
A NOTE ON AUBIN-LIONS-DUBINSKI Ĭ LEMMAS
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Abstract. Strong compactness results for families of functions in seminormed nonnegative cones
in the spirit of the Aubin-Lions-Dubinskiı̆ lemma are proven, refining some recent results in the
literature. The first theorem sharpens slightly a result of Dubinskĭı (1965) for seminormed cones.
The second theorem applies to piecewise constant functionsin time and sharpens slightly the
results of Dreher and Jüngel (2012) and Chen and Liu (2012). An application is given, which is
useful in the study of porous-medium or fast-diffusion type equations.

1. Introduction

The Aubin-Lions lemma states criteria under which a set of functions is relatively compact in
Lp(0,T; B), wherep ≥ 1, T > 0, andB is a Banach space. The standard Aubin-Lions lemma
states that ifU is bounded inLp(0,T; X) and∂U/∂t = {∂u/∂t : u ∈ U} is bounded inLr(0,T; Y),
thenU is relatively compact inLp(0,T; B), under the conditions that

X ֒→ B compactly, B ֒→ Y continuously,

and either 1≤ p < ∞, r = 1 or p = ∞, r > 1. Typically, whenU consists of approximate
solutions to an evolution equation, the boundedness ofU in Lp(0,T; X) comes from suitable a
priori estimates, and the boundedness of∂U/∂t in Lr(0,T; Y) is a consequence of the evolution
equation at hand. The compactness is needed to extract a sequence in the set of approximate
solutions, which converges strongly inLp(0,T; B). The limit is expected to be a solution to the
original evolution equation, thus yielding an existence result.

In recent years, nonlinear counterparts of the Aubin-Lionslemma were shown [4, 8, 17]. In
this note, we aim to collect these results, which are scattered in the literature, and to prove
some refinements. In particular, we concentrate on the case in which the setU is bounded in
Lp(0,T; M+), whereM+ is a nonnegative cone (see below). This situation was first investigated
by Dubinskĭı, and therefore, we call the corresponding results Aubin-Lions-Dubinskĭı lemmas.

Before detailing our main results, let us review the compactness theorems in the literature. The
first result on the compact embedding of spaces of Banach spacevalued functions was shown by
Aubin in 1963 [3], extended by Dubinskiı̆ in 1965 [11], also see [16, Théor̀eme 5.1, p. 58].
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Some unnecessary assumptions on the spaces were removed by Simon in his famous paper [22].
The compactness embedding result was sharpened by Amann [2]involving spaces of higher
regularity, and by Roub́ıček, assuming that the spaceY is only locally convex Hausdorff [20] or
that∂U/∂t is bounded in the space of vector-values measures [21, Corollary 7.9]. This condition
can be replaced by a boundedness hypothesis in a space of functions with generalized bounded
variations [15, Prop. 2]. A result on compactness inLp(R; B) can be found in [23, Theorem 13.2].

The boundedness ofU in Lp(0,T; B) can be weakened to tightness ofU with respect to a
certain lower semicontinuous function; see [19, Theorem 1]. Also the converse of the Aubin-
Lions lemma was proved (see [18] for a special situation).

Already Dubinskĭı [11] observed that the spaceX can be replaced by a seminormed set, which
can be interpreted as a nonlinear version of the Aubin-Lionslemma. (Recently, Barrett and Süli
[4] corrected an oversight in Theorem 1 of [11].) Furthermore, the spaceB can be replaced by
K(X), whereK : X → B is a compact operator, as shown by Maitre [17], motivated by the
nonlinear compactness result of Alt and Luckhaus [1].

Instead of boundedness of∂U/∂t in Lr(0,T; Y), the condition on the time shifts

‖σhu− u‖Lp(0,T−h;Y) → 0 ash→ 0, uniformly in u ∈ U,

where (σhu)(t) = u(t + h), can be imposed to achieve compactness [22, Theorem 5]. If the
functionsuτ in U are piecewise constant in time with uniform time stepτ > 0, this assumption
was simplified in [10, Theorem 1] to

‖στuτ − uτ‖Lr (0,T−τ;Y) ≤ Cτ,

whereC > 0 does not depend onτ. This condition avoids the construction of linear interpolations
of uτ (also known as Rothe functions [14]).It was shown in [10, Prop. 2] that the rateτ cannot
be replaced byτα with 0 < α < 1. Nonlinear versions were given in [8], generalizing the results
of Maitre.

