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Abstract

The discretization of a partial differential equation leads to a large system of
linear equations. Multigrid methods are iterative solvers for these equations. The
idea is not to use only one finite element mesh, but a whole hierarchy of grids. The
algorithm combines cheap iterative methods on each level. The result is an equation
solver of optimal arithmetic complexity O(N).

While the principle is very simple, a rigorous analysis is quite involved. It requires
results from partial differential equations, finite element analysis, Hilbert space the-
ory, as well as linear algebra. The topics of the lecture is to discuss the design and
analysis of multigrid methods.

In the first part, we consider various techniques for a simple model problem. This
chapter is split into no-regularity techniques and techniques based on shift theo-
rems. The second part discusses extensions to important real-life problems including
elasticity and Maxwell equations.

1 Overview of Finite Elements

Multigrid analysis is strongly connected to finite element analysis. Therefore, we start with
a short overview of finite elements. We focus on results relevant to multigrid, for general
fem theory please contact one of the available textbooks.

Let Ω ⊂ Rd, d = 1, 2, 3 be an open, bounded, polyhedral domain. We consider the
Poisson problem with homogenous Dirichlet boundary conditions:

−∆u = f in Ω

u = 0 on ∂Ω.

Its weak form is to search u in a suitable Hilbert function space V such that

A(u, v) = f(v) ∀ v ∈ V, (1)

where the symmetric bilinear-form A(., .) and the linear form f(.) are defined by

A(u, v) := (∇u,∇v) and f(v) := (f, v). (2)
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Here and in the following, (., .) and ‖.‖ denote the L2(Ω) inner product and L2(Ω)-norm,
respectively. The bilinear-form A(., .) defines a second inner product. The corresponding
norm

‖v‖A = A(v, v)1/2

is called energy norm.

1.1 Sobolev Spaces

We define a multi-index α = (α1, . . . , αd) ∈ Nd
0, its absolut value |α| =

∑
αi, and the

derivatives ∂α = ∂α1
x1
. . . ∂αd

xd
.

For k ∈ N0, we define the Hilbert-space (semi)norms

|v|2k :=
∑
|α|=k

‖∂αv‖2

and norms

‖v‖2
k :=

k∑
l=0

|v|2l .

The corresponding inner products are

(u, v)k =
∑
|α|≤k

(∂αu, ∂αv).

Let C∞(Ω) be the function space of infinitely differentiable functions on Ω, and C∞
0 (Ω)

its subspace with compact support (=functions vanish in neighbourhood of ∂Ω) in Ω.
Define the Sobolev spaces

Hk = C∞‖.‖k
and Hk

0 = C∞
0

‖.‖k
.

On the boundary, we define almost everywhere the normal derivative ∂n =
∑
ni∂xi

. If the
domain has Lipschitz continuous boundary, then

Hk
0 = {v ∈ Hk : v = ∂nv = . . . ∂k−1

n v = 0 on ∂Ω}

There holds Friedrichs inequality

‖v‖ ≤ cF |v|1 ∀ v ∈ H1
0 ,

where the constant cF depends only on the domain Ω. The dual space of Hk
0 is called H−k.

It consists of continuous linear functionals

f(.) : Hk
0 → R
v → f(v)
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For example, a function f ∈ L2 generates the linear functional v ∈ H1
0 → (f, v). The dual

norm is

‖f‖−k = sup
v∈Hk

0

f(v)

‖v‖k

The duality product

〈., .〉H−k×Hk
0

: H−k ×Hk
0 → R

(f, v) → f(v)

is a generalization of the L2-inner product.
The Sobolev spaces form a nested sequence of spaces

. . . H2 ⊂ H1 ⊂ H0 = L2 ⊂ H−1 ⊂ H−2 . . .

Later, we will define also Sobolev spaces of fractional order.

Friedrichs’ inequality proves norm equivalence ‖.‖A ' ‖.‖1. Thus,

V := (H1
0 , ‖.‖A, A(., .))

is a Hilbert space.
Unique and stable solvability of (1) follows directly from the Riesz’ theorem:

Theorem 1 (Riesz’ representation theorem). For any continuous linear functional f
on a Hilbert space V there exists an unique uf ∈ V such that

(uf , v)V = f(v) ∀ v ∈ V

and
‖uf‖V = ‖f‖V ∗

On the other hand, any u ∈ H1
0 is the solution of a weak problem with f ∈ H−1: Take

f(.) := A(u, .).
Regularity, shift theorem: If the right hand side f belongs to a more regular function

space than H−1, the solution might be more regular than H1, too. If Ω is convex, and
f ∈ L2, then the solution u belongs to H2, and the shift theorem

‖u‖2 � ‖f‖0

is valid. Shift theorems are very specific for each problem class.
Notation: We write a � b if there exists an in principle computable constant c of

moderate value ≈ 1 such that a ≤ cb. In particular, the constant c does not depend on the
number of elements in the discretization. We write a ' b if a � b and b � a.

If not stated otherwise, we will use the above definitions of V and A.
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1.2 Finite Element Spaces

The finite element method (FEM) provides a computable approximation to the solution
of (1).

A triangulation T is a set of (closed) simplicial (triangular, tetrahedral) elements T

T = {T}.

Each element T is seen as a one to one, affine-linear mapping from the reference element TR,
i.e.,

T = FT (TR).

We define the local mesh size hT = ‖F ′
T‖. This measure is equivalent to diam(T). The

triangulation is called

• regular if two elements T and T ′ are either identic, or have a common face (only 3D),
or a common edge, or a common vertex, or are distinct.

• shape regular if it is regular, and cond(F ′
T ) = ‖F ′

T‖ · ‖(F ′
T )−1‖ � 1.

• quasi uniform if it is shape regular, and hT ' h, where h is a global mesh size
parameter.

Next, we define the FE sub-space

Vh = {v ∈ V : v|T ◦ FT ∈ P k(TR)},

where P k(TR) is the set of polynomials up to total order k ≥ 1 on the reference element.
Functions in Vh are continuous.

On shape regular meshes there holds the following approximation estimate:

Lemma 2 (Approximation). Let k = 1 or k = 2. For given v ∈ Hk ∩ V , there exists a
vh ∈ Vh such that∑

T∈T

{
h−2

T ‖v − vh‖2
0,T + ‖∇(v − vh)‖2

0,T

}
�

∑
T∈T

h
2(k−1)
T |v|2k,T

Proof: For k = 2, define the nodal interpolation operator Ih and choose vh = Ihv. For
k = 1, replace Ih by the Clément quasi-interpolation operator (see literature or Section ...
below). 2

Lemma 3 (Inverse inequality). On shape regular triangulations there holds

‖∇vh‖ � ‖h−1
T vh‖ ∀ vh ∈ Vh.
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Proof: By transformation to the reference element.

The FEM defines the approximation uh ∈ Vh as unique solution of

A(uh, vh) = f(vh) ∀ vh ∈ Vh. (3)

FEM theory, as well as multigrid analysis, is heavily based on orthogonality relations.
Subtracting (3) from (1) leads to

A(u− uh, vh) = 0 ∀ vh ∈ Vh,

i.e., the error is orthogonal to Vh

u− uh ⊥A Vh.

The FEM approximation uh is the A-orthogonal projection of u onto Vh:

uh = PVh
u

with PVh
: V → Vh defined by

A(Pw, vh) = A(w, vh) ∀w ∈ V ∀ vh ∈ Vh.

(Picture orthogonality)
An equivalent definition of the projection is

Phu ∈ Vh such that: ‖u− Phu‖A ≤ min
vh∈Vh

‖u− vh‖A.

Proof: For any vh ∈ Vh there holds

‖u− uh‖2
A ≤ ‖u− uh‖2

A + ‖uh − vh‖2
A

= ‖u− uh‖2
A + 2 (u− uh, uh − vh)A + ‖uh − vh‖2

A

= ‖u− uh + uh − vh‖2
A = ‖u− vh‖2

A

This is Cea’s Lemma for symmetric bilinear-forms.

Theorem 4. On shape regular meshes there holds the a priori error estimate

‖u− uh‖2
A �

∑
T

h2
T |u|22. (4)

On quasi-uniform meshes and convex domains there holds

‖u− uh‖A � h‖f‖0 (5)

Proof. Follows immediately from orthogonality, approximation, and shift theorem.

The shift theorem provides a better rate of convergence in a weaker norm:
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Theorem 5 (Aubin Nitsche). Let uh = PVh
u. On quasi-uniform meshes and convex

domains there holds
‖u− uh‖0 � h ‖u− uh‖A

Proof. Pose the additional variational problem

A(w, v) = (u− uh, v)0 ∀ v ∈ V

Due to regularity there holds w ∈ H2 and ‖w‖2 � ‖u − uh‖0. Define wh according to
Lemma 2. The choice v = u− uh gives

‖u− uh‖2
0 = A(w, u− uh) = A(w − wh, u− uh)

≤ ‖w − wh‖A ‖u− uh‖A

� h |w|2 ‖u− uh‖A

� h ‖u− uh‖0 ‖u− uh‖A.

Dividing one factor proves the result.

This technique is essential for many types of multigrid proofs. The following theorem
proves a multi-level decomposition using the Aubin-Nitsche trick. It relates the H1 norm
to scaled L2-norms on different levels:

Theorem 6. Let L ∈ N, T0, T1, . . . , TL a family of hierarchically refined quasi-uniform
triangulations on a convex domain Ω. The mesh-size of Tl is hl = 2−l. The generated
fe-spaces V0 ⊂ V1 ⊂ . . . ⊂ VL are nested. Let Pl : VL → Vl be the A-orthogonal projections.

