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Abstract

The Maxwell equations describe the interaction of electric and magnetic fields.
Important applications are electric machines such as transformers or motors, or elec-
tromagnetic waves radiated from antennas or transmitted in optical fibres. To com-
pute the solutions of real life problems on complicated geometries, numerical methods
are required.

In this lecture we formulate the Maxwell equations, and discuss the finite element
method to solve them. Involved topics are partial differential equations, variational
formulations, edge elements, high order elements, preconditioning, a posteriori error
estimates.

1 Maxwell Equations

In this chapter we formulate the Maxwell equations.

1.1 The equations of the magnetic fields

The involved field quantities are

B V s
m2 magnetic flux density (germ: Induktion)

H A
m

magnetic field intensity (germ: magn. Feldstärke)
jtot

A
m2 electric current density (germ: elektrische Stromdichte)

We state the magnetic equations in integral form. The magnetic flux density has no
sources, i.e., for any volume V there holds∫

∂V

B · n ds = 0

Ampere’s law gives a relations between the magnetic field and the electric current. A
current through a wire generates a magnetic field around it. For any surface S in space
there holds: ∫

∂S

H · τ ds =

∫
S

jtot · n ds
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Both magnetic fields are related by a material law, i.e., B = B(H). We assume a linear
relation

B = µH,

where the scalar µ is called permeability. In general, the relation is non-linear (ferro
magnetic materials), and depends also on the history (hysteresis).

Assuming properly smooth fields, the integral relations can be reformulated in differ-
ential form. Gauss´ theorem gives∫

∂V

B · n ds =

∫
V

divB dx = 0 ∀V,

which implies
div B = 0.

Similar, applying Stokes´ theorem leads to∫
∂S

H · τ ds =

∫
S

curl H · n ds =

∫
S

jtot · n ds,

or
curl H = jtot.

Since div curl = 0, this identity can only hold true if div jtot = 0 was assumed !
Summing up, we have

divB = 0 curlH = jtot B = µH. (1)

The integral forms can also be used to derive interface conditions between different
materials. In this case, we may expect piecewise smooth fields. Let S be a surface in the
material interface, i.e.,

S ⊂ Ω+ ∩ Ω−

and set Vε = {x + tnx : x ∈ S, t ∈ (−ε,+ε)}. Let S+ = {x + εnx}, S− = {x − εnx},
M = ∂Vε \ S+ε \ S−ε.

From

0 =

∫
S+

B · n ds+

∫
S−

B · n ds+

∫
M

B · n ds,

and
∫
S+/−

B · n ds→
∫
S
B+/− · n ds, and |M | → 0 as ε→ 0, there follows∫

S

B+ · n ds =

∫
S

B− · n ds ∀S ⊂ Ω+ ∩ Ω−.

Since this is true for all surfaces S in the interface, there holds

B+ · n = B− · n.
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The B-field has continuous normal components. If µ+ 6= µ−, the normal components of
the H-field are not the same. Similar (exercise!), one proves that the tangential component
of the H-field is continuous:

H+ × n = H− × n.

Instead of dealing with the first order system (1), one usually introduces a vector
potential to deal with one second order equation. Since divB = 0 (on the simply connected
domain R3), there exists a vector potential A such that

curlA = B.

Plugging together the equations of (1), we obtain the second order system

curlµ−1 curlA = jtot. (2)

The vector potential A is not unique. Adding a gradient field ∇Φ does not change the
equation. One may choose a divergence free A field (constructed by Ã = A +∇Φ, where
Φ solves the Poisson problem −∆Φ = divA). Choosing a unique vector potential is called
Gauging. In particular, divA = 0 is called Coulomb gauging. Gauging is not necessary,
one can also work with (compatible) singular systems.

1.2 The equations of the electric fields

The involved field quantities are

E V
m

electric field intensity (germ: elektrische Feldstärke)
D AS

m2 displacement current density (germ: Verschiebungsstromdichte)
j AS

m2 electric current density (germ: elektrische Stromdichte)
ρ AS

m3 Charge density (germ: Ladungsdichte)

Faraday’s induction law: Let a wire form a closed loop ∂S. The induced voltage in the
wire is proportional to the change of the magnetic flux through the surface encluded by
the wire: ∫

∂S

E · τ ds = −
∫
S

∂B · n
∂t

ds.

The differential form is

curlE = −∂B
∂t

Ohm’s law states a current density proportional to the electric field:

j = σE,

where σ is the electric conductivity. This current is a permanent flow of charge particles.
The electric displacement current models (beside others) the displacement of atomar

particles in the electric field:
D = εE.
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The material parameter ε is called permittivity. It is not a permanent flow of current, only
the change in time leads to a flow. Thus, we define the total current as

jtot =
∂D

∂t
+ j.

There are no sources of the total current, i.e.,

div jtot = 0.

The charge density is
ρ = divD.

Thus, the charge density is the cummulation of current-sources:

∂ρ

∂t
= − div j.

Current sources result in the accumulation of charges. Only in the stationary limit, Ohm’s
current is divergence-free.

1.3 The Maxwell equations

Maxwell equations are the combination of magnetic and electric equations

curlE = −∂B
∂t
, (3)

curlH =
∂D

∂t
+ j, (4)

divD = ρ, (5)

divB = 0, (6)

together with the (linear) material laws

B = µH, j = σE, D = εE.

Proper boundary conditions will be discussed later.
Remark: Equation (3) implies div ∂B

∂t
= 0, or divB(x, t) = divB(x, t0). Equation (6)

is needed for the initial condition only ! The same holds for the charge density ρ: The
initial charge density ρ(x, 0) must be prescribed. The evolution in time follows (must be
compatible!) with div j.

Using the material laws to eliminate the fluxes leads to

curlE = −µ∂H
∂t

, (7)

curlH = ε
∂E

∂t
+ σE, (8)
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plus initial conditions onto E and H. Now, applying curlµ−1 to the first equation, and
differentiating the second one in time leads to second order equation in time

ε
∂2E

∂t2
+ σ

∂E

∂t
+ curlµ−1 curlE = 0. (9)

As initial conditions, E and ∂
∂t
E must be prescribed.

Till now, there is no right hand side of the equation. Maxwell equations describe the
time evolution of a known, initial state.

Many application involve windings consisting of thin wires. Maxwell equations describe
the current distribution in the wire. Often (usually) one assumes that the current density
is equally distributed over the cross section of the wire, the flow is in tangential direction,
and the total current is known. In this case, the (unknown) current density σE is replaced
by the known impressed current density jI . In the winding, the conductivity is set to 0.
This substitution may be done locally. In some other domains, the current distribution
might not be known a priori, and the unknown current σE must be kept in the equation.

We plug in this current sources into (9). Additionally, we do some cosmetics and define
the vector potential A such that E = − ∂

∂t
A to obtain

ε
∂2A

∂t2
+ σ

∂A

∂t
+ curlµ−1 curlA = jI . (10)

Now, a possible setting is to start with A = 0 and ∂
∂t
A = 0, and to switch on the cur-

rent jI after finite time. The differential operator in space is the same as in the case of
magnetostatics. But now, the additional time derivatives lead to a unique solution.

Equation (10) can be solved by a time stepping method (exercise!). Often, one deals
with time harmonic problems (i.e., the right hand side and the solution are assumed to be
of the form jI(x, t) = real(jI(x)eiωt) and A(x, t) = real(A(x)eiωt), respectively).

The evaluation of time derivatives lead to multiplication with iω. The time harmonic
equation is

curlµ−1 curlA+ (iωσ − ω2ε)A = jI . (11)
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Figure 1: Three phase transformer

1.4 Technical Applications

Maxwell equations are applied in a wide range (limited by quantum effects in the small
scale and by relativistic effects in the large scale). For different applications, different terms
are dominating. In particular, if

Lω � c =
1
√
εµ
,

where L is the length scale, and c is the speed of light, wave effects and thus the second
order time derivative can be neglected. This case is called low frequency approximation.

1.4.1 Low frequency applications

This is the case of most electric machines, where the frequency is 50Hz. A transformer
changes the voltage and current of alternating current. Figure 1 shows a three phase
transformer. It has an iron core with high permeability µ. Around the legs of the core
are the windings (a primary and a secondary on each leg). The current in the windings is
known. It generates a magnetic field mainly conducted by the core. A small amount of
the field goes into the air and into the casing. The casing is made of steel and thus highly
conducting, which leads to currents and losses in the casing. Thus, one places highly
permeable shields in front of the casing to collect the magnetic flux. The shields are made
of layered materials to prevent currents in the shields.

This problem is a real three dimensional problem, which can only be solved by numerical
methods. The induced current density and loss density in the steel casing and interior
conducting domains computed by the finite element method is plotted in Figure 2 and
Figure 3.

6



Figure 2: Induced currents

Figure 3: Loss density
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Figure 4: Parabola antenna

Other low frequency applications are electric motors and dynamos. Here, the me-
chanical force (Lorentz force) arising from electric current in the magnetic field is used to
transform electromagnetic energy into motion, and vice versa. This requires the coupling
of Maxwell equations (on moving domains!) with solid mechanics.

1.4.2 High frequency applications

Here, the wave phenomena play the dominating role. Conducting materials (σ > 0) lead
to Ohm’s losses. The conductivity term enters with imaginary coefficient into the time
harmonic equations

Transmitting Antennas are driven by an electric current, and radiate electromagnetic
waves (ideally) into the whole space. Receiving antennas behave vice versa. By combining
several bars, and by adding reflectors, a certain directional characteristics (depending on
the frequency) can be obtained. The radiation of an antenna with a parabolic reflector
is drawn in Figure 4. The behavior of waves as x → ∞ requires the formulation and
numerical treatment of a radiation condition.

In a Laser resonator a standing electromagnetic wave is generated. At a certain,
material dependent frequency, the wave is amplified by changing the atomar energy state.
The geometry of the resonator chamber must be adjusted such that the laser frequency
corresponds to a Maxwell eigenvalue. The case of imperfect mirrors at the boundary of
the resonator leads to challenging mathematical problems.

Optical fibers transmit electromagnetic signals (light) over many kilometers. A pulse
at the input should be obtained as a pulse at the output. The bandwidth of the fiber is
limited by the shortest pulse which can be transmitted. Ideally, the (spatial) wave length
λ of the signal is indirect proportional to the frequency. Due to the finite thickness of the
fiber, this is not true, and the dependency of 1/λ on the frequency ω can computed and
plotted as a dispersion diagram. This diagrams reflect the transmission behaviour of the
fiber.
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2 The Variational Framework

Several versions of Maxwell equations lead to the equation

curlµ−1 curlA+ κA = j (12)

for the vector potential A. Here, j is the given current density, and µ is the permeability.
The coefficient κ depends on the setting:

• The case of magnetostatic is described by κ = 0.

• The time harmonic Maxwell equations are included by setting

κ = iωσ − ω2ε.

• Applying implicit time stepping methods for the time dependent problem (10) leads
to the equation above for each timestep. Here, depending on the time integration
method, κ ∈ R+ takes the form

κ ≈ σ

τ
+

ε

τ 2
.

It is the main emphasis of the lecture to study equation (12) for the different choices of
κ ∈ C.

2.1 Maxwell equations in weak formulation

In the following, Ω denotes a bounded domain in R3 with boundary ∂Ω. The outer normal
vector is denoted by n.

Lemma 1. For smooth functions u and v there holds the integration by parts formula∫
Ω

curlu · v dx =

∫
Ω

u · curl v dx−
∫
∂Ω

(u× n) · v ds.

Proof. Follows from component-wise application of the scalar integration by parts formula∫
Ω

∂u

∂xi
v dx = −

∫
Ω

u
∂v

∂xi
dx+

∫
∂Ω

niuv ds.

We multiply the vector potential equation (12) with all proper test functions v, and
integrate over the domain:∫

Ω

curlµ−1 curlA · v + κA · v dx =

∫
Ω

j · v dx ∀ v

We apply integration by parts for the curl− curl term to obtain∫
Ω

µ−1 curlA · curl v + κA · v dx−
∫
∂Ω

(µ−1 curlA× n) · v ds =

∫
j · v dx ∀ v.

Now, we observe useful boundary conditions:
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• Natural boundary conditions on ΓN : Assume that jS := µ−1 curlA × n is known at
the boundary. This is a 90 deg rotation of the tangential component of the magnetic
field H.

• Essential boundary conditions on ΓD: Set A×n as well v×n to zero. Since E = −∂A
∂t

,
this corresponds to the tangential component of the electric field. It also implies
B · n = curlA · n = 0.

A third type of boundary condition which linearly relates E × n and H × n is also
useful and called surface impedance boundary condition. We will skip it for the moment.
Inserting the boundary conditions leads to: Find A such that A× n = 0 on ΓD such that∫

Ω

µ−1 curlA · curl v + κA · v dx =

∫
Ω

j · v dx+

∫
ΓN

Hτ · vτ ds ∀ v. (13)

Note the jS⊥n, thus the boundary functional depends only on vτ := (v × n)× n.

2.2 Existence and Uniqueness Theorems

In this section, we give the framework to prove existence, uniqueness and stability estimates
for the vector potential equation in weak form (13).

The proper norm is

‖v‖H(curl,Ω) :=
{
‖u‖2

L2(Ω) + ‖ curlu‖2
L2(Ω)

}1/2
.