In the literature, discrete versions of the Aubin-Lions lemma were investigated. For instance,
compactness properties for a discontinuous and continuousGalerkin time-step scheme were
shown in [24, Theorem 3.1]. In [12], compactness to sequences of functions obtained by a
Faedo-Galerkin approximation of a parabolic problem was studied.

In this note, we generalize some results of [8, 10] (and [12])to seminormed nonnegative cones.
We callM+ aseminormed nonnegative conein a Banach spaceB if the following conditions hold:
M+ ⊂ B; for all u ∈ M+ andc ≥ 0, cu ∈ M+; and if there exists a function [·] : M+ → [0,∞)
such that [u] = 0 if and only if u = 0, and [cu] = c[u] for all c ≥ 0. We say thatM+ ֒→ B
continuously, if there existsC > 0 such that‖u‖B ≤ C[u] for all u ∈ M+ ⊂ B. Furthermore, we
write M+ ֒→ B compactly, if for any bounded sequence(un) in M+ (here the boundedness means
that there existsC > 0 such that for alln ∈ N, [un] ≤ C), there exists a subsequence converging
in B.

Theorem 1 (Aubin-Lions-Dubinskĭı). Let B, Y be Banach spaces and M+ be a seminormed
nonnegative cone in B with M+ ∩ Y , ∅. Let1 ≤ p ≤ ∞. We assume that

(i) M+ ֒→ B compactly.
(ii) For all (wn) ⊂ B∩ Y, wn→ w in B, wn→ 0 in Y as n→ ∞ imply that w= 0.
(iii) U ⊂ Lp(0,T; M+ ∩ Y) is bounded in Lp(0,T; M+).
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(iv) ‖σhu− u‖Lp(0,T−h;Y) → 0 as h→ 0, uniformly in u∈ U.

Then U is relatively compact in Lp(0,T; B) (and in C0([0,T]; B) if p = ∞).

This result generalizes slightly Theorem 3 in [8]. The novelty is that we donot require the
continuous embeddingB ֒→ Y. If both B andY are continuously embedded in atopological
vector space(such as some Sobolev space with negative index) or in the space of distributionsD′,
which is naturally satisfied in nearly all applications, then condition (ii) clearly holds. Therefore,
we do not need to check the continuous embeddingB ֒→ Y, which is sometimes not obvious,
like in [9, pp. 1206-1207], whereB is anL1 space with a complicated weight andY is related to a
Sobolev space with negative index. Thus, this generalization is not only interesting in functional
analysis but also in applications.

The proof of Theorem 1 is motivated by Theorem 3.4 in [12] and needs a simple but new idea.
Taking the proof of Theorem 5 in [22] as an example, we comparethe traditional proof and our
new idea. For this, we first list some statements:

B ֒→ Y continuously,(1)

X ֒→ B compactly,(2)

X ֒→ Y compactly,(3)

∀ ε > 0, ∃Cε > 0, ∀u ∈ X, ‖u‖B ≤ ε‖u‖X +Cε‖u‖Y,(4)

U is a bounded subset ofLp(0,T; X),(5)

‖σhu− u‖Lp(0,T−h;Y) → 0 ash→ 0, uniformly for u ∈ U,(6)

‖σhu− u‖Lp(0,T−h;B) → 0 ash→ 0, uniformly for u ∈ U,(7)

U is relatively compact inLp(0,T; Y),(8)

U is relatively compact inLp(0,T; B).(9)

Simon proves (9) [22, Theorem 5] using the steps

I. Theorem 5 in [22]: (1), (2), (5), (6)⇒ (9).
II. Lemma 8 in [22]: (1), (2)⇒ (4).

III. Theorem 3 in [22]: (2), (5), (7)⇒ (9), or (3), (5), (6)⇒ (8).

More precisely,

Traditional proof of I: New proof of I:

(1), (2)
II
==⇒ (4)

(5)
(1), (2) =⇒ (3)

(5)
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III
==⇒ (9).

