{i}\right\|_{A} \leq\left\|v_{i}\right\|_{D_{i}} \quad \forall v_{i} \in V_{i} \tag{25}
\end{equation*}
$$

- The smoothers are bounded by the forms $\widetilde{D}_{l}(.,$.$) :$

$$
\begin{equation*}
\left\|v_{i}\right\|_{D_{i}} \preceq\left\|v_{i}\right\|_{\widetilde{D}_{i}} \quad \forall v_{i} \in V_{i} \tag{26}
\end{equation*}
$$

- There exists $\gamma \in(0,1)$ such that

$$
\begin{equation*}
A\left(u_{i}, v_{j}\right) \preceq \gamma^{|i-j|}\left\|u_{i}\right\|_{A}\left\|v_{j}\right\|_{\tilde{D}_{j}} \quad \forall u_{i} \in V_{i} \forall v_{j} \in V_{j} 0 \leq i \leq j \leq L \tag{27}
\end{equation*}
$$

- The lower bound of the ASM preconditioner with $\widetilde{D}_{l}(.,$.$) is uniform in L$:

$$
\begin{equation*}
\left\|u_{L}\right\|_{A}^{2} \preceq \sum_{i=0}^{L} A\left(\widetilde{D}_{i}^{-1} A u_{L}, u_{L}\right) \quad \forall u_{L} \in V_{L} \tag{28}
\end{equation*}
$$

Then the convergence rate of the multigrid V-cycle is independent of the number of levels, i.e.

$$
\begin{equation*}
\left\|\left(I-D_{L}^{-1} A\right) \ldots\left(I-D_{1}^{-1} A\right)\left(I-D_{0}^{-1} A\right)\right\|_{A} \leq C \tag{29}
\end{equation*}
$$

with $C \in(0,1)$ independent of L.
Some comments:

- The idea of introducing \widetilde{D}_{l} is to compare the smoother D_{l} with a simple smoother \widetilde{D}_{l}.
- Assumption (27) is proven as in the proof of Theorem 22. One inverse inequality is skipped.
- Condition (28) follows form $C_{A S M} \preceq A$, which implies $A\left(C_{A S M}^{-1} A u, u\right) \geq A(u, u)$.

Proof. We define per induction

$$
\begin{aligned}
M_{-1} & =I \\
M_{i} & =\left(I-D_{i}^{-1} A\right) M_{i-1} \quad 0 \leq i \leq L
\end{aligned}
$$

The goal is to estimate

$$
A\left(M_{L} u, M_{L} u\right) \leq C A(u, u)
$$

with $C \in(0,1)$. This is equivalent to

$$
\begin{equation*}
A(u, u) \preceq A(u, u)-A\left(M_{L} u, M_{L} u\right) . \tag{30}
\end{equation*}
$$

The inductive definition of M_{l} immediately gives (for $0 \leq l \leq L$)

$$
M_{l-1}-M_{l}=D_{l}^{-1} A M_{l-1},
$$

and

$$
\begin{align*}
& A\left(M_{l-1} u, M_{l-1} u\right)-A\left(M_{l} u, M_{l} u\right) \\
& \quad=A\left(\left(2 D_{l}^{-1} A-D_{l}^{-1} A D_{l}^{-1} A\right) M_{l-1} u, M_{l-1} u\right) \\
& \quad \geq A\left(D_{l}^{-1} A M_{l-1} u, M_{l-1} u\right) \tag{31}
\end{align*}
$$

The last inequality follows from $A \leq D_{l}$.
Using the ASM estimate

$$
A(u, u) \preceq \sum_{l=0}^{L} A\left(\widetilde{D}_{l}^{-1} A u, u\right),
$$

rewriting (30) as telescopic sum and substituting (31),
$A(u, u)-A\left(M_{L} u, M_{L} u\right)=\sum_{l=0}^{L} A\left(M_{l-1} u, M_{l-1} u\right)-A\left(M_{l} u, M_{l} u\right) \geq \sum_{l=0}^{L} A\left(D_{l}^{-1} A M_{l-1} u, M_{l-1} u\right)$,
reduces the proof to verify

$$
\begin{equation*}
\sum_{l=0}^{L} A\left(\widetilde{D}_{l}^{-1} A u, u\right) \preceq \sum_{l=0}^{L} A\left(D_{l}^{-1} A M_{l-1} u, M_{l-1} u\right) . \tag{32}
\end{equation*}
$$