Take uL ∈ VL and its decomposition

uL = w0 +
L∑

l=1

wl with w0 = P0uL, wl = (Pl − Pl−1)uL.

Then there holds

‖uL‖2
A ' ‖w0‖2

A +
L∑

l=1

h−2
l ‖wl‖2

0.

Proof. From (wl, vl−1)A = (PluL, vl−1)A−(Pl−1uL, vl−1)A = 0 there follows wl⊥A Vl−1. The
whole decomposition is A-orthogonal. Thus

‖uL‖2
A = ‖

L∑
l=0

wl‖2
A =

L∑
l=0

L∑
k=0

(wl, wk)A =
L∑

l=0

‖wl‖2
A

The inverse estimate Lemma 3 applied to wl ∈ Vl claims ‖wl‖A � h−1
l ‖wl‖0, and the

Aubin-Nitsche Lemma (applied to wl = (I −Pl−1)wl proves the opposite estimate ‖wl‖0 �
hl‖wl‖A.
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After choosing a basis (ϕ1, . . . , ϕn) for Vh, n = dimVh, one ends up with the linear
system

Au = f, (6)

with Aij = A(ϕj, ϕi) and f
i
= f(ϕi). The FEM approximation is uh =

∑n
i=1 uiϕi. We use

underbars for vectors in Rn, and sub-scripts h for fe functions.
The isomorphism between Rn and Vh is denoted by

Φ : Rn → Vh

: v →
n∑

i=1

viϕi

Its dual Φ∗ : V ∗
h → Rn is defined by

(Φ∗dh)
Tv = 〈dh,Φv〉V ∗h ×Vh

∀ dh ∈ V ∗
h ∀ v ∈ Rn

By choosing v = ei, the ith unit vector, we observe

(Φ∗dh)i = (Φ∗dh)
T ei = 〈dh,Φei〉V ∗h ×Vh

= 〈dh, ϕi〉V ∗h ×Vh
= dh(ϕi)

Instead of matrices in Rn×n, we will prefer to work with operators between Vh and its
dual V ∗

h . For this, define Ah : Vh → V ∗
h implicitly by

〈Ahuh, vh〉 = A(uh, vh) ∀uh, vh ∈ Vh.

There holds
A = Φ∗AhΦ,

since
eT

j Aei = A(ϕi, ϕj) = 〈Ahϕi, ϕj〉 = 〈AhΦej,Φej〉 = eT
j Φ∗AhΦej

for i, j = 1, . . . , n.

We are interested in efficient solution methods for the linear system (6).
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2 Iterative methods

Let C be a regular matrix. The preconditioned Richardson iteration is

Choose u1.
For k = 1, 2, . . .

dk = f − Auk

wk = C−1dk

uk+1 = uk + τwk

The game is to define matrices C such that the iteration converges fast, and the appli-
cation of C−1 is efficient.

The iteration can be written as

uk+1 = uk + τC−1(f − Auk).

Define the error as ek = uk − u and use f = Au to obtain the error transition relation

ek+1 = uk+1 − u = uk − u+ τC−1A(u− uk)

= (I − τC−1A)︸ ︷︷ ︸
M

ek.

The goal is to prove estimates for ‖M‖ in a proper norm.
It is useful to choose symmetric and positive definite preconditioning matrices C. Then

the iteration matrix M = (I − τC−1A) is self-adjoint w.r.t. the energy inner product
(u, v)A = uTAv:

(Mu, v)A = ((I − τC−1A)u)TAv = uT (A− τAC−1A)v

= uTA(I − τC−1A)v = (u,Mv)A

If a matrix is self-adjoint in some norm, its corresponding matrix norm is equal to the
spectral radius (=the absolute value of its largest eigen-value).

The following two statements are equivalent:

• λi is an eigen-value of Ax = λCx

• µi := 1− τλi is an eigen-value of (I − τC−1A)x = µx

Thus
‖M‖A = sup

λ∈σ(C−1A)

|1− τλ|

Let σ(C−1A) ⊂ [λ1, λn] with λ1 > 0. Then the optimal choice τ = 2
λ1+λn

leads to

‖M‖ ≤ 1− 2
1+λn/λ1

.
Thus, the goal is to prove spectral estimates

λ1‖v‖2
C ≤ ‖v‖2

A ≤ λn‖v‖2
C .

In practice, one uses conjugate gradient iterations instead of the Richardson iteration.
Also there, the spectral estimates are the basis for estimating the rate of convergence.
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2.1 Representation in FE space

A simple preconditioner is the Jacobi preconditioner, i.e., choose

C = diagA.

The goal is to rewrite the preconditioning matrix operation C−1 as operator in the
finite element space, namely

C−1
h : V ∗

h → Vh

The definition is
C−1

h = ΦC−1Φ∗

We start with dh ∈ V ∗
h and compute wh = C−1

h dh. Intermediate steps are d = Φ∗dh ∈
Rn, w = C−1d ∈ Rn and wh = Φw. The matrix preconditioning operation is

w = C−1d =
n∑

i=1

ei(e
T
i Aei)

−1eT
i d.

Let di = eT
i d and wi = (eT

i Aei)
−1di. This scalar equation can be written in variational

form:
vT

i (eiAei)wi = divi ∀ vi ∈ R,

Now, using the definition of the matrix and the vector d, we have

viA(ϕi, ϕi)wi = d(ϕi)vi ∀ vi ∈ R

This is a variational problem on Vi := span{ϕi}: The finite element function wiϕi is
the unique solution wi ∈ Vi of

A(vi, wi) = d(vi) ∀ vi ∈ Vi.

Finally, we get

wh = Φw =
∑

Φeiwi =
∑

ϕiwi =
∑

wi.

Combining the steps above, we have derived the preconditioning operator

C−1
h : V ∗

h → Vh : d(.) → w

w =
∑

wi with wi ∈ Vi s.t. A(wi, vi) = d(vi) ∀ vi ∈ Vi.

The error reduction operator translated to the finite element space, Mh : Vh → Vh, is

Mh = ΦMΦ−1 = Φ(I − τC−1A)Φ−1

= Φ(I − τ(Φ−1C−1
h [Φ∗]−1Φ∗AhΦ))Φ−1

= I − τC−1
h Ah.
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Lemma 7. Let Pi : Vh → Vi be the A-orthogonal projection. Then

Mh = I − τ

n∑
i=1

Pi

Proof. Set u2
h = Mhu

1
h = u1

h − τwh, where wh = C−1
h Ahu

1
h. By the results above,

wh =
∑

wi, with A(wi, vi) =
〈
Ahu

1, vi

〉
∀ vi ∈ Vi.

In other words, wi = Piu
1

Now, we started with a preconditioner in matrix-form, and translated the operation
into fe notation. The analysis is performed in the fe notation. In the following, we will
work in the fe notation. Only, when it comes to implementation, one has to think about
the matrix-vector representation.

Some more examples:

• The Gauss-Seidel iteration is (k ∈ N, i ∈ {1, . . . , n}):

uk+i/n = uk+(i−1)/n − eiA
−1
ii e

T
i (f − Auk+(i−1)/n)

The iteration matrix of one full step uk → uk+1 is

M = Mn . . .M2M1 with Mi = I − eiA
−1
ii e

T
i A

In fe form, one step is
Mi = (I − Pi),

the product is
Mh = (I − Pn) . . . (I − P2)(I − P1)

Pi is an A-orthogonal projection, so also I−Pi. The norm of an orthogonal projection
is 1 (or, in the trivial case, it is 0). Thus, the Gauss-Seidel iteration without damping
is non-expansive in A-norm. Later we will see whether it is convergent.

In general, the multiplicative iteration is not A-self-adjoint, namely

M∗
h = (I − P1) . . . (I − Pn)

Only if P1 = Pn, P2 = Pn−1, . . ., it is A-self-adjoint. Such an iteration is called
symmetric.
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• Block version: Let i = 1, . . . , N , and Ei ∈ RN×mi be a full-rank matrix. Now, define
the block-Jacobi preconditioner

C−1 :=
N∑

i=1

Ei(E
T
i AEi)

−1ET
i

The usual case is E = (ei1 , ei2 , . . . , eiN ). The embedding matrices Rmi generate small
spaces

Vi = ΦEiRmi

The translation of the iteration matrix is the same as in the Jacobi case.

Mh = I − τ
N∑

i=1

Pi.

Examples: Block relaxation of some nodes, local or global, anisotropic, high order
blocks, systems of pdes, ...

The iteration does not depend on the specific choice of the basis, it depends on the
sub-spaces Vi, only.

• Two-level preconditioner: Let VH be a finite element sub-space of Vh on a coarser
grid. Set NH = dim VH . Basis functions are ϕH

i . The coarse grid basis functions can
be expressed as linear combination of fine grid basis functions:

ϕH
j =

N∑
i=1

cijϕi

Define transformation matrix

EH = (cij) i=1...N
j=1...NH

Example: 1D hat functions.

The corresponding finite element function is

uH =

NH∑
j=1

uH
j ϕ

H
j =

NH∑
j=1

N∑
i=1

uH
j cijϕi =

N∑
i=1

(EHu
H)iϕi = ΦEHu

H .

The matrix EH transforms the coarse-grid coefficient vector uH to the fine grid coef-
ficient vector representing the same finite element function. It is called prolongation.