In the traditional proof of I, the step (1), (2)⇒ (3) depends on the continuous embedding (1).
Hence, in that proof, (1) is essential. In our new proof, onlystep II: (1), (2)⇒ (4) depends on
(1), which can be replaced by condition (ii) of Theorem 1. This condition follows from (1) and
hence, it is weaker than (1).
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If U consists of piecewise constant functions in time (uτ) with values in a Banach space,
condition (iv) in Theorem 1 can be simplified. The main feature is that it is sufficient to verify
one uniform estimate for the time shiftsuτ(· + τ) − uτ instead of all time shiftsuτ(· + h) − uτ for
h > 0.

Theorem 2(Aubin-Lions-Dubinskĭı for piecewise constant functions in time). Let B, Y be Ba-
nach spaces and M+ be a seminormed nonnegative cone in B. Let either1 ≤ p < ∞, r = 1 or
p = ∞, r > 1. Let (uτ) ⊂ Lp(0,T; M+ ∩ Y) be a sequence of functions, which are constant on
each subinterval((k− 1)τ, kτ], 1 ≤ k ≤ N, T = Nτ. We assume that

(i) M+ ֒→ B compactly.
(ii) For all (wn) ⊂ B∩ Y, wn→ w in B, wn→ 0 in Y as n→ ∞ imply that w= 0.

(iii) ( uτ) is bounded in Lp(0,T; M+).
(iv) There exists C> 0 such that for allτ > 0, ‖στuτ − uτ‖Lr (0,T−τ;Y) ≤ Cτ.

Then, if p< ∞, (uτ) is relatively compact in Lp(0,T; B) and if p= ∞, there exists a subsequence
of (uτ) converging in Lq(0,T; B) for all 1 ≤ q < ∞ to a limit function belonging to C0([0,T]; B).

This result generalizes slightly Theorem 1 in [10] and Theorem 3 in [8] (for piecewise constant
functions in time). The proof in [10] is based on a characterization of the norm of Sobolev-
Slobodeckii spaces. Our proof just uses elementary estimates for the differenceστuτ − uτ and
thus simplifies the proof in [10]. Note that Theorems 1 and 2 are also valid ifM+ is replaced by a
seminormed cone or Banach space. We observe that for functionsuτ(t, ·) = uk for t ∈ ((k−1)τ, kτ],
1 ≤ k ≤ N, the estimate of (iv) can be formulated in terms of the differenceuk+1 − uk since

‖στuτ − uτ‖
r
Lr (0,T−τ;B) =

N−1
∑

k=1

∫ kτ

(k−1)τ
‖uk+1 − uk‖

r
Bdt = τ

N−1
∑

k=1

‖uk+1 − uk‖
r
B.

A typical application is the cone of nonnegative functionsu with um ∈ W1,q(Ω), which occurs
in diffusion equations involving a porous-medium or fast-diffusion term. Applying Theorem 2,
we obtain the following result.

Theorem 3. LetΩ ⊂ Rd (d ≥ 1) be a bounded domain with∂Ω ∈ C0,1. Let (uτ) be a sequence of
nonnegative functions which are constant on each subinterval ((k− 1)τ, kτ], 1 ≤ k ≤ N, T = Nτ.
Furthermore, let0 < m< ∞, γ ≥ 0, 1 ≤ q<∞, and p≥ max{1, 1

m}.