The left hand side is bounded by $\left((a+b)^{2} \leq 2\left(a^{2}+b^{2}\right)\right)$:
$\sum_{l=0}^{L} A\left(\widetilde{D}_{l}^{-1} A u, u\right) \leq 2 \sum_{l=0}^{L} A\left(\widetilde{D}_{l}^{-1} A M_{l-1} u, M_{l-1} u\right)+2 \sum_{l=0}^{L} A\left(\widetilde{D}_{l}^{-1} A\left(I-M_{l-1}\right) u,\left(I-M_{l-1}\right) u\right)$.
The first term is simply bounded by $D_{l}^{-1} \preceq D_{l}$. The key point to handle the second term is to bound the interaction of the correction on level l, with smoothing on coarser levels. We telescope $I-M_{l-1}$, namely

$$
I-M_{l-1}=M_{-1}-M_{l-1}=\sum_{j=0}^{l-1} M_{j-1}-M_{j}=\sum_{j=0}^{l-1} D_{j}^{-1} A M_{j-1} .
$$

Inserting this expansion into the second term above, we obtain

$$
\sum_{l=0}^{L} A\left(\widetilde{D}_{l}^{-1} A\left(I-M_{l-1}\right) u,\left(I-M_{l-1}\right) u\right)=\sum_{l=0}^{L} \sum_{j=0}^{l-1} \sum_{k=0}^{l-1} A\left(\widetilde{D}_{l}^{-1} A D_{j}^{-1} A M_{j-1} u, D_{k}^{-1} A M_{k-1} u\right)
$$

To simplify the notation, we introduce $w_{j}:=D_{j}^{-1} A M_{j-1} u \in V_{j}$.
The next, intermediate step is to bound

$$
A\left(\widetilde{D}_{l}^{-1} A w_{j}, w_{k}\right) \preceq \gamma^{l-j}\left\|w_{j}\right\|_{A} \gamma^{l-k}\left\|w_{k}\right\|_{A} .
$$

This follows by Cauchy-Schwarz w.r.t. the spd form $A\left(\widetilde{D}_{l}^{-1} A .,.\right)$, and assumption (25)

$$
A(\underbrace{\widetilde{D}_{l}^{-1} A w_{j}}_{\in V_{l}}, \underbrace{w_{j}}_{\in V_{j}}) \preceq \gamma^{|l-j|}\left\|\widetilde{D}_{l}^{-1} A w_{j}\right\|_{\widetilde{D}_{l}}\left\|w_{j}\right\|_{A}=\gamma^{|l-j|} A\left(\widetilde{D}_{l}^{-1} A w_{j}, w_{j}\right)^{1 / 2}\left\|w_{j}\right\|_{A},
$$

and dividing one factor completes the step.
We continue

$$
\begin{aligned}
& \sum_{l=0}^{L} A\left(\widetilde{D}_{l}^{-1} A\left(I-M_{l-1}\right) u,\left(I-M_{l-1}\right) u\right)=\sum_{l=0}^{L} \sum_{j=0}^{l-1} \sum_{k=0}^{l-1} A\left(\widetilde{D}_{l}^{-1} A w_{j}, w_{k}\right) \\
& \quad \preceq \sum_{l=0}^{L} \sum_{j=0}^{l-1} \sum_{k=0}^{l-1} \gamma^{l-j} \gamma^{l-k}\left\|w_{j}\right\|_{A}\left\|w_{k}\right\|_{A} \\
& \quad \leq 1 / 2 \sum_{l=0}^{L} \sum_{j=0}^{l-1} \sum_{k=0}^{l-1} \gamma^{l-j} \gamma^{l-k}\left\{\left\|w_{j}\right\|_{A}^{2}+\left\|w_{k}\right\|_{A}^{2}\right\} \\
& =\sum_{l=0}^{L} \sum_{j=0}^{l-1} \sum_{k=0}^{l-1} \gamma^{l-j} \gamma^{l-k}\left\|w_{j}\right\|_{A}^{2} \\
& \leq \sum_{l=0}^{L} \sum_{j=0}^{l-1} \sum_{k=0}^{l-1} \gamma^{l-j} \gamma^{l-k}\left\|w_{j}\right\|_{D_{j}}^{2} \\
& \preceq \sum_{j=0}^{L-1} \sum_{l=j+1}^{L} \gamma^{l-j}\left\|w_{j}\right\|_{D_{j}}^{2} \\
& \preceq \sum_{j=0}^{L-1}\left\|w_{j}\right\|_{D_{j}}^{2}=\sum_{j=0}^{L-1}\left\|D_{j}^{-1} A M_{j-1} u\right\|_{D_{j}}^{2} \\
& \quad=\sum_{j=0}^{L-1} A\left(D_{j}^{-1} A M_{j-1} u, M_{j-1} u\right)
\end{aligned}
$$

This is the right hand side of (32), and thus, the proof is complete.

5 Multigrid analysis based on Smoothing and Approximation

A different approach to multigrid analysis is the Hackbusch theory based on the smoothing property and the approximation property. Here, just the interaction of two levels is explored.