The idea of two-level preconditioning is to add a correction step on the coarse grid:

dk = f − Auk

wk
H = EH(ET

HAEH)−1ET
Hdk

uk+1 = uk + wk
H + . . .
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The matrix ET
HAEH is the fe - matrix on the coarse grid space w.r.t the basis ϕH

i .

The additive 2-Level iteration is defined as

Mh = I − τ(PH +
N∑

i=1

Pi)

The multiplicative one with additive smoother is

Mh = (I − PH)(I − τ
N∑

i=1

Pi),

and the multiplicative one with multiplicative smoother is

Mh = (I − PH)(I − P1) . . . (I − PN)

• Multi-level preconditioner: Let V0 ⊂ V1 ⊂ . . . ⊂ VL a nested sequence of fe spaces.
Let Vl = span{ϕl,i, i = 1, . . . nl}. Then the additive multi-level iteration is

Mh = I − τ
L∑

l=0

nl∑
i=1

Pl,i

The multiplicative counterpart is the conventional multigrid iteration.
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3 Additive Schwarz theory

Let (V,A(., .)) be a Hilbert space. Let {(Vi, Ci(., .))} be a countable set of Hilbert spaces.
Denote embedding operators Ei : Vi → V . Then, the

inexact additive Schwarz preconditioner C−1 : V ∗ → V, d(.) → w is defined by

w =
∑

i

Eiwi with Ci(wi, vi) = d(Eivi) ∀ vi ∈ Vi.

The following theorem analyzes whether C−1 is indeed the inverse of an operator C : V →
V ∗.

Theorem 8 (Additive Schwarz Lemma). Define the splitting norm

|||u|||2 := inf
u=

P
i Eivi

vi∈Vi

∑
i

‖vi‖2
Ci
.

Assume that |||.||| is an equivalent norm to ‖.‖A. Then C is an isomorphism between V
and V ∗, and

‖u‖C = |||u|||. (7)

Proof. The right hand side of (7) is a constrained minimization problem on X := V1×V2 . . .
with constraint

∑
Eivi = u. We will formulate it as Kuhn-Tucker system (a saddle point

problem). First, rewrite the constrained minimization problem as unconstrained one using
the characteristic function of the feasible set:

|||u|||2 = inf
vi∈ViP
Eivi=u

∑
‖vi‖2

Ci
= inf

vi∈Vi

sup
µ∈V ∗

∑
i

‖vi‖2
Ci

+ 2
〈
µ, u−

∑
i

Eivi

〉
︸ ︷︷ ︸

:=L(v,λ)

We search for the saddle-point (u, λ) of the strictly-convex/concave Lagrange functional
L(v, λ). The condition ∂Vi

L(v, µ) = 0 is

Ci(ui, vi) +
〈
λ,Eivi

〉
= 0 ∀ vi ∈ Vi, i = 1, 2, . . . (8)

the partial derivative w.r.t. µ ∈ V ∗ is the constraint〈
µ,

∑
i

Eiui

〉
= 〈µ, u〉 ∀µ ∈ V ∗. (9)

Existence and uniqueness of a solution follows from saddle-point theory. The essential LBB
condition follows from the assumption V =

∑
EiVi is stable.

Equations (8) and equation (9) state

u = C−1λ

Thus, u is in the domain of C. Testing (8) with vi = ui gives

|||u|||2 =
∑

‖ui‖2
Ci

=
∑

〈λ,Eiui〉 = 〈λ, u〉 = 〈Cu, u〉
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The ASM Lemma reduces the analysis of the condition number κ(C−1A) = λn/λ1 to
the norm estimates

λ1|||u|||2 ≤ ‖u‖2
A ≤ λn|||u|||2.

Usually, the left inequality requires some work. The technique is to construct an explicit
decomposition u =

∑
Eiui. Often, the right estimate is simply the Lemma below:

Lemma 9. Define the interaction matrix G = (gij) by

gij = sup
ui∈Vi,vj∈Vj

A(Eiui, Ejvj)

‖ui‖Ci
‖uj‖Cj

.

Let ρ(G) denote the spectral radius of G. Then

‖u‖2
A ≤ ρ(G) |||u|||2.

Proof. Let u =
∑
Eivi (with vi ∈ Vi) be an arbitrary decomposition. Then

‖u‖2
A = ‖

∑
i

Eivi‖2
A =

∑
i,j

A(Eivi, Ejvj) ≤
∑
i,j

gij‖vi‖Ci
‖vj‖Cj

.

From cTGc ≤ ρ(G)‖c‖2 applied to ci = ‖vi‖Ci
there follows

‖u‖2
A ≤ ρ(G)

∑
i

‖vi‖2
Ci
.

Since the decomposition was arbitrary, the estimate is true for the infimum as well.
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3.1 Overlapping domain decomposition

In this section we apply the abstract ASM theory to domain decomposition methods.
Decompose the domain Ω into overlapping sub-domains Ωi of (local) diameter Hi. The

overlap is of order Hi. Only a finite number of domains overlap.
This allows to define a partition of unity {ψi}, ψi ∈ C∞(Ω) with the following properties:∑

ψi = 1,

‖ψi‖L∞ � 1 and ‖∇ψi‖L∞ � H−1
i

The functions ψi live inside Ωi

suppψi ⊂ Ωi.

For technical reasons we will need that ψi are strictly inside:

dist(supp(ψi), ∂Ωi \ ∂Ω) � Hi

Now, let Vh be a finite element space on a shape-regular triangulation. The local mesh
size fulfills h ≤ H. Define sub-spaces

Vi = {vi ∈ Vh : vi = 0 in Ω \ Ωi}

We assume that everything was chosen s.t. V =
∑
Vi. The operator Ei : Vi → Vh is trivial

embedding, and the local forms are the same as the global:

Ci(ui, vi) = A(Eui, Evi) = A(ui, vi)

Some remarks:

• The implementation of the additive Schwarz preconditioner requires the solution of
local Dirichlet problems in Vi.

• A special case with h ' H is the Jacobi preconditioner (or a block-Jacobi precondi-
tioner with small blocks).

We prove the splitting estimate required by the ASM theory:

Lemma 10. There holds

|||uh||| � min{Hi}−1‖uh‖A ∀uh ∈ Vh. (10)

Proof. Let Ih : H1 → Vh be a Clément-type operator with the following properties:

Ihvh = vh (projection)

and
‖∇Ihvh‖0 � ‖∇vh‖0 (A− continuity).
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Then, for given uh ∈ Vh we chose the decomposition

ui = Ih(ψiu).

By linearity,
∑

i ui =
∑

i Ih(ψiuh) = Ih((
∑

i ψi)uh) = Ihuh = uh. The assumption
supp{ψi} strictly inside Ωi ensures that ui ∈ Vi.

Thus, (ui) is a feasible candidate for the minimization problem.
We start to estimate

|||u|||2 ≤
∑

‖ui‖2
A =

∑
‖∇Ih(ψiuh)‖2

0 �
∑

‖∇(ψiuh)‖2
0

The involved functions are smooth enough to apply the product rule (together with (a +
b)2 ≤ 2(a2 + b2)):

|||u|||2 �
∑

{‖(∇ψi)uh‖2
0 + ‖ψi(∇uh)‖2

0}

Next, using L∞ estimates and local support of ψi:

|||u|||2 �
∑

i

{‖H−1
i uh‖2

Ωi
+ ‖∇uh‖2

0,Ωi
}

Since a finite number of domains are overlapping, parts of the norms are duplicated a finite
number of times:

|||u|||2 � ‖H−1
i uh‖2

0,Ω + ‖∇uh‖2
0,Ω}

Finally, Friedrichs inequality gives the result

|||u|||2 � min{Hi}−2‖uh‖2
0,Ω � min{Hi}−2‖∇uh‖2

0.

The other estimate, ‖u‖A � |||u||| follows from Theorem 9. Since only a finite number
of domains overlap, each row of G has the same finite number of non-zero entries. The
spectral radius is bounded by the number of overlapping sub-domains.

Remark:

• For H ' h, there follows from the proof of Lemma 10 the equivalence

|||uh||| ' ‖h−1uh‖L2 (11)

3.2 Overlapping Domain Decomposition with Coarse Grid Sys-
tem

Now, we improve the overlapping domain decomposition algorithm by adding a global
coarse grid space. This will give optimal condition number estimates.

Let VH ⊂ V . Let EH : VH → Vh be an embedding operator (usually called prolonga-
tion). In the case VH ⊂ Vh we choose Eh = id. We assume that the prolongation operator
has the following properties:

‖∇EHuH‖0 � ‖∇uH‖0 (A− continuity)
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‖H−1
i (uH − EHuH)‖0 � ‖∇uH‖0 (approximation)

The coarse-grid form CH is defined by CH(., .) = AH(., .) = A(., .). (An alternative possi-
bility would be CH(., .) = A(EH ., EH .)).

Now, let the DD preconditioner with coarse grid system be defined as ASM method
with respect to the set of triplets

{(VH , EH , AH(., .), ∪i(Vi, id, A(., .))}.

Lemma 11. The DD preconditioner with CG fulfills the stable splitting estimate

|||uh||| � ‖uh‖A ∀uh ∈ VH

Proof. Let additionally IH : V → VH be a Clément-type interpolation operator into the
coarse grid space fulfilling |.|1-continuity and L2 approximation

‖H−1
i (u− IHu)‖L2 + ‖∇IHu‖L2 � ‖∇u‖L2 ∀u ∈ V.