(a) If there exists C> 0 such that for allτ > 0,

τ−1‖στuτ − uτ‖L1(0,T−τ;(Hγ(Ω))′) + ‖u
m
τ ‖Lp(0,T;W1,q(Ω)) ≤ C,

then (uτ) is relatively compact in Lmp(0,T; Lmr(Ω)), where r ≥ 1
m is such that W1,q(Ω) ֒→

Lr(Ω) is compact.
(b) If additionallymax{0, (d − q)/(dq)} < m< 1+min{0, (d − q)/(dq)} and

(10) ‖uτ loguτ‖L∞(0,T;L1(Ω)) ≤ C

for some C> 0 independent ofτ > 0, then(uτ) is relatively compact in Lp(0,T; Ls(Ω)) with
s= qd/(qd(1−m) + d − q) > 1.
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Part (a) of this theorem generalizes Lemma 2.3 in [7], in which only relative compactness in
Lmℓ(0,T; Lmr(Ω)) for ℓ < p andq = 2 was shown. Part (b) improves part (a) form < 1 by
allowing for relative compactness inLp with respect to time instead of the larger spaceLmp. It
generalizes Proposition 2.1 in [13] in whichm = 1

2 and p = q = 2 was assumed. Its proof
shows that the bound onuτ loguτ can be replaced by a bound onφ(uτ), whereφ is continuous
and convex.

The additional estimate (10) is typical for solutions of semidiscrete nonlinear diffusion equa-
tions for which

∫

Ω
uτ loguτdx is an entropy (Lyapunov functional) with

∫

Ω
|∇um

τ |
2dx as the corre-

sponding entropy production (see, e.g., [7, Lemma 3.1]). Theorem 3 improves standard com-
pactness arguments. Indeed, let1

m ≤ q < d. The additional estimate yields boundedness
of (uτ) in L∞(0,T; L1(Ω)). Hence,∇uτ = 1

mu1−m
τ ∇um

τ is bounded inLp(0,T; Lα(Ω)) with α =
q/(1+ q(1−m)). Thus, (uτ) is bounded inLp(0,T; W1,α(Ω)) ֒→ Lp(0,T; Ls(Ω)). By the Aubin-
Lions lemma [10], (uτ) is relatively compact inLp(0,T; Lβ(Ω)) for all β < s. Part (b) of the above
theorem improves this compactness toβ = s under the condition that (uτ loguτ) is bounded in
L∞(0,T; L1(Ω)).

This note is organized as follows. In Section 2, Theorems 1-3are proved. Section 3 is con-
cerned with additional results.

2. Proofs

2.1. Proof of Theorem 1. The proof of Theorem 1 is based on the following Ehrling type
lemma.

Lemma 4. Let B, Ybe Banach spaces and M+ be a seminormed nonnegative cone in B. We
assume that

(i) M+ ֒→ B compactly.
(ii) For all (wn) ⊂ B∩ Y, wn→ w in B, wn→ 0 in Y as n→ ∞ imply that w= 0.

Then for anyε > 0, there exists Cε > 0 such that for all u, v∈ M+ ∩ Y,

‖u− v‖B ≤ ε([u] + [v]) +Cε‖u− v‖Y.

Proof. The proof is performed by contradiction. Suppose that thereexistsε0 > 0 such that for
all n ∈ N, there existun, vn ∈ M+ ∩ Y such that

(11) ‖un − vn‖B > ε0([un] + [vn]) + n‖un − vn‖Y.

This implies that [un]+ [vn] > 0 for all n ∈ N since otherwise, [um] = [vm] = 0 for a certainm ∈ N
would lead toum = vm = 0 which contradicts (11). Define

ũn =
un

[un] + [vn]
, ṽn =

vn

[un] + [vn]
.

Then ũn, ṽn ∈ M+ ∩ Y and [ũn] ≤ 1, [ṽn] ≤ 1. Taking into account the compact embedding
M+ ֒→ B, there exist subsequences of (˜un) and (ṽn), which are not relabeled, such that ˜un → u
andṽn→ v in B and hence,

(12) ũn − ṽn→ u− v in B.
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We infer from (11) that‖ũn − ṽn‖B > ε0 + n‖ũn − ṽn‖Y. This shows, on the one hand, that
‖ũn − ṽn‖B > ε0 and, by (12),‖u− v‖B≥ε0. On the other hand, using the continuous embedding
M+ ֒→ B,

‖ũn − ṽn‖Y ≤
1
n
‖ũn − ṽn‖B ≤

C
n

([ũn] + [ṽn]) ≤
2C
n
.