Consider a multiplicative 2-level method. One step is the coarse grid correction

$$
\left(I-P_{l-1}^{A}\right),
$$

the other one consists of m smoothing steps

$$
\left(I-D_{l}^{-1} A\right)^{m}
$$

If D_{l} is properly scaled, then both steps are non-expansive. We will show that under regularity assumptions the product is a contraction. We consider second order problems. There holds $\|\cdot\|_{A} \simeq\|\cdot\|_{H^{1}}$, and $\|\cdot\|_{D} \simeq h^{-1}\|\cdot\|_{L_{2}}$.

Lemma 26 (Approximation property). If the underlying pde provides the full regularity shift theorem $\left(\|u\|_{H^{2}} \preceq\|f\|_{L_{2}}\right)$, then the approximation property is fulfilled:

$$
\left\|u_{l}-P_{l-1}^{A} u_{l}\right\|_{D_{l}} \preceq\left\|u_{l}\right\|_{A} .
$$

Proof: Follows from Aubin Nitsche lemma, and the scaling of the smoother $\left\|u_{l}\right\|_{D_{l}} \leq$ $h_{l}^{-1}\left\|u_{l}\right\|$.

The coarse grid correction step is measured in $\|.\|_{A \rightarrow D}$. Accordingly, the smoothing steps are measured in $\|\cdot\|_{D \rightarrow A}$:

Lemma 27 (Smoothing property). Assume that $\sigma\left(D_{l}^{-1} A\right) \subset[0,1]$. Then

$$
\begin{equation*}
\left\|\left(I-D_{l}^{-1} A\right)^{m} u_{l}\right\|_{A}^{2} \leq \frac{1}{2 m}\left\|u_{l}\right\|_{D_{l}}^{2} \tag{33}
\end{equation*}
$$

Proof. The estimate is rewritten as

$$
\left(D^{-1} A\left(I-D_{l}^{-1} A\right)^{2 m} u_{l}, u_{l}\right)_{D} \leq \frac{1}{2 m}\left\|u_{l}\right\|_{D}^{2}
$$

Since $D_{l}^{-1} A$ is self-adjoint in $(., .)_{D}$, so is also $D^{-1} A\left(I-D_{l}^{-1} A\right)^{2 m}$, and one can apply spectral theory:

$$
\left\|D^{-1} A\left(I-D_{l}^{-1} A\right)^{2 m}\right\|_{D} \leq \sup _{a \in \sigma\left(D_{l}^{-1} A\right)} a(1-a)^{2 m}
$$

The maximum of $a(1-a)^{2 m}$ on $[0,1]$ is attained at $\bar{a}=1 /(1+2 m)$, and is less than $1 /(2 m)$.

5.1 V-cycle analysis with full regularity

The V-cylce analysis needs the stronger full-regularity assumption than the multi-level type analysis, but, the result here is also stronger: More smoothing steps improve the rate of convergence. The following theorem is due to Braess-Hackbusch:

Theorem 28. Assume that

$$
\begin{equation*}
\left\|u_{l}-P_{l-1}^{A} u_{l}\right\|_{D_{l}}^{2} \leq C\left\|u_{l}\right\|_{A}^{2} \quad \forall u_{l} \in V_{l} \quad 1 \leq l \leq L . \tag{34}
\end{equation*}
$$

Then

$$
\left\|\left(I-D_{0}^{-1} A\right)^{m} \ldots\left(I-D_{L}^{-1} A\right)^{m}\right\|_{A}^{2} \leq \frac{C}{C+2 m}
$$

Proof. Define $S_{l}=I-D_{l}^{-1} A$ and

$$
M_{0}=I \quad \text { and } \quad M_{l}=M_{l-1} S_{l}^{m}
$$

Observe that

$$
D_{l}^{-1} A v=0 \quad \forall v \in V_{L}: v \perp_{A} V_{l},
$$

and thus

$$
M_{l}\left(I-P_{l}^{A}\right)=\left(I-P_{l}^{A}\right)
$$

Now, we prove by induction

$$
A\left(M_{l} u_{l}, M_{l} u_{l}\right) \leq \delta A\left(u_{l}, u_{l}\right) \quad \forall u_{l} \in V_{l},
$$

where $\delta=C /(C+2 m)$. The hypothesis is true for $l=0$ since $D_{0}(.,)=.A(.,$.$) . Now,$ assume that the hypothesis is true for $l-1$. Then