The according inner product is (u, v)H(curl) = (u, v)L2 + (curlu, curl v)L2 . Denote by D(Ω)
all indefinitely differentiable functions on Ω, and define

H(curl,Ω) := D(Ω)
‖·‖H(curl,Ω)

(14)

This space is a Hilbert space (inner product and complete).

Theorem 2 (Riesz′ representation theorem). Let V be a Hilbert space, and f(.) : V → R
be a continuous linear form (i.e., f(v) ≤ ‖f‖V ∗ ‖v‖V ). Then there exists an u ∈ V such
that

(u, v)V = f(v) ∀ v ∈ V.

Furthermore, ‖u‖V = ‖f‖V ∗.

We call the operator JV : f → u the Riesz isomorphism.

Theorem 3 (Lax-Milgram). Let B(., .) : V × V → R be a bilinear-form. Assume that
B(., .) is coercive, i.e.,

B(u, u) ≥ c1‖u‖2
V ∀u ∈ V,

and continuous, i.e.,
B(u, v) ≤ c2‖u‖V ‖v‖V ∀u, v ∈ V.
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Let f(.) be a continuous linear form. Then there exists a unique u ∈ V such that

B(u, v) = f(v) ∀ v ∈ V.

There holds the stability estimate

‖u‖V ≤
1

c1

‖f‖V ∗ .

The Lax-Milgram Lemma can be applied in the case of κ ∈ R+. The Hilbert space is

V := {v ∈ H(curl) : v × n = 0 on ΓD}

We will show later that the tangential trace v × n is a continuous operator on H(curl).
The linear functional is

f(v) =

∫
Ω

j · v dx+

∫
ΓN

jS · vτ ds.

For now, assume that jS = 0. Then

f(v) ≤ ‖j‖L2‖v‖L2 ≤ ‖j‖L2‖v‖V .

The boundary term requires the trace estimate proved later.
The bilinear-form is

B(u, v) =

∫
µ−1 curlu · curl v + κu · v dx.

It is coercive with constant

c1 = min{ inf
x∈Ω

µ−1(x), inf
x∈Ω

κ(x)},

and continuous with constant

c2 = max{sup
x∈Ω

µ−1(x), sup
x∈Ω

κ(x)}.

Lax-Milgram proves a unique solution in V which depends continuously on the right
hand side, i.e.,

‖A‖V = {‖A‖2
L2

+ ‖ curlA‖2
L2
}1/2 ≤ 1

c1

‖j‖L2

If κ→ 0, the stability estimate degenerates.

Theorem 4 (Babuška-Aziz). Let U and V be two Hilbert spaces, and let B(., .) : U×V → R
be a continuous bilinear-form. Assume that

sup
u∈U

B(u, v)

‖u‖U
≥ c1‖v‖V ∀ v ∈ V (15)
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and

sup
v∈V

B(u, v)

‖v‖V
≥ c1‖u‖U ∀u ∈ U. (16)

Let f(.) be a linear form on V . Then there exists a unique u ∈ U such that

B(u, v) = f(v) ∀ v ∈ V.

There holds the stability estimate

‖u‖U ≤
1

c1

‖f‖V ∗ .

This theorem can be used in the complex case. Assume κ = κr + iκi with κi 6= 0. Here,
the real part may be negative. We write down the complex equation as a real system:

curlµ−1 curlur + κrur − κiui = jr,

curlµ−1 curlui + κiur + κrui = ji.

The first equation is multiplied with vr, the second one with vi, we integrate by parts, and
add up both equations to obtain the weak problem: Find u = (ur, ui) ∈ V := H(curl)2

such that

B(u, v) =

∫
jrvr + jivi dx ∀ v = (vr, vi) ∈ V,

with the bilinear form

B(u, v) =

∫
µ−1{curlur curl vr + curlui curl vi}+

+κr{urvr + uivi}+ κi{urvi − uivr}.

Continuity of B(., .) is clear. We prove (15), condition (16) is equivalent. For given
v = (vr, vi) ∈ V , we have to come up with an explicit u = (ur, ui) such that ‖u‖V ≤ c‖v‖V
and B(u, v) ≥ c‖v‖2

V . We choose

u = (vr, vi) + α(vi,−vr),

with some α to be specified below. Evaluation gives

B(u, v) = µ−1{‖ curl vr‖2 + ‖ curl vi‖2}+ (κr + ακi){‖vr‖2 + ‖vi‖2}.

Set α = 1−κr
κi

, to obtain

B(u, v) = µ−1‖ curl v‖2
L2

+ 1 ‖v‖2
L2
.

As long as κi 6= 0, the weak form has a unique solution. The continuity depends on 1
κi

.
The imaginary coefficient stabilizes the problem !
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Theorem 5 (Brezzi). Let V and Q be Hilbert spaces. Let a(., .) : V × V → R and
b(., .) : V × Q → R be continuous bilinear forms, and f(.) : V → R and g(.) : Q → R be
linear forms. Denote the kernel of b(., .) by

V0 := {v ∈ V : b(v, q) = 0 ∀q ∈ Q}.

Assume that a(., .) is coercive on the kernel, i.e.,

a(v, v) ≥ α1‖v‖2 ∀ v ∈ V0, (17)

and assume that b(., .) satisfies the LBB (Ladyshenskaya-Babuška-Brezzi) condition

sup
v∈V

b(v, q)

‖v‖V
≥ β1‖q‖Q ∀ q ∈ Q. (18)

Then there exists a unique u ∈ V and p ∈ Q such that

a(u, v) + b(v, p) = f(v) ∀ v ∈ V,
b(u, q) = g(q) ∀ q ∈ Q. (19)

There holds ‖u‖V + ‖p‖Q ≤ c(‖f‖V ∗ + ‖g‖Q∗), where c depends on α1, β1, ‖a‖, and ‖b‖.

This variational problem is called a mixed problem, or a saddle point problem. Brezzi’s
theorem will be applied to the case κ = 0. The original weak form is∫

Ω

µ−1 curlA · curl v dx =

∫
Ω

jv dx ∀ v ∈ H(curl).

The bilinear-form is not coercive: Take u = ∇ϕ. Then B(u, u) = 0, but ‖u‖2
H(curl) =

‖∇ϕ‖2
L2

. To satisfy the equation for all test functions v, the source term j must be
compatible. If v = ∇ψ, the left hand side vanishes, thus also the right hand side must
vanish, too. Integration by parts gives

0 =

∫
Ω

j · ∇ψ = −
∫

Ω

div jψ +

∫
∂Ω

j · nψ ds ∀ψ ∈ H1(Ω).

Thus, div j = 0 as well as j · n = 0 must be satisfied.
We reformulate the problem now as a saddle point problem. The vector potential A is

defined only up to gradient fields. Thus, we add the constraint A⊥∇H1:∫
A∇ψ dx = 0 ∀ψ ∈ H1(Ω).

We cast the problem now in the saddle point framework: Search A ∈ H(curl) and ϕ ∈
H1/R such that∫

µ−1 curlA · curl v +
∫
v · ∇ϕ =

∫
j · v ∀ v ∈ H(curl),∫

A · ∇ψ = 0 ∀ψ ∈ H1/R. (20)
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If the right hand side j is compatible, the newly introduced variable ϕ ∈ H1 will be 0. To
see this, take v = ∇ϕ.

One condition of Brezzi’s theorem is the LBB condition, i.e.,

sup
v∈H(curl)

∫
v∇ϕ

‖v‖H(curl)

≥ β1‖∇ϕ‖.

This one holds trivially true by choosing v = ∇ϕ. The kernel ellipticity reads as

µ−1‖ curl v‖2 ≥ ‖v‖2 + ‖ curl v‖2 ∀ v ∈ V0 = {v : (v,∇ϕ) = 0∀ϕ}.

The second one is non-trivial, and will be proven later. Brezzi’s theorem proves the exis-
tence of a unique A ∈ H(curl) depending continuously on j for general j ∈ L2.

Up to now we have considered all cases κ except κ ∈ R−. Here, a unique solution is
not guaranteed for all values κ. But, the operator is singular only for a discrete set of
eigenvalues. This most general case can be handled with the Fredholm theorem:

Theorem 6 (Fredholm). Assume that K is a compact operator. Then (I−λK) is invertible
up to a discrete set of singular values λ.

If A solves the variational problem, then∫
µ−1 curlA curl v dx =

∫
(j − κA) · v dx

Assuming div f = 0, and testing with v = ∇ϕ, we observe
∫
κA∇ϕ = 0. We add this

constraint, and add also a dummy - Lagrange parameter to obtain the mixed problem∫
µ−1 curlA · curl v +

∫
v · ∇ϕ =

∫
(j − κA) · v ∀ v ∈ H(curl),∫

A · ∇ψ = 0 ∀ψ ∈ H1/R. (21)

Brezzi’s theory ensures a unique solution for given right hand side (j − κA) ∈ L2. We
denote the solution operator by T , i.e., we have

A = T (j − κA),

or
A+ TκA = j

We will prove that T is a compact operator on L2. Thus, the Maxwell equation is solvable
up to a discrete set of eigenvalues κ ∈ R−.

2.3 The function spaces H(curl) and H(div)

We will define weak derivatives. First, consider a smooth function u ∈ C1(−1, 1), and let
g = u′. This can be defined in weak sense, i.e.∫

(g − u′)v dx = 0 ∀ v ∈ C∞0 (−1, 1)
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Now, integrate by parts to obtain∫ 1

−1

gv dx = −
∫ 1

−1

uv′ dx ∀ v ∈ C∞0 (−1, 1).

Boundary terms do not appear, since v has 0-boundary values. This definition can be
extended to distributions. Here, we are interested in weak derivatives, where the derivatives
are still regular functions in L2.

Definition 7 (Weak differential operators). Let w ∈ L2(Ω), u ∈ [L2(Ω)]3, and q ∈
[L2(Ω)]3. We call g = ∇w ∈ [L2(Ω)]3 the weak gradient, c = curl u ∈ [L2(Ω)]3 the
weak curl, and d = div q ∈ L2(Ω) the weak divergence if they satisfy∫

g · v dx = −
∫
w div v dx ∀ v ∈ [C∞0 (Ω)]3∫

c · v dx = +

∫
u curl v dx ∀ v ∈ [C∞0 (Ω)]3∫

d · v dx = −
∫
q∇ v dx ∀ v ∈ C∞0 (Ω)

Definition 8 (Function spaces). We define the spaces

H(grad) = H1 = {w ∈ L2 : ∇w ∈ [L2]3}
H(curl) = {u ∈ [L2]3 : curlu ∈ [L2]3}
H(div) = {q ∈ [L2]3 : div q ∈ L2}

and the corresponding semi-norms and norms

|w|H(grad) = ‖∇w‖L2 , ‖w‖H(grad) =
(
‖w‖2

L2
+ |w|2H(grad)

)1/2

|u|H(curl) = ‖ curlu‖L2 , ‖u‖H(curl) =
(
‖u‖2

L2
+ |u|2H(curl)

)1/2

|q|H(div) = ‖ div q‖L2 , ‖q‖H(div) =
(
‖q‖2

L2
+ |q|2H(div)

)1/2

These spaces are related by the following sequence:

H(grad)
grad−→ H(curl)

curl−→ H(div)
div−→ L2

The (weak) gradients of H(grad) are in L2, and curl grad = 0 ∈ L2. It is easy to check
this also in weak sense. Further on, the (weak) curls of functions in H(curl) are in L2, and
div curl = 0, thus curl[H(curl)] ⊂ H(div). Finally, div[H(div)] ⊂ L2. We will prove later
the de Rham theorem, which tells us that (on simply connected domains) the range of an
operator of this sequence is exactly the kernel of the next operator.

The de Rham theorem is elementary for smooth functions. To prove it for the Hilbert
spaces, we need a density result.
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Definition 9. The boundary of the domain Ω is called Lipschitz, if there exist a finite num-
ber of domains ωi, local coordinate systems (ξi, ηi, ζi), and Lipschitz-continuous functions
b(ξi, ηi) such that

• ∂Ω ⊂ ∪ωi

• Ω ∩ ωi = {(ξi, ηi, ζi) ∈ ωi : ζi > b(ξi, ηi)}

We are going to prove density results of smooth functions in H(curl and in H(div). For
this, we will study mollification (smoothing) operators. In the following, we assume that
Ω has a Lipschitz continuous boundary.

Theorem 10. Cm(Ω) is dense in L2.

Proof: Analysis 3
We will smooth by local averaging. The influence domain of the smoothing operator

must be contained in the domain. For this, we first shrink the domain by the order of ε.

Lemma 11. There exists a family of smooth transformations φε : Ω→ Ω such that

φε
ε→0−→ id in Cm,

and
dist{φε(Ω), ∂Ω} ≥ ε.

Proof. Let ψi be a smooth partitioning of unity on the boundary, i.e. ψi ∈ [0, 1], support
ψi ⊂ ωi, and

∑
ψi(x) = 1 for x ∈ ∂Ω. Let eζ,i be the inner unit vector in the local

coordinate system. Then

φε(x) = x+ cε
∑
i

ψi(x)eζ,i

is a transformation with this property. Here, c is a constant O(1) depending on the
Lipschitz-norm of the boundary.

We define
F ε(x) = (φε)′ and Jε(x) = det F ε(x).

There holds F ε → I, and thus F ε is invertible for sufficiently small ε.

Let B(x, r) be the ball with center x and radius r, and let ψ be a fixed function in
Cm

0 (B(0, 1)) such that
∫
B(0,1)

ψ(y) dy = 1. When needed, ψ is extended by 0 to R3.