Consequently, ˜un − ṽn → 0 in Y. Together with (12), condition (ii) implies thatu − v = 0,
contradicting‖u− v‖≥ε0. �

Proof of Theorem 1.First, we prove that

(13) ‖σhu− u‖Lp(0,T−h;B) → 0 ash→ 0, uniformly in u ∈ U.

Indeed, by condition (iii), there existsC > 0 such that‖u‖Lp(0,T;M+) ≤ C for all u ∈ U. Lemma 4
shows that for anyε > 0, there existsCε > 0 such that for all 0< h < T, u ∈ U, andt ∈ [0,T−h],

‖u(t + h) − u(t)‖B ≤
ε

4C
(

[u(t + h)] + [u(t)]
)

+Cε‖u(t + h) − u(t)‖Y.

Integration overt ∈ (0,T − h) then gives

‖σhu− u‖Lp(0,T−h;B) ≤
ε

2C
‖u‖Lp(0,T;M+) +Cε‖σhu− u‖Lp(0,T−h;Y)

≤
ε

2
+Cε‖σhu− u‖Lp(0,T−h;Y).

We deduce from condition (iv) that forε1 = ε/(2Cε), there existsη > 0 such that for all 0< h < η
andu ∈ U, ‖σhu−u‖Lp(0,T−h;Y) ≤ ε1. This shows that‖σhu−u‖Lp(0,T−h;B) ≤ ε/2+ ε/2 = ε, proving
the claim.

Because of condition (iii) and (13), the assumptions of Lemma6 in [8] are satisfied, and
the desired compactness result follows. In Lemma 6, only the(compact) embeddingM+ ֒→ B is
needed. Let us mention that this lemma is a consequence of a nonlinear Maitre-type compactness
result [8, Theorem 1] (see Proposition 7), which itself usesTheorem 1 in [22]. �

2.2. Proof of Theorem 2. The proof of Theorem 2 is based on an estimate of the time shifts
σhuτ − uτ.

Lemma 5. Let 1 ≤ p ≤ ∞ and let uτ ∈ Lp(0,T; B) be piecewise constant in time, i.e., uτ(t) = uk

for (k− 1)τ < t ≤ kτ, k = 1, . . . ,N, T = Nτ. Then, for0 < h < T,

‖σhuτ − uτ‖Lp(0,T−h;B) ≤ h1/p
N−1
∑

k=1

‖uk+1 − uk‖B =
h1/p

τ
‖στuτ − uτ‖L1(0,T−τ;B).

Proof. Denoting byH the Heaviside functions, defined byH(t) = 0 for t ≤ 0 andH(t) = 1 for
t > 0, we find that

uτ(t) = u1 +

N−1
∑

k=1

(uk+1 − uk)H(t − kτ), 0 < t < T.

This gives

uτ(t + h) − uτ(t) =
N−1
∑

k=1

(uk+1 − uk)
(

H(t + h− kτ) − H(t − kτ)
)

, 0 < t < T − h,
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and

(14) ‖στuτ − uτ‖Lp(0,T−h;B) ≤

N−1
∑

k=1

‖uk+1 − uk‖B‖H(t + h− kτ) − H(t − kτ)‖Lp(0,T−h).

If 1 ≤ p < ∞, we have for 1≤ k ≤ N − 1,

‖H(t + h− kτ) − H(t − kτ)‖pLp(0,T−h) ≤

∫ ∞

−∞

∣

∣

∣H(t + h− kτ) − H(t − kτ)
∣

∣

∣

p
dt

=

(∫ kτ−h

−∞

+

∫ kτ

kτ−h
+

∫ ∞

kτ

)

∣

∣

∣H(t + h− kτ) − H(t − kτ)
∣

∣

∣

p
dt =

∫ kτ

kτ−h
dt = h.

If p = ∞, we infer that

‖H(t + h− kτ) − H(t − kτ)‖L∞(0,T−h) ≤ ‖H(t + h− kτ) − H(t − kτ)‖L∞(R)

= ‖H(t + h− kτ) − H(t − kτ)‖L∞(kτ−h,kτ) = 1.