$$
\begin{aligned}
\left\|M_{l} u\right\|_{A}^{2}= & \left\|M_{l-1} S_{l}^{m} u\right\|_{A}^{2}=\left\|M_{l-1}\left(I-P_{l-1}^{A}+P_{l-1}^{A}\right) S_{l}^{m} u\right\|_{A}^{2} \\
= & \left\|M_{l-1}\left(I-P_{l-1}^{A}\right) S_{l}^{m} u\right\|_{A}^{2}+\left\|M_{l-1} P_{l-1} S_{l}^{m} u\right\|_{A}^{2} \\
& +2\left(M_{l-1}\left(I-P_{l-1}^{A}\right) S_{l}^{m} u, M_{l-1} P_{l-1} S_{l}^{m} u\right)_{A} \\
= & \left\|\left(I-P_{l-1}^{A}\right) S_{l}^{m} u\right\|_{A}^{2}+\left\|M_{l-1} P_{l-1} S_{l}^{m} u\right\|_{A}^{2} .
\end{aligned}
$$

The last step is due to $M_{l-1}: V_{l-1} \rightarrow V_{l-1}$, and $M_{l-1}\left(I-P_{l-1}^{A}\right)=\left(I-P_{l-1}^{A}\right)$. We continue by using the induction hypothesis

$$
\begin{aligned}
\left\|M_{l} u\right\|_{A}^{2} & \leq\left\|\left(I-P_{l-1}^{A}\right) S_{l}^{m} u\right\|_{A}^{2}+\delta\left\|P_{l-1} S_{l}^{m} u\right\|_{A}^{2} \\
& =(1-\delta)\left\|\left(I-P_{l-1}\right) S_{l}^{m} u\right\|_{A}^{2}+\delta\left\|S_{l}^{m} u\right\|_{A}^{2}
\end{aligned}
$$

Next, we establish the smoothing+approximation result

$$
\left\|\left(I-P_{l-1}\right) S_{l}^{m} u\right\|_{A}^{2} \leq \frac{C}{2 m}\left(\|u\|_{A}^{2}-\left\|S_{l}^{m} u\right\|_{A}^{2}\right):
$$

$$
\begin{aligned}
\left\|\left(I-P_{l-1}\right) S_{l}^{m} u\right\|_{A}^{2} & =D_{l}\left(\left(I-P_{l-1}\right) S_{l}^{m} u, D_{l}^{-1} A S_{l}^{m} u\right) \\
& \leq\left\|\left(I-P_{l-1}\right) S_{l}^{m} u\right\|_{D_{l}}\left\|D_{l}^{-1} A S_{l}^{m} u\right\|_{D_{l}} \\
& \leq \sqrt{C}\left\|\left(I-P_{l-1}\right) S_{l}^{m} u\right\|_{A}\left\|D_{l}^{-1} A S_{l}^{m} u\right\|_{D_{l}} .
\end{aligned}
$$

We used that $\left(I-P_{l-1}\right)$ is a projector, and assumption (34). Dividing one factor gives

$$
\left\|\left(I-P_{l-1}\right) S_{l}^{m} u\right\|_{A}^{2} \leq C\left\|D_{l}^{-1} A S_{l}^{m} u\right\|_{D_{l}}^{2} .
$$

Again, using spectral theory $\left(a^{2}(1-a)^{2 m} \leq(2 m)^{-1}\left(a-a(1-a)^{2 m}\right)\right.$ we obtain

$$
\left\|D_{l}^{-1} A S_{l}^{m} u\right\|_{D_{l}} \leq \frac{1}{2 m}\left(\|u\|_{A}^{2}-\left\|S_{l}^{m} u\right\|_{A}^{2}\right)
$$

and thus the statement. We conclude the proof by

$$
\begin{aligned}
\left\|M_{l} u\right\|_{A}^{2} & \leq(1-\delta) \frac{C}{2 m}\left(\|u\|_{A}^{2}-\left\|S^{l} u\right\|_{A}^{2}\right)+\delta\left\|S_{l} u\right\|_{A}^{2} \\
& =\frac{C(1-\delta)}{2 m}\|u\|_{A}^{2}+\left(\delta-\frac{C(1-\delta)}{2 m}\right)\left\|S_{l}^{u}\right\|_{A}^{2} \\
& =\delta\|u\|_{A}^{2} .
\end{aligned}
$$

6 Multigrid analysis with partial regularity

The goal of this chapter is multigrid analysis under partial regularity. We will consider the variable V-cycle, and the classical W-cycle. The results are weaker in comparison to Section 4.3 since the spaces and/or forms are not necessarily nested.