From the proof of Lemma 10 we know that

inf
vh=

P
i vi

∑
‖vi‖2

A � ‖H−1
i vh‖2

0 + ‖∇vh‖2
0 ∀ vh ∈ Vh. (12)

We choose the 2-level decomposition

uh = EHuH + uf

with
uH = IHuh and uf = uh − EHIHuH

(with index f as fine).
We bound the minimal decomposition by this candidate:

|||uh|||2 = inf
uh=EHvH+

P
vi

{‖vH‖2
A +

∑
‖vi‖2

A}

= inf
vH∈VH

{‖vH‖2
A + inf

vi∈Vi
uh−EHvH=

P
vi

∑
‖vi‖2

A}

≤ ‖uH‖2
A + inf

uf=
P

vi

∑
‖vi‖2

A

We apply (12) with vh = uh − EHuH = uf :

|||uh|||2 � ‖uH‖2
A + ‖H−1

i uf‖2
0 + ‖uf‖2

A.

From |.|1-continuity of IH and EH we get

‖uH‖A + ‖uf‖A � ‖uH‖A

L2-approximation of EH and IH proofs

‖H−1
i uf‖0 = ‖H−1

i (uh−EHIHuh)‖0 ≤ ‖H−1
i (uh−IHuh)‖0+‖H−1

i (id−EH)IHuh)‖0 � ‖uh‖A.
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We denote the ASM preconditioner associated with the fine-grid spaces Vi by D−1
h :

V ∗
h → Vh. By the ASM Lemma, the energy norm 〈Dhuh, vh〉V ∗h ×Vh

generated by Dh is

exactly the splitting norm:

‖vh‖2
Dh

:= inf
vH=

P
vi

∑
‖vi‖2

A.

It is a Hilbert-space norm, the inner product is denoted by Dh(., .).
The 2-level method can be seen as a ASM with two local spaces (namely VH and Vh),

and inexact bilinear-forms AH and Dh:

|||uh|||22−level = inf
uh=EHuH+uf

‖uH‖2
AH

+ ‖uf‖2
Dh
.

Lemma 12. The estimate

‖uh‖A � |||uh|||2−level ∀uh ∈ Vh

is valid.

Proof. We apply Lemma 9 for 2 sub-spaces and bound all entries of G:

gHH = sup
uH ,VH∈VH

A(EHuH , EHvH)

‖uH‖A‖vH‖A

� c,

which is due to continuity od E.

gff = sup
uf ,vf∈Vh

A(uf , vf )

‖uf‖D‖vf‖D

� c,

which follos from finite overlap of local spaces implying ‖vh‖A � ‖vh‖D. The off-diagonal
value gHf is bounded by an additional Cauchy-Schwarz inequality.

3.3 Clément-type quasi-interpolation operators

We used several times local quasi-interpolation operators fulfilling various continuity and
approximation estimates. Now, we are going to construct and analyse such operators.

Let Vh be a finite element sub-space (or order ph) of H1
0,D(Ω) on a shape-regular trian-

gulation {T }. Choose the nodal basis {ϕi} for the set of nodes N = {Ni}. The nodes are
assigned to vertices, edges, faces and elements.

To each node Ni define a set ωi such that dist(Ni, ωi) � hi, and function fi ∈ L∞(ωi)
such that the following is true:

‖fi‖L∞ � h−d
i ‖fi‖L1 � 1 (13)

Assume that fi(.) coincides with point evaluation in the node when applied to polynomials
up to order p:

(fi, v)L2(ωi) = v(Ni) ∀ v ∈ Πp
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Then, the Clément-type operator is defined as

Ih : L2 → Vh

Ihv =
∑

Ni∈N

(fi, v)L2(ωi)ϕi

Lemma 13. On finite element spaces, the L2 norm and the H1 semi-norm are equivalent
to the discrete norms, respectively:

‖vh‖2
L2
'

∑
Ni

hd
i |vh(Ni)|2

‖∇vh‖2
L2
'

∑
Ni,Nj∈N

∃T :Ni∈T,Nj∈T

hd−2
i |vh(Ni)− vh(Nj)|2

Proof. Both estimates are proven by transformation techniques.

Theorem 14 (Continuity). For p ≥ −1, the operator Ih is continuous in L2 norm. For
p ≥ 0, the operator Ih is continuous in the H1 semi-norm.

Proof. By means of Lemma 13 it is enough to establish

(Ihv)(Ni) = (fi, v)L2(ωi) � h
−d/2
i ‖v‖L2(ωi)

to prove the L2 estimate. This follows immediately from (13) by ‖fi‖2
L2(ωi)

≤
‖fi‖L1(ωi)‖fi‖L∞(ωi) � h−d

i .
To establish he H1 estimate, we start with

(Ihv)(Ni)− (Ihv)(Nj) =

∫
ωi

fi(x)v(x) dx−
∫

ωj

fj(y)v(y) dy.

The assumptino p ≥ 0 onto fi ensures that
∫
fi dx = 1. Thus,

(Ihv)(Ni)− (Ihv)(Nj) =

∫
ωi

∫
ωj

fi(x)fj(y)[v(x)− v(y)] dy dx.

The difference v(x)− v(y) is expressed as integral

v(x)− v(y) =

∫ x

y

∂τv(ξ) dξ =

∫ 1

0

(x− y)T (∇v)(y + s(x− y)) ds.

Changing order of integration (i.e.
∫ 1

0

∫
ωi

∫
ωj

), and a couple of C.-S. estimates, proves that

|(Ihv)(Ni)− (Ihv)(Nj)| � h
(−d+2)/2
i ‖∇v‖L2([ωi,ωj ]),

with the convex hull [ωi, ωj] of ωi ∪ ωj.
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Theorem 15 (Approximation). For 1 ≤ q ≤ min{p, ph}, there holds the approximation
estimate

‖hq
i (v − Ihv)‖0 + ‖hq−1

i ∇(v − Ihv)‖0 � ‖∇qv‖0

Proof. Since Ih preservers locally polynomials up to order min{p, ph} (in the sense of
(Ihw)|T = w|T if w|ωT

is a polynomial).
We split the global norm into element terms, and insert an arbitrary polynomial w of

order q:
hq

i‖v − Ihv‖L2(T ) = hq
i‖(id− Ih)(v − w)‖L2(T ) � hq

i‖v − w‖L2(ωT ).

The rest is the approximation infw∈Πq ‖v − w‖L2(ωT ) � hq
i‖∇q‖L2(ωT ). The H1 estimate is

the same argument.

There are many possibilities to choose the local domains ωi and weighting functions fi.
Thus various properties can be achieved:

• The operators Ih can be constructed as projections onto Vh. For this, choose ωi such
that Ni ∈ ωi. Then, take the restiction of Vh onto ωi, i.e. Vi = {vh|ωi

: vh ∈ Vh}. The
linear functional

fi(v) : Vi → R
fi(v) = (P Vi

L2
v)(Ni)

(with P Vi
L2

the L2 projection of L2(ωi) onto Vi) is continous on L2. Thus, it can be
represented as L2 function fi. In general, the norm of fi depends on the choice of ωi.
The original construction by Clément used

ωi = {T ∈ T : Ni ∈ T},

an alternative version (by Scott and Zhang) uses

ωi = TNi
TNi

some element s.t. Ni ∈ TNi

• The choice

fi = (

∫
ϕi dx)

−1ϕi (14)

is consistent of order 0. The corresponding quasi-interpolation operator is L2 self-
adjoint:

(Ihu, v)L2 = (
∑

i

(

∫
ϕi)

−1(ϕi, u)L2ϕi, v)L2

=
∑

i

(

∫
ϕi)

−1(ϕi, u)L2(ϕi, v)L2

= (u, Ihv)L2
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• The case of jumping coefficients accross sub-domains requires special care. The
influence domain ωi must be chosen as sub-set of elements with large coefficient.
Then, under the so called quasi-monotonicity assumption, the quasi-interpolation
operator is continuous in energy norm.

• It is possible to choose lower dimensional manifolds ωi. Then, of coarse, Ih is not
defined on L2 anymore, but the H1 estimates may stay valid. Scott and Zhang used
boundary faces for ωi to preserver polynomial boundary conditions.

4 Multi-level and multigrid methods

Multi-level and multigrid methods can be seen as extension of 2-level methods. Instead
of one fine and one coarse grid, one works with a hierarchy of many grids. On each grid
(except maybe the coarsest), one applies a cheap (local) preconditioner.

Let L ∈ N denote the number of levels,

T0, T1, . . . , TL,

be a family of nested triangulations, and

V0 ⊂ V1 ⊂ . . . ⊂ VL

the generated family of nested finite element spaces.
On each level l, 0 ≤ l ≤ L, we need a (cheap) preconditioner Dl, i.e. an operation

D−1
l : V ∗

l → Vl.

It shall be defined by means of the symmetric bilinear form Dl(., .) : Vl × Vl → R via

Dl(D
−1
l gl, vl) = gl(vl) ∀ gl ∈ V ∗

l ∀ vl ∈ Vl.

The simplest (and typical) choice is a Jacobi preconditioner. For computations, a
(symmetric) Gauss Seidel preconditioner is favourable. In terms of the last section we will
call D an additive (or multiplicative) Schwarz preconditioner.