Hence,
‖H(t + h− kτ) − H(t − kτ)‖L∞(0,T−h) ≤ h1/p, 1 ≤ p ≤ ∞.

Together with (14), this finishes the proof. �

Theorem 1 above and Lemma 4 in [22] imply the following proposition involving the time
derivative instead of the time shifts.

Proposition 6. Let B, Y be Banach spaces and M+ be a seminormed nonnegative cone in B. Let
either1 ≤ p < ∞, r = 1 or p = ∞, r > 1. Assume that conditions(i)-(iii) of Theorem 1 hold and

∂U
∂t

is bounded in Lr(0,T; Y).

Then U is relatively compact in Lp(0,T; B) (and in C0([0,T]; B) if p = ∞).

Proof of Theorem 2.The case 1≤ p < ∞ is a consequence of Theorem 1 and Lemma 5. There-
fore, letp = ∞. We define the linear interpolations

ũτ(t) =

{

u1 if 0 < t ≤ τ,
uk − (kτ − t)(uk − uk−1)/τ if (k− 1)τ < t ≤ kτ, 2 ≤ k ≤ N.

Since (kτ − t)/τ ≤ 1 for (k− 1)τ < t ≤ kτ, we have

‖ũτ‖L∞(0,T;M+) ≤ 2‖uτ‖L∞(0,T;M+) ≤ C,

using condition (iii). Furthermore, by condition (iv),
∥

∥

∥

∥

∥

∂ũτ
∂t

∥

∥

∥

∥

∥

Lr (0,T;Y)
=

1
τ
‖στuτ − uτ‖Lr (0,T−τ;Y) ≤ C.

By Proposition 6, there exists a subsequence (˜uτ′) of (ũτ) such that ˜uτ′ → ũ in C0([0,T]; B) (and
ũ ∈ C0([0,T]; B)). Applying Theorem 2 withp = 1 andr = 1, there exists a subsequence (uτ′′)
of (uτ′) such thatuτ′′ → u in L1(0,T; B). Since

‖ũτ − uτ‖L1(0,T;B) ≤ ‖στuτ − uτ‖L1(0,T−τ;B) ≤ Cτ,
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it follows that (ũτ′′) and (uτ′′) converge to the same limit, implying that ˜u = u. By the boundedness
of (uτ) in L∞(0,T; M+) ⊂ L∞(0,T; B) and interpolation, we infer that for 1≤ q < ∞, asτ→ 0,

‖uτ′′ − u‖Lq(0,T;B) ≤ ‖uτ′′ − u‖1/q
L1(0,T;B)

‖uτ′′ − u‖1−1/q
L∞(0,T;B) ≤ C‖uτ′′ − u‖1/q

L1(0,T;B)
→ 0.

This shows that a subsequence of (uτ) converges inLq(0,T; B) to a limit functionu ∈ C0([0,T];
B). �

2.3. Proof of Theorem 3. (a) We apply Theorem 2 toB = Lmr(Ω), Y = (Hs(Ω))′, andM+ =
{u ≥ 0 : um ∈W1,q(Ω)} with [u] = ‖um‖

1/m
W1,q(Ω)

for u ∈ M+. ThenM+ is a seminormed nonnegative
cone inB. We claim thatM+ ֒→ B compactly. Indeed, it follows from the continuous embedding
W1,q(Ω) ֒→ Lr(Ω) that for anyu ∈ M+,

‖u‖Lmr(Ω) = ‖u
m‖

1
m
Lr (Ω) ≤ C‖um‖

1
m

W1,q(Ω)
= C[u].

ThenM+ ֒→ B continuously. Let (vn) be bounded inM+. Then (vm
n ) is bounded inW1,q(Ω). Since

W1,q(Ω) embeddes compactly intoLr(Ω), up to a subsequence which is not relabeled,vm
n → z

in Lr(Ω) with z ≥ 0. Again up to a subsequence,vm
n → z a.e. andvn → v := z1/m a.e. Hence

vm
n → vm in Lr(Ω) which yields

lim
n→∞
‖vn‖Lmr(Ω) = lim

n→∞
‖vm

n ‖
1/m
Lr (Ω) = ‖v

m‖
1/m
Lr (Ω) = ‖v‖Lmr(Ω).

