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Summary. We follow multi-scale techniques for layered
medium as described in [1]. The goal is to find error esti-
mates for the homogenized solution using modifications of
flux reconstruction techniques described in [2]. Since these
estimators require integration over the layered domain, effi-
cient integration techniques will be demonstrated.

1 Problem Setting

Consider a domain Ω ∈ R2 which is composed of an
outer domain Ω0 and a layered inner domain Ωm as
demonstrated in Fig. 1. In our examples we take Ω0
to be the surrounding air domain and Ωm to consist
of parallel rectangular iron layers of width d1 sep-
arated by air gaps of width d2. The unit cell width
d := d1 +d2 is defined as the width of one iron layer
including half of each surrounding gap. In the studied
applications, usually d1 = 0.9d.
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Fig. 1. The layered domain Ω

Two simplifications of Maxwell’s equations are
taken into consideration. Equation (1) shows the sim-
plest setting where the real valued function u corre-
sponds to the electric scalar potential and λ to the
electric permittivity. In the numerical examples λ =
1000 in iron and λ = 1 in air. This setting will mainly
be used to fix ideas and to develop the main tools
which will later be modified to fit into the extended,
complex valued setting (2).

∇ · (λ∇)u = f (1)
∇ · (ρ∇u)+ iωµu = f (2)

In the second equation ρ corresponds to the elec-
tric resistivity.

In the following we will outline the main ideas for
the setting (1), since the details for (2) become rather
technical.

1.1 Multi-Scale Ansatz

Studying the behaviour of the solution of (1), one ob-
serves that in Ωm u can be split into a “mean function”
and a periodic perturbation. These observations sug-
gest the ansatz

u = u0 +φu1, (3)

where u0 ∈H1(Ω), u1 ∈H1(Ωm) and φ chosen as
a linear zigzag function with a period of d. The main
idea is to calculate u0 and u1 on a coarser mesh which
does not incorporate each layer. Equation (1) becomes
in weak form

∫
Ω

λ̄∇u0∇v0 +λφx (u0,xv1 + v0,xu1)+

λφ 2
x u1v1 +λφ 2∇u1∇v1 dΩ = 0. (4)

where an index x means the partial derivative with
respect to the x coordinate and the bars indicate arith-
metic means over one unit cell width.

2 Error Estimation

The base for a posteriori error estimation is the theo-
rem of Prager and Synge [2].

Theorem 1. Let u be the solution of (1), σ ∈ H(div),
σ ·n = 0 on ΓN and v ∈ H1 with v = 0 on ΓD, then

‖∇u−∇v‖2 +‖∇u−σ‖2 = ‖∇v−σ‖2. (5)

In application v is taken as the FEM-solution and
σ as a cheaply calculated approximate flux, so the
left hand sides becomes the energy error plus a small
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positive perturbation while the right hand side can be
computed directly.

Efficient construction of such a σ is described
in [2]. The idea is to use this technique to first re-
construct a “mean flux” depending only on u0 and
then adding further correctors of curl-type which in-
corporate the oscillations without changing the diver-
gence. According to classical homogenization results,
as found for example in [4], the natural mean flux has
the form

(
λ

h ∂u0

∂x
,λ

∂u0

∂y

)T

(6)

with the arithmetic mean λ and the harmonic
mean λ

h
of λ over one unit cell. Defining σ0 as the

reconstructed mean flux, we set σ := σ0 + curl(φw)
with an unknown function w so that the energy norm
‖σ‖2

λ−1 becomes optimal. A good candidate for w can
be found analytically without requiring further nu-
merical calculations.

3 Highly Oscillatory Integrals

Calculating the estimation given by (5) requires inte-
gration over products of highly oscillating functions
with functions defined on the course mesh. Such in-
tegrals have been extensively analyzed for example
in [3]. However, the methods presented in the liter-
ature require the oscillator to be smooth. Since φ is
only continuous, they cannot be applied directly.

3.1 Method

Let ϕ be a highly oscillating, not necessarily differ-
entiable function and f be smooth. We propose the
asymptotic expansion

∫ b

a
ϕ(x) f (x) dx =

∞

∑
n=0

∫ b

a
ϕn f (n)(x) dx. (7)

The constants ϕn are calculated a priori such that
(7) is exact for polynomials up to order n. Note that
only the first integral in the expansion has to be calcu-
lated numerically. The others are given by evaluating
f (n−1) at a and b.

This one dimensional setup can be applied to the
two dimensional case via

∫
Ω

ϕ(x) f (x,y) dΩ =
∫ b

a
ϕ(x)

∫ d(x)

c(x)
f (x,y) dy dx

=:
∫ b

a
ϕ(x) f̃ (x) dx (8)

where c(x) and d(x) are parametrizations of the
boundaries of the integration domain. Using addi-
tional information about the domain (i.e. that it is de-
composed into triangles) it is possible to significantly
reduce the number of evaluations of f .

While in the FEM setting f̃ is a polynomial and
therefore (7) could be used to compute the exact inte-
gral, f̃ is of order 2n+ 1 with n being the order of f
in both coordinates, which would lead to an imprac-
tical number of evaluations of derivatives as we do
not assume to have direct control over the shape func-
tions. However, Fig. 2 shows that a few terms in the
expansion (7) are enough to obtain satisfying results
even for greater cell widths d, with each expansion
term netting an additional order in d. Here f = x3y,
ϕ = λ (φ 2 +φ)+1 with φ and the integration domain
Ω given in section 1.

Fig. 2. Absolute error of
∫

ϕ f for decreasing unit cell width
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