An Efficient Reformulation of a Multiscale Method for the Eddy Current Problem

Markus Schöbinger, Joachim Schöberl and Karl Hollaus

Technische Universität Wien, Wiedner Hauptstrae 8-10, A-1040 Vienna E-mail: markus.schoebinger@tuwien.ac.at

Abstract—The performance of classical multi-scale methods for the 2D $\rm H(curl)$ eddy current problem in layered materials is studied for layer widths approaching zero. These results are compared to a new more efficient reformulation which does not have to utilize additional spaces.

Index Terms -- eddy current, multiscale, reformulation

I. PROBLEM SETTING

Consider the eddy current problem

$$\int_{\Omega} \mu^{-1} \operatorname{curl} \mathbf{A} \operatorname{curl} \mathbf{v} + j\omega \sigma \mathbf{A} \mathbf{v} \, d\Omega = \int_{\Omega} \mathbf{J} \mathbf{v} \quad \forall \mathbf{v} \in \mathbf{H}(\operatorname{curl}).$$
(1)

Let the domain $\Omega \subset \mathbb{R}^d$ be composed of an outer air domain Ω_0 surrounding a layered material Ω_m consisting of e.g. iron sheets of width d_1 separated by air gaps of width d_2 , see Fig. 1.

Fig. 1. The layered domain Ω .

II. METHOD AND REFORMULATION

In [1] a multiscale ansatz for (1) of the form

$$\mathbf{A} = \mathbf{A}_0 + \phi \begin{pmatrix} 0 \\ A_1 \end{pmatrix} + \nabla (\phi w) \tag{2}$$

is developed, with a piecewise linear micro-shape function ϕ . $A_0, A_1, w \in V := H(\operatorname{curl}) \times L^2 \times H^1$ are the unknown functions. Using this ansatz in (1) yields a new formulation of the form

$$\int_{\Omega} a \left(\begin{pmatrix} \mathbf{A}_0 \\ A_1 \\ w \end{pmatrix}, \begin{pmatrix} \mathbf{v}_0 \\ v_1 \\ q \end{pmatrix} \right) d\Omega = \int_{\Omega} \mathbf{J} \mathbf{v}_0 d\Omega \quad \forall \begin{pmatrix} \mathbf{v}_0 \\ v_1 \\ q \end{pmatrix} \in \mathbf{V}.$$
(3)

with a bilinearform a involving averaged coefficients as described in [1].

Using specific test functions in (3) and incorporating properties of the solution yields additional identities for the unknown functions, which allow the expressions

$$A_1 = C_1 curl \mathbf{A}_0 + C_2 \frac{\partial}{\partial y} (\mathbf{A}_0)_1, \quad w = C_3 (\mathbf{A}_0)_1 \quad (4)$$

with the constants C_1, C_2, C_3 depending on the problem parameters and $(\mathbf{A}_0)_1$ being the first component of \mathbf{A}_0 . Using these identities, (3) can be reformulated as

$$\int_{\Omega} \tilde{a}(\mathbf{A}_0, \mathbf{v}_0) \ d\Omega = \int_{\Omega} \mathbf{J} \mathbf{v}_0 \ d\Omega. \quad \forall \mathbf{v}_0 \in \mathbf{H}(\text{curl}) \quad (5)$$

where the additional FEM spaces have been eliminated. The formulation (5) assumes that the FEM implementation of $H(\mathrm{curl})$ allows for gradient evaluations on each element.

III. NUMERICAL RESULTS

Figure 2 shows the errors of both the standard multiscale solution and the reformulation in the L^2 -norm weighted by the electric conductivity σ and in the $H({\rm curl})$ energy norm weighted by the magnetic reluctivity μ^{-1} .

Fig. 2. Errors of the original and reformulated multi-scale solution at different sheet widths $d = d_1 + d_2$.

In both cases the reformulation shows the same rate of convergence for decreasing iron sheet widths. While the error in the weighted energy norm is nearly identical, there is a significant discrepancy in the L^2 -norm for larger values of d, which vanishes as the sheet width approaches 0.

IV. ACKNOWLEDGMENT

This work was supported by the Austrian Science Fund (FWF) under Project P 27028-N15.

REFERENCES

 K. Hollaus and J. Schöberl, "Homogenization of the eddy current problem in 2d," ser. 14th Int. IGTE Symp., Graz, Austria, Sep. 2010, pp. 154–159.