6.1 Interpolation spaces

Let V_{0} and V_{1} be two Hilbert spaces with compact embedding $V_{1} \subset V_{0}$. Then the eigen value problem

$$
\begin{equation*}
\left(x_{i}, v\right)_{V_{1}}=\lambda_{i}^{2}\left(x_{i}, v\right)_{V_{0}} \quad \forall v \in V_{1} \tag{35}
\end{equation*}
$$

leads to a sequence of eigen values $\lambda_{i} \rightarrow \infty$. The eigen vectors are normalized in $\|\cdot\|_{V_{0}}$. They form an orthonormal basis in V_{0}, and an orthogonal basis in V_{1}. There holds for $u \in V_{0}$

$$
u=\sum_{i=0}^{\infty}\left(u, x_{i}\right)_{V_{0}} x_{i}
$$

and

$$
\|u\|_{V_{0}}^{2}=\sum_{i=0}^{\infty}\left(u, x_{i}\right)_{V_{0}}^{2}
$$

If $u \in V_{1}$, then

$$
\|u\|_{V_{1}}^{2}=\sum_{i=0}^{\infty} \lambda_{i}^{2}\left(u, x_{i}\right)_{V_{0}}^{2}
$$

For $s \in(0,1)$, we define the interpolation norm (Hilbert space interpolation)

$$
\begin{equation*}
\|u\|_{s}^{2}:=\|u\|_{\left[V_{0}, V_{1}\right]_{s}}^{2}:=\sum_{i=1}^{\infty} \lambda_{i}^{2 s}\left(u, x_{i}\right)_{V_{0}}^{2} \tag{36}
\end{equation*}
$$

and the (Hilbert) space

$$
V_{s}:=\left[V_{0}, V_{1}\right]_{s}:=\left\{v \in V_{0}:\|v\|_{s}<\infty\right\}
$$

It is interesting to consider operators between spaces and interpolation spaces:
Theorem 29. Let $V_{1} \subset V_{0}$ (compact) and $W_{1} \subset W_{0}$ (compact). Let $T: V_{0} \rightarrow W_{0}$, linear, with norm $\|T\|_{0}=\|T\|_{V_{0} \rightarrow W_{0}}$, as well as $T: V_{1} \rightarrow W_{1}$ with norm $\|T\|_{1}=\|T\|_{V_{1} \rightarrow W_{1}}$. Then

$$
T: V_{s} \rightarrow W_{s}
$$

and

$$
\|T\|_{V_{s} \rightarrow W_{s}} \leq\|T\|_{0}^{1-s}\|T\|_{1}^{s} .
$$

The proof will use the real method of interpolation and is given below.
A different approach to interpolation spaces is the so called real method of interpolation based on K-functionals. This is defined for Banach spaces. Let $B_{1} \subset B_{0}$ be Banach spaces. The K-functional $K: \mathbb{R}^{+} \times B_{0} \rightarrow \mathbb{R}$ is defined as

$$
K(t, u):=\inf _{\substack{u=u_{0}+u_{1} \\ u_{i} \in V_{i}}}\left\{\left\|u_{0}\right\|_{B_{0}}^{2}+t^{2}\left\|u_{1}\right\|_{B_{1}}^{2}\right\}^{1 / 2}
$$

Note that $K(t, u) \leq\|u\|_{B_{0}}$, and $K(t, u) \leq t\|u\|_{B_{1}}$ for $u \in B_{1}$. The decay of $K(t, u)$ for $t \rightarrow 0$ can be used to measure the smoothness of u. One possibility is to define the interpolation norm is

$$
\|u\|_{B_{s, \infty}}:=\sup _{t>0} t^{-s} K(t, u)
$$

Other weightings are possible $(1 \leq p<\infty)$:

$$
\|u\|_{B_{s, p}}:=\left(\int_{0}^{\infty} t^{-s p} K^{p}(t, u) d t / t\right)^{1 / p}
$$

Note that $K(t, u) \simeq K(c t, u)$, there holds for fixed $\gamma \in \mathbb{R}^{+} \backslash\{1\}$

$$
\left.\|u\|_{B_{s, p}}=\left(\sum_{k \in \mathbb{Z}} \int_{\gamma^{k}}^{\gamma^{k+1}} t^{-s p} K^{p}(t, u) d t / t\right)^{1 / p} \simeq \sum_{k \in \mathbb{Z}}\left(\gamma^{-s k} K\left(\gamma^{k}, u\right)\right)^{p}\right)^{1 / p}
$$

This interpolation norm has been used already in Section 4.2 with $s=1 / 2$ and $p=2$.
If B_{i} are Hilbert spaces, and $p=2$, then both methods of interpolation coincide:

Lemma 30. Let $V_{1} \subset V_{0}$ (compact) be Hilbert spaces. Define $\|u\|_{s}$ as Hilbert space interpolation norm (36). Then

$$
\|u\|_{s}=C_{s}\|u\|_{B_{s, 2}}
$$

with $C_{s}=\left(\int_{0}^{\infty}\left(t^{1-2 s}\right) /\left(t^{2}+1\right) d t\right)^{-1 / 2}=\sqrt{2 / \pi \sin (\pi s)}$.
Proof. There is

$$
K(t, u)^{2}=\inf _{u_{1} \in V_{1}}\left\{\left\|u-u_{1}\right\|_{V_{0}}^{2}+t^{2}\left\|u_{1}\right\|_{V_{1}}^{2}\right\}
$$

With $u=\sum a_{i} x_{i}$ and $u_{1}=\sum b_{i} x_{i}$ there holds

$$
\left\|u-u_{1}\right\|_{V_{0}}^{2}+\left\|u_{1}\right\|_{V_{1}}^{2}=\sum_{i}\left[\left(a_{i}-b_{i}\right)^{2}+t^{2} \lambda_{i}^{2} b_{i}^{2}\right]
$$

We choose b_{i} to minimize $\left(a_{i}-b_{i}\right)^{2}+t^{2} \lambda_{i}^{2} b_{i}^{2}$, which is $b_{i}=a_{i}\left(t^{2} \lambda_{i}^{2}+1\right)^{-1}$. Hence

$$
K^{2}(t, u)=\sum_{i=1}^{\infty} t^{2} \lambda_{i}\left(t^{2} \lambda_{i}^{2}+1\right)^{-1} a_{i}^{2}
$$

Now,

$$
\begin{aligned}
\int_{0}^{\infty} t^{-2 s} K^{2}(t, u) d t / t & =\sum_{i} \int_{0}^{\infty} t^{1-2 s} \lambda_{i}^{2}\left(t^{2} \lambda_{i}^{2}+1\right)^{-1} d t a_{i}^{2} \\
& =\sum_{i}\left(\int_{0}^{\infty} t^{1-2 s} \lambda_{i}^{1-2 s}\left(t^{2} \lambda_{i}^{2}+1\right)^{-1} d t \lambda_{i}\right) \lambda_{i}^{2 s} a_{i}^{2} \\
& =\sum_{i}\left(\int_{0}^{\infty} \tau^{1-2 s}\left(\tau^{2}+1\right)^{-1} d \tau\right) \lambda_{i}^{2 s} a_{i}^{2} \\
& =C_{s}^{-2}\|u\|_{s}^{2}
\end{aligned}
$$

Lemma 31. Let $B_{1} \subset B_{0}$ and $\widetilde{B}_{1} \subset \widetilde{B}_{0}$ be Banach spaces. Let $T: B_{i} \rightarrow \widetilde{B}_{i}$, linear, with norm $C_{i}:=\|T\|_{i}$. Then $T:\left[B_{0}, B_{1}\right]_{s, p} \rightarrow\left[\widetilde{B}_{0}, \widetilde{B}_{1}\right]_{s, p}$ with norm

$$
\|T\|_{s, p} \leq C_{0}^{1-s} C_{1}^{s}
$$

Proof. For $u=u_{0}+u_{1}$, also $T u_{0}+T u_{1}$ is a proper decomposition of $T u$. Thus

$$
\begin{aligned}
\|T u\|_{B_{s, p}} & =\left(\int_{0}^{\infty} t^{-s p} \widetilde{K}(t, T u)^{p} d t / t\right)^{1 / p} \\
& \leq\left(\int_{0}^{\infty} t^{-s p} \inf _{u=u_{0}+u_{1}}\left\{\left\|T u_{0}\right\|_{\widetilde{B}_{0}}^{2}+t^{2}\left\|T u_{1}\right\|_{\widetilde{B}_{1}}^{2}\right\}^{p / 2} d t / t\right)^{1 / p} \\
& \leq\left(\int_{0}^{\infty} t^{-s p} \inf _{u=u_{0}+u_{1}}\left\{C_{0}^{2}\left\|u_{0}\right\|_{B_{0}}^{2}+t^{2} C_{1}^{2}\left\|u_{1}\right\|_{B_{1}}^{2}\right\}^{p / 2} d t / t\right)^{1 / p} \\
& =C_{0}^{1-s} C_{1}^{s}\left(\int_{0}^{\infty}\left(C_{1} t / C_{0}\right)^{-s p} \inf _{u=u_{0}+u_{1}}\left\{\left\|u_{0}\right\|_{B_{0}}^{2}+t^{2} C_{1}^{2} / C_{0}^{2}\left\|u_{1}\right\|_{B_{1}}^{2}\right\}^{p / 2} d t / t\right)^{1 / p} \\
& =C_{0}^{1-s} C_{1}^{s}\left(\int_{0}^{\infty} \tau^{-s p} \inf _{u=u_{0}+u_{1}}\left\{\left\|u_{0}\right\|_{B_{0}}^{2}+\tau\left\|u_{1}\right\|_{B_{1}}^{2}\right\}^{p / 2} d \tau / \tau\right)^{1 / p} \\
& =C_{0}^{1-s} C_{1}^{s}\|u\|_{B_{s, p} .}
\end{aligned}
$$