The family of smoothing operators is defined by

(Sεgw)(x) :=

∫
B(0,1)

ψ(y)w(φε(x) + εy) dy

Since φε(Ω) is separated from the boundary ∂Ω, only values of w in Ω are envolved.

Lemma 12. The smoothing operators Sεg map L2(Ω) into Cm(Ω)
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Proof. First, we prove that Sεgw is a continuous function. By substituting ξ = φε(x) + εy,
we rewrite

Sεgw(x) =

∫
B(0,1)

ψ(y)w(φε(x) + εy) dy =

∫
Ω

ψ
(ξ − φε(x)

ε

)
w(ξ) dξ/ε3

Next, bound

(Sεgw)(x1)− (Sεgw)(x2) = ε−3

∫
Ω

{
ψ
(ξ − φ(x1)

ε

)
− ψ

(ξ − φ(x2)

ε

)}
w(ξ) dξ

≤ ε−3
∥∥∥ψ(ξ − φ(x1)

ε

)
− ψ

(ξ − φ(x2)

ε

)∥∥∥
L2(Ω)

‖w‖L2(Ω)

The first factor contains a continuous function in x1 (resp. x2), and thus it converges to 0
as x1 − x2 → 0.

Next, we prove convergence for the derivatives:

∂

∂xi
Sgw(x) =

∫
B

ψ(y)
∂

∂xi
w(φε(x) + y) dy

=

∫
B

ψ(y)(∇w)(φε + εy)
∂φε

∂xi
dy

=
∂φε

∂xi
·
∫
B

ψ(y)∇y[w(φε + εy)]/ε dy

= −1

ε

∂φε

∂xi
·
∫
B

∇ψ(y)w(φε + εy) dy.

The derivative of the smoothed function is expressed by smoothing with the new mollifier
function ψi(y, x) := −1

ε
∇yψ(y) · ∂φε

∂xi
. Thus, convergence of derivatives is reduced by induc-

tion to convergence in C0. We have used classical calculus. This is allowed, since C1 is
dense in L2, and the right hand side is well defined for w ∈ L2.

Lemma 13. There holds Sεgw → w in L2 for ε→ 0.

Proof. First, we prove L2-continuity of Sεg uniform in ε:

‖Sεgw‖2
L2

=

∫
Ω

(∫
B

ψ(y)w(φε(x) + εy)dy)2 dx

≤
∫

Ω

‖ψ‖2
L2(B)

∫
B

w2(φε(x) + εy)dydx

= ‖ψ‖2
L2

∫
B

∫
Ω

w2(φε(x) + εy)dxdy

= ‖ψ‖2
L2

∫
B

∫
φε(Ω)

w2(x̂+ εy)J−1dx̂ dy

≤ ‖ψ‖L2 max{J−1}
∫
B

∫
Ω

w2(x̂)dx̂dy

= ‖ψ‖L2|B|max{J−1}‖w‖L2

17



Next, assume that w1 is Lipschitz-continuous with Lipschitz constant L. Then

Sεgw1(x)− w1(x) =

∫
B

ψ(y)
{
w1(φε(x) + εy)− w1(x)︸ ︷︷ ︸

≤L|φε(x)+εy−x|≤cLε

}
dy ≤ cεL

Now, use density of C1 (and thus of Lipschitz-functions) in L2. Choose w1 ∈ C0,1 such
that ‖w − w1‖L2 ≤ δ, and ‖w1‖C0,1 ≤ L. Then

‖w − Sεgw‖L2 ≤ ‖w − w1‖L2 + ‖w1 − Sεgw1‖L2 + ‖Sεg(w − w1)‖
≤ (1 + ‖Sεg‖)δ + cLε.

The bound on the right hand side can be made arbitrarily small: First choose a small δ,
which leads to a (possible large) L. Then choose ε such that Lε is small.

Lemma 14 (Transformation of differential operators). Let φ : Ω → Ω̂ be a smooth, one-
to-one transfromation. Let F = φ′, and J = detF . Then there holds

∇[w(φ(x))] = F T (x)(∇w)(φ(x)) (22)

curl[F T (x)u(φ(x))] = JF−1(curlu)(φ(x)) (23)

div[J(x)F−1(x)q(φ(x))] = J(x)(div q)(φ(x)) (24)

The vector-transformation F Tu is called covariant, and the transformation JF−1q is called
the Piola transformation

Proof. For smooth functions, the first identity is the chain rule. We start to prove the
last one in weak sense. Choose a test function v ∈ C∞0 , use the definition of the weak
divergence, and the transformation rule for gradients to evaluate∫

Ω

div[JF−1q(φ(x))]v(x)dx = −
∫

Ω

[JF−1q(φ(x)] · ∇v(x) dx

= −
∫

Ω

q(φ(x)) · F−T∇v(x)Jdx

= −
∫
φ(Ω)

q(x̂)F−T (∇v)(φ−1(x̂))dx̂

= −
∫
φ(Ω)

q(x̂)∇[v(φ−1(x̂))]dx̂

=

∫
φ(Ω)

div q(x̂)v(φ−1(x̂))dx̂

=

∫
Ω

J(div q)(φ(x))v(x) dx.

Since this is true for all smooth testfunctions, and they are dense in L2, equation (24) is
proven. Similarly, one proves the first identity for the weak gradient. The identity (23) for
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the curl is proven by the chain rule in the classical form. The notation

Γijk =


+1 (i, j, k) ∈ (1, 2, 3), (2, 3, 1), (3, 1, 2)
−1 (i, j, k) ∈ (1, 3, 2), (2, 1, 3), (3, 2, 1)
0 else

allows to write

(curlu)i =
∑
jk

Γijk
∂uk
∂xj

.

Now, expand matrix products and use the chain-rule to obtain{
F curl[F Tu(φ(x))]

}
i

=
∑
j

Fij
{

curl[F Tu(φ(x))]
}
j

=
∑
j,k,l

FijΓjkl
∂[F Tu(φ(x))]l

∂xk

=
∑
j,k.l,m

FijΓjkl
∂[Fmlum(φ(x))]

∂xk

=
∑
j,k.l,m

FijΓjkl
∂Fml
∂xk

um(φ(x)) +
∑

j,k.l,m,n

FijΓjklFml
∂um
∂xn

Fnk

Since ∂Fml
∂xk

= ∂2φm
∂xl∂xk

= ∂Fmk
∂xl

, and Γjkl = −Γjlk, the first summand disappears. One verifies
that ∑

j,k,l

FijFmlFnkΓjkl = detF Γinm,

and completes the proof with{
F curl[F Tu(φ(x))]

}
i

=
∑
mn

detF Γinm
∂um
∂xn

= J
{

(curlu)(φ(x))
}
i
.

Definition 15. Define additional smoothing operators

covariant transformation:

Sεcu : [L2]3 → [Cm(Ω)]3 : (Sεcu)(x) :=

∫
B(0,1)

ψ(y)F Tu(φε(x) + εy) dy

Piola transformation:

Sεdq : [L2]3 → [Cm(Ω)]3 : (Sεdq)(x) :=

∫
B(0,1)

ψ(y)JF−1q(φε(x) + εy) dy

Sεi s : L2 → Cm(Ω) : (Sεcs)(x) :=

∫
B(0,1)

ψ(y)Js(φε(x) + εy) dy
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These additinal smoothing operators converge point-wise as the original Sεg . The proofs
need the additional argument that F ε → I and Jε → 1 for ε→ 0.

Theorem 16. The smoothing operators commute in the following sense:

1. Let w ∈ H(grad). Then there holds

∇Sεgw = Sεc∇w (25)

2. Let u ∈ H(curl). Then there holds

curlSεcu = Sεd curlu (26)

3. Let q ∈ H(div). Then there holds

divSεdq = Sεi div q (27)

Proof. Follows (with classical calculus) directly from the transformation rules. Exercise:
Prove the identities using weak derivatives.

Corollary 17. The space [Cm(Ω)]3 is dense in H(curl) and in H(div).

Proof. Let u ∈ H(curl). For ε → 0, Sεcu defines a sequence of smooth functions. There
holds

Sεcu
ε→0−→ u (inL2) and curlSεcu = Sεd curlu

ε→0−→ curlu (inL2).

Thus
Sεcu

ε→0−→ u (inH(curl))

The same arguments apply for H(div) and H(grad).

Thanks to density, many classical theorems can be easily extended to the Hilbert-space
context.

Theorem 18 (de Rham). Assume that Ω is simply connected. Then,

{u ∈ H(curl) : curlu = 0} = ∇H1

Proof. The one inclusion ∇H1 ⊂ H(curl) and curl∇H1 = {0} is simple. Now, assume
that u ∈ H(curl) such that curlu = 0. Define the sequence of smooth functions uε = Sεcu.
They satisfy curluε = Sεc curlu = 0. Smooth, curl-free functions are gradients, which
follows from the path-independence of the integral. Thus, there exist smooth φε such that
∇φε = uε and are normalized such that

∫
Ω
φε = 0. The sequence uε is Cauchy in L2, thus

φε is Cauchy in H1, and converges to a φ ∈ H1 satisfying ∇φ = u.
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2.3.1 Trace operators

Functions in the Sobolve space H1(Ω) have generalized boundary values (a trace) in the
space H1/2(Γ). We recall properties of the trace operator in H1, and investigate corre-
sponding trace operators for the spaces H(curl) and H(div).

The trace operator tr |Γ for functions in H1 is constructed as follows:

1. Define the trace operator for smooth functions u ∈ C(Ω) ∩ H1(Ω) in the pointwise
sense

(trΓ u)(x) := u(x) ∀x ∈ Γ.

2. Prove continuity (the trace theorem)

‖ trΓ u‖H1/2(Γ) ≤ c‖u‖H1 ∀u ∈ C(Ω) ∩H1

The H1/2-norm is defined as

‖w‖2
H1/2(Γ) = ‖w‖2

L2(Γ) +

∫
Γ

∫
Γ

|w(x)− w(y)|2

|x− y|2
dxdy,

the Hilbert space H1/2 is the closure of smooth functions (e.g. C∞) with respect to
this norm.

3. Extend the definition of the trace operator to the whole H1(Ω). Choose an arbitrary
sequence (un) with un ∈ C(Ω) ∩H1(Ω) such that un → u in H1. Thanks to density
of C(Ω) ∩H1 in H1 this is possible. Then define

tr |Γu := lim
n→∞

tr |Γun.

Since un is Cauchy in H1, and tr |Γ is a continuous operator, the sequence tr |Γun
is Cauchy in H1/2(Γ). Since H1/2 is a Hilbert space, the Cauchy sequence has a
limit which we call tr |Γu. Finally, check that the limit is independent of the chosen
sequence (un).

Theorem 19 (inverse trace theorem). For a given w ∈ H1/2(Γ), there exists an u ∈ H1(Ω)
such that

tr |Γu = w.

and
‖u‖H1(Ω) ≤ c‖w‖H1/2(Γ)

The H1/2 can be restricted to parts of the boundary. There are a few details which we
do not discuss here. The trace theorem and inverse trace theorem are necessary to define
boundary conditions. Dirichlet values are incorporated into the space

Vg = {u ∈ H1 : trΓ u = uD}.
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Thanks to the inverse trace theorem, boundary values uD ∈ H1/2(ΓD) are allowed. Neu-
mann boundary values ∂u

∂n
= g are included in the linear form:

f(v) =

∫
ΓN

g trΓ v ds ∀ v ∈ H1(Ω)

The integral is understood as a duality product in H1/2 and its dual H−1/2. Then

|f(v)| = 〈g, trΓ v〉H−1/2×H1/2 ≤ ‖g‖H−1/2‖ trΓ v‖H1/2 ≤ c ‖g‖H−1/2‖v‖H1(Ω)

The linear-form is continuous on H1(Ω) as long as g ∈ H−1/2(Γ).

Lemma 20 (Integration by parts). There holds the integration by parts formula∫
Ω

∇u · ϕdx+

∫
Ω

u divϕdx =

∫
∂Ω

trΓ uϕ · n ds ∀ϕ ∈ C∞(Ω)

Lemma 21 (). Let Ω1, . . .Ωm be a domain decomposition of Ω, i.e., Ωi ∩ Ωj = ∅ and
Ω = ∪Ωi, let Γij = ∂Ωi ∩ ∂Ωj. Let ui ∈ H1(Ωi) such that trΓij ui = trΓij uj.

Then
u ∈ H1(Ω) and (∇u)|Ωi = ∇ui

Proof. Let gi = ∇ui be the local weak gradients, and set g = gi on Ωi. We use the
integration by parts formula on Ωi to obtain (for all ϕ ∈ C∞0 (Ω))

−
∫

Ω

u divϕdx = −
m∑
i=1

∫
Ωi

ui divϕdx

=
∑∫

Ωi

∇ui · ϕdx−
∫
∂Ωi

tr∂Ωi ϕ · ni dx

=
∑∫

Ωi

gi · ϕdx−
∫
∂Ωi

tr∂Ωi ϕ · ni dx

=
∑∫

Ωi

gi · ϕdx−
∑
Γij

∫
Γij

(trΓij ui − trΓij uj)ϕ · ni dx

=
∑∫

Ωi

gi · ϕ =

∫
Ω

g · ϕds

Thus, g is the weak gradient of u on Ω.