Then it follows from Brezis-Lieb theorem (see [5, p. 298, 4.7.30] or [6]) thatvn → v in Lmr(Ω)
(for a subsequence). This proves the claim. Next, letwn→ w in Lmr(Ω) andwn→ 0 in (Hγ(Ω))′.
SinceLmr(Ω) ֒→ D′(Ω) and (Hγ(Ω))′ ֒→ D′(Ω), the convergences hold true inD′(Ω) which
givesw = 0. Furthermore, the following bound holds:

‖uτ‖Lmp(0,T;M+) = ‖u
m
τ ‖

1/m
Lp(0,T;W1,q(Ω))

≤ C.

By Theorem 2, (uτ) is relatively compact inLmp(0,T; Lmr(Ω)).
(b) Note that the condition max{0, (d − q)/(dq)} < m < 1+min{0, (d − q)/(dq)} ensures that

s> 1. By the first part of the proof, up to a subsequence,uτ → u a.e. It is shown in the proof of
Proposition 2.1 in [13] that this convergence and (10) implythatuτ → u in L∞(0,T; L1(Ω)). We
infer from the elementary inequality|a− b|1/m ≤ |a1/m− b1/m| for all a, b ≥ 0 that

‖um
τ − um‖L∞(0,T;L1/m(Ω)) ≤ ‖uτ − u‖L∞(0,T;L1(Ω)) → 0 asτ→ 0.

Then the Gagliardo-Nirenberg inequality gives

‖um
τ − um‖Lp/m(0,T;Ls/m(Ω)) ≤ C‖um

τ − um‖mLp(0,T;W1,q(Ω))‖u
m
τ − um‖1−m

L∞(0,T;L1/m(Ω))

≤ C‖um
τ − um‖1−m

L∞(0,T;L1/m(Ω)) → 0.

In particular, we infer that

‖uτ‖
m
Lp(0,T;Ls(Ω)) = ‖u

m
τ ‖Lp/m(0,T;Ls/m(Ω)) ≤ C.

Furthermore, by the mean-value theorem,|a−b| ≤ 1
m(a1−m

+b1−m)|am−bm| for all a, b ≥ 0, which
yields, together with the Ḧolder inequality,

‖uτ − u‖Lp(0,T;Ls(Ω)) ≤ C
(

‖uτ‖
1−m
Lp(0,T;Ls(Ω)) + ‖u‖

1−m
Lp(0,T;Ls(Ω))

)

‖um
τ − um‖Lp/m(0,T;Ls/m(Ω))
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≤ C‖um
τ − um‖Lp/m(0,T;Ls/m(Ω)) → 0.

This proves the theorem.

3. Additional results

Using Lemma 5, we can specify Maitre’s nonlinear compactness result and Aubin-Lions
lemma with intermediate spaces assumption for piecewise constant functions in time.

Proposition 7 (Maitre nonlinear compactness). Let either1 ≤ p < ∞, r = 1 or p = ∞, r > 1.
Let X, B be Banach spaces, and let K: X → B be a compact operator. Furthermore, let(vτ) ⊂
L1(0,T; X) be a sequence of functions, which are constant on each subinterval ((k − 1)τ, kτ],
1 ≤ k ≤ N, T = Nτ, and let uτ = K(vτ) ∈ Lp(0,T; B). Assume that

(i) (vτ) is bounded in L1(0,T; X), (uτ) is bounded in L1(0,T; B).
(ii) There exists C> 0 such that for allτ > 0, ‖στuτ − uτ‖Lr (0,T−τ;B) ≤ Cτ.

Then, if p< ∞, (uτ) is relatively compact in Lp(0,T; B) and if p= ∞, there exists a subsequence
of (uτ) converging in Lq(0,T; B) for all 1 ≤ q < ∞ to a limit function belonging to C0([0,T]; B).