The excursion to the real method of interpolation proofs Theorem 29:
Proof. of Theorem 29: Let $u \in V_{s}$. Then

$$
\|T u\|_{s}=C_{s}\|T u\|_{B_{s, 2}} \leq C_{s} C_{0}^{1-s} C_{1}^{s}\|u\|_{B_{s, 2}}=C_{0}^{1-s} C_{1}^{s}\|u\|_{s}
$$

6.2 Finite element analysis in interpolation spaces

The fractional order Sobolev spaces $H^{s}=H^{k+\alpha}$ are interpolation spaces

$$
H^{k+\alpha}=\left[H^{k}, H^{k+1}\right]_{\alpha}, \quad \alpha \in(0,1) .
$$

A symmetric, second order elliptic problem $L u=f$ on non-convex domains fulfulls (typically) a partial regularity shift theorem

$$
\begin{equation*}
\|u\|_{1+\alpha} \leq\|f\|_{-1+\alpha} . \tag{37}
\end{equation*}
$$

The rate of convergence in fractional order Sobolev spaces is obtained immediately by interpolation.

Lemma 32. There holds the a priori estimate

$$
\left\|u-u_{h}\right\|_{1} \preceq h^{\alpha}\|u\|_{1+\alpha}
$$

Proof. Let $P_{h}: H^{1} \rightarrow V_{h}$ be the energy projector into the finite element space. The coprojection $I-P_{h}$ is a linear operator from H^{1} into H^{1}, and also from H^{2} into H^{1}. The norms are

$$
\left\|\left(I-P_{h}\right)\right\|_{H^{1} \rightarrow H^{1}} \preceq 1,
$$

and

$$
\left\|\left(I-P_{h}\right)\right\|_{H^{2} \rightarrow H^{1}} \preceq h .
$$

Thus, there follows by interpolation

$$
\left\|\left(I-P_{h}\right)\right\|_{H^{1+\alpha} \rightarrow H^{1}} \preceq h^{\alpha} .
$$

Lemma 33 (Aubin-Nitsche technique in fractional Sobolev spaces). Assume that the shift theorem (37) is available. Then there holds

$$
\begin{equation*}
\left\|u-P_{h} u\right\|_{H^{1-\alpha}} \preceq h^{\alpha}\|u\|_{H^{1}} . \tag{38}
\end{equation*}
$$

Proof. Pose the dual problem

$$
a(\varphi, v)=g(v) \quad \text { with } \quad g(v):=\left(u-u_{h}, v\right)_{1-\alpha} .
$$

There holds

$$
\|g\|_{H^{-1+\alpha}}=\sup _{v \in H^{1-\alpha}} \frac{g(v)}{\|v\|_{1-\alpha}}=\sup _{v \in H^{1-\alpha}} \frac{\left(u-u_{h}, v\right)_{1-\alpha}}{\|v\|_{1-\alpha}}=\left\|u-u_{h}\right\|_{H^{1-\alpha}} .
$$

Choose $v=u-u_{h}$ to obtain

$$
\begin{aligned}
\left\|u-u_{h}\right\|_{1-\alpha}^{2} & =a\left(\varphi-P_{h} \varphi, u-u_{h}\right) \leq\left\|\left(I-P_{h}\right) \varphi\right\|_{1}\left\|u-u_{h}\right\|_{1} \\
& \leq h^{\alpha}\|\varphi\|_{1+\alpha}\left\|u-u_{h}\right\|_{1} \leq h^{\alpha}\|g\|_{-1+\alpha}\left\|u-u_{h}\right\|_{1} \\
& =h^{\alpha}\left\|u-u_{h}\right\|_{1-\alpha}\left\|u-u_{h}\right\|_{1} .
\end{aligned}
$$

6.3 Multigrid analysis with partial regularity assumption

The smoothing iteration $S_{l}=I-D_{l}^{-1} A: V_{l} \rightarrow V_{l}$ fulfills the norm estimates

$$
\left\|S_{l}^{m} u\right\|_{A} \leq\|u\|_{A}
$$

and

$$
\left\|S_{l}^{m} u\right\|_{A} \leq \frac{1}{2 m}\|u\|_{D_{l}}
$$

By interpolation, there follows (with $\alpha \in(0,1)$):

$$
\left\|S_{l}^{m} u\right\|_{A} \leq \frac{1}{(2 m)^{\alpha}}\|u\|_{\left[A, D_{l}\right]_{\alpha}} .
$$

Lemma 34. There holds

$$
\begin{equation*}
\left\|S_{l}^{m} u_{l}\right\|_{A} \preceq \frac{1}{(2 m)^{\alpha}} h^{-\alpha}\left\|u_{l}\right\|_{H^{1-\alpha}} \tag{39}
\end{equation*}
$$

Proof. Note that, $\left(H^{s},\|\cdot\|_{H^{s}}\right)$ is defined as interpolation space between L_{2} and H^{1}. The norm is different to the interpolation norm between $\left(V_{l},\|\cdot\|_{L_{2}}\right)$ and $\left(V_{l},\|\cdot\|_{H^{1}}\right)$. Let I_{l} be a Clément-type quasi-interpolation operator being a projection on V_{l}. Then

$$
\left\|S_{l}^{m} I_{l} u\right\|_{A} \leq\left\|I_{l} u\right\|_{A} \preceq\|u\|_{H^{1}}
$$

and

$$
\left\|S_{l}^{m} I_{l} u\right\|_{A} \leq \frac{1}{2 m}\left\|I_{l} u\right\|_{D} \preceq \frac{1}{2 m} h_{l}^{-1}\left\|I_{l} u\right\|_{L_{2}} \preceq \frac{1}{2 m} h_{l}^{-1}\|u\|_{L_{2}}
$$

Now, using interpolation, there follows $\left\|S_{l}^{m} I_{l} u\right\|_{A} \leq \frac{1}{(2 m)^{\alpha}} h^{-\alpha}\|u\|_{H^{1-\alpha}}$. In particular, the estimate is true for $u_{l} \in V_{l}$, where the interpolation operator I_{l} vanishes.

Theorem 35 (Two-Grid Convergence). Assume that the shift theorem (37) is valid. Then the norm of the two grid iteration

$$
M_{l, 2 g}=S_{l}^{m}\left(I-P_{l-1}^{A}\right)
$$

is bounded by

$$
\left\|M_{l, 2 g}\right\|_{A} \leq c m^{-\alpha} .
$$

Proof. Combine smoothing property (39) and approximation property (38):

$$
\left\|S_{l}^{m}\left(I-P_{l-1}^{A}\right)\right\|_{H^{1} \rightarrow H^{1}} \leq\left\|S_{l}^{m}\right\|_{H^{1-\alpha} \rightarrow H^{1}}\left\|\left(I-P_{l-1}^{A}\right)\right\|_{H^{1} \rightarrow H^{1-\alpha}} \leq c m^{-\alpha}
$$

6.4 W-cycle analysis

Define the W-cycle multigrid iteration $\hat{u}_{l}=M g_{l}\left(u_{l}, f_{l}\right)$ by $\hat{u}_{0}=A_{0}^{-1} f_{0}$, and, for $l=1, \ldots L$,

$$
\begin{array}{rll}
u_{l}^{0} & =u_{l} & \\
u_{l}^{k} & =u_{l}^{k-1}+D_{l}^{-1}\left(f_{l}-A_{l} u_{l}^{k-1} \quad k=1, \ldots m \quad\right. & \\
w_{l-1}^{0} & =0 & \\
d_{l-1} & =E_{l}^{T}\left(f_{l}-A_{l} u_{l}^{k}\right) & \\
w_{l-1}^{k} & =w_{l-1}^{k-1}+M_{l-1}\left(w_{l-1}, d_{l-1}\right), \ldots k=1,2 \quad \text { (2coarsegridcoothing) } \\
u_{l}^{m+1} & =u_{l}^{m}+E_{l} w_{l-1}^{2} \\
u_{l}^{k} & =u_{l}^{k-1}+D_{l}^{-1}\left(f_{l}-A_{l} u_{l}^{k-1} \quad k=m+2, \ldots k=2 m+1 \quad\right. \text { (postsmoothing) }
\end{array}
$$

Then, the iteration operator M fulfills the recursive definition

$$
M_{l}=S_{l}^{m}\left(I-E_{l}\left(I-M_{l-1}^{2}\right) A_{l-1}^{-1} E_{l}^{T} A_{l}\right) S_{l}^{m} .
$$

Theorem 36 (W-cycle analysis). Assume that the two-grid iteration matrix is bounded in some norm $\|\cdot\|_{V_{l}}$,

$$
\left\|M_{l, 2 g}\right\|_{V_{l}} \leq C \leq ?
$$

and assume that the smoother is non-expansive in the same norm, i.e.,

$$
\left\|S_{l}\right\|_{V_{l}} \leq 1
$$

Then, the norm of the W - cylce multigrid iteration is bounded by

$$
\left\|M_{l}\right\| \leq ?
$$