Theorem 22 (trace theorems). • There exists a unique continuous operator trn :
H(div)→ H−1/2(∂Ω) which satisfies

trn u(x) = u(x) · n(x) ∀x ∈ ∂Ω (a.e.)

for functions u ∈ [C(Ω)]3 ∩H(div).
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• There exists a unique continuous operator trτ : H(curl)→ [H−1/2(∂Ω)]3 which satis-
fies

trτ u(x) = u(x)× n(x) ∀x ∈ ∂Ω (a.e.)

for functions u ∈ [C(Ω)]3 ∩H(curl).

Proof. The construction follows the lines of the H1-case. We have to prove continuity on
a smooth, dense sub-space. Let q ∈ H(div) ∩ C(Ω)3, use the definition of the dual norm
H−1/2, and the inverse trace theorem on H1:

‖ trn q‖H−1/2 = sup
w∈H1/2

∫
∂Ω
q · nwds
‖w‖H1/2

≤ c sup
v∈H1(Ω)

∫
∂Ω
q · n tr v ds

‖v‖H1

= sup
v∈H1(Ω)

∫
Ω
q · ∇v + div q v dx

‖v‖H1

≤ ‖q‖H(div)

The proof for H(curl) is left as exercise.

To prove the trace theorem for H(div), we needed the inverse trace theorem in H1.
The converse is also true:

Lemma 23 (inverse trace theorem). Let qn ∈ H−1/2(Γ). Then there exists an q ∈ H(div)
such that

trn q = qn and ‖q‖H(div) ≤ c‖qn‖H−1/2

If qn satisfies 〈q, 1〉 = 0, then there exists an extension q ∈ H(div) such that div q = 0.

Proof. We solve the weak form of the scalar equation −∆u+ u = 0 with boundary condi-
tions ∂u

∂n
= qn. Since qn ∈ H−1/2, there exists a uniquie solution in H1 such that

‖∇u‖2 + ‖u‖2 ≤ c‖qn‖2
H−1/2

Now, set q = ∇u. Observe that div q = u ∈ L2, and thus

‖q‖2
L2

+ ‖ div q‖2
L2
≤ c‖qn‖2

H−1/2 .

If qn satisfies 〈q, 1〉, then we solve the Neumann problem of the Poisson equation −∆u = 0.
It is possible, since the right hand side is orthogonal to the constant functions. Again, take
q = ∇u.

The inverse trace theorem shows also that the trace inequality is sharp. The stated
trace theorem for H(curl) is not sharp, and thus there is no inverse trace theorem. The
right norm is ‖ trτ u‖H−1/2 + ‖ divτ trτ u‖H−1/2 , which leads to an inverse trace theorem.

Lemma 24. Let Ω1, . . .Ωm be a domain decomposition of Ω, i.e., Ωi∩Ωj = ∅ and Ω = ∪Ωi.
Let Γij = ∂Ωi ∩ ∂Ωj. Let qi ∈ H(div,Ωi) such that trni,Γij qi = trni,Γij qj. Then

q ∈ H(div Ω) and (div q)|Ωi = div qi

Lemma 25. Let Ω1, . . .Ωm be a domain decomposition of Ω, i.e., Ωi∩Ωj = ∅ and Ω = ∪Ωi.
Let Γij = ∂Ωi ∩ ∂Ωj. Let ui ∈ H(curl Ωi) such that trτi,Γij ui = trτi,Γij uj. Then

u ∈ H(curl Ω) and (curlu)|Ωi = curlui
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2.3.2 Helmholtz decompositions

The Helmholtz decomposition splits a vector-function u into a gradient and into a curl
function, i.e.,

u = ∇φ+ curlψ.

Here, φ is called the scalar potential, and ψ is the vector potential. One can choose different
boundary conditions for the two fields. Additionally, ψ is not uniquely defined, and one
may select a particular one, e.g. by the constraint divψ = 0.

Lemma 26. Assume that q ∈ H(div) such that div q = 0 and trn q = 0. Then there exists
ψ such that

q = curlψ.

The function ψ can be chosen such that

(i) ψ ∈ [H1]3 and divψ = 0 and |ψ|H1 ≤ ‖q‖L2,

(ii) or ψ ∈ [H1
0 ]3 and ‖ψ‖H1 ≤ c‖q‖L2,

(iii) or ψ ∈ H0(curl) and divψ = 0 and ‖ψ‖H(curl) ≤ ‖q‖L2.

Proof. The function q can be extended by zero to the whole R3. This q belongs to H(div,Ω)
and to H(div,R3 \ Ω), and it has continuous normal trace. Due to Lemma 24, q belongs
to H(div,R3), and the global weak divergence is zero.

The Fourier tansform F : L2(R3)→ L2(R3) is defined by

(Fv)(ξ) :=

∫
R3

e−2πix·ξv(x) dx,

the inverse transformation is given by

(F−1ṽ)(ξ) :=

∫
R3

e2πix·ξṽ(ξ) dξ.

It is an isomorphism, i.e., ‖v‖L2 = ‖Fv‖L2 . Differentiation is reduced to multiplication,
i.e.

F(∇w) = 2πi ξFw
F(curlu) = 2πi ξ ×Fu
F(div q) = 2πi ξ · Fq.

Let q̃ = Fq. It satisfies ‖q̃‖L2 = ‖q‖L2 , and div q = 0 implies ξ · q̃ = 0. We define

ψ̃ =
ξ × q̃

2πi|ξ|2

One easily verifies the relation

−ξ × (ξ × q̃) + ξ(ξ · q̃) = |ξ|2q̃.
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Thus

2πiξ × ψ̃ =
ξ × (ξ × q)
|ξ|2

= q̃,

and the inverse Fourier transform ψ := F−1ψ̃ satisfies

curlψ = q.

Since F(divψ) = 2πiξ · ψ̃ = 0, the vector potential satisfies divψ = 0. The H1-semi-norm
is

‖∇ψ‖L2(R3) = ‖2πiξψ̃‖L2(R3) =
∥∥∥ξ ξ × q̃|ξ|2

∥∥∥ = ‖q̃‖L2(R3) = ‖q‖L2(Ω),

which proves (i). Now, we modify ψ to satisfy zero boundary values. We have curlψ = q
in R3, and q = 0 in R3 \Ω. Thus, there exists a scalar potential w ∈ H1(R3 \Ω) such that
ψ = ∇w outside Ω. Furthermore, |w|H2 = |ψ|H1 , and thus ψ ∈ H2

loc. On Lipschitz domains,
functions from Hk can be continuously extended. Extend w from R \ Ω to Ew ∈ H2(R3).
Now take

ψ2 = ψ −∇Ew.

This ψ2 is in H1(R3) and vanishes outside Ω. Since H1 implies continuous traces, ψ2

satisfies zero boundary conditions, as claimed in (ii). But, the div-free constraint is lost.
To recover div-free functions, we perform an H1

0 -projection to obtain ψ3:

ψ3 = ψ2 −∇φ with φ ∈ H1
0 : (∇φ,∇v) = (ψ2,∇v) ∀ v ∈ H1

0 .

This ψ3 satisfies divψ3 = 0. It still satisfies zero tangential boundary conditions, i.e. (iii).
But now, ψ3 is not in [H1]3 anymore, but still in H(curl).

Now, we do not assume zero normal trace of the function q.

Lemma 27. Assume that q ∈ H(div) such that div q = 0. Then there exist ψ such that

q = curlψ.

The function ψ can be chosen such that

(i) ψ ∈ [H1]3 and divψ = 0 and |ψ|H1 ≤ ‖q‖L2

(ii) or ψ ∈ H(curl) and divψ = 0, trn ψ = 0 and ‖ψ‖H(curl) ≤ ‖q‖L2.

Proof. We cannot directly extend q by zero onto R\Ω. Now, let Ω̃ be a domain containing

Ω. We construct a q̃ ∈ H0(div, Ω̃), which coincides with q on Ω. For this let

q̃ · n = q · n on ∂Ω

q̃ · n = 0 on ∂Ω̃.
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Since div q = 0 on Ω, there holds
∫
∂Ω
q · n ds = 0. The boundary values for q̃ satisfy∫

∂(eΩ\Ω)
q̃ ·n ds = 0. Thus, according to Lemma 23, there exists a q̃ ∈ H(div) with div q̃ = 0

satisfying the prescribed boundary values. This q̃ has now zero boundary values at the
outer boundary ∂Ω̃, and can be extended by zero to the whole R3. The proof of (i) follows
now the previous lemma.

Now, we obtain the H(curl) function ψ2 by performing the Poisson-projection with
Neumann boundary conditions:

ψ2 = ψ −∇φ with φ ∈ H1(Ω)/R : (∇φ,∇v) = (ψ,∇v) ∀ v ∈ H1(Ω)/R

This ψ2 satisfies (ψ2,∇v) = 0 ∀ v ∈ H1, i.e., divψ2 = 0 and ψn = 0.

Theorem 28 (Helmholtz decomposition). Let q ∈ [L2(Ω)]3. Then there exists a decompo-
sition

q = ∇φ+ curlψ

There are the following choices for the functions φ and ψ. The corresponding norms are
bounded by ‖q‖L2:

(i) φ ∈ H1 and ψ ∈ [H1]3 such that divψ = 0,

(ii) or φ ∈ H1 and ψ ∈ [H1
0 ]3,

(iii) or φ ∈ H1 and ψ ∈ H0(curl) and divψ = 0,

(iv) or φ ∈ H1
0 and ψ ∈ [H1]3 such that divψ = 0,

(v) or φ ∈ H1
0 and ψ ∈ H(curl) and divψ = 0, trn ψ = 0.

Proof. For the cases (i), (ii), (iii), we define φ ∈ H1/R by solving the Neumann problem

(∇φ,∇v) = (q,∇v) ∀ v ∈ H1/R.

The rest, q−∇φ is div-free, and satisfies zero normal boundary values. Lemma 26 proves the
existence of the vector potential ψ. For the remaining cases, we solve a Dirichlet problem
to obtain φ ∈ H1

0 , and apply Lemma 27 for the construction of the vector potential ψ.
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Theorem 29. Let u ∈ H(curl). There exists a decomposition

u = ∇φ+ z

with φ ∈ H1 and z ∈ [H1]3 such that

‖φ‖H1 ≤ c ‖u‖H(curl) and ‖z‖H1 ≤ c ‖ curlu‖L2

If u ∈ H0(curl), then there exists a decomposition with φ ∈ H1
0 and z ∈ [H1

0 ]3.

Proof. Let u ∈ H(curl). Then q := curlu satisfies div q = 0. Thus, there exists an
z ∈ [H1]3 such that

curl z = q = curlu

and
‖z‖H1 � ‖q‖L2 = ‖ curlu‖L2 .

The difference u− z is in the kernel of the curl, i.e. a gradient:

∇φ = u− z.

We choose φ such that
∫
φ = 0. The bound for the norm follows from

‖φ‖H1 ≤ ‖u‖L2 + ‖z‖L2 ≤ ‖u‖L2 + ‖z‖H1 � ‖u‖H(curl)

The proof follows the same lines for u ∈ H0(curl).

Theorem 30 (Friedrichs-type inequality). (i) Assume that u ∈ H(curl) satisfies

(u,∇ψ) = 0 ∀ψ ∈ H1(Ω).

Then there holds the Friedrichs’-type inequality

‖u‖L2 ≤ c ‖ curlu‖L2

(ii) Assume that u ∈ H0(curl) satisfies

(u,∇ψ) = 0 ∀ψ ∈ H1
0 (Ω).

Then there holds the Friedrichs’-type inequality

‖u‖L2 ≤ c ‖ curlu‖L2

Proof. To prove (i), let u ∈ H(curl), and choose z ∈ [H1]3 and φ ∈ H1 according to
Theorem 29. Since

z = u−∇φ and u⊥∇φ,
there holds

‖z‖2
L2

= ‖u‖2
L2

+ ‖∇φ‖2
L2
.

Thus we have
‖u‖L2 ≤ ‖z‖L2 ≤ ‖z‖H1 ≤ ‖ curlu‖L2 .
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3 Finite Element Methods for Maxwell Equations

We want to solve numerically the variational problem:

Find u ∈ V := {v ∈ H(curl) : trτ v = 0 on ΓD} such that∫
Ω

µ−1 curlu curl v dx+

∫
Ω

κuv dx =

∫
jv dx ∀ v ∈ V.

For this purpose, we choose an N -dimensional subspace VN ⊂ V , and define the Galerkin
projection:

Find uN ∈ VN such that∫
Ω

µ−1 curluN curl vN dx+

∫
Ω

κuNvN dx =

∫
jvN dx ∀ vN ∈ VN .

We are interested in the behavior of the discretization error ‖u − uN‖H(curl) as N → ∞.
We choose finite element spaces as sub-spaces VN .

3.1 Lowest order elements

We start with triangular elements in 2D and tetrahedral elements in 3D. Let the domain Ω
be covered with a regular triangulation. This means, the intersection of two elements is
empty, one edge, one face or the whole element. The diameter of the element T is denoted
as hT , it may vary over the domain. Otherwise, if hT ' h, we call the triangulation quasi-
uniform. Let ρT be the radius of the largest sphere contained in T . We assume shape
regularity, i.e., hT/ρT is bounded by a constant.

We call

the set of vertices V = {Vi},
the set of edges E = {Eij},
the set of faces F = {Fijk},

the set of tetrahedra T = {Tijkl}.

In 2D, there is no set of faces, and T is the set of triangles. We define NV , NE , NF , and
NT as the number of vertices, edges, faces, and elements.

According to Ciarlet, a finite element consists of

• the geometric domain T

• a local element space VT of dimension NT

• a set of linearly independent functionals {ψT,1, . . . , ψT,NT } on VT . They are called
degrees of freedom.

28



By identifying the local functionals with global functionals, one can control the continuity
of the global space. The nodal basis {ϕα} is a basis for VT biorthogonal to the functionals,
i.e.,

ψβ(ϕα) = δα,β α, β = 1, . . . NT

Example: The continuous piecewise linear finite element space on triangles. The sets
are triangles, the 3-dimensional element spaces are VT = P 1(T ), the set of affine linear
polynomials. The local dofs are the functionals ψα : v 7→ v(Vα), the vertex values. The
nodal basis is

ϕα = λα,

the barycentric coordinates of the triangle. Two local functionals ψT,α and ψeT ,β are identi-
fied, if they are associated with the same global vertex. We write ψT,α ≡ ψeT ,β. The global
finite element space is

Vh := {v ∈ L2 : v|T ∈ VT and ψT,α ≡ ψeT ,β ⇒ ψT,α(v|T ) = ψeT ,β(v|eT )}.

The global finite element functions are continuous at the vertices, and are linear along the
edges. Thus, they are continuous functions. Polynomials on T belong to H1(T ). Thus,
according to Lemma 21, the finite element space is a sub-space of H1. If the functionals
would not be identified in the vertices, we would obtain a sub-space of L2, only.

Now, we define the lowest order Nédélec elements to discretize H(curl).

Definition 31. The triangular Nédélec finite element is

• a triangle T

• the local space

N0 :=

{
v =

(
ax
ay

)
+ b

(
y
−x

)}
.

• the functionals

ψEαβ : v 7→
∫
Eαβ

v · τ ds

associated with the three edges Eαβ of the triangle.

It is called also the edge element.

We observe the following properties:

• There holds
[P 0]2 ⊂ N0 ⊂ [P 1]2,

•
curlN0 = P 0

with the vector-to-scalar curl operator curl v = ∂vy
∂x
− ∂vx

∂vy
.
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• The tangential component is constant on a line ~p+ t~w:

w ·
[(

ax
ay

)
+ b

(
py + twy
−(px + twx)

)]
= wx(ax + bpy) + wy(ay − bpx)

Lemma 32. The nodal basis function associated with the edge Eαβ from vertex Vα to vertex
Vβ is

ϕαβ := λα∇λβ − λβ∇λα

Proof. First, we check that ϕαβ belongs to the space N0. The space N0 consists of all
affine-linear functions a+Bx, where B is a skew-symmetric matrix. The basis function is
affine-linear. Its gradient is

∇ϕαβ = ∇λβ(∇λα)T −∇λα(∇λβ)T ,

what is skew-symmetric. Next, we observe that ϕαβ · τ = 0 for edges other than Eαβ. Take
the edge opposite to Vα: There is λα = 0 and thus also τ∇λα = 0, and analogous for
the edge opposite to Vβ. Finally, consider the edge Eαβ. There holds λβ = 1 − λα, and
τ∇λβ = −τ · ∇λα. Hence,

τ · ϕαβ = λα(−τ∇λα)− (1− λα)τ∇λα = −τ · ∇λα,

and ∫
Eαβ

τ · ϕαβ ds = −
∫
Eαβ

τ · ∇λα ds = λα(Vα)− λβ(Vβ) = 1.

Lemma 33. Let the local dofs associated with the same edge be identified. Then the global
finite element space is a sub-space of H(curl)

Proof. On the element there holds N0 ⊂ H(curl, T ). We have to check continuity of the
tangential trace: The tangential component on each edge is a constant function Thus,
prescribing the same line integral ensures continuity of the tangential component. Now,
according to Lemma 25, the global finite element space is a sub-space of H(curl,Ω).

On simply connected domains in 2D, the spaces H1, H(curl), and L2 form a complete
sequence:

H1/R ∇−→ H(curl)
curl−→ L2

The operator ∇ has no kernel on H1/R. Its range is exactly the kernel of the curl, and
the range of the curl is the whole L2. By choosing the canonical finite element spaces, this
property is inherited on the discrete level:
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Theorem 34. By choosing the finite element spaces

Wh = {w ∈ H1/R : w|T ∈ P 1}
Vh = {v ∈ H(curl) : v|T ∈ N0}
Sh = {s ∈ L2 : s|T ∈ P 0},

the discrete sequence is complete:

Wh
∇−→ Vh

curl−→ Sh

Proof. First, check that ∇Wh ⊂ Vh. Since ∇Wh ⊂ ∇H1 ⊂ H(curl), and ∇wh is piecewise
constant, ∇wh ∈ Vh. We have already observed that curlVh ⊂ Sh.
Now, take a vh ∈ Vh such that curl vh = 0. Thus, vh is piecewise constant. There exists
a w ∈ H1 such that ∇w = vh. Since the gradient is piecewise constant, the function is
piecewise linear, i.e., it belongs to Wh. Finally, we check that curlVh = Sh by counting
dimensions:

dim{curlVh} = dim{Vh} − dim{Wh} = NE − (NV − 1).

On a simple connected domain there holds (proven by induction: remove vertex by vertex)

NE = NV +NT − 1.

Thus, the dimension of curlVh is NT , the dimension of Sh.

3.1.1 Transformation from the reference element

In both, analysis as well as implementation, it is useful to introduce one reference finite
element and describe all elements in the mesh as transformations of the reference element.
For this, let TR = [(0, 0), (1, 0), (0, 1)] be the reference triangle, and define the affine linear
mapping ΦT such that

T = ΦT (TR).

Define FT = Φ′T . The element basis functions can be defined (implemented) for the refer-
ence element, and are mapped to the general element by the following transformation:

Lemma 35. Let ER
αβ be an edge of the reference element, and Eαβ the according edge of

the general element. Then, the according edge basis functions ϕRαβ and ϕαβ satisfy

ϕαβ = F−TϕRαβ,

curlϕαβ = (detF )−1 curlϕRαβ.

This transformation is called covariant.
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Proof. The barycentric coordinates (which are the vertex basis functions) satisfy

λα(ΦT (xR)) = λRα (xR) ∀xR ∈ TR.

Take derivatives on both sides to obtain

F T
T (∇λα)(ΦT (xR)) = ∇λRα (xR).

Now, the edge-shape function in x ∈ T is

ϕαβ(x) = λα(x)∇λβ(x)− λβ(x)∇λα(x)

= λRα (xR)F−T∇λRβ (xR)− λRβ (xR)F−T∇λRα (xR)

= F−TϕRαβ(xR)

The proof of the transformation of the curls is based on the relation

curl[F Tu(Φ(x))] = (detF )(curlu)(Φ(x))

for general smooth transformations Φ; see Lemma 14 for the 3D case, and exercises for 2D.
Now, set u = ϕαβ to obtain

(curlϕαβ)(Φ(x)) = (detF )−1 curl[F Tϕαβ(Φ(x))] = (detF )−1 curlϕRαβ(x).

3.1.2 Implementation aspects

One has to compute the global matrices

Aij =

∫
Ω

µ−1 curlϕi curlϕj dx

and

Mij =

∫
Ω

κϕiϕj dx,

where the indices i and j are associated with the edges of the mesh. The integrals are split
over the elements. Thus, the global matrices are the sums of the local element matrices
AT and MT

A =
∑
T

CTA
TCT

T and M =
∑
T

CTM
TCT

T .

The CT are the connectivity matrices (of dimension NE × 3) connecting the numbering
of the local basis function to the global basis functions. Here, also the orientation of the
edges must be taken into account: If the local edge is opposite to the global one, the entry
in C is −1.
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For the computation of the local element matrices, one has to form integrals

MT
kl =

∫
T

κϕk · ϕl dx,

which are transformed to the reference element by

MT
kl =

∫
TR
κ (F−TϕRk ) · (F−TϕRl ) detF dx,

and similar for the curl− curl matrix:

ATkl =

∫
TR
µ−1 (detF )−1 curlϕRk (detF )−T curlϕRl detF dx,

The shape functions on the reference element are coded once and for all. The implemen-
tation is as simple as implementing scalar finite elements.

3.1.3 Interpolation operators and error estimates

The definition of functionals and biorthogonal nodal basis functions lead immediately to
the interpolation operators

Ihu =
N∑
i=1

ψi(u)ϕi.

They are projectors, since

IhIhu =
N∑
j=1

ψj

( N∑
i=1

ψi(u)ϕi
)
ϕj

=
N∑
j=1

N∑
i=1

ψi(u)ψj(ϕi)ϕj

=
N∑
i=1

ψi(u)ϕi.

We used the biorthogonality ψj(ϕi) = δij.
Interpolating a function on the element T should result in the same function as inter-

polation on the reference element TR. This is trivial for the nodal elements:

IRh [u ◦ Φ] = (Ihu) ◦ Φ.

Remember that we are working with triangles. This is not true for curved elements, which
leads to more technical difficulties.

Lemma 36. When using the covariant transformation, the interpolation by a general
Nédélec element is equivalent to interpolation by the reference element:

IRh [F Tu ◦ Φ] = F T (Ihu) ◦ Φ
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Proof. The left hand side evaluates to∑
Eαβ⊂TR

ψRαβ(F Tu ◦ Φ)ϕRαβ.

The right hand side is

F T
∑

Eαβ⊂T

ψαβ(u)ϕαβ ◦ Φ =
∑
Eαβ

ψαβ(u)ϕRαβ,

where we used the covariant transformation of the basis functions. It remains to show that
the functionals give the same values, i.e.,

ψRαβ(F Tu ◦ Φ) = ψαβ(u),

or ∫
ER
F Tu(Φ(x)) · τ dsx =

∫
Φ(ER)

u · τ ds.

This relation holds true for general curves. Assume that ER is parametrized with γ :
[0, l]→ R2. Then, the left hand side reads as∫ l

0

[F Tu(Φ(γ(s)))] · γ′(s)ds,

the right hand side is∫ l

0

u(Φ(γ(s))) · [Φ(γ(s)]′ds =

∫ l

0

u(Φ(γ(s))) · Fγ′(s) ds

The analysis of the finite element error is based on the interpolation error. The trans-
formation to the reference element allows to use the scaling technique, and the Bramble-
Hilbert lemma.

Theorem 37. The Nédélec interpolation operator satisfies the error estimate

‖u− Ihu‖L2(T ) ≤ ch |u|H1(T ).

Proof. We transform to the reference element and define

uR(xR) = F Tu(ΦT (xR))

The scaling gives ‖uR‖L2(TR) ' ‖u‖L2(T ), and |uR|H1(TR) ' h |u|H1(T ). Note that the factor
detF from the transformation of integrals cancels out with two factors |F | ' h. Thus, the
estimate is equivalent to prove

‖uR − IRh uR‖L2(TR) ≤ c |uR|H1(TR)

This follows from the Bramble-Hilbert lemma which needs that
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• the operator (id− IRh ) vanishes for constant functions

• the operator (id− IRh ) : H1 → L2 is continuous

The first holds since the Nédélec space contains the constants, the second one follows
from the trace inequality. Thus, the operator is continuous with respect to the H1-semi-
norm.

3.1.4 The commuting diagram

Let IVh be the vertex interpolation operator for H1 (vertex) elements. Unfortunately,
it is not defined on the whole H1 in two or three dimensions, but only on smoother
(e.g., continuous) subspaces. Let IEh be the edge interpolation operators to H(curl) (edge)
elements. Also this one is not defined on the whole H(curl). Finally, let ITh be the element
interpolation operator into piecewise constant elements. Here, the functionals ψ(s) =∫
T
sdx are well defined for L2.
The interpolation operators can be drawn in the commuting diagram, called also the

de Rham complex:

H1 ∩ C1 ∇−→ H(curl) ∩ C0 curl−→ L2yIVh yIEh yITh
Wh

∇−→ Vh
curl−→ S0

h

(28)

It says that first interpolating, and then applying the differential operator results in
the same function as going the other way.

Theorem 38. There holds
∇IVh w = IEh ∇w (29)

for all continuous H1 functions w.

Proof. Both operations end up in the space Vh. Thus, it is enough to compare all edge-
functionals ψEij . We start with the left hand side of (29), and integrate the tangential
derivatives along the edges

ψEij(∇Ihw) =

∫
Eij

τ · ∇IVh w ds = (IVh w)(Vj)− (IVh w)(Vi) = w(Vj)− w(Vi).

The functionals applied to the right hand side of (29) lead to

ψEij(I
E
h ∇w) = ψEij

(∑
Ekl

ψEkl(∇w)ϕEkl

)
= ψEij(∇w) = w(Vj)− w(Vi)
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Theorem 39. There holds
curl IEh u = ITh curlu

for all continuous H(curl) functions u.

The proof is left as an exercise.

Corollary 40. There holds the error estimate

‖ curl(u− IEh u)‖L2(T ) ≤ ch | curlu|H1(T ). (30)

Proof. By scaling and a Bramble-Hilbert argument one proves that

‖s− ITh s‖L2(T ) ≤ ch|s|H1(T ).

Now, apply commutativity to bound

‖ curl(u− IEh u)‖L2(T ) = ‖(id− ITh ) curlu‖L2(T ) ≤ ch | curlu|H1(T ).

3.2 Higher order triangular elements

The lowest order Nédélec element introduced above is between order 0 and order 1. There
are Nédélec elements of the second type which are complete polynomials.