This result extends Theorem 1 in [8], which was proven forr = p only, for piecewise constant
functions in time. In fact, Lemma 5 shows that condition (ii)implies a bound onσhuτ − uτ in
Lp(0,T − h; B), and Theorem 1 in [8] applies forp < ∞. The casep = ∞ is treated as in the
proof of Theorem 2.

Proposition 8 (Aubin-Lions compactness). Let X, B, Y be Banach spaces and1 ≤ p < ∞.
Assume that X֒→ Y compactly, X֒→ B ֒→ Y continuously and there existθ ∈ (0,1), Cθ > 0
such that for any u∈ X, ‖u‖B ≤ Cθ‖u‖1−θX ‖u‖

θ
Y. Furthermore, let(uτ) be a sequence of functions,

which are constant on each subinterval((k− 1)τ, kτ], 1 ≤ k ≤ N, T = Nτ. If

(i) (uτ) is bounded in Lp(0,T; X).
(ii) There exists C> 0 such that for allτ > 0, ‖στuτ − uτ‖L1(0,T−τ;Y) ≤ Cτ.

Then(uτ) is relatively compact in Lq(0,T; B) for all p ≤ q < p/(1− θ).

Proof. Let p ≤ q < p/(1 − θ) and setℓ = θ/(1/q − (1 − θ)/p). Thenℓ ∈ [1,∞) and 1/q =
(1 − θ)/p + θ/ℓ. Hence it follows from Lemma 5 that‖σhuτ − uτ‖Lℓ(0,T−h;Y) ≤ Ch1/ℓ for all
0 < h < T. This and Theorem 7 of [22] prove the result. �

This result improves Theorem 1 in [10] for the casep < ∞. For piecewise constant functions,
Lemma 5 can be applied to Theorem 1.1 of [2] which yields another compactness result.

In finite-element or finite-volume approximation,un ∈ Yn may be the solution of a discretized
evolution equation, where (Yn) is a sequence of (finite-dimensional) Banach spaces which “ap-
proximates” the (infinite-dimensional) Banach spaceY. Since the spacesYn depend on the index
n, the classical Aubin-Lions lemma generally does not apply.Galloüet and Latch́e [12] have
proved a discrete version of this lemma. We generalize theirresult for seminormed conesMn

and allow for the casep = ∞.

Proposition 9 (Discrete Aubin-Lions-Dubinskiı̆). Let B, Yn be Banach spaces(n ∈ N) and let
Mn be seminormed nonnegative cones in B with “seminorms” [·]n. Let1 ≤ p ≤ ∞. Assume that
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(i) (un) ⊂ Lp(0,T; Mn ∩ Yn) and there exists C> 0 such that‖un‖Lp(0,T;Mn) ≤ C.
(ii) ‖σhun − un‖Lp(0,T−h;Yn) → 0 as h→ 0, uniformly in n∈ N.

Then(un) is relatively compact in Lp(0,T; B) (and in C0([0,T]; B) if p = ∞).

Proof. The proof uses the same techniques as in Section 2, thereforewe give only a sketch.
Similarly as in Lemma 4, a Ehrling-type inequality holds: Let un ∈ Mn (n ∈ N). Assume that (i)
if [ un]n ≤ C for all n ∈ N, for someC > 0, then (un) is relatively compact inB; (ii) if un → u in
B asn→ ∞ and limn→∞ ‖un‖Yn = 0 thenu = 0. Then for allε > 0, there existsCε > 0 such that
for all n ∈ N, u, v ∈ Mn ∩ Yn,

‖u− v‖B ≤ ε([u]n + [v]n) +Cε‖u− v‖Yn.

We infer as in the proof of Theorem 1 that conditions (i) and (ii) imply that

‖σhun − un‖Lp(0,T−h;B) → 0 ash→ 0, uniformly for n ∈ N.

Finally, as in the proof of Lemma 6 in [8], the relative compactness of (un) in Lp(0,T; B) (and in
C0([0,T]; B) if p = ∞) follows. �
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