Since Vl ⊂ VL, every functional in V ∗
L has a canonical restriction onto V ∗

l , and we can
apply D−1

l on the whole V ∗
L without special notation.

One possibility to combine the preconditioners is to add them all up (ASM), i.e. define
the preconditioning operation C−1 : V ∗

L → VL as

C−1 =
L∑

l=0

D−1
l . (15)

This method is called multi-level preconditioner. The case of Jacobi preconditioners Dl is
called BPX preconditioner (after Bramble,Pasciak and Xu), or MDL (multilevel diagonal
scaling).
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An other possibility is to run the individual preconditioners sequentially (MSM):

uk+(l+1)/(L+1) = uk+l/(L+1) +D−1
l (f − ALu

k+l/(L+1)). (16)

The corresponding iteration operator M is

(I −D−1
L AL)(I −D−1

L−1AL) . . . (I −D−1
0 AL).

To obtain an A-symmetric iteration, one should run the symmetric version. This iteration
is the classical multigrid V-1-1 - cycle.

4.1 Implementation

The implementation of the additive and the multiplicative preconditioners use the hierar-
chical structure. Let Nl = dim{Vl}.

Define, for 0 ≤ l < k ≤ L, the embedding matrices Ek
l : RNl → RNk . For l < m < k,

there holds Ek
l = Ek

mE
m
l .

The finite element matrix Al ∈ RNl×Nl on level l fulfills the Galerkin relation

Al = (EL
l )TALE

L
l .

On each level, there is defined the preconditioning matrix D−1
l ∈ RNl×Nl (e.g., Dl =

diag Al).
The additive Schwarz preconditioner in matrix notation is

C−1 =
L∑

l=0

EL
l D

−1
l (EL

l )T .

We define the intermediate preconditioners

C−1
l =

l∑
k=0

El
kD

−1
k (El

k)
T

Clearly, there is C−1 = CL.

Theorem 16. Starting with C−1
0 = D−1

0 , the preconditioners can be computed recursively:

C−1
l = D−1

l + El
l−1C

−1
l−1(E

l
l−1)

T . (17)

Proof. Per induction. Assume the relation is true for l − 1. Then

D−1
l + El

l−1C
−1
l−1E

T
l−1 =

= D−1
l +

l−1∑
k=0

El
l−1E

l−1
k D−1

k (El−1
k )T (El

l−1)
T

= D−1
l +

l−1∑
k=0

El
kD

−1
k (El

k)
T

= C−1
l
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The computational complexity CPU(C−1
l ) can be estimated from (17). The operations

D−1
l , El

l−1 and (El
l−1)

T are all of linear complexity O(Nl). Thus

CPU(C−1
l ) = O(Nl) + CPU(C−1

l−1).

If the number of unknowns grows geometrically (i.e. Nl = O(βl) with β > 1), one obtains
optimal ! complexity

CPU(C−1
l ) = O(Nl).

For the multiplicative version we define C−1
l per recursion as follows: C−1

0 = D−1
0 , and

C−1
l : dl → wl is defined by the algorithm:

w0
l = El

l−1C
−1
l−1(E

l
l−1)

Tdl

wl = w0
l +D−1

l (dl − Alw
0
l )

}
(18)

Theorem 17. The iteration defined in (16) can be written as

M = I − C−1
L AL,

where CL is defined by (18).

Proof. One step of the iteration (16) is ml = I − EL
l D

−1
l (EL

l )TAL, and, by recursion, we
define

M0 = m0

Ml = mlMl−1

The multiplicative iteration defined in (16) is M = ML. The operation C−1
l defined in (18)

is

C−1
l = El

l−1C
−1
l−1(E

l
l−1)

T +D−1
l (I − AlE

l
l−1C

−1
l−1(E

l
l−1)

T )

= (I −D−1
l Al)E

l
l−1C

−1
l−1(E

l
l−1)

T +D−1
l

Now, we proof by induction

Ml = I − EL
l C

−1
l (EL

l )TAL.

Assume, the relation is true for l − 1. Then

I − EL
l C

−1
l (EL

l )TA = I − EL
l

[
(I −D−1

l Al)E
l
l−1C

−1
l−1(E

l
l−1)

T +D−1
l

]
(EL

l )TAL

= I − EL
l D

−1
l (EL

l )TAL − EL
l−1C

−1
l−1(E

L
l−1)

TAL

+EL
l D

−1
l (EL

l )TALE
L
l−1C

−1
l−1(E

L
l−1)

TAL

= (I − EL
l D

−1
l (EL

l )TAL)(I − EL
l−1C

−1
l−1(E

L
l−1)

TAL)

= mlMl−1

= ML
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Other versions of multigrid cycles can be computed similarly to the above V-cycle with
post-smoothing. A symmetric V-cycle with pre-smoothing and post-smoothing is defined
as:

w0
l = D−1

l dl

w1
l = w0

l + El
l−1C

−1
l−1(E

T
l−1)(dl − Alw

0
l )

wl = w1
l +D−1

l (dl − Alw
1
l )

One can run several steps of the smoothing iterations.

4.2 Analysis of the additive multi-level method

The additive multi-level method is an ASM method with the set of triples

{(Vl, id,Dl(., .))}

Thus, the norm generated by the preconditioner is exactly the splitting norm

‖u‖2
C = |||u|||2 = inf

u=
P

vl
vl∈Vl

L∑
l=0

‖wl‖2
Dl

What is the Dl-norm ? For the bilinear-form A(u, v) = (∇u,∇v), and Dl is a Jacobi
preconditioner, it is the corresponding splitting norm

‖ul‖2
Dl

= inf
u=

P
vi

vi∈span{ϕi}

∑
‖vi‖2

A ' inf
u=

P
vi

vi∈span{ϕi}

∑
h−2

l,i ‖vi‖2
L2
.

One verifies that this local norm is equivalent to the global L2-norm, i.e.

‖ul‖2
Dl
' ‖h−1

l ul‖2
L2
. (19)

Lemma 18. For the additive multi-level preconditioner C with Jacobi smoothers there
holds the following norm equivalence:

‖u‖2
C ' inf

u=
P

vl
vl∈Vl

L∑
l=0

‖h−1
l vl‖2

L2
. (20)

Next, we will investigate the bounds of the norm estimates λ1‖u‖2
A ≤ ‖u‖2

C ≤ λ2‖u‖2
C .

Especially, we are interested in the (in)dependency of the number of levels L.

Lemma 19. Assume that Ω is convex, and the triangulation is quasi-uniform. Then there
holds

‖u‖2
C � ‖u‖2

A
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The proof is given in Theorem 6. It used the A-orthogonal decomposition vl := (PA
l −

PA
l−1)u.

Lemma 20. Assume that the family of triangulations is shape-regular. Further, assume
hl ' hl−1. Then

‖u‖2
C � L ‖u‖2

A

Proof. We choose w0 = I0u, and wl = (Il − Il−1)u for 1 ≤ l ≤ L, where Il is a Clément
type quasi-interpolation operator. Then

‖h−1
l wl‖0 � ‖h−1

l (u− Ilu)‖0 + ‖h−1
l (u− Il−1u)‖0 � ‖u‖2

A.

If we consider h0 to be a constant, then ‖h−1
0 w0‖0 � ‖u‖A.

Remark: If the coarse grid T0 is already fine, i.e., it is not appropriate to consider h0

to be a constant, one should use D0(., .) = A(., .). Then, h0 does not enter the generic
constant c.

Lemma 21. There holds
‖u‖2

A � L‖u‖2
C

Proof. Follows from Lemma 9. Since ‖ul‖A � ‖ul‖Dl
implies gij � 1, and G ∈ RL×L, the

spectral radius ρ(G) is bounded by cL.

The above, quite simple, norm estimates depend on the number of levels L. This might
be acceptable for the analysis of preconditioners, since, in practice, the number of levels is
not too large (maybe, 5 to 10). But, it is not optimal. An improved analysis can remove
the factors L in both estimates. This allows to push the number of levels to infinity, and
prove theorems about H1.

Theorem 22. Let {Tl} be a familiy of quasi-uniform triangulations of mesh-sizes hl ' 2−l.
Let Vl be the piece-wise linear finite element space. Then there holds

‖u‖2
A � ‖u‖2

C ∀ v ∈ VL. (21)

Proof. We will establish the sharper estimate for the coefficients of the interaction ma-
trix G:

gij = sup
u∈Vi
v∈Vj

A(u, v)

‖u‖Di
‖v‖Dj

� γ|i−j| (22)

for some γ ∈ (0, 1). Then, the row sum (and thus, the spectral radius), is bounded
independently of L: ∑

j

gij ≤
∑
j∈Z

γ|i−j| ≤ 2
1

1− γ
.
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Assume that i < j, and choose ui ∈ Vi and vj ∈ Vj. Define the union of edges at the
coarser grid

Ei = ∪∂T : T ∈ Ti.

First, we verify
A(ui, w) = 0 ∀w ∈ V s.t. w = 0 on Ei

by integration by parts: (∇ui,∇w) =
∑

T (−∆u,w)L2(T ) + (∂nu,w)L2(∂T ) = 0.
Next, define the fine-grid finite element function ṽj ∈ Vj as

ṽj(x) =

{
vj(x) x a vertex in Ei

0 x a vertex not in Ei.

Since vj − ṽj = 0 on Ei, there holds

A(ui, vj) = A(ui, ṽj).

Define the strip
Sij = ∪Tj : Tj ∈ Tj and Tj ∩ Ei 6= ∅.

There holds
|Sij ∩ Ti| ≤ c2j−i|Ti| ∀Ti ∈ Ti.

Using the above observations, and the fact that ∇ui = const on each Ti, we estimate

A(ui, vj) = A(ui, ṽj) =
∑
T∈Ti

(∇ui,∇ṽj)L2(Sij∩T )

≤ {
∑

T

‖∇ui‖2
L2(Sij∩T )}

1/2{
∑

T

‖∇ṽj‖2
L2(Sij∩T )}

1/2

� 2(i−j)/2{
∑

T

‖∇ui‖2
L2(T )}

1/2{
∑

T

‖∇ṽj‖2
L2(Sij∩T )}

1/2

� γ|i−j|‖∇ui‖L2‖∇ṽj‖L2

� γ|i−j|h−1
i ‖ui‖L2h

−1
j ‖ṽj‖L2

� γ|i−j|h−1
i ‖ui‖L2h

−1
j ‖vj‖L2

' γ|i−j|‖ui‖Di
‖vj‖Dj

For the reverse estimate, ‖u‖C � ‖u‖A, we will improve the estimates onto the decom-
position

∑
h−2

l ‖(Il − Il−1)u‖2
L2

. Some of the terms will depend more on the smooth parts
of u, while other terms will depend more on the high frequency part. The idea is similar
to Fourier decomposition of u.

We define the so-called K-functionals, KΩ : R+ ×H1(Ω) → R as

KΩ(t, u) = inf
v∈H2(Ω)

{‖u− v‖2
L2(Ω) + t2‖v‖2

H2(Ω)}1/2

26



For rough functions u ∈ L2, there is the trivial bound K(t, u) ≤ ‖u‖L2 , and for smooth
functions, there tholds K(t, u) ≤ t‖u‖H2 . The asymptotic decay as t → 0 is a measure of
smoothness.

Let Il : L2 → Vl be quasi-interpolation operators preserving locally linear polynomials.
Since for arbitrary v ∈ H2 there holds

‖(Il − Il−1)u‖2
L2

� ‖(Il − Il−1)(u− v)‖2
L2

+ ‖(Il − Il−1)v‖2
L2

� ‖u− v‖2
L2

+ h4
l ‖v‖2

H2 ,

if follows that
‖(Il − Il−1)u‖2

L2
� K(h2

l , u)
2,

and, after summation,

‖u‖2
C �

∑
h−2

l ‖(Il − Il−1)u‖2
L2
�

∑
h−2

l K(h2
l , u)

2.

Lemma 23. Let Ω be a Lipschitz domain. For γ ∈ R+ \ {1} there holds∑
l∈Z

γ−lK(γl, u)2 � ‖∇u‖2
L2
. (23)

Proof. First, we verify estimate (23) for the domain Ω = Rd by Fourier analysis. Let

û(ξ) = (2π)−1/2

∫
Rd

eiξ·xu(x) dx.

Then ‖u‖L2 = ‖û‖L2 , ‖∇u‖L2 = ‖|ξ|û‖L2 , etc. The K-functional is

K(t, u) = inf
v∈H2

{‖û− v̂‖2
L2

+ t2‖|ξ|2v̂‖2
L2
}1/2.

The global optimization splits into the one dimensional, quadratic minimization problems
|û(ξ)− v̂(ξ)|2 + t2|ξ|4|v̂|2, which solution is taken at

v̂(ξ) =
1

1 + t2|ξ|4
û(ξ),

and takes the value
t2|ξ|4

1 + t2|ξ|4
|û(ξ)|2.

Integrating ξ over Rd, one obtains

K(t, u)2 =

∫
Rd

t2|ξ|4

1 + t2|ξ|4
|û(ξ)|2 dξ.
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The quantity of interest is∑
l∈Z

γ−lK(γl, u)2 =
∑
l∈Z

∫
Rd

γl|ξ|4

1 + γ2l|ξ|4
|û(ξ)|2 dξ

≤ sup
ξ∈Rd

{∑
l∈Z

γl|ξ|2

1 + γ2l|ξ|4

} ∫
|ξ|2|û(ξ)|2 dξ.

The second factor is exactly ‖∇u‖2, the first factor is bounded by a constant. To prove
this, let l0 ∈ R such that γ−l0 = |ξ|2. Assume |γ| > 1. Then, the first factor is

∑
l∈Z

γl−l0

1 + γ2(l−l0)
=

∑
l∈Z

1

γl0−l + γl−l0
≤

∑
l>l0

1

γl−l0
+

∑
l≤l0

1

γl0−l
≤ 2γ

γ − 1

Thus, we have proved ∑
l∈Z

γ−lKRd(γl, u)2 � ‖∇u‖2
L2(Rd) (24)

We are left to prove estimate (23) on the Lipschitz domain Ω. Let E : H1(Ω) → H1(Rd)
be a continous extension operator (which is available for Lipschitz domains). From

KΩ(t, u) = inf
v∈H2(Ω)

{‖u− v‖2
L2(Ω) + t2‖v‖2

H2(Ω)}1/2

≤ inf
v∈H2(Rd)

{‖Eu− v‖2
L2(Rd) + t2‖v‖2

H2(Rd)}
1/2

= KRd(t, Eu),

together with (24), there follows estimate (23).

Theorem 24. On Lipschitz domains Ω, spaces V = H1(Ω), and quasi-uniform triangula-
tions {Tl} of mesh-sizes hl = 2−l, there holds the norm estimate

‖u‖C � ‖u‖A ∀u ∈ VL.

Proof. Follos immediately form the collected results above:

‖u‖2
C �

L∑
l=0

h−2
l ‖(Il − Il−1)u‖2

L2
�

L∑
l=0

h−2
l K(h2

l , u)
2 � ‖∇u‖2

L2(Ω).
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4.3 Analysis of the multigrid V-cycle

In this section, we analyse the multiplicative version of the multi-level iteration. This is
the popular V-cycle multigrid iteration.

Theorem 25. Assume that there exists s.p.d. bilinear forms D̃l(., .) : Vl × Vl → R sucht
that

• The smoothers are properly scaled:

‖vi‖A ≤ ‖vi‖Di
∀ vi ∈ Vi (25)

• The smoothers are bounded by the forms D̃l(., .):

‖vi‖Di
� ‖vi‖ eDi

∀ vi ∈ Vi (26)

• There exists γ ∈ (0, 1) such that

A(ui, vj) � γ|i−j|‖ui‖A ‖vj‖ eDj
∀ui ∈ Vi ∀ vj ∈ Vj 0 ≤ i ≤ j ≤ L (27)

• The lower bound of the ASM preconditioner with D̃l(., .) is uniform in L:

‖uL‖2
A �

L∑
i=0

A(D̃−1
i AuL, uL) ∀uL ∈ VL (28)

Then the convergence rate of the multigrid V-cycle is independent of the number of levels,
i.e.

‖(I −D−1
L A) . . . (I −D−1

1 A)(I −D−1
0 A)‖A ≤ C, (29)

with C ∈ (0, 1) independent of L.

Some comments:

• The idea of introducing D̃l is to compare the smoother Dl with a simple smoother
D̃l.

• Assumption (27) is proven as in the proof of Theorem 22. One inverse inequality is
skipped.

• Condition (28) follows form CASM � A, which implies A(C−1
ASMAu, u) ≥ A(u, u).

Proof. We define per induction

M−1 = I

Mi = (I −D−1
i A)Mi−1 0 ≤ i ≤ L.
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The goal is to estimate
A(MLu,MLu) ≤ CA(u, u),

with C ∈ (0, 1). This is equivalent to

A(u, u) � A(u, u)− A(MLu,MLu). (30)

The inductive definition of Ml immediately gives (for 0 ≤ l ≤ L)

Ml−1 −Ml = D−1
l AMl−1,

and

A(Ml−1u,Ml−1u)− A(Mlu,Mlu)

= A((2D−1
l A−D−1

l AD−1
l A)Ml−1u,Ml−1u)

≥ A(D−1
l AMl−1u,Ml−1u). (31)

The last inequality follows from A ≤ Dl.
Using the ASM estimate

A(u, u) �
L∑

l=0

A(D̃−1
l Au, u),

rewriting (30) as telescopic sum and substituting (31),

A(u, u)−A(MLu,MLu) =
L∑

l=0

A(Ml−1u,Ml−1u)−A(Mlu,Mlu) ≥
L∑

l=0

A(D−1
l AMl−1u,Ml−1u),

reduces the proof to verify

L∑
l=0

A(D̃−1
l Au, u) �

L∑
l=0

A(D−1
l AMl−1u,Ml−1u). (32)

The left hand side is bounded by ((a+ b)2 ≤ 2(a2 + b2)):

L∑
l=0

A(D̃−1
l Au, u) ≤ 2

L∑
l=0

A(D̃−1
l AMl−1u,Ml−1u)+2

L∑
l=0

A(D̃−1
l A(I−Ml−1)u, (I−Ml−1)u).

The first term is simply bounded by D−1
l � Dl. The key point to handle the second

term is to bound the interaction of the correction on level l, with smoothing on coarser
levels. We telescope I −Ml−1, namely

I −Ml−1 = M−1 −Ml−1 =
l−1∑
j=0

Mj−1 −Mj =
l−1∑
j=0

D−1
j AMj−1.
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Inserting this expansion into the second term above, we obtain

L∑
l=0

A(D̃−1
l A(I −Ml−1)u, (I −Ml−1)u) =

L∑
l=0

l−1∑
j=0

l−1∑
k=0

A(D̃−1
l AD−1

j AMj−1u,D
−1
k AMk−1u).

To simplify the notation, we introduce wj := D−1
j AMj−1u ∈ Vj.

The next, intermediate step is to bound

A(D̃−1
l Awj, wk) � γl−j‖wj‖Aγ

l−k‖wk‖A.

This follows by Cauchy-Schwarz w.r.t. the spd form A(D̃−1
l A., .), and assumption (25)

A(D̃−1
l Awj︸ ︷︷ ︸
∈Vl

, wj︸︷︷︸
∈Vj

) � γ|l−j|‖D̃−1
l Awj‖ eDl

‖wj‖A = γ|l−j|A(D̃−1
l Awj, wj)

1/2 ‖wj‖A,

and dividing one factor completes the step.
We continue

L∑
l=0

A(D̃−1
l A(I −Ml−1)u, (I −Ml−1)u) =

L∑
l=0

l−1∑
j=0

l−1∑
k=0

A(D̃−1
l Awj, wk)

�
L∑

l=0

l−1∑
j=0

l−1∑
k=0

γl−jγl−k‖wj‖A‖wk‖A

≤ 1/2
L∑

l=0

l−1∑
j=0

l−1∑
k=0

γl−jγl−k{‖wj‖2
A + ‖wk‖2

A}

=
L∑

l=0

l−1∑
j=0

l−1∑
k=0

γl−jγl−k‖wj‖2
A

≤
L∑

l=0

l−1∑
j=0

l−1∑
k=0

γl−jγl−k‖wj‖2
Dj

�
L−1∑
j=0

L∑
l=j+1

γl−j‖wj‖2
Dj

�
L−1∑
j=0

‖wj‖2
Dj

=
L−1∑
j=0

‖D−1
j AMj−1u‖2

Dj

=
L−1∑
j=0

A(D−1
j AMj−1u,Mj−1u)

This is the right hand side of (32), and thus, the proof is complete.
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5 Multigrid analysis based on Smoothing and Ap-

proximation

A different approach to multigrid analysis is the Hackbusch theory based on the smooth-
ing property and the approximation property. Here, just the interaction of two levels is
explored.

Consider a multiplicative 2-level method. One step is the coarse grid correction

(I − PA
l−1),

the other one consists of m smoothing steps

(I −D−1
l A)m.

If Dl is properly scaled, then both steps are non-expansive. We will show that under
regularity assumptions the product is a contraction. We consider second order problems.
There holds ‖.‖A ' ‖.‖H1 , and ‖.‖D ' h−1‖.‖L2 .

Lemma 26 (Approximation property). If the underlying pde provides the full regularity
shift theorem (‖u‖H2 � ‖f‖L2), then the approximation property is fulfilled:

‖ul − PA
l−1ul‖Dl

� ‖ul‖A.

Proof: Follows from Aubin Nitsche lemma, and the scaling of the smoother ‖ul‖Dl
≤

h−1
l ‖ul‖. 2

The coarse grid correction step is measured in ‖.‖A→D. Accordingly, the smoothing
steps are measured in ‖.‖D→A:

Lemma 27 (Smoothing property). Assume that σ(D−1
l A) ⊂ [0, 1]. Then

‖(I −D−1
l A)mul‖2

A ≤
1

2m
‖ul‖2

Dl
(33)

Proof. The estimate is rewritten as

(D−1A(I −D−1
l A)2mul, ul)D ≤ 1

2m
‖ul‖2

D.

Since D−1
l A is self-adjoint in (., .)D, so is also D−1A(I − D−1

l A)2m, and one can apply
spectral theory:

‖D−1A(I −D−1
l A)2m‖D ≤ sup

a∈σ(D−1
l A)

a(1− a)2m.

The maximum of a(1 − a)2m on [0, 1] is attained at a = 1/(1 + 2m), and is less than
1/(2m).
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5.1 V -cycle analysis with full regularity

The V -cylce analysis needs the stronger full-regularity assumption than the multi-level
type analysis, but, the result here is also stronger: More smoothing steps improve the rate
of convergence. The following theorem is due to Braess-Hackbusch:

Theorem 28. Assume that

‖ul − PA
l−1ul‖2

Dl
≤ C‖ul‖2

A ∀ul ∈ Vl 1 ≤ l ≤ L. (34)

Then

‖(I −D−1
0 A)m . . . (I −D−1

L A)m‖2
A ≤

C

C + 2m

Proof. Define Sl = I −D−1
l A and

M0 = I and Ml = Ml−1S
m
l

Observe that
D−1

l Av = 0 ∀ v ∈ VL : v⊥AVl,

and thus
Ml(I − PA

l ) = (I − PA
l )

Now, we prove by induction

A(Mlul,Mlul) ≤ δA(ul, ul) ∀ul ∈ Vl,

where δ = C/(C + 2m). The hypothesis is true for l = 0 since D0(., .) = A(., .). Now,
assume that the hypothesis is true for l − 1. Then

‖Mlu‖2
A = ‖Ml−1S

m
l u‖2

A = ‖Ml−1(I − PA
l−1 + PA

l−1)S
m
l u‖2

A

= ‖Ml−1(I − PA
l−1)S

m
l u‖2

A + ‖Ml−1Pl−1S
m
l u‖2

A

+2(Ml−1(I − PA
l−1)S

m
l u,Ml−1Pl−1S

m
l u)A

= ‖(I − PA
l−1)S

m
l u‖2

A + ‖Ml−1Pl−1S
m
l u‖2

A.

The last step is due to Ml−1 : Vl−1 → Vl−1, and Ml−1(I − PA
l−1) = (I − PA

l−1). We continue
by using the induction hypothesis

‖Mlu‖2
A ≤ ‖(I − PA

l−1)S
m
l u‖2

A + δ‖Pl−1S
m
l u‖2

A

= (1− δ)‖(I − Pl−1)S
m
l u‖2

A + δ‖Sm
l u‖2

A

Next, we establish the smoothing+approximation result

‖(I − Pl−1)S
m
l u‖2

A ≤
C

2m
(‖u‖2

A − ‖Sm
l u‖2

A) :
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‖(I − Pl−1)S
m
l u‖2

A = Dl((I − Pl−1)S
m
l u,D

−1
l ASm

l u)

≤ ‖(I − Pl−1)S
m
l u‖Dl

‖D−1
l ASm

l u‖Dl

≤
√
C‖(I − Pl−1)S

m
l u‖A‖D−1

l ASm
l u‖Dl

.

We used that (I − Pl−1) is a projector, and assumption (34). Dividing one factor gives

‖(I − Pl−1)S
m
l u‖2

A ≤ C‖D−1
l ASm

l u‖2
Dl
.

Again, using spectral theory (a2(1− a)2m ≤ (2m)−1(a− a(1− a)2m) we obtain

‖D−1
l ASm

l u‖Dl
≤ 1

2m
(‖u‖2

A − ‖Sm
l u‖2

A),

and thus the statement. We conclude the proof by

‖Mlu‖2
A ≤ (1− δ)

C

2m
(‖u‖2

A − ‖Slu‖2
A) + δ‖Slu‖2

A

=
C(1− δ)

2m
‖u‖2

A + (δ − C(1− δ)

2m
)‖Su

l ‖2
A

= δ‖u‖2
A.

6 Multigrid analysis with partial regularity

The goal of this chapter is multigrid analysis under partial regularity. We will consider
the variable V-cycle, and the classical W-cycle. The results are weaker in comparison to
Section 4.3 since the spaces and/or forms are not necessarily nested.

6.1 Interpolation spaces

Let V0 and V1 be two Hilbert spaces with compact embedding V1 ⊂ V0. Then the eigen
value problem

(xi, v)V1 = λ2
i (xi, v)V0 ∀ v ∈ V1 (35)

leads to a sequence of eigen values λi → ∞. The eigen vectors are normalized in ‖ · ‖V0 .
They form an orthonormal basis in V0, and an orthogonal basis in V1. There holds for
u ∈ V0

u =
∞∑
i=0

(u, xi)V0xi,

and

‖u‖2
V0

=
∞∑
i=0

(u, xi)
2
V0
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If u ∈ V1, then

‖u‖2
V1

=
∞∑
i=0

λ2
i (u, xi)

2
V0
.

For s ∈ (0, 1), we define the interpolation norm (Hilbert space interpolation)

‖u‖2
s := ‖u‖2

[V0,V1]s :=
∞∑
i=1

λ2s
i (u, xi)

2
V0
, (36)

and the (Hilbert) space

Vs := [V0, V1]s := {v ∈ V0 : ‖v‖s <∞}.

It is interesting to consider operators between spaces and interpolation spaces:

Theorem 29. Let V1 ⊂ V0 (compact) and W1 ⊂ W0 (compact). Let T : V0 → W0, linear,
with norm ‖T‖0 = ‖T‖V0→W0, as well as T : V1 → W1 with norm ‖T‖1 = ‖T‖V1→W1. Then

T : Vs → Ws,

and
‖T‖Vs→Ws ≤ ‖T‖1−s

0 ‖T‖s
1.

The proof will use the real method of interpolation and is given below.

A different approach to interpolation spaces is the so called real method of interpolation
based on K-functionals. This is defined for Banach spaces. Let B1 ⊂ B0 be Banach spaces.
The K-functional K : R+ ×B0 → R is defined as

K(t, u) := inf
u=u0+u1

ui∈Vi

{‖u0‖2
B0

+ t2‖u1‖2
B1
}1/2.

Note that K(t, u) ≤ ‖u‖B0 , and K(t, u) ≤ t‖u‖B1 for u ∈ B1. The decay of K(t, u)
for t → 0 can be used to measure the smoothness of u. One possibility is to define the
interpolation norm is

‖u‖Bs,∞ := sup
t>0

t−sK(t, u).

Other weightings are possible (1 ≤ p <∞):

‖u‖Bs,p :=
( ∫ ∞

0

t−spKp(t, u) dt/t
)1/p

Note that K(t, u) ' K(ct, u), there holds for fixed γ ∈ R+ \ {1}

‖u‖Bs,p =
( ∑

k∈Z

∫ γk+1

γk

t−spKp(t, u) dt/t
)1/p

'
∑
k∈Z

(γ−skK(γk, u))p
)1/p

This interpolation norm has been used already in Section 4.2 with s = 1/2 and p = 2.

If Bi are Hilbert spaces, and p = 2, then both methods of interpolation coincide:
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Lemma 30. Let V1 ⊂ V0 (compact) be Hilbert spaces. Define ‖u‖s as Hilbert space inter-
polation norm (36). Then

‖u‖s = Cs‖u‖Bs,2

with Cs = (
∫∞

0
(t1−2s)/(t2 + 1) dt)−1/2 =

√
2/π sin(πs).

Proof. There is
K(t, u)2 = inf

u1∈V1

{‖u− u1‖2
V0

+ t2‖u1‖2
V1
}.

With u =
∑
aixi and u1 =

∑
bixi there holds

‖u− u1‖2
V0

+ ‖u1‖2
V1

=
∑

i

[(ai − bi)
2 + t2λ2

i b
2
i ].

We choose bi to minimize (ai − bi)
2 + t2λ2

i b
2
i , which is bi = ai(t

2λ2
i + 1)−1. Hence

K2(t, u) =
∞∑
i=1

t2λi(t
2λ2

i + 1)−1a2
i .

Now, ∫ ∞

0

t−2sK2(t, u)dt/t =
∑

i

∫ ∞

0

t1−2sλ2
i (t

2λ2
i + 1)−1dta2

i

=
∑

i

( ∫ ∞

0

t1−2sλ1−2s
i (t2λ2

i + 1)−1dtλi

)
λ2s

i a
2
i

=
∑

i

( ∫ ∞

0

τ 1−2s(τ 2 + 1)−1dτ
)
λ2s

i a
2
i

= C−2
s ‖u‖2

s

Lemma 31. Let B1 ⊂ B0 and B̃1 ⊂ B̃0 be Banach spaces. Let T : Bi → B̃i, linear, with
norm Ci := ‖T‖i. Then T : [B0, B1]s,p → [B̃0, B̃1]s,p with norm

‖T‖s,p ≤ C1−s
0 Cs

1 .

Proof. For u = u0 + u1, also Tu0 + Tu1 is a proper decomposition of Tu. Thus

‖Tu‖Bs,p =
( ∫ ∞

0

t−spK̃(t, Tu)pdt/t
)1/p

≤
( ∫ ∞

0

t−sp inf
u=u0+u1

{‖Tu0‖2eB0
+ t2‖Tu1‖2eB1

}p/2dt/t
)1/p

≤
( ∫ ∞

0

t−sp inf
u=u0+u1

{C2
0‖u0‖2

B0
+ t2C2

1‖u1‖2
B1
}p/2dt/t

)1/p

= C1−s
0 Cs

1

( ∫ ∞

0

(C1t/C0)
−sp inf

u=u0+u1

{‖u0‖2
B0

+ t2C2
1/C

2
0‖u1‖2

B1
}p/2dt/t

)1/p

= C1−s
0 Cs

1

( ∫ ∞

0

τ−sp inf
u=u0+u1

{‖u0‖2
B0

+ τ‖u1‖2
B1
}p/2dτ/τ

)1/p

= C1−s
0 Cs

1‖u‖Bs,p .
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The excursion to the real method of interpolation proofs Theorem 29:

Proof. of Theorem 29: Let u ∈ Vs. Then

‖Tu‖s = Cs‖Tu‖Bs,2 ≤ CsC
1−s
0 Cs

1‖u‖Bs,2 = C1−s
0 Cs

1‖u‖s

6.2 Finite element analysis in interpolation spaces

The fractional order Sobolev spaces Hs = Hk+α are interpolation spaces

Hk+α = [Hk, Hk+1]α, α ∈ (0, 1).

A symmetric, second order elliptic problem Lu = f on non-convex domains fulfulls (typi-
cally) a partial regularity shift theorem

‖u‖1+α ≤ ‖f‖−1+α. (37)

The rate of convergence in fractional order Sobolev spaces is obtained immediately by
interpolation.

Lemma 32. There holds the a priori estimate

‖u− uh‖1 � hα‖u‖1+α

Proof. Let Ph : H1 → Vh be the energy projector into the finite element space. The
coprojection I − Ph is a linear operator from H1 into H1, and also from H2 into H1. The
norms are

‖(I − Ph)‖H1→H1 � 1,

and
‖(I − Ph)‖H2→H1 � h.

Thus, there follows by interpolation

‖(I − Ph)‖H1+α→H1 � hα.

Lemma 33 (Aubin-Nitsche technique in fractional Sobolev spaces). Assume that
the shift theorem (37) is available. Then there holds

‖u− Phu‖H1−α � hα‖u‖H1 . (38)
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Proof. Pose the dual problem

a(ϕ, v) = g(v) with g(v) := (u− uh, v)1−α.

There holds

‖g‖H−1+α = sup
v∈H1−α

g(v)

‖v‖1−α

= sup
v∈H1−α

(u− uh, v)1−α

‖v‖1−α

= ‖u− uh‖H1−α .

Choose v = u− uh to obtain

‖u− uh‖2
1−α = a(ϕ− Phϕ, u− uh) ≤ ‖(I − Ph)ϕ‖1‖u− uh‖1

≤ hα‖ϕ‖1+α‖u− uh‖1 ≤ hα‖g‖−1+α‖u− uh‖1

= hα‖u− uh‖1−α‖u− uh‖1.

6.3 Multigrid analysis with partial regularity assumption

The smoothing iteration Sl = I −D−1
l A : Vl → Vl fulfills the norm estimates

‖Sm
l u‖A ≤ ‖u‖A

and

‖Sm
l u‖A ≤

1

2m
‖u‖Dl

.

By interpolation, there follows (with α ∈ (0, 1)):

‖Sm
l u‖A ≤

1

(2m)α
‖u‖[A,Dl]α .

Lemma 34. There holds

‖Sm
l ul‖A �

1

(2m)α
h−α‖ul‖H1−α . (39)

Proof. Note that, (Hs, ‖ · ‖Hs) is defined as interpolation space between L2 and H1. The
norm is different to the interpolation norm between (Vl, ‖ · ‖L2) and (Vl, ‖ · ‖H1). Let Il be
a Clément-type quasi-interpolation operator being a projection on Vl. Then

‖Sm
l Ilu‖A ≤ ‖Ilu‖A � ‖u‖H1

and

‖Sm
l Ilu‖A ≤

1

2m
‖Ilu‖D � 1

2m
h−1

l ‖Ilu‖L2 �
1

2m
h−1

l ‖u‖L2

Now, using interpolation, there follows ‖Sm
l Ilu‖A ≤ 1

(2m)αh
−α‖u‖H1−α . In particular, the

estimate is true for ul ∈ Vl, where the interpolation operator Il vanishes.
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Theorem 35 (Two-Grid Convergence). Assume that the shift theorem (37) is valid.
Then the norm of the two grid iteration

Ml,2g = Sm
l (I − PA

l−1)

is bounded by
‖Ml,2g‖A ≤ cm−α.

Proof. Combine smoothing property (39) and approximation property (38):

‖Sm
l (I − PA

l−1)‖H1→H1 ≤ ‖Sm
l ‖H1−α→H1‖(I − PA

l−1)‖H1→H1−α ≤ cm−α
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6.4 W-cycle analysis

Define the W-cycle multigrid iteration ûl = Mgl(ul, fl) by û0 = A−1
0 f0, and, for l = 1, . . . L,

u0
l = ul

uk
l = uk−1

l +D−1
l (fl − Alu

k−1
l k = 1, . . .m (presmoothing)

w0
l−1 = 0

dl−1 = ET
l (fl − Alu

k
l )

wk
l−1 = wk−1

l−1 +Mgl−1(wl−1, dl−1), . . . k = 1, 2 (2coarsegridcorrectionsteps)

um+1
l = um

l + Elw
2
l−1

uk
l = uk−1

l +D−1
l (fl − Alu

k−1
l k = m+ 2, . . . k = 2m+ 1 (postsmoothing)

Then, the iteration operator M fulfills the recursive definition

Ml = Sm
l (I − El(I −M2

l−1)A
−1
l−1E

T
l Al)S

m
l .

Theorem 36 (W-cycle analysis). Assume that the two-grid iteration matrix is bounded
in some norm ‖.‖Vl

,
‖Ml,2g‖Vl

≤ C ≤?

and assume that the smoother is non-expansive in the same norm, i.e.,

‖Sl‖Vl
≤ 1.

Then, the norm of the W - cylce multigrid iteration is bounded by

‖Ml‖ ≤?
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