Definition 41. The lowest order Nédélec-II element N II
1 is given by

• a triangle T

• the local space
N II

1 := [P1]2

• the functionals

ψEαβ ,k : v 7→
∫
Eαβ

qkv · τ ds k = 0, 1

associated with the three edges Eαβ of the triangle. The qk are a hierarchical polyno-
mial basis on the edge.

The dimension of the element space is 2 × 3 = 6, and there are 3× 2 = 6 functionals.
A possible choice for the qk is

q0(s) = 1 q1(s) = −3

4
s,

assuming that the edge is parameterized with s ∈ (−1, 1).
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Computing the nodal basis leads to the two functions associated with each edge

ϕEαβ ,0 = λα∇λβ − λβ∇λα,
ϕEαβ ,1 = ∇(λαλβ) = λα∇λβ + λβ∇λα.

The tangential components along the edges are linear. Thus, enforcing two conditions
for tangential continuity are enough to obtain H(curl)-continuity.

The element is still linear. Thus, the space for the curl did not increase:

curlN II
1 = P 0

As we can see from the basis functions ϕEαβ ,1, the element is enriched by gradients of
second order H1 basis functions λαλβ. There holds the complete sequence

L2/R
∇−→ N II

1
curl−→ S0,

where Lk is the space of kth-order continuous elements, and Sk is the space of kth-order
non-continuous elements.

There are different possibilities to define the functionals for L2. Different functionals
lead to different nodal interpolation operators. All functionals have to include the vertex
functionals

ψα(v) = v(Vα).

Then, one has to choose one functional for each edge, for example, the function value in
the edge mid-point. An alternative is

ψEαβ(v) =

∫
Eαβ

q1
∂v

∂τ
ds

These functionals lead to interpolation operators commuting with the N II
1 -interpolation

operators (exercise).
Higher order H(curl) elements also have degrees of freedom involving domain integrals:

Definition 42. The kth-order Nédélec-II element N II
k is given by

• a triangle T

• the local space
N II
k := [P k]2

• the functionals

ψEαβ ,l : v 7→
∫
Eαβ

ql v · τ ds l = 0, . . . , k

associated with the three edges Eαβ of the triangle, and the functionals

ψcT,l : v 7→
∫
T

sl curl v dx with sl a basis for P k−1/R

ψgT,l : v 7→
∫
T

∇pl · v dx with pl a basis for λ1λ2λ3P
k−2

associated with the triangle T .
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The element functionals act either on the curl, thus ψc, or are related to gradients, thus
called ψg.

Lemma 43. The degrees of freedom are linearly independent.

Proof. The dimension of the space is

dimN II
k = 2

(k + 1)(k + 2)

2
= k2 + 3k + 2

The number of edge functionals is
3(k + 1),

the number of curl-element functionals is

dim[P k−1/R] =
k(k + 1)

2
− 1 =

k2 + k − 2

2
,

the number of gradient-element functionals is

dimP k−2 =
(k − 1)k

2
.

The number of degrees of freedom is equal to the space dimension. We check that ψi(v) = 0
implies v = 0. The tangential trace is a polynomial of order k. Thus, the edge functionals
imply vt = 0. Since

∫
T

curl v dx =
∫
∂T
vτ ds = 0, the curl v⊥P 0. Together with the curl

functionals ψc, this implies curl v = 0. Thus, v is a gradient, say v = ∇φ. Since v ∈ [P k]2,
and vτ = 0, there is φ ∈ P k+1 and φ is constant on the boundary. W.l.o.g, we may set
φ = 0 on the boundary. Since φ ∈ λ1λ2λ3P

k−2, and v = ∇φ is orthogonal to ∇λ1λ2λ3P
k−2,

there holds v = 0.

The basis functions satisfy

• assume that q0 = 1 and
∫
E
ql dx = 0 for l ≥ 1. Then ϕEαβ ,0 is the lowest order edge

basis function.

• Assume that q0 = 1. Then the high order edge basis functions ϕEαβ ,l with l ≥ 1 are
gradient functions.

• The basis functions according to ψgT,l are gradient functions.

The elements satisfy the complete sequence

Lk+1/R
∇−→ N II

k
curl−→ Sk−1.

The first family of Nédélec elements is obtained by increasing the order of the curl by
one. The complete sequence is

Lk+1/R
∇−→ N I

k
curl−→ Sk.
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The element space is

N I
k =

{
a+ b

(
y
−x

)
: a ∈ [P k]2, b ∈ P k

}
.

The functionals are the same as for the second family, but the order for the curl-functionals
is increased by one. As for the lowest order element, the space consists of incomplete
polynomials

[Pk]
2 ⊂ N I

k ⊂ [Pk+1]2

3.3 Tetrahedral elements

A difference between 2D and 3D is the length of the complete sequence. In 3D, it contains
also the space H(div):

H1/R ∇−→ H(curl)
curl−→ H(div)

div−→ L2

Similar to 2D, we define the edge element as follows:

Definition 44. The lowest order tetrahedral Nédélec element is given by

• a tetrahedron T

• the local space
N0 :=

{
v = a+ b× x : a, b ∈ R3

}
• the functionals

ψEαβ : v 7→
∫
Eαβ

v · τ ds

associated with the 6 edges Eαβ of the tetrahedron.

As in 2D, the nodal basis function associated with the edge Eαβ is

ϕαβ := λα∇λβ − λβ∇λα.

Its tangential trace onto a face is exactly the 2D Nédélec triangle. The curl of the element
is piecewise constant. Furthermore, the normal component of the curl is continuous across
faces. The curl is contained in the following finite element sub-space of H(div):

Definition 45. The lowest order tetrahedral Raviart-Thomas element is given by

• a tetrahedron T

• the local space
RT 0 :=

{
v = a+ bx : a ∈ R3, b ∈ R

}
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• the functionals

ψFαβγ : v 7→
∫
Fαβγ

v · n ds

associated with the 4 faces Fαβγ of the tetrahedron.

Computing the nodal basis function for the face Fαβγ leads to

ϕαβγ = λα∇λβ ×∇λγ + λβ∇λγ ×∇λα + λγ∇λα ×∇λβ.

The Raviart-Thomas element satisfies

• The element space is an incomplete polynomial space between [P 0]3 and [P 1]3.

• The divergence satisfies
divRT 0 = P 0.

• The normal components on the faces are constant.

• The functionals ensure continuity of the normal components across interfaces.

The global finite element spaces satisfy the complete sequence

L1/R
∇−→ N0

curl−→ RT 0
div−→ S0.

In particular, the range of the curl applied to N0 is exactly the divergence-free sub-space
of RT 0.

3.4 Hierarchical high order elements

For the implementation of high order elements, one may take a short-cut and may define
immediately the basis functions without considering the functionals. This is possible as
long as there is no need for interpolating functions such as initial conditions or boundary
conditions.

We start with the Legendre polynomials Pi : [−1, 1] → P i. Legendre polynomials are
defined to be L2-orthogonal, and normalized such that P (1) = 1. They can be computed
by the 3-term recurrency

P0(x) = 1,

P1(x) = x,

Pi(x) =
2i− 1

i
xPi−1(x)− i− 1

i
Pi−2.

We also define the so called integrated Legendre polynomials

Li(x) :=

∫ x

−1

Pi−1(s) ds i ≥ 2
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They can be computed with a 3-term recurrency as well (by choosing initial values for L0

and L1)

L0(x) = −1,

L1(x) = x,

Li(x) =
2i− 3

i
xLi−1(x)− i− 3

i
Li−2.

The integrated Legendre polynomials satisfy

Li(−1) = Li(1) = 0.

3.4.1 Hierarchical basis functions for H1 elements

We start to define the 1D reference element of order p. The domain is T = (−1, 1). Basis
functions are the two vertex basis functions, and the so called bubble functions vanishing
at the boundary:

ϕV1(x) =
x+ 1

2

ϕV2(x) =
1− x

2
ϕT,k(x) = Lk(x) k = 2, . . . , p.

On the quadrilateral T = (−1, 1)2, basis functions are defined by tensor products.
There are 4 vertex basis functions. E.g., the basis function for the vertex (1, 1) is

ϕV1(x) =
x+ 1

2

y + 1

2
.

Basis functions associated with an edge must span P p
0 (E), and must vanish on all other

edges. E.g., for the edge E1 = (−1, 1)× {−1}, the basis functions are

ϕE1,k(x) = Lk(x)
1− y

2
k = 2, . . . , p.

Finally, there are (p− 1)2 basis functions vanishing on the whole boundary of the element:

ϕT,kl(x) = Lk(x)Ll(y) k, l = 2, . . . , p.

To define high order basis functions for triangular elements, we define the scaled Leg-
endre and scaled integrated Legendre polynomials as

P S
i (x, t) = Pi(

x
t
)ti and LSi (x, t) = Li(

x
t
)ti.

These are polynomials in x and t, and can be directly evaluated by recursion.
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The basis functions for the triangle are the vertex basis functions of the linear triangular
element, i.e., the barycentric coordinates

ϕVα = λα.

Next, there are p− 1 edge-based basis functions defined as

ϕEαβ ,k = LSk (λα − λβ, λα + λβ) k = 2, . . . , p

for each edge. On the edge Eαβ, there holds λα + λβ = 1, and thus the basis function is

equal to Lk on the edge. On the other two edges, the basis function vanishes since
λα−λβ
λα+λβ

is either −1 or +1.
Finally, there are internal basis functions defined as

ϕT,kl = LSk (λ1 − λ2, λ1 + λ2)︸ ︷︷ ︸
uk

Pl(2λ3 − 1)λ3︸ ︷︷ ︸
vl

k ≥ 2, l ≥ 0, k + l ≤ p− 1.

The factor uk vanishes on the edges with λ1 = 0 and λ2 = 0, the factor vl vanishes for the
edge λ3 = 0.

3.4.2 Hierarchical basis functions for triangular H(curl) elements

A basis for high order triangular Nédélec elements can be defined as follows:

• Low order edge basis functions

ϕEαβ ,0 = λα∇λβ − λβ∇λα

• High order edge basis functions:

ϕEαβ ,k = ∇LSk+1(λα − λβ, λα + λβ), k = 1, . . . , p

• Internal basis functions of gradient type:

ϕgT,kl = ∇(ukvl) = ∇ukvl + uk∇vl k ≥ 2, l ≥ 0, k + l ≤ p.

Internal basis functions of curl type:

ϕc,1T,kl = (∇uk)vl − uk∇vl k ≥ 2, l ≥ 0, k + l ≤ p,

ϕc,2T,l = ϕE12,0vl 0 ≤ l ≤ p− 2

with uk = LSk (λ1 − λ2, λ1 + λ2) and vl = Pl(2λ3 − 1)λ3.
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3.5 Finite Element Convergence Theory

We consider the variational problem: find u ∈ V := H0(curl) such that

a(u, v) = (j, v) ∀ v ∈ H0(curl) (31)

with the bilinear-form

a(u, v) = (curlu, curl v)L2 + κ(u, v)L2

We assume that

• κ ∈ C

• The source j satisfies div j = 0.

Let uh ∈ Vh denote the corresponding finite element solution in a Nédélec finite element
sub-space.

3.5.1 Regularity Theory for Maxwell equations

The regularity theory for Maxwell equations follows from regularity results for the Poisson
equation.

Definition 46 (s-regularity for the Poisson equation). The Poisson equation

−∆Φ = f in Ω,

Φ = 0 on ∂Ω

is called s-regular, if f ∈ L2 implies Φ ∈ H1+s with the regularity estimate

‖Φ‖H1+s � ‖f‖L2 . (32)

If Ω is either convex or smooth, then the Poisson problem is regular with s = 1. On
Lipschitz domains, regularity holds with some s ∈ (0, 1).

Lemma 47. Assume that the the Poisson problem is s-regular. Let either

u ∈ H0(curl) ∩H(div)

or
u ∈ H(curl) ∩H0(div)

Then there holds
‖u‖Hs � ‖ curlu‖L2 + ‖ div u‖L2 (33)
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Proof. We prove the case uτ = 0, the other one is similar. According to Theorem 29, there
exists a decomposition

u = ∇Φ + z

with Φ ∈ H1
0 and z ∈ [H1

0 ]3 such that ‖z‖H1 � ‖ curlu‖. The Φ satisfies

(∇Φ,∇Ψ) = (u− z,∇Ψ) ∀Ψ ∈ H1
0 ,

i.e., the Dirichlet problem
−∆Φ = − div(u− z).

The right hand side is per assumption on u, and the estimates for z in L2, and thus
Φ ∈ H1+s. Thus, the gradient ∇Φ is in [Hs]3.

Note that one boundary condition is really necessary. Take some non-constant harmonic
function Φ (i.e., ∆Φ = 0), and set u = ∇Φ. It satisfies div u = 0 and curlu = 0, but
‖u‖H1 6= 0. Each one of the boundary conditions of Lemma 33 implies that Φ is constant.

Theorem 48. Assume that equation (31) satisfies the stability estimate

‖ curlu‖L2 + ‖u‖L2 � ‖j‖L2 .

Assume s-regularity. Then there also holds

‖u‖Hs(curl) � ‖j‖L2

with the norm
‖u‖Hs(curl) :=

{
‖ curlu‖2

Hs + ‖u‖2
Hs

}1/2

Proof. Testing equation (31) with ∇ψ, ψ ∈ H1
0 is

κ

∫
u∇ψ dx =

∫
j∇ψ dx,

i.e.
div u = div j = 0

Thus u ∈ H0(curl) is also in H(div), and thus

‖u‖Hs � ‖ curlu‖+ ‖ div u‖ = ‖ curlu‖ � ‖j‖L2

Now, set B = curlu. It satisfies B ∈ H0(div) with divB = 0. Furthermore, from

(B, curl v) + κ(u, v) = (j, v)

there follows
curlB = j − κu ∈ L2.

Again, from Lemma 33 there follows

‖B‖Hs � ‖ divB‖+ ‖ curlB‖ = ‖j − κu‖ � ‖j‖L2 .
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3.5.2 Error estimates

In Section 2.2 we have discussed several techniques to prove stability of the continuous
problem, i.e.,

inf
u∈V

sup
v∈V

a(u, v)

‖u‖V ‖v‖V
≥ α.

For the cases κ 6∈ R−0 , the stability condition follows with the same techniques also for the
discrete case:

inf
uh∈Vh

sup
vh∈Vh

a(uh, vh)

‖uh‖V ‖vh‖V
≥ α.

Convergence is shown by standard techniques:

Theorem 49. Assume that

• the problem is s-regular

• the discrete problem is inf-sup stable

Then there holds the error estimate

‖u− uh‖H(curl) ≤ chs‖j‖L2

Proof. Let Ih be an H(curl) interpolation operator satisfying

‖u− Ihu‖H(curl) ≤ chs‖u‖Hs(curl).

Then

‖u− uh‖V ≤ ‖u− Ihu‖V + ‖Ihu− uh‖V

≤ ‖u− Ihu‖V + α−1 sup
vh

a(Ihu− uh, vh)
‖vh‖V

≤ ‖u− Ihu‖V + α−1 sup
vh

a(Ihu− u, vh)
‖vh‖V

≤ ‖u− Ihu‖V + ‖a‖α−1‖u− Ihu‖V
≤ chs‖u‖Hs(curl)

≤ chs‖j‖L2

For H1 problems, the Aubin-Nitsche theorem gives an improved convergence in the
weaker L2 norm. This cannot be completely obtained for H(curl) problems, since on
the gradient sub-space, the L2 norm is of the same order as the H(curl)-norm. On the
complement, the equation is of second order, and one obtains the improved convergence.
Although the gradient functions do not converge better in L2, the converge is better in the
H−1-norm.
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Theorem 50. Let u and uh be the continuous solution and the finite element solution to
(31). Assume s-regularity. Then, the Helmholtz decomposition of the error

u− uh = ∇Φ + z with Φ ∈ H1
0 , z⊥∇H1

0

satisfies
‖Φ‖L2 + ‖z‖L2 ≤ chs‖u− uh‖H(curl).

Proof. The part z is divergence free. We pose the dual problem

a(w, v) = (z, v)L2 ∀ v ∈ H0(curl),

and the dual finite element problem: find wh ∈ Vh such that

a(wh, vh) = (z, vh) ∀ v ∈ Vh.

By Theorem 49, the error is bounded by

‖w − wh‖H(curl) ≤ chs‖z‖L2 .

Since z is the L2-projection of u − uh onto [∇H1
0 ]⊥, there holds ‖z‖2

L2
= (z, u − uh). We

conclude with

‖z‖2
L2

= (z, u− uh) = a(w, u)− a(wh, uh)

= a(w − wh, u− uh) � chs‖z‖L2‖u− uh‖H(curl).

The scalar Φ satisfies
‖∇Φ‖ ≤ ‖u− uh‖L2

and
(∇Φ,∇ηh) = (u− uh − z,∇ηh) = 0 ∀ηh ∈ Wh ⊂ H1

0 .

The later is true since (u − uh,∇ηh) = a(u − uh,∇ηh) = 0, and z⊥∇ηh. Posing the dual
problem

(∇Ψ,∇η) = (Φ, η) ∀ η ∈ H1
0

leads to

‖Φ‖2
L2

= (∇Ψ,∇Φ) = (∇(Ψ− IhΨ),∇Φ)

≤ chs‖Ψ‖H1+s‖∇Φ‖ ≤ chs‖Φ‖L2‖∇Φ‖L2 ,

and thus
‖Φ‖L2 ≤ chs‖∇Φ‖L2 � hs‖u‖H(curl)

which proves the theorem.
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3.5.3 Discrete divergence free functions

A function uh is called discrete divergence free if there holds

(uh,∇ϕh) ∀ϕh ∈ Wh ⊂ H1.

We are interested in discrete divergence free Nédélec finite element functions. The goal is
to construct close exact divergence free functions u with the same curl. We will build the
functions by solving a mixed variational problem.

Lemma 51. For all qh ∈ Qh = RT 0 ⊂ H(div) such that div qh = 0 there exists an
uh ∈ Vh = N0 ⊂ H(curl) such that

curluh = qh

and
‖uh‖H(curl) ≤ c‖qh‖L2

Proof. By Lemma 26 and Lemma 27 there exist an u ∈ H(curl) such that curlu = qh and
‖u‖H(curl) � ‖q‖L2 .

There exist quasi-interpolation operators πV : H1 → Wh, π
E : H(curl) → Qh, π

F :
H(div) → Qh, and πT : L2 → Sh which are continuous on L2, commute, and preserve
finite element functions (see later).

Set uh = πEu. It satisfies

curluh = curlπEu = πF curlu = πF qh = qh,

and
‖uh‖H(curl) � ‖u‖H(curl) � ‖qh‖L2 .

From Lemma 51 there follows the discrete LBB condition

sup
uh∈Vh

(curluh, qh)

‖uh‖H(curl)

� ‖qh‖H(div) ∀ qh ∈ Qh : div qh = 0

Simply take the uh according to the lemma.

Theorem 52. Let uh be a discrete divergence free Nédélec finite element function. Then
there exists a unique u ∈ H(curl) satisfying

curlu = curluh, (u,∇ϕ) = 0 ∀ϕ ∈ H1, ‖u− uh‖L2 � hs‖ curluh‖L2 . (34)

Proof. We define the funciton u as solution of the mixed variational problem: find u ∈
H(curl) and p ∈ H0(div) := {q ∈ H(div) : div q = 0} such that∫

uv +
∫

curl v p = 0 ∀ v ∈ H(curl)∫
curlu q =

∫
curluhq ∀ q ∈ H0(div).

(35)
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The variational problem satisfies the conditions of Brezzi (Theorem 5): Continuous
bilinear-forms and linear-forms, the LBB condition for

∫
curl uq (non-trivial), and the

kernel ellipticity of
∫
uv (trivial). By choosing test functions v = ∇ϕ in the frist line we

obtain
(u,∇ϕ) = 0.

Choosing q = curl(u− uh) ∈ H0(div) in the second line, we obtain∫
| curl(u− uh)|2 = 0, i.e., curlu = curluh.

We are left to prove that u is close to uh. Since

curlu = curluh ∈ L2, div u = 0 ∈ L2, u · n = 0,

Theorem 48 gives the regularity estimate

‖u‖Hs � ‖ curluh‖L2 .

Now, we pose the corresponding finite element problem: find u∗h ∈ Vh, and ph ∈ Qh ⊂
H0(div) such that∫

u∗hvh +
∫

curl vh ph = 0 ∀ v ∈ Vh∫
curlu∗h qh =

∫
curluhqh ∀ qh ∈ Qh.

(36)

Again, the discret variational problem satisfies the conditions of Brezzi, and thus has a
unique solution. Indeed, the solution u∗h is equal to uh. The second line proves that
curl(u∗h − uh) = 0. Thus, the difference must be a discrete gradient, say ∇ϕh. Now, test
the first line with ∇ϕh to obtain ∇ϕh = 0.

We have constructed a variational problem such that uh is the finite element ap-
proximation to u. Now, we bound the discretization error. Choose the test function
v = vh := πEu − uh, and subtract the finite element problem (36 from the continuous
problem (35) to obtain∫

(u− uh)(πEu− uh) +

∫
curl(πEu− uh) (p− ph) = 0. (37)

There holds

curl(πEu− uh) = πF curlu− curluh = πF curluh − curluh = 0,

and thus the second term of (37) vanishes. Inserting an u in the first term leads to∫
(u− uh)(u− uh) =

∫
(u− uh)(u− πEu) ≤ ‖u− uh‖ ‖u− πEu‖,

and thus
‖u− uh‖ ≤ ‖u− πEu‖ � hs‖u‖Hs � hs‖ curluh‖L2 .
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3.5.4 Error estimates for the general case

We now consider the bilinear-form

a(u, v) = (curlu, curl v) + κ (u, v)

with a general κ ∈ C. We assume that the continuous problem is solvable, i.e., −κ is not
an eigenvalue of the Maxwell eigenvalue problem: find u ∈ H(curl) and λ ∈ C such that

(curlu, curl v) = λ (u, v) ∀ v ∈ H(curl).

It is not guaranteed that the corresponding finite element problem is solvable. Even if −κ
is not an eigenvalue of the continuous eigenvalue problem, it can be an eigenvalue of the
finite element eigenvalue problem, and thus the discrete problem is not solvable. We will
prove that for sufficiently fine meshes, the discrete solution exists and converges to the true
one.

We define the H(curl)-projection Ph : H(curl)→ Vh by

(Phu, vh)H(curl) = (u, vh)H(curl) ∀ vh ∈ Vh.

This is the finite element solution of a problem with κ = 1.

Theorem 53. There exists a constant C > 0 such that for hs ≤ C−1 there holds

‖u− uh‖H(curl) ≤
1

1− Chs
‖u− Phu‖H(curl).

Proof. Assume that the discrete problem is solvable. If not, replace κ by the small pertur-
bation κ+ ε. All estimates will depend continuously on ε, and thus we can send ε→ 0.

Let uh be the finite element solution, i.e.,

a(uh, vh) = a(u, vh) ∀ vh ∈ Vh.

There holds

‖u− uh‖2
H(curl) = ‖ curl(u− uh)‖2 + ‖u− uh‖2

= a(u− uh, u− uh) + (1− κ) ‖u− uh‖2

= a(u− uh, u− Phuh) + (1− κ) ‖u− uh‖2

= (u− uh, u− Phuh)H(curl) + (κ− 1)(u− uh, u− Phuh) + (1− κ) ‖u− uh‖2

= (u− uh, u− Phuh)H(curl) + (κ− 1)(u− uh, uh − Phu)

≤ ‖u− uh‖H(curl)‖u− Phuh‖H(curl) + |κ− 1| sup
vh

(u− uh, vh)
‖vh‖H(curl)

‖uh − Phu‖H(curl)

From the orthogonality u− Phu⊥Phu− uh there follows

‖u− uh‖2
H(curl) = ‖u− Phu‖2

H(curl) + ‖uh − Phu‖2
H(curl).
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We divide by ‖u− uh‖H(curl) in the estimates above to obtain

‖u− uh‖H(curl) ≤ ‖u− Phu‖H(curl) + |κ− 1| sup
vh

(u− uh, vh)L2

‖vh‖H(curl)

. (38)

We will show that the second term on the right hand side is of smaller order. For this,
we apply carefully continuous and discrete Helmholtz decompositions. Consider the inner
product (u− uh, vh)L2 . Let

u− uh = ∇ϕ+ z withz⊥∇H1.

A version of the Aubin-Nitsche technique, Theorem 50, can be applied for general κ ∈ C
to obtain

‖z‖L2 � hs‖u− uh‖H(curl)

The involved constant depends only on the stability of the continuous problem. Now, let

vh = ∇ψ + r = ∇ψh + rh with r⊥∇H1 andrh⊥∇Wh.

There holds curl r = curl rh = curl vh, and rh is discrete divergence free, and r is divergence
free. From Theorem 52 there follows

‖r − rh‖L2 � hs‖ curl vh‖L2 .

Applying the Helmholtz decompositions, Galerkin orthogonality a(u−uh,∇ψh) = κ(u−
uh,∇ψh)L2 = κ (∇φ,∇ψh) = 0, and the obtained error estimates we continue with

(u− uh, vh)L2 = (∇ϕ, vh) + (z, vh)

= (∇ϕ,∇ψh + rh) + (z, vh)

= (∇ϕ, rh) + (z, vh)

= (∇ϕ, r − rh) + (z, vh)

≤ ‖∇ϕ‖L2‖r − rh‖L2 + ‖z‖L2‖vh‖L2

� ‖u− uh‖L2 h
s ‖ curl vh‖+ hs‖u− uh‖H(curl)‖vh‖L2

≤ hs ‖u− uh‖H(curl) ‖vh‖H(curl).

Plug this bound into (38) to obtain

‖u− uh‖H(curl) ≤ ‖u− Phu‖H(curl) + |κ− 1| chs‖u− uh‖H(curl)

Move the last term to the left hand side, assume that the mesh size is sufficiently small to
fulfill |κ− 1|chs < 1, and divide by 1− |κ− 1|chs to finish the proof.
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4 Iterative Equation Solvers for Maxwell Equations

We want to solve the linear system of equations

Au = f

arising from finite element discretization of the Maxwell equation: find uh ∈ Vh ⊂ H(curl)∫
curluh curl vh + κuhvh dx =

∫
jvh dx ∀ vh ∈ Vh.

Now, we assume that κ ∈ R+, but are concerned with possibly very small κ. Such small
κ occur, e.g., when the singular magnetostatic problem is regularized by adding a small
L2-term. A small (but complex) κ is also obtained from the time harmonic formulation
for frequencies ω → 0.

For 3D problems, the linear system might become large, and iterative solvers must be
applied for CPU-time and memory reasons. A simple iterative method is the preconditioned
Richardson iteration

uk+1 := uk + τC−1(f − Auk),

where C is a symmetric matrix called a preconditioner for A. A good preconditioner
satisfies

• The matrix-vector product
w = C−1d

can be computed fast,

• and it is a good approximation to A in the sense of quadratic forms:

γ1 ≤
uTAu

uTCu
≤ γ2 ∀ 0 6= u ∈ RN .

The relative spectral condition number of C−1A is the ratio

κ :=
γ2

γ1

.

It should be small. There holds σ{C−1A} ⊂ [γ1, γ2], with the spectrum σ, i.e., the
set of eigenvalues.

A faster convergent method is the preconditioned conjugate gradient iteration. In the
case of general coefficients κ, other Krylov-space solvers such as GMRES, QMR, etc. can
be applied with a real-valued preconditioner C.

The simplest preconditioner (except C = I) is the diagonal one

C = diag{A}.
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Figure 5: Arnold Falk Winther smoothing blocks

We will observe that it has a large condition number

κ =
1

κh2
.

The factor h−2 comes from the second order operator curl curl. It is similar to the Poisson
case, is usually not too large, and can be overcome by multigrid methods. The other factor
κ−1 comes from the singular curl-operator. On the rotational sub-space of a Helmholtz
decomposition, the curl-operator with coefficient 1 dominates. On the gradient sub-space,
the bilinear-form is of 0th order with a small coefficient κ. As κ → 0, some eigenvalues of
A converge to 0. But, the limit of C = diagA is a regular matrix.

A robust preconditioner is the Arnold-Falk-Winther one. It is an overlapping block Ja-
cobi preconditioner. Each block is connected with a vertex of the mesh. A block contains
all unknowns on edges connected to the vertex, see Figure 5. To build the block-Jacobi
method, one takes the sub-matrices according to the blocks, inverts them, and adds them
together to obtain the block-Jacobi preconditioner C−1. This one has the improved condi-
tion number

κ =
1

h2
.

Again, by multigrid methods, the condition number can be improved to O(1).

4.1 Additive Schwarz preconditioning

The additive Schwarz (AS) theory is a general framework containing block-preconditioning.
For i = 1, . . . ,M let Ei ∈ RN×Ni be rectangular matrices of rank Ni such that each u ∈ RN

can be (not necessarily uniquely) written as

u =
M∑
i=1

Eiui with ui ∈ RNi .

The additive Schwarz preconditioning operation is defined as

C−1d =
M∑
i=1

EiA
−1
i ET

i d with Ai = ET
i AEi.
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In the AFW - preconditioner there is M = number of vertices. The block-size Ni corre-
sponds to the number of connected edges. The columns of the matrix Ei are unit-vectors
according to the dof-numbers of the connected edges.

The following lemma gives a useful representation of the quadratic form. It was proven
in similar forms by many authors (Nepomnyaschikh, Lions, Dryja+Widlund, Zhang, Xu,
Oswald, Griebel, ...) and is called also Lemma of many fathers, or Lions’ Lemma:

Lemma 54 (Additive Schwarz lemma). There holds

uTCu = inf
ui∈RNi
u=

P
Eiui

M∑
i=1

uTi Aiui

Proof: The right hand side is a constrained minimization problem for a convex function.
The feasible set is non-empty, the CMP has a unique solution. It can be solved by means
of Lagrange multipliers. Define the Lagrange-function for (ui) ∈ ΠRNi and Lagrange
multipliers λ ∈ RN :

L((ui), λ) =
∑

uTi Aui + λT (u−
∑

Eiui).

Its stationary point (a saddle point) is the solution of the CMP:

0 = ∇uiL((ui), λ) = 2Aiui − ET
i λ

0 = ∇λL((ui), λ) = u−
∑

Eiui

The first line gives

ui =
1

2
A−1
i ET

i λ.

Use it in the second line to obtain

0 = u− 1

2

∑
EiA

−1
i Eiλ = u− 1

2
C−1λ,

i.e., λ = 2Cu, and
ui = A−1

i ET
i Cu.

The minimal value is ∑
uTi Aiui =

∑
uTCEiA

−1
i AiA

−1
i ET

i Cu

=
∑

uTCEiA
−1
i ET

i Cu

= uTCC−1Cu = uTCu

�
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The linear algebra framework is needed for the implementation. For the analysis, it
is more natural to work in the finite element space. For this, introduce the Galerkin
isomorphism

G : RN → Vh : u 7→
N∑
i=1

uiϕi

The range of the matrices Ei are linked to sub-spaces Vi ⊂ Vh

Vi := G range{Ei} = {
N∑
j=1

Ni∑
k=1

ϕjEjkλk : λ ∈ RNi}.

In the case of the AFW preconditioner, the subspace Vi is spanned by the edge-basis
functions connected with the edges of the vertex.

The quadratic form of the preconditioner can be written as

uTCu = inf
ui∈Vi

Gu=
P
ui

M∑
i=1

‖ui‖2
A

Now, the task is to analyzed the bounds in the norm estimates

γ1 inf
ui∈Vi
u=

P
ui

M∑
i=1

‖ui‖2
A ≤ ‖u‖2

A ≤ γ2 inf
ui∈Vi
u=

P
ui

M∑
i=1

‖ui‖2
A ∀u ∈ Vh

Usually, the right inequality is the simpler one. If only a finite number of sub-spaces
overlap, then γ2 = O(1).

4.2 Analysis of some H(curl) preconditioners

We start with some scaling and inverse inequalities:

Lemma 55. Let d be the space dimension, and let E be an edge of the element T . The
according N0 edge basis function is ϕE. There holds

1.
‖ϕE‖2

L2
' hd−2

2.
‖ curlϕE‖2

L2
' hd−4

3. ∫
E

vh · τ ds � h(2−d)/2‖vh‖L2(T ) ∀ vh

The lemma is proven by transformation to the reference element.
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Theorem 56. Diagonal preconditioning for the matrix arising from the L2-bilinear-form

M(u, v) =

∫
uv dx ∀u, v ∈ H(curl)

leads to optimal condition numbers.

Proof. Let u =
∑
ui be the decomposition of u into ui ∈ Vi := span{ϕEi}. This decompo-

sition is unique. We have to show that∑
‖ui‖2

M � ‖u‖2
M .

The function ui is given by

ui =
{∫

E

u · τ ds
}
ϕE,

and thus

‖ui‖2
L2

=
{∫

E

u · τ ds
}2‖ϕE‖2

L2
� h2−d ‖u‖2

L2(T )h
d−2,

where T is an arbitrary element sharing the edge E. Since each element is used at most 6
times, summing up leads the desired estimate

NE∑
i=1

‖ui‖2
L2
�
∑
‖u‖2

L2(TEi )
� ‖u‖2

L2(Ω).

Theorem 57. Diagonal preconditioning for the matrix arising from the bilinear-form

A(u, v) =

∫
curlu curl v + κuv dx

leads to condition numbers bounded by

κ � 1

κh2

Proof. Again, we decompose u =
∑
ui. Now there holds

‖ui‖2
A �

{∫
E

u · τ ds
}2‖ϕE‖2

A � h2−d ‖u‖2
L2(T ) {hd−4 + κhd−2},

and thus ∑
‖ui‖2

A � {h−2 + κ}‖u‖2
L2(Ω) � {

1

h2κ
+ 1}‖u‖2

A
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For scalar problems with small L2-coefficient, we can use Friedrichs’ inequality to bound
the L2-term by the H1 term. This avoids the dependence of κ. For the H(curl) equation, we
cannot apply the Friedrichs’ on the whole space, but on the complement of the gradients.
The gradient sub-space is analyzed separately:

Theorem 58. The AFW block preconditioner leads to the condition number

κ � 1

h2
.

Proof. Choose an u ∈ Vh ⊂ H(curl). The goal is to decompose u into local functions
contained in the AFW blocks. We start with the discrete Helmholtz decomposition

u = ∇w + z w ∈ Wh ⊂ H1, z⊥L2 ∇Wh

From Lemma 51 there follows the discrete Friedrichs’ inequality

‖z‖L2 � ‖ curl z‖L2 = ‖ curlu‖L2

We can now decompose z =
∑
zi into basis functions satisfying∑

‖zi‖2
A � {h−2 + κ}‖z‖2

L2
� {h−2 + 1}‖u‖2

A. (39)

The bad factor κ−1 is avoided. A decomposition into basis functions implies also the coarser
decomposition into the AFW blocks.

Now, we continue with the gradient functions. They satisfy

κ‖∇w‖2
L2
≤ κ ‖u‖2

L2
≤ ‖u‖2

A

Decompose the scalar function w into vertex basis functions

w =

NV∑
i=1

wi =

NV∑
i=1

w(Vi)ϕ
Vi

This decomposition satisfies∑
‖∇wi‖2 � h−2‖w‖2

L2(Ω) � h−2‖∇w‖2
L2(Ω) � h−2‖u‖2

L2(Ω).

For gradient fields the curl-term vanishes:∑
‖∇wi‖2

A =
∑

κ‖∇wi‖2
L2
� κh−2‖u‖2

L2(Ω) ≤ h−2‖u‖2
A. (40)

Finally observe that ∇wi ⊂ Vi: The gradient of a vertex basis function can be represented
by the edge-basis functions connected with this vertex. Thus

∇w =
∑
∇wi

is a decomposition compatible with the AFW blocks. The final decomposition is ui =
zi +∇wi. Combining estimates (39) and (40) provides the stable decomposition of u.
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4.3 Multigrid Methods

The condition number of local preconditioners get worse as the mesh size decreases. Multi-
grid methods involve several grids and (may) lead to condition numbers O(1).

Assume we have a sequence of nested grids. On each level l, 0 ≤ l ≤ L, we build
a lowest order order Nédélec finite element space Vl of dimension Nl. These spaces are
nested:

V0 ⊂ V1 ⊂ . . . ⊂ VL.

A function ul−1 in the coarser space is also in the finer space. It can be represented with
respect to the coarse grid basis, or with respect to the fine grid basis:

ul−1 =

Nl−1∑
i=1

ul−1,iϕ
Ei
l−1 =

Nl∑
i=1

ul,iϕ
Ei
l

Let Il ∈ RNl×Nl−1 denote the prolongation matrix which transfers the coarse grid coefficients
ul−1,i to the fine grid coefficients ul,i.

On each level we define a cheap iterative method called smoother. It might be the block-
Jacobi preconditioner by Arnold, Falk, and Winther. We call the local preconditioners Dl:

uk+1
l = ukl + τD−1

l (fl − Alukl )

We define multigrid preconditioners on each level:

C−1
l : RNl → RNl : dl 7→ wl

On the coarsest grid we use the inverse of the system matrix:

C−1
0 = A−1

0

On the finer grids, the preconditioning actions C−1
l : dl 7→ wl are defined recursively by

the following algorithm:

Given dl ∈ RNl . Set w0 = 0.

(1) Pre-smoothing:
w1 = w0 + τD−1

l (dl − Aw0)

(2) Coarse grid correction:

w2 = w1 + IlC
−1
l−1I

T
l (dl − Aw1)

(3) Post-smoothing:
w3 = w2 + τD−1

l (dl − Aw2)

Set wl = w3

This is a multigrid V-cycle with 1 pre-smoothing and 1 post-smoothing step. One can
perform more pre- and post-smoothing iterations in step (1) and (3). One could also apply
2 coarse grid correction steps in step (2), which leads to the W-cycle.
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4.3.1 Multigrid - Analysis

We sketch the application of the classical Braess-Hackbusch multigrid analysis. All we
have to verify can be formulated in the estimate

‖ul − IlA−1
l−1I

T
l Alul‖Dl � ‖ul‖Al (41)

This estimate is usually broken into two parts, the approximation property and the smooth-
ing property. The approximation property states that the coarse grid approximation

ul−1 := A−1
l−1I

T
l Alul

is close to ul in a weaker norm. For a scalar problem, the approximation property is

‖ul − Ilul−1‖L2 � h ‖ul‖H1 .

The smoothing property says that the matrix Dl of the smoother is related to the weaker
norm. For a scalar problem, this is

‖ul‖Dl � h−1‖ul‖L2 .

Both together give estimate (41). If this estimate is established for all levels 1 ≤ l ≤ L,
the Braess-Hackbusch theorem proves that the condition number of the multigrid precon-
ditioner is O(1) uniformely in the number of refinement levels L.

The approximation property is proven similar to the Aubin-Nitsche technique. For the
H(curl) case, the Aubin Nitsche theorem, Theorem 50 gives estimates for the Helmholtz
decomposition of the error

ul − Ilul−1 = ∇ϕl + zl zl⊥∇Wl,

namely
‖ϕl‖L2 + ‖zl‖L2 � hl ‖ul‖H(curl).

In contrast to Theorem 50, we need the discrete Helmholtz decomposition. Its proof
additionally needs the results of discrete divergence free functions of Section 3.5.3. By
definition of the norm

‖vl‖0̃ := inf
ϕl∈Wl

{
‖ϕl‖L2 + ‖vl −∇ϕl‖L2

}
,

the approximation property can be written as

‖ul − Ilul−1‖0̃ � h ‖ul‖H(curl).

Similar to the proof of the AFW - preconditioner (Theorem 58), one verifies the smoothing
property

‖ul‖Dl � h−1
l ‖ul‖0̃